
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

CSE Technical reports Computer Science and Engineering, Department
of

11-9-2008

IDEAS: An Identity-based Security Architecture for Large-scale and IDEAS: An Identity-based Security Architecture for Large-scale and

High-performance Storage Systems High-performance Storage Systems

Zhongying Niu
Wuhan National Laboratory for Optoelectronics, China

Ke Zhou
Wuhan National Laboratory for Optoelectronics, China

Hong Jiang
University of Nebraska-Lincoln, jiang@cse.unl.edu

Dan Feng
Wuhan National Laboratory for Optoelectronics, Wuhan, 430074, China

Tianming Yang
Wuhan National Laboratory for Optoelectronics, China

Follow this and additional works at: https://digitalcommons.unl.edu/csetechreports

 Part of the Computer Sciences Commons

Niu, Zhongying; Zhou, Ke; Jiang, Hong; Feng, Dan; and Yang, Tianming, "IDEAS: An Identity-based Security
Architecture for Large-scale and High-performance Storage Systems" (2008). CSE Technical reports. 69.
https://digitalcommons.unl.edu/csetechreports/69

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Technical reports by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/17221129?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/csetechreports
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/csetechreports?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/csetechreports/69?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages

IDEAS: An Identity-based Security Architecture for Large-scale and
High-performance Storage Systems

Zhongying Niu†, Ke Zhou†, Hong Jiang‡, Dan Feng†, Tianming Yang†
†College of Computer Science and Technology

Huazhong University of Science and Technology
Wuhan National Laboratory for Optoelectronics, Wuhan, 430074, China

Email: niel@smail.hust.edu.cn, {k.zhou, dfeng}@hust.edu.cn
{tmyang}@smail.hust.edu.cn

‡Department of Computer Science and Engineering
University of Nebraska-Lincoln, Lincoln, NE 68588, USA

Email: jiang@cse.unl.edu

Abstract
We develop IDEAS, an identity-based security

architecture for large-scale and high-performance storage
systems, designed to improve security, convenience
and total cost of access control by merging identity
management with access control in these systems. IDEAS
authenticates users at each I/O node by using a single-
identity certificate without the service of a centralized
security server and enforces access control mechanism
by using an object-based access control (OBAC) model,
which is designed to address the complexity and
scalability issue of security administration in large-scale
storage systems. We also discuss the issue of how to
identify and authenticate a large number of users with the
state-of-the-art cryptographic solutions and suggest the
potential alternative technologies to the well-known PKI
mechanism. In particular, we present a generic definition
and formal description of the OBAC model. The access
control rules for OBAC, namely, the PIPS (Proximity,
Inheritance, Priority, Sharing) rules, proposed in this
paper can be used as the basis for establishing a testing
and evaluation criteria for securing general large-scale
storage systems.

Experiments on the IDEAS prototype in the HUST OSD
project show that IDEAS significantly outperforms the
conventional capability-based security scheme (CapSec)
in terms of latency for key security-related operations, by
a speedup factor of 1.81 and 2.22 for the frequent read and
write operations respectively and by a factor of 1.65, 1.22,
and 0.52 for the infrequent create, delete and chmod oper-
ations respectively. Furthermore, in addition to achieving
higher security, IDEAS drastically improves scalability by
completely removing the performance bottleneck caused
by security overhead through avoiding capability requests
for both read and write operations, as evidenced by the

zero read and write latency of IDEAS on the metedata
server while CapSec quickly saturates its metadata server
with a moderate number of read or write requests.

1. Introduction

Today, scientific computing, engineering design and
simulation, as well as large commercial application have
raised demands for large-scale and high-performance stor-
age systems. High-performance computing (HPC) appli-
cations of today and tomorrow, such as High-Energy
Physics, Biosciences, Chemistry, Astrophysics, and Geo-
physics call for high-performance data access and ter-
abytes to petabytes of data storage. Large commercial
applications such as Google and Yahoo may service
millions of users and produce enormous amount of elec-
tronic data. Large-scale storage systems in the near future
will require much larger data storage and higher data
throughput. A typical large-scale storage system or next-
generation storage system may service millions of clients
and hold hundreds of metadata servers (MDS) and hun-
dreds of thousands of storage devices, with petabytes to
exabytes of storage capacities and hundreds of terabytes
of aggregate bandwidth. Securing such a large-scale and
high-performance storage system presents new challenges
because of the large number of clients and concurrent
accesses of both random I/O and high data throughput.
The primary challenges that we address in this paper are
listed below.

Challenge 1: Added threat environment. Recent stud-
ies [1]–[7] on large-scale and high-performance storage
systems have enabled direct interaction between clients
and storage devices. The storage devices are attached to
the client-network, which enables the clients to directly
access data from the storage devices to improve the

University of Nebraska–Lincoln, Computer Science and Engineering
Technical Report TR-UNL-CSE-2008-0013
Issued Nov. 9, 2008

performance and scalability of the system. However, as
storage systems and individual storage devices themselves
become networked, they must defend against the attacks
not only on the stored data itself but also on the messages
traversing an untrusted public network.

Challenge 2: Rapid authorization. Due to the large
number of nodes, the huge size of data sets, and the
concurrency of their accesses, high performance comput-
ing and data-intensive applications generate an extremely
high aggregate I/O demand on the storage subsystem.
File accesses and I/O requests are often both extremely
bursty and highly parallel [8] in high-performance storage
systems. The efficiency of rapidly authorizing I/O requests
directly affects the overall performance of the system.

Challenge 3: Complex security management. The main
task of security administration is to maintain user’s iden-
tity and access privilege information. Commonly, the
identity information is stored in a local user database and
the access privilege information is organized in the form
of access control list or matrix. Given the scale of the
systems under consideration, the user database and access
control list or matrix can become too large and complex
to maintain and operate efficiently and economically.

Challenge 4: Identifying and authenticating an enor-
mous number of clients. The world is becoming identity
based (e.g., universal and unique IDs being implemented
in several countries for their citizens). Large-scale storage
systems may service millions of clients from different
organizations and with multiple distinctive identities each.
Conventional identification and authentication technolo-
gies provided by ad-hoc, single-purpose systems, such
as global user lists and password based systems are not
sufficiently competent to identify and authenticate such
an enormous number of clients. In addition, identification
technologies and authentication algorithms determine the
security mechanism. It is thus necessary to consider iden-
tity management and access control as a whole for the
purpose of high security and low cost.

Unfortunately, existing security schemes [9]–[20] for
large-scale storage systems are ill-prepared for addressing
the above challenges. A key reason lies in the confusion
between the security-specific metadata and the common
file-system metadata. The former specifies authorization
information, encryption keys, data access logging, etc,
while the latter refers to location and length information
of data, system configuration, etc. The two obvious differ-
ences between the above two kinds of metadata are their
respective users and lifetimes. A file server or administra-
tor authorizes application clients according to the security-
specific metadata, such as authorization information, while
users locate and access data by the common file-system
metadata, such as location and length of the data. For
security purposes, during the whole lifetime of the data,
the security-specific metadata is updated frequently, for

example, revoking authorization and refreshing keys reg-
ularly, while the common file-system metadata, such as
location of the data, usually does not change. However,
these key differences have been largely ignored in the
design of the current security schemes, which results in
the following inherent limitations.

Current large-scale storage systems have largely ig-
nored security. The decoupled design of large-scale stor-
age systems that separates metadata path from data path
to enable direct interaction between clients and devices
has not differentiated the security-specific metadata from
the common file-system metadata. Consequently, storage
devices, i.e., the users of the security-specific metadata,
do not possess any explicit knowledge of access privileges
and authorizations, meaning that, in order to authorize a
client, the storage devices have to acquire authorization
information from MDS or the client who has acquired a
capability from MDS. Given the sheer scale of the systems
under our study, this imposes an unacceptable overhead
on MDS. To make things worse, the security-specific
metadata is updated frequently, making it impractical for
servers to generate and return that many capabilities in a
timely manner, especially in HPC storage systems.

There exist redundancies and loopholes in current se-
curity mechanisms for large-scale storage systems. Exist-
ing large-scale storage systems authenticate clients at a
centralized authorization server by utilizing an existing
security infrastructure, such as Kerberos [21]. The au-
thorization server grants the client access to the devices
and then the devices enforce decentralized access controls,
thus separating identity management from access control.
This separation makes the system vulnerable to security
attacks and incurs additional cost of access control.

Most of the current security schemes have ignored the
complexity and scalability issue of security administra-
tion. Capability-based security (CapSec) schemes [9]–[19]
widely used in most of the current security solutions
maintain an access control list (ACL) at a centralized
authorization server. Given the sheer scale of the systems
under our study, this ACL can become too large and
complex to maintain easily and efficiently. Identity key
schemes [19], [20], which store the role-based access
control list along with each object on the devices, reduce
the complexity of security administration to a certain
extent in an environment with a large number of clients.
Nevertheless, as the number of and amount of data on
the devices further increase as is the technological trend,
data update (e. g., write operations) will still result in an
enormous number of permission operations.

The traditional access control provided by ad-hoc,
single-purpose systems has become outdated and is being
replaced by the identity-based access control, as the world

Security

Manager

Storage Device

1. I/O Request &

Identity

2. I/O Response

Client

Director

ACL

OBAC

Working

ACL

Policy Control

(a) IDEAS

Authorization

Server

Storage Device

3. I/O Request &

Capability

4. I/O Response

Client

ACL

Shared Secret keys,

Refreshed periodically

1. Get Capability

2. Capability

(b) CapSec

Figure 1. IDEAS architecture VS. CapSec architecture.

is gradually becoming identity based (Phil Libin1, 2006).
Identity determines what you are and what you can do.
An identity-based access control system would not only
eliminate a number of passwords and user accounts, but
also achieve a centralized management of network secu-
rity. As a result, the U.S. government issued Homeland
Security Presidential Directive number 12 (HSPD-12) in
2004, which mandated that all federal employees and
contractors use a single, secure credential for access to
sensitive physical and IT resources. Soon thereafter, the
U.S. National Institute for Standards and Technology
(NIST) published Federal Information Processing Stan-
dard 201 (FIPS 201) to address issues related to secure
processes and attributes for the issuance, use, and interop-
erability of the identification credentials. It was proposed
that all U.S. federal agencies start issuing interoperable
identity cards to all employees by Oct. 27, 2007. In this
paper, we attempt to merge identity management with
access control to improve security, convenience and total
cost of access control by eliminating the aforementioned
redundancies and loopholes in the decoupled designs of
parallel file systems and large-scale storage systems. The
main contributions of this paper include:

• It develops IDEAS, an ID-based sEcurity
Architecture for large-scale and high-performance Storage
systems, designed to improve security, convenience
and total cost of access control (Section 2). IDEAS
authenticates users at each I/O node by using a single-
identity certificate without the service of a centralized
security server and enforces access control by using an
object-based access control (OBAC) model.

• It proposes an object-based access control (OBAC)
model (Section 3), which is designed to address the
complexity and scalability issue of security administration
in large-scale and high-performance storage systems. A
generic definition and a formal description of OBAC are
presented. The access control rules for OBAC, namely,
the PIPS (Proximity, Inheritance, Priority, Sharing) rules,

1. The Founder and President of CoreStreet, one of the top companies
providing smart credential and identity management technologies to
governments and large corporations throughout the world.

proposed in this paper can be used as the basis for
establishing a testing and evaluation criteria for securing
general large-scale storage systems.

• It discusses the issue of how to identify and au-
thenticate a large number of users with the state-of-the-
art cryptographic solutions. The looming crisis of PKI, a
widely used technology for authentication in today’s infor-
mation security area is discussed and potential alternative
technologies to PKI are suggested (Section 4).

• It extends the T10 OSD (object-based storage de-
vice) standard [22] to support IDEAS and implement
an IDEAS prototype in the HUST OSD project [12], a
prototype implementation of the T10 standard in HUST
(Huazhong University of Science and Technology). Exper-
iments with both CapSec and IDEAS show that IDEAS
significantly outperforms CapSec in terms of latency for
key security-related operations, by a speedup factor of
1.81 and 2.22 for the frequent read and write operations
respectively and by a factor of 1.65, 1.22, and 0.52
for the infrequent create, delete and chmod operations
respectively. IDEAS completely removes the performance
bottleneck caused by security overhead and drastically
improves the scalability on object-based storage systems
(OBS) while achieving higher security than the conven-
tional CapSec solution (Section 5).

2. IDEAS Architecture

In an IDEAS storage system, shown in Figure 1(a),
each user and component (e.g., storage device and se-
curity manager) has a universal identifier ID and can
play a specific role during a given period of time. Each
identifier includes a designation of the entity as a user
or storage device; e.g., IDu = (user ‖ identifier).
Access permissions are assigned to roles and any user
that assumes a particular role is permitted to perform
operations assigned to that role. User identifiers and the
user-to-role association are assumed to be certified at reg-
ular intervals (say, monthly) by a TA (Trusted Authority)
in our schemes. A certificate consists of the necessary
certificate discriminator IDcert, user identifier IDu, role
identifier IDr, user public key generated using one of

the classic algorithms like RSA, expiration time and other
optional items. Thus the certificate can be implemented
using identity (ID) cards and are compliant with existing
ID card systems.

IDEAS exploits the OBAC model to address the com-
plexity and scalability issue of security administration
(see Section 3) that has been ignored by most of the
current security solutions for large-scale storage systems.
The main idea behind the OBAC model is to associate
ACLs (Access Control Lists) with objects and allow
ACL inheritance. IDEAS stores working ACLs at storage
devices and director ACLs at the security manager. The
storage devices perform access control based on users’
identities and the corresponding working ACLs, along
with each stored object. The director ACL keeps a replica
of all working ACLs and ensures the consistency of the
ACLs distributed among multiple devices. By maintaining
a director-ACL database at a centralized security manager,
frequent changes to ACLs can be easily handled. All ACL
changes will first go to the security manager and the
security manager will propagate it to other storage servers.

Figure 2 describes the operations involved in creating
and deleting (Line 1), reading and writing (Line 2) as
well as modifying privileges (Line 3) in an IDEAS storage
system.

1) Create and Delete. Creating or deleting an object
results in the creation or deletion of the object itself, and
the director and working ACLs for that object. Creating or
deleting a single director ACL entails creating or deleting
only one database record. When the director ACLs are
stored as metadata, the cost of creating or deleting the
director ACLs can be ignored at least for security purposes
because creating or deleting database records for the
director ACLs as a concomitant can be performed along
with metadata operations.

2) Read and Write. For common read and write
operations, users can directly interact with any storage
servers by using a single certificate and the security
manager can be completely offline, which minimizes the
load on the security manager and reduces the impact of
possible failure of the security manager on the system.

3) Modify Privileges. For the purpose of keeping
ACLs consistent for all striped objects that belong to a
single larger object, the changes to the ACLs of the latter
object will first go to the security manager that will then
propagate it to other storage servers. It should be noted
that modifying privileges is a relatively infrequent event
because changes to role permissions (i.e., to the role-
based access control list) are infrequent relative to changes
to role memberships. Such a scheme also reduces the
workload of the administrator because, for each object,
an administrator need only send a privilege command to
the security manager but need not concern whether that
object is striped onto multiple storage servers.

Security Manager

Storage Device

2. Read/Write

& Certificate

Client

2

2

1

3

1. Create/delete

& Certificate

31

3

3

3. Modify privileges

& Certificate

Figure 2. Operations for creating and deleting, read-
ing and writing, as well as modifying privileges.

In contrast to the CapSec architecture, shown in Fig-
ure 1(b), that has been widely used in current security
schemes, IDEAS not only improves the security, per-
formance and scalability but also reduces the complex-
ity of security administration for large-scale and high-
performance storage systems, as explained next.

The CapSec scheme maintains ACLs at a centralized
“authorization server”. In order to access an object, a
user must acquire a capability that grants permissions to
the user from the server for each object that she wants
to access. Thus, the centralized “authorization server”
authenticates the user and authorizes the request while
the storage devices validate the capabilities and perform
requests permitted by the capabilities. As a result, iden-
tity management is separated from access control, which
results in unavoidable security risks and additional cost of
access control. For example, the capabilities and the key
hierarchy that protects the capabilities increase the number
of attack points because the shared secret keys in the key
hierarchy can be revealed and malicious users can tamper
with or forge the capabilities cached at user hosts or
transmitted over insecure networks. Also, as applications
scale to use tens or hundreds of thousands of nodes, the
authorization server becomes a severe bottleneck for data
access.

In IDEAS storage systems, on the other hand, authen-
tication and authorization are performed at the storage
devices. A user can directly interact with any device
attached to the client-network by using a single-identity
certificate without the service of a centralized security
manager, which shortens the data access path and reduces
the load on the security manager. Since the user has to
prove her identity by a certificate (such as a smart card or
passport), which is secured against physical or electronic
forgery attempts and the storage devices, that is, data
providers themselves determine the user’s identity and
specify what the user is allowed to do by the locally stored
privilege information, the security of IDEAS storage sys-
tems has been significantly improved over that of CapSec
storage systems that use capabilities to deliver privilege

information.

3. Object-based Access Control

Object-based access control (OBAC) is designed to
address the complexity and scalability issue of security ad-
ministration in large-scale and high-performance storage
systems. The main idea behind OBAC, associating ACLs
with objects and allowing ACLs inheritance, has been
widely used in many ACL mechanisms, e.g., POSIX [23]
and Windows NT [24] . In order to meet the security
need of massive and frequently changing data in the
information systems, Yang, et al. [25] have applied OBAC
to electrical power systems, and Li, et al. [26] have applied
OBAC to complex process information management. But
these OBAC systems have been developed by a variety of
organizations, with no commonly agreed upon definition
or recognition in formal standards. As a core component
of IDEAS, it is important for OBAC to be clearly defined
in a common and formal way in this paper. In what follows
we first discuss the shortcomings of the traditional access
control models in the design for securing a large-scale and
high-performance storage system, and then describe the
fundamental features and access control rules of OBAC.
A formal description of OBAC is given in Appendix A.

3.1. Traditional Access Control Models

The Trusted Computer System Evaluation Criteria (TC-
SEC [27]) specifies two types of access control: Discre-
tionary Access Controls (DAC) and Mandatory Access
Controls (MAC). However, both DAC and MAC are inad-
equate for large commercial applications [28]. Role based
access control (RBAC) is an alternative to traditional DAC
and MAC policies that is attracting increasing attention
particularly for commercial applications. By mapping an
organization’s structure to a set of roles and operations
that may be performed by these roles, RBAC can reduce
the complexity and cost of security administration in large
commercial applications.

Although RBAC is powerful in its ability to express
the complex relationships between individuals and their
access rights and address the complexity issue of se-
curity administration in large commercial applications,
it is insufficient for implementing permission scenarios
that usually occur on a large-scale and high-performance
storage system. This is because, besides maintaining the
relationships between roles and users, the security ad-
ministrator must grant an enormous number of privileges
on the large data sets to a limited number of roles.
In addition, RBAC has not defined the forms of access
privilege organization. We consider two common forms
of access privilege organization: access control matrix
and access control list (ACL). The former for large-
scale storage systems can be too large and complex to

maintain and operate efficiently and economically. With
the latter, granting accesses to objects can be performed
by assigning ACLs to these objects and can overload
the security administrator when there are a large number
of protected objects. In an HPC storage system that can
create a large number of sensitive objects instantaneously,
it is also impractical to create and assign a large number
of ACLs in a timely manner.

3.2. Fundamental OBAC Features

We follow the basic idea of the access control list
mechanism and propose an OBAC model to address the
aforementioned shortcomings of traditional access control
models. It should be noted that OBAC can be viewed as
an independent component of access control, coexisting
with DAC, MAC and RBAC when appropriate. Three
fundamental OBAC features are summarized below.

1) ACL’s association with an object. With OBAC,
each object is associated with an access control list, which
is made up of a list of access control entries (ACEs) that
specify who is allowed what access to that object. In large-
scale and high-performance storage systems, the number
of objects far exceeds that of users and roles combined and
changes to a typical object are more frequent than those
to either a user or a role, making permission operations
to objects the overwhelmingly dominant operations for
security administration. It is significant for large-scale and
high-performance storage systems to associate ACLs with
objects because performance is becoming more important
than ever. Once an object is located the corresponding
ACLs will be located, thus access control and permission
management will become more direct and efficient.

2) ACL inheritance. ACLs can be set to inherit from
their parents, that is, the ACL of the parent will be
applied to the child. The inheritance of ACLs has been
addressed in many settings ranging from object-oriented
databases to distributed systems. The main motivation
for the ACL inheritance is to simplify management of
ACLs in large hierarchical systems. There can be tens
of millions of protected objects in large-scale storage
systems, and every single object needs to be assigned
an ACL. ACL inheritance allows an administrator to set
permissions for a parent that can be applied to a set of
child objects (possibly recursively), instead of manually
setting permissions one object at a time. There are two
types of ACL inheritance [24]: static inheritance and
dynamic inheritance. Static inheritance occurs when an
object is created or a new ACL is written to an object due
to an ACL change. The inherited access control entries are
copied from a parent into the ACL of a child object. With
static inheritance, only the ACL on the object itself must
be evaluated for most access checks. Dynamic inheritance
occurs during access checks. The inherited access control

entries on a parent are automatically inherited to the
child. With dynamic inheritance, multiple ACLs must be
evaluated in access checks.

As a result, static inheritance incurs lower runtime costs
than dynamic inheritance. However, compared to the latter,
static inheritance results in more ACLs being modified
when access control changes, and generates larger ACLs.
So static inheritance is preferred when the performance
of propagating ACL changes is less critical than the
speed of an access check. Dynamic inheritance presents
a simple and intuitive access control model that offers
good manageability and low storage costs, at the cost of
checking access on multiple parent objects.

3) ACE priority. In OBAC, privileges may be granted
to either users or groups, that is, an ACL may contain
an ACL entry for a user or a group. A user can be a
member in more than one group, implying that one user
entry and more than one group entry can match in access
checks. Further, positive ACEs and negative ACEs may
be allowed in a system, where the former grants access
and the latter denies access. Finally, with dynamic ACL
inheritance, an ACE matching the same user or group can
appear in both the inheriting ACL and the inherited ACL.
However, only a single entry can determine access. To
avoid the potential inconsistencies in multiple matching
ACEs, we must establish an order of priority for ACEs.
For example, we can place negative ACEs before positive
ACEs, so as to make deny entries take precedence over
grant entries.

3.3. The PIPS Rules for OBAC

We define four basic access control rules for OBAC,
namely, Proximity, Inheritance, Priority and Sharing, or
the PIPS rules. These rules can be applied to not only the
IDEAS design but also any other large-scale and high-
performance security systems that employ OBAC.

Proximity - Proximity means placing access privilege
information as close to protected objects as possible. This
rule ensures that access control decisions can be made as
soon as possible without the additional costs of locating
and fetching the required access privilege information.

Inheritance - Inheritance means that an object can au-
tomatically obtain the corresponding permissions granted
to its parent without having to manually assign these
permissions to it. This rule ensures that operations of
object creation can be performed quickly in a high-
performance system, which can generate a large number
of objects in a timely manner and each object must be
assigned the corresponding permissions.

Priority - Priority refers to subject and permission
priority. This rule ensures that an arbitration decision can
be made when an inconsistency occurs as a result of
privilege inheritance and sharing.

Sharing - Sharing makes it possible to reduce the com-
plexity of security administration in large-scale systems
with an enormous amount of users and other protected
resources. For example, users associated with a particular
role can share the same rights and responsibilities, while a
child object can share her parent’s rights. Thus the security
administrator does not need to assign, change, and revoke
privileges for each user or child object.

4. IDEAS Design

IDEAS provides strong, manageable and low-cost secu-
rity for large-scale and high-performance storage systems
by merging identity management with access control. In
this section, we discuss the issue of how to identify and
authenticate a large number of users with the state-of-
the-art cryptographic solutions, and then detail the design
of access control lists and the revocation mechanisms in
IDEAS.

4.1. Identifying and Authenticating an Enormous
Number of Clients

Large-scale storage systems may service millions of
clients. The authentication technologies for such systems
must be scalable and provide a simple authentication
process. Authentication systems are an essential compo-
nent in cyber security in general. On the other hand, the
key of authentication systems is to establish a rational
digital signature, which in turn relies on an effective
key management. Thus cyber security must solve the
issue of large-scale key management because there are an
enormous number of clients to identify and authenticate
in cyberspace.

There are three potential solutions: public key infras-
tructure (PKI), identity-based encryption (IBE) and com-
bined public key (CPK) [29]. The PKI technology first
presents the notion of a third-party authentication and
meets the requirement for user identification, authentica-
tion, and non-repudiation in cyber security. Though PKI
can be used as a solution to many security problems,
such as secure e-mail, e-business and e-banking, it is
not an ideal authentication technology. In PKI systems,
a public key is bound to the key-holder’s name by a
certificate authority (CA). But the trustworthiness of CA
has long been considered illogical. Many current PKI
implementations employ a hierarchical CA model where,
since a single CA can service only a limited number of
users, PKI increases the scale of key management by
adding CAs, which in turn gives rise to the issue of agency
expansion and increasing network traffic.

The IBE scheme employs the identification of a user’s
identity as a public key or derives the public key from
the user’s identity. As a result, IBE can work without

ACL Header:

 ACL Type: ACCESS_ACL

 ACL Size: 70 bytes

 ACE Count: 2

 ACL Flag: INHERIT_ENABLED

ACE 1:

 Role ID: budget manager

 Access Rights: read, write, delete

ACE 2:

 Role ID: business manager

 Access Rights: read, write

Figure 3. An sample ACL on an object with two
entries (ACEs).

the support of a CA hierarchy, thereby eliminating the
increasing demands on bandwidth incurred by constantly
expanded CA facilities. However, IBE systems can not
work without an on-line public parameter server (PPS),
which provides IBE public parameters and policy infor-
mation for an IBE private key generator (PKG). As a
result, IBE is not a true two-party authentication process
(i.e., devoid of a third party such as CA in PKI). CPK,
one of the IBE variants, uses a small amount of seeds
to produce an almost limitless amount of keys in order
to meet the almost limitless demand for keys. CPK holds
only a small number of public parameters, which can be
stored in a tiny chip. Thus CPK will be able to obtain
the necessary public parameters for a public key from the
chip without the on-line PPS support. As a result, CPK
fully implements peer-to-peer authentication.

In sum, IBE addresses the crisis of trust that confounds
PKI and is considered a potential alternative technology
to PKI, whereas CPK as one of the IBE variants can
further solve the issue of lager-scale key management. A
detailed description and comparison of the PKI, IBE and
CPK systems is given in Appendix B, which will help
provide insight into the design decision on the use of an
appropriate key management scheme.

4.2. Access Control List

The design of ACLs based on OBAC for IDEAS
systems is described blow.

4.2.1. ACL Structure. Two types of ACLs are proposed
for two different purposes in our scheme, namely, access
ACL that defines the usual access permissions of pro-
tected objects and super ACL that defines the permissions
capable of inheritance by a child object from its parent
object. Access ACLs can be associated with both objects
and container objects that contain child objects, such
as directories. Super ACLs can be associated with only
container objects. Super ACLs for non-containers would
be of no use, because no other system objects can be
created inside non-containers.

A sample ACL with two access control entries (ACEs)
is shown in Figure 3. An ACL is made up of a header and
an arbitrary number of ACEs for different roles. The ACL
type field specifies the type of this ACL and the ACL flag
controls whether a child object dynamically inherits its
parent object’s super ACL in access checks. Although the
OBAC model supports an ACL containing ACEs for users
and groups (members in a group can also be grouped into
a role), we only define the ACEs that grant access rights
to specific roles for the purpose of reducing the cost of
security administration incurred by the frequent changes
for user access rights. ACE contains the identifier of the
role it grants access to and an access mask that is a bit-
field specifying the access rights.

4.2.2. ACL Inheritance. Large-scale storage systems
may store tens of millions of files or objects, with each
needing to be assigned an ACL. Storing and managing
so many ACLs can cost considerable storage space and
impose significant, if not prohibitive, workload on the
security administrator. In an HPC storage system, it is also
impractical to manually create an ACL for each of its large
number of objects in a timely manner. ACL inheritance
allows a child object to utilize its parent’s ACL, instead of
storing its own ACL and thus allows an administrator to
focus on setting permissions for entire branches of the tree
in large hierarchical systems, instead of manually setting
permissions one object at a time.

In our approach, ACLs can be set to inherit from their
parents. What this means is that the ACL of the child will
utilize the parent’s super ACL. For example, the permis-
sions for “/jim/foo” can utilize the super ACL associated
with “/jim”. The ACL flags, INHERITANCE ENABLED
and INHERITANCE DISABLED, indicates whether it
inherits its parent’s super ACL or not. In the absence of
ACLs associated with an object, the object will inherit
its parent’s super ACL by default, and in this case, if no
super ACLs are associated with the parent, the object is
inaccessible.

ACL inheritance occurs only when the ACL is set
to inherit from the parent object and no ACE is hit in
the current ACL. Consider, for example, the inheritance
that occurs in a hierarchical file system. If inheritance is
enabled, when the access check process reaches the end
of the current list, it will start traversing the super ACL
of the parent folder to find a matching ACE. Therefore,
the object will have the parent’s super ACL applied to
itself, automatically. If the folder also has inheritance, the
access check process will traverse that folder too. This can
continue all the way until the access check process hits a
folder that has inheritance disabled, or it hits the root of
the device.

In additional, only super ACLs are inherited in access
checks, so changes to an access ACL of the parent apply
only to the parent itself but not to the children. Since the

Director ACL

Working ACL

bar:1 | A

cab:1 | A

bob | A

/ | A
ann | A

Storage Server

Security Manager

Storage Server Storage Server

Legend

Privilege operations

Administrator

Working ACLWorking ACL

/ | A

ann | A

bob | A
bar | A

cab | A
cab:1
cab:2
cab:3

jim | A | S
foo | A

foo:1
foo:2

bar:1

……

…

cab:3 |A

foo:2 | A
jim | A | S

bob | A

/ | A

cab:2 |A

foo:1 | A
jim | A | S

bob | A

/ | A

container object

object

object: stripe

A access ACL

S super ACL

Figure 4. The ACL storage sketch map.

ACL of the child has precedence over that of the parent,
only the ACEs that appear in the parent’s super ACL but
not in the child’s access ACL can be applied to the child.

4.2.3. ACL Storage. Figure 4 shows an ACL storage
sketch map in our system. The security manager stores
director ACLs, which contain access ACLs and super
ACLs along with objects and container objects in the
form of database records, and therefore all changes to the
director ACLs will be mapped to the database records.
Changes to a single object’s permissions affect only one
record. Although a change to the specific role’s permis-
sions results in simultaneously updating multiple database
records, it is infrequent because an ACL only stores the
role-based ACEs and changes to role permissions are
infrequent as compared to changes to role memberships.
When the director ACLs are stored as a kind of metadata
along with other metadata such as the mapping of files
to sets of objects, file system namespace information, and
configuration information about the storage system itself,
the existing policies applied to metadata can apply to the
director ACLs.

The working ACLs, which contain access ACLs and
super ACLs, can be stored as object attributes. Once an
object is located, so is the object’s working ACL. Since a
container object’s permissions may affect the child objects
belonging to it, such as read directory and write directory,
and the super ACL of the container object may apply
to the child objects, the storage devices that store the
child objects also store the access and super ACLs of the
container object. In this case, the container object can be
mapped to a directory or a partition in the storage devices.

As aforementioned, traversing the ACLs of all the
objects located in the devices due to changes to the
specific role’s permissions is infrequent as compared to
simultaneously updating a single object’s attributes due to

changes to the object’s permissions.

4.3. Revocation

Revocation can be achieved in the following ways:
1) Certificate expiry. Each certificate has a lifetime

defined by the expiry time. When the certificate held by
a user expires, the user has to acquire a new certificate to
declare its own identity.

2) Identity revocation list. Unlike the traditional cer-
tificate based systems,such as PKI, that revoke certificates
by issuing certificate revocation lists (CRLs), IDEAS
explicitly revokes identities by issuing identity revocation
lists (IRLs). It is particularly useful in identity-based
systems, where revocation can be integrated into authenti-
cation systems and thus eliminate the need to ransack all
over the Internet to confirm the validity of a certificate.
For example, revoking accounts is an essential operation
of a banking system. The identity revocation lists can
maintain information regarding revoked user identifiers
and a particular role from a specific organization, and can
be periodically issued by the security manager.

3) ACL. We can change an object’s access privileges
by changing the ACLs associated with that object. Role
privileges can be changed by changing the ACLs that
contain ACEs for the specific role. Although it costs more,
a change to the role privileges is relatively infrequent.

4.4. Discussion

Since identification technologies and authentication
algorithms determine the security mechanism, IDEAS
merges identity management with access control to im-
prove security, convenience and total cost of access control
by eliminating those redundancies and loopholes intro-
duced by the decoupled design of data and metadata
in parallel file systems and large-scale storage systems.
IDEAS can work with not only the traditional PKI systems
but also the state-of-the-art authentication solutions, such
as the IBE and CPK systems. The design of ACLs in
IDEAS is based on the OBAC model that associates ACLs
with objects, allows ACLs to be inherited, and addresses
the complexity and scalability issue of security adminis-
tration in large-scale storage systems. The identity-based
architecture of IDEAS allows identity-based revocation.
Besides the traditional revocation mechanism such as
expiry and ACL, a novel revocation mechanism, identity
revocation is suggested for identity-based systems to im-
prove the efficiency of revocation. The design and study
of these solutions will provide valuable insight and guid-
ance for practitioners/designers to design efficient access
control mechanisms for large-scale and high-performance
systems.

5. Implementation and Evaluation

We propose several extensions to the current T10 OSD
standard to support IDEAS and have implemented an
IDEAS prototype in the HUST OSD. Our new OSD
implementation supports not only IDEAS but also CapSec
that has been defined in the T10 OSD standard. In this
section, we first present a detailed IDEAS implementation.
And then we describe the system assumptions of the
IDEAS implementation and discuss the security of the
IDEAS system. Finally, we present experimental results
obtained from the IDEAS prototype to evaluate the over-
head of security, as well as system scalability of IDEAS.

5.1. Implementation Details

The current IDEAS implementation consists of three
components: MDS, OSD, and clients. Besides metadata
management, MDS also implements the functionalities of
security manager, in which director ACLs are stored as
LDAP (Lightweight Directory Access Protocol) database
records along with other metadata. Creating or deleting
the director ACLs can be performed along with metadata
operations. All operations modifying privilege will first go
to MDS where they will be propagated to relevant OSDs.
Working ACLs are stored as object attributes along with
objects. As aforementioned, in order to reduce the cost of
security administration incurred by the frequent changes
to user access rights, each director or working ACL only
stores the ACEs for specific roles.

Authentication in the current IDEAS implementation is
based on IBE, which requires each user and component
to obtain an identity certificate from a TA that certifies
the user identifier and user-to-role association. The IBE
private key is obtained after authenticating to the TA that
calculates private keys for users. Unlike PKI systems, in
which keys are generated randomly, IBE systems allow
keys to be calculated from an identity. If a recipient
obtains the IBE public parameters, she can calculate the
sender’s public key from its identity. Before establishing
access to system resources, an application client authen-
ticates herself to MDS and any OSD that she wishes
to access. The two parties in a conversation verify each
other’s identity by sharing a secret session key, which has
been created in the logging process using an ID-based
authenticated key agreement protocol [30]. As a rule, pub-
lic key cryptography is orders of magnitude slower than
shared key cryptography, but the ID-based authentication
usually occurs only in the logging process. The raw speed
and effect to the system of the cryptographic algorithms
used by our system are evaluated and details of this
evaluation are presented in Appendix C. The evaluation
indicates that the RSA and IBE signatures take the most
amount of running time, roughly 5.8ms and 16.4ms

respectively, while with an input of 512 bits, roughly
the length of a command, the AES and HMAC-SHA1
algorithms, which provide the confidentiality and integrity
protection to commands in the IDEAS implementation,
incur latencies of only 17µs and 14µs respectively. Such
overheads are so sufficiently insignificant that they should
not constitute the primary security cost.

Now, the client creates a shared key KCM with MDS
and a shared key KCD with each OSD that she wishes
to access. KCM is used to cryptographically harden the
messages between MDS and the client in the subsequent
conversations, while KCD is used to protect the OSD
commands from various network attacks, similar to the use
of the capability key for securing an OSD command with
the CMDRSP2 security method in the T10 OSD standard.
In the current IDEAS implementation, the integrity of
the CDB (command descriptor block), returned status and
exceptional condition for each command is validated by
the shared key KCD.

We extend the T10 OSD command set to support
IDEAS. The authenticated key agreement protocol is ac-
complished via the SET SESSION KEY command, which
negotiates a secret session key between OSDs and clients.
The SET ACCESS ENTRIES command retrieves and sets
the ACEs of protected objects.

5.2. System Assumptions

The security of the IDEAS implementation is built on
the following system assumptions.

1) MDS. We assume that MDS is a trusted component.
It can properly serve metadata to clients, provide integrity
for the stored metadata, safely store access control lists
and not be controlled by an adversary.

2) OSD. We also assume that OSD is a trusted compo-
nent. It can properly serve data to clients, provide integrity
for the stored data, safely store access control lists and not
be controlled by an adversary.

3) Clients. Each client acts on behalf of a number of
users. We assume that the users trust their own operating
system to protect them from malicious users on the same
machine who may access data in local memory. However,
clients or end users are not assumed to be trusted because
they can perform all kinds of active and passive attacks.
For example, a legitimate client or user can attempt to
impersonate other legitimate clients, and an adversary can
break into other legitimate clients to perform illegitimate
access.

4) Communication Links. The communication links
are assumed to be completely insecure. An adversary can
perform active and passive attacks such as eavesdropping,
masquerading, replaying, and modifying data.

2. One of the three security methods defined in the T10 OSD standard.

5) Cryptographic Primitives and Security Proto-
cols. Our implementation utilizes two cryptographic prim-
itives, the AES and HMAC-SHA1 algorithms, and one
key agreement protocol, the Yuan and Li’s ID-based
authenticated key agreement protocol [30]. For that, we
assume that these algorithms and protocol are sufficiently
hard to break.

These assumptions do not impose more stringent re-
quirements than those of the CapSec scheme. And this is
also the case in many other parallel file systems. However,
in contrast to CapSec, which utilizes a triple security
protocol to achieve access control and a complex key
hierarchy to protect the capabilities, IDEAS exposes much
fewer attack points. In IDEAS, once a user’s identity is
validated, storage devices can directly determine access
controls by the locally stored privilege information, thus
an IDEAS storage system offers much better security than
a CapSec storage system.

5.3. Experimental Setup

IDEAS is designed to address the complexity and
scalability issue of security administration for large-scale
storage systems or next-generation storage systems, which
may hold hundreds of metadata servers and hundreds
of thousands of storage devices, and service millions of
clients. It is thus impractical for us to experiment on such
a storage system in its full scale. However, since IDEAS’
design goals are to decentralize the security administration
and remove performance bottlenecks of the conventional
schemes, it will be sufficient to assess IDEAS’s scalability
and efficiency by evaluating the following key and mean-
ingful metrics on our small IDEAS prototype: (1) various
overheads associated with IDEAS systems; (2) MDS’s
idle CPU time under a high-bandwidth workload; and 3)
system scalability under a metadata-intensive workload.
We compare the security overhead of IDEAS to that of
CapSec to assess the performance benefits of IDEAS
systems, and compare MDS’s idle CPU time of the IDEAS
implementation with that of the non-secure and CapSec
implementations to evaluate how much security overhead
is incurred when the IDEAS and CapSec schemes are
added to an object-based storage system respectively. The
analysis of system scalability will provide insight into
the system’s performance bottlenecks and how IDEAS
removes such bottlenecks.

Our experiments were conducted on 3 to 17 hosts, each
with one Intel Xeon 3.0 GHz processor and a total of
512 MB DDR-SDRAM physical memory. In addition,
each node is connected to a Highpoint Rocket 2240 Raid
controller attached to 15 SATA disks (7200RPM, 300GB
each). All machines run Fedora Core 4 (kernel version
2.6.12) and are connected by a 1-Gbits Ethernet. In each
experiment, one machine acts as MDS, while others act

as OSDs or clients. For CapSec, the CMDRSP security
method was used in our experiments because this method
provides the same security as IDEAS does.

5.4. Latency Breakdown

We ran a set of micro benchmarks on the IDEAS and
CapSec implementations and measured the latency of each
operation in order to evaluate the various overheads asso-
ciated with our OSD implementation and the performance
benefits of IDEAS when compared to CapSec. The exper-
iment was performed on a one-client to one-OSD system.
We assumed that the client had authenticated herself to
the MDS and OSD, and negotiated a shared key with the
latter two respectively. All the latency benchmarks were
run on a collection of 512 files, each of size 4 KB. In
each benchmark, a fixed filesystem operation (e.g., read,
write, or chmod) was performed on each of the files in a
randomized order. For each operation, the MDS, OSD and
client drivers were instrumented to report the time spent
in fine-grained sub-operations shown in Table 1.

Table 2 summarizes the latency breakdown of the
various operations for the IDEAS and CapSec systems
and the percentage of the latencies for the sub-operations
in relation to that for the MDS or OSD commands. An
empty cell in the table denotes a sub-operation that is not
performed. As observed in the table, the security overhead
of IDEAS, including MDS and OSD command build-
ing and validation, is comparable with that of CapSec.
However, the performance benefits of IDEAS come from
the significantly reduced round trips from the client to
the MDS. Since a client wishing to access OSDs has to
acquire a capability from the MDS in the CapSec system,
all the common operations, such as create, delete, read
and write, each involve a round trip from the client to the
MDS as well as a round trip from the client to the OSD.
In contrast, the two IDEAS-induced round trips from the
client to the MDS and OSD can be performed simultane-
ously for the create and delete operations, which will be
completed after the longer of the two round trips finishes.
As a result, IDEAS speedups CapSec by a factor of 1.65
and 1.22 for the create and delete operations respectively.
More importantly, for the much more frequent read and
write operations, IDEAS requires only one round trip from
the client to the OSD, resulting in a speedup of 1.81 and
2.22 respectively over CapSec. For the chmod operation,
IDEAS requires two round trips from the client to the
MDS and OSD respectively, while CapSec requires only
one round trip from the client to the MDS, because in the
CapSec system the chmod operation only needs to modify
the privilege information in the MDS. But it should be
noted that the chmod operation is much less frequent than
the common operations, such as read and write.

If the client cached the unexpired capabilities that can
be used in the subsequent accesses to the OSD, the CapSec

Table 1. Operation breakdown

Command Sub-operation Overhead
MDS command building (MdsCmdBuild) MDS command encapsulation and encryption

Communication to MDS (CommToMds) Latency that an MDS command is transmitted from clients to MDS; and
Latency that metadata is returned from MDS to clients

MDS command validation (MdsCmdValid) MDS command decryption and privilege verification
Capability generation (CapGen)

MDS

Database access

OSD command building (OsdCmdBuild) OSD command encapsulation and MAC computation (to compute the
integrity check value of the command)

Communication to OSD (CommToOsd)
Latency that an OSD command is transmitted from clients to OSD; and
Latency that results are returned from OSD to clients; and
Latency that data is transmitted

OSD command validation (OsdCmdValid) MAC computation and privilege verification for IDEAS; or
MAC computation and capability reconstruction for CapSec

OSD

Disk access

Table 2. Latency breakdown of various operations for the IDEAS and CapSec systems.

Create Delete Read Write ChmodLatency (µs) IDEAS CapSec IDEAS CapSec IDEAS CapSec IDEAS CapSec IDEAS CapSec
MdsCmdBuild 78(7%) 78(7%) 78(3%) 78(2%) 78(10%) 78(7%) 78(10%) 78(10%)
CommToMds 227(21%) 227(21%) 227(7%) 227(7%) 227(29%) 227(21%) 227(30%) 227(30%)
MdsCmdValid 46(4%) 46(4%) 46(1%) 46(1%) 46(6%) 46(4%) 46(6%) 46(6%)
CapGen 45(4%) 45(1%) 45(6%) 45(4%)
DatabaseAccess 710(67%) 710(64%) 2750(89%) 2750(87%) 391(50%) 710(64%) 405(54%) 405(54%)
MDSCommand 1061 1106 3101 3146 787 1106 756 756
OsdCmdBuild 62(10%) 62(10%) 62(10%) 62(10%) 62(6%) 62(6%) 62(7%) 62(6%) 62(9%)
CommToOsd 258(43%) 258(40%) 258(44%) 258(41%) 571(56%) 571(53%) 329(35%) 329(33%) 258(36%)
OsdCmdValid 211(35%) 253(39%) 211(36%) 253(40%) 211(21%) 253(24%) 211(22%) 253(26%) 211(30%)
DiskAccess 73(12%) 73(11%) 62(10%) 62(10%) 184(18%) 184(17%) 340(36%) 340(35%) 180(25%)
OSDCommand 604 646 593 635 1028 1070 942 984 711
OperationCost 1061 1752 3101 3781 1028 1857 942 2090 1467 756
Speedup 1.65 1.22 1.81 2.22 0.52

system will require only one round trip from the client to
the OSD, which costs 1070µs for the read operation and
984µs for the write operation. Such costs are compara-
ble with the overhead of the read and write operations
in IDEAS. However, once the capabilities expire, the
client has to request new capabilities, which requires two
additional round trips from the client to the MDS and
OSD respectively. Although the administrator can extend
the lifetime of the capabilities to improve the system
performance, for example, increases the expiry time of the
capabilities or delays updating the shared keys between the
MDS and OSD, it renders the system more vulnerable to
security attacks.

5.5. Scalability

We ran a benchmark to measure MDS’s idle CPU time
of the non-secure, CapSec and IDEAS implementations
with various numbers of OSDs and clients. The purpose
of this experiment is to evaluate how much security
overhead is imposed on MDS under a high-bandwidth
workload when the IDEAS and CapSec schemes are added
to an object-based storage system respectively. We ran
the benchmark with 1 through 8 OSDs and clients. Each
client read and wrote files on an OSD and each OSD

was accessed by exactly 1 client. In each run, each client
created 512 files, each of size 256 KB, on an OSD and
sequentially read and wrote these files in 64 KB chunks.
In order to make our experiments more realistic, we setup
a cache of 512 entries for file metadata and a cache of 32
entries for capabilities in each client; that is, the clients
can hit most of file metadata in cache, but miss most
requests for capabilities in cache, which can expire or
become invalid due to key update in reality.

Figure 5 shows that the average percentage of idle
CPU time on the MDS declines with the number of
clients/OSDs. However, in contrast to the non-secure
system, IDEAS does not impose any additional overhead
on the MDS because no capabilities are required for the
read and write operations in the IDEAS system. Thus the
MDS’s idle CPU time of the IDEAS system is comparable
to that of the non-secure system. On the contrary, the
MDS’s idle CPU time with the CapSec system declines
faster than that of the non-secure and IDEAS systems
because the MDS must prepare a capability for each
read or write request with CapSec. Note also that the
MDS’s idle CPU time for the write operation is lower
than that for the read operation, because in our current
system implementations the MDS must synchronously
update the file length for each successful write command,

1/1 2/2 3/3 4/4 5/5 6/6 7/7 8/8
0

10

20

30

40

50

60

70

80

90

100

 Read-NonSecure
 Read-IDEAS
 Read-CapSec
 Write-NonSecure
 Write-IDEAS
 Write-CapSec

M
D

S
 Id

le
 T

im
e

(%
)

Number of Clients/OSDs

Figure 5. Average percentage of idle CPU time on the
metadata server.

which not only increases the latency of a single write
operation but also overloads the MDS when a larger
number of write operations arise. This suggests that we
can decentralize more metadata, such as file length and
privilege information, from MDS to storage devices to
improve the system scalability without impacting on the
overall system management. Since the number of MDS
requests for security purposes in the IDEAS system is
significantly reduced, we expect IDEAS to be able to
support a considerably larger number of clients than
CapSec.

Given the fact that the scalability of object-based stor-
age systems is largely influenced by the metadata server,
we ran a metadata-intensive benchmark to measure the
MDS latency in order to further study IDEAS’s scalability.
In this experiment, we ran multiple client processes on
a total of 4 client machines. We varied the number of
clients from 10 to 80, each issuing 100 create requests
for different files, 100 read and 100 write requests for the
same file at a time. To minimize the effect of different
database deployments, our experimental setup allows the
MDS to bypass more metadata requests to the database
by caching frequently used metadata. Figure 6 charts the
latency of MDS requests as a function of the number of
requests, showing that both the average MDS read and
write latencies are far lower than the average MDS create
latency, because most of read and write requests can hit the
same metadata since each request by a client is restricted
to the same file.

On the other hand, the average MDS create latency
shown in Figure 6(a) for both IDEAS and CapSec ascends
as the number of requests increases. However, with the
same number of requests, the average MDS create latency
for IDEAS is lower than that for CapSec because the MDS
in the latter consumes a considerable amount of CPU
cycles for the MAC computation to generate capabilities.
It should also be noted that the MDS create requests
are issued much less frequently than the read and write
requests. For the frequent read and write requests shown

in Figure 6(b) and 6(c), at a load of 4000 requests, the
MDS with CapSec is saturated and becomes a bottleneck.
With the number of requests larger than 4000, the MDS
latencies soar quickly. On the contrary, IDEAS completely
removes the bottleneck caused by security overhead,
incurring a zero latency, by avoiding capabilities for
the read and write operations. Since the highly frequent
security-specific requests are removed from MDS, the
scalability of IDEAS has been drastically improved over
that of CapSec.

6. Related Work

There have been numerous efforts to secure paral-
lel and distributed storage systems, most of which are
based on capabilities. CapSec storage systems maintain
authorization information on a centralized authorization
server, such as a security manager. The key differences
between the security-specific and common file-system
metadata, which IDEAS distinguishes and exploits for
security and performance gains, have been largely ignored
in these security schemes, which results in their inherent
limitations in securing large-scale and high-performance
storage systems.

The initial CapSec schemes are based on fine-grained
capabilities, such as NASD [13], Azagury, et al. [10],
Snapdragon [9], Snare [15], and the T10 OSD security
protocol [22], which authorize access privileges at the
granularity of a block or object, requiring the generation of
tens of or even hundreds of millions of capabilities. This
imposes a substantial overhead on the security manager,
which has to be online and thus presents a central point
of failure. If the security manager is down the entire
system comes to a halt. LWFS [14] employs coarse-
grained capabilities to grant access to a container of a
group of objects, but constrains the granularity of access
control. Moreover, the LWFS capabilities can only be
verified by the authorization server that generated them.
As a result, the additional overhead can quickly overload
the authorization server.

Leung and Miller [18] propose an extended capability
that authorizes I/O for any number of clients to any
number of files that span any number of devices by using
public-key cryptography. However, unlike IDEAS, which
uses a role to denote a group of users having the same
rights and responsibilities and stores role-based access
control lists, extended capabilities identify a group of
users having the same access permissions to a set of files
and the files themselves via the root hash of a Merkle
hash tree [31] constructed from the user IDs and file
identifiers, and stores an access control matrix on MDS.
However, the MDS’s access control matrix with large-
scale storage systems can become too large and complex
to maintain and operate efficiently and economically, and

1000 2000 3000 4000 5000 6000 7000 8000
0

20

40

60

80

100

 CapSec
 IDEAS

M
D

S
 L

at
en

cy
 (m

s)

Number of requests

(a) Average MDS create latency.

1000 2000 3000 4000 5000 6000 7000 8000
0

500

1000

1500

2000

2500

3000

3500

 CapSec
 IDEAS

M
D

S
 L

at
en

cy
 (u

s)

Number of requests

(b) Average MDS read latency.

1000 2000 3000 4000 5000 6000 7000 8000
0

1000

2000

3000

4000

5000

6000

 CapSec
 IDEAS

M
D

S
 L

at
en

cy
 (u

s)

Number of requests

(c) Average MDS write latency.

Figure 6. An analysis of CapSec and IDEAS’s scalability.

the heavy MAC computation and signature can quickly
exhaust MDS.

SCARED [19] extends NASD to provide mutual au-
thentication between clients and devices. It supports au-
thentication based on capabilities (as in NASD) as well as
identity keys. However, unlike IDEAS, which uses a iden-
tity certificate got from TA to certify a user’s identity and
role that the user can paly, the SCARED identity key is
derived from a shared secret key between the administrator
and the devices. In order to access multiple objects on
multiple devices, a client has to acquire multiple identity
keys; therefore, the total number of keys in the system
does not decrease significantly, which is equal to the
number of clients times the number of devices. Although
the number of identity keys can be reduced by grouping
the clients or devices, it is insecure in large-scale systems
because all clients or devices within one group share one
common secret that will be compromised as long as an
attacker compromises a single device.

Kher and Kim [20] exploit RBAC in their system. In
most of the cases, a client needs to acquire an identity
key from the file manager, which can be used by the
client to further derive role keys. Since the identity key
is derived from the shared secret key between the file
manager and the devices, the number of identity keys
that clients have to contact the file manager to acquire is
equal to that in the case of SCARED. By using the Diffie-
Hellman Based Authentication (DHA) they reduce the
number of keys to the number of clients plus the number
of devices, which is less than the number of keys required
by SCARED. Unlike SCARED, which stores identity-
based access control lists along with each object, Kher
and Kim store role-based access control lists with each
object. It reduces the complexity of security administration
in a large-scale system. However, like the aforementioned
schemes, Kher and Kim do not address the design and
implementation of role-based access control lists, a key to
cope with the complexity and scalability issue of security
administration in large-scale, demanding environment for
which IDEAS was designed.

7. Conclusions

This paper describes IDEAS, an identity-based security
architecture for large-scale and high-performance storage
systems. By merging identity management with access
control, IDEAS can improve security, convenience and
total cost of access control for large-scale storage systems
with millions of clients and hundreds of thousands of
devices. IDEAS authenticates users at each I/O node by
using a single-identity certificate without the service of
a centralized security server and enforces access con-
trol mechanism by using an object-based access control
(OBAC) model, which is designed to address the com-
plexity and scalability issue of security administration
in large-scale storage systems. The access control rules
for OBAC, namely, the PIPS rules, proposed in this
paper can be used as the basis for establishing a testing
and evaluation criteria for securing general large-scale
storage systems. We also discuss the issue of how to
identify and authenticate a large number of users with
the state-of-the-art cryptographic solutions and suggest the
potential alternative technologies to the well-known PKI
mechanism.

We extended the T10 OSD command set to support
IDEAS and implemented an IDEAS prototype in the
HUST OSD project. Experiments on the IDEAS prototype
show that IDEAS is able to achieve high performance
and scalability on object storage systems while achieving
higher security than the conventional CapSec solution. In
contrast to CapSec, IDEAS does not impose more strin-
gent security requirements while exposing much fewer
attack points. For the infrequent create, delete and chmod
operations, IDEAS speedups CapSec by a factor of 1.65,
1.22 and 0.52 respectively, while for the frequent read
and write operations, IDEAS achieves a speedup of 1.81
and 2.22 respectively. IDEAS completely removes the
performance bottleneck of the system caused by security
overhead, incurring a zero latency, by avoiding capabil-
ities for the read and write operations. As a result, the
scalability of IDEAS has been drastically improved over

that of CapSec.

Appendix A.
Formal Description of OBAC

The main components of the OBAC model, i.e., element
sets and relations, are defined in Figure 7. There are
four distinctive sets of data elements called Objects (O),
Subjects (S), Operations (OP) and Permissions (P). The
OBAC model as a whole is fundamentally defined in terms
of permissions being associated with objects. As such,
once an object is located the corresponding permissions
on that object will also be located. In addition, the diagram
shows a set of Transactions (T), where each transaction
is a mapping between an object and a matching subset of
permissions that are assigned to the object.

Objects represent protected system resources, which
is commonly referred to as protected objects within the
computer system. For a system that implements OBAC,
the objects can represent data objects, such as database
tables and files, or resource objects, such as printers, CPU
cycles, and disk space.

The concept of subject determines the basic policies and
workload of security administration for the access control
model. Since the ultimate purpose of any access control
mechanism is to determine operations that a user can
perform, the primary subject is a user. A user is defined as
a human being. The concept of a user can be generalized
to include machines, networks, or intelligent autonomous
agents. For the purpose of reducing the workload of
security administration, most access control models extend
the concept of a user. Besides individual users, the set of
subjects covered by OBAC also include a group, which is
defined as a set of users that have the same responsibilities
and authorities.

A permission is an approval or denial of a subject’s
operations. A positive permission grants the subject’s
accesses and a negative permission denies the subject’s
accesses. Although both positive and negative permissions
can be deployed in an OBAC implementation, for simplic-
ity reasons we only discuss a positive permission in this
model. An operation is defined as executing one or more
command functions for a subject. The types of operations
greatly depend on the kind of system in which they
will be implemented. For example, an operating system
can perform read, write, delete, and execute operations;
a relational database management system can perform
SELECT, UPDATE, DELETE, and INSERT operations.

Figure 7 shows the permission assignment (PA) rela-
tion, a many-to-many relation. An object can have many
permissions, and the same permission can be assigned
to many objects. Each transaction is a mapping of one
object to possibly many permissions, that is, during a
transaction multiple permissions can match. However,

(OP)

OPERATIONS

(O)

OBJECTS

(S)

SUBJECTS

(PA)

PERMISSION

ASSIGNMENT

(P)

PERMISSIONS

PERMISSION

INHERITANCE
(T)

TRANSACTIONS

.

.

.

object_transcation transcation_permission PRIORITY

Figure 7. The OBAC model.

the priority of these permissions ensures that only one
permission can determine the operations that the subject
can perform. Each transaction is associated with a single
object and each object is associated with one or more
transactions. The function object transaction gives the
set of transactions that are associated with an object and
the function transaction permission gives the permissions
available to a transaction.

We summarize the above in the following definition.
Definition 1: The Components of the OBAC Model.

• O, S, and OP (objects, subjects, and operations,
respectively).
• P = 2(S×OP), the set of permissions.
• PA ⊆ P × O, a many-to-many permission to object
assignment relation.
• assigned permission(o : O) → 2P , the map-
ping of object o onto a set of permissions. Formally:
assigned permission(o) = {p | (p, o) ∈ PA}.
• T , the set of transactions.
• transaction object(t : T) → O, the mapping of
transaction t to a single object.
• object transaction(o : O) → 2T , the mapping of
object o onto a set of transactions.
• transaction permission(t : T) → 2P , the map-
ping of transaction t onto a set of permissions. For-
mally: transaction permission(t) ⊆ {p | p ∈
assigned permission(transaction object(t))}.
• avail transaction permission(t : T) → P , the
mapping of transaction t to a single permission.

Definition 2: Permission Priority.
• ∀t ∈ T, ∃p, p′ ∈ P, p precedes p′,
p, p′ ∈ transaction permission(t)
⇒ avail transaction permission(t) = p

Definition 3: Permission Inheritance.
Typically, a single permission is represented as an ACE

and a set of permissions are organized in the form of ACL.
Permission inheritance occurs between a parent object and
its child objects. The INHERITED FLAG flag of an ACL
on the parent specifies that the ACL can be inherited by
the child objects or not, however the INHERIT FLAG

flag of an ACL on a child object specifies whether the
child object inherits the ACL of its parent or not. We now
define inheritance relationships between permissions.

Definition 3.1: Static ACL Inheritance.
• ∀o, o′ ∈ O, ∀ACLs Aon o′, o′ ∈ ancestors(o)
∧A.INHERITED FLAG = TRUE
⇒ assigned permission(o) = {p | p ∈ P, p in A}

Definition 3.2: Dynamic ACL Inheritance.
• ∀o, o′ ∈ O, ∀ACLs Aon o, A′ on o′,
o′ ∈ ancestors(o),
∧A.INHERIT FLAG = TRUE
∧A′.INHERITED FLAG = TRUE
⇒ assigned permission(o) = {p | p ∈ P,
p in A ∨ p inA′}

Appendix B.
Comparison of PKI, IBE and CPK

B.1. Authentication Based on PKI

The public key infrastructure (PKI) technology has been
available for approximately 30 years and appears to meet
the requirements for confidentiality and integrity of data,
user identification, authentication, and non-repudiation.
With PKI, one can maintain her keys and certificates in
security and conveniently encrypt data and sign messages.
Applications based on PKI include secure web browser,
secure e-mail, e-business, e-government, e-banking, and
so on. PKI has been imagined to be a magic security elixir,
where you can just add a drop to your system and it will
become secure.

However, there are some counterviews to PKI [32].
Ellison and Scheier [33] consider that the effect of PKI
is overtouted, though it can be used as a solution to
many security problems. Rivest [34] raises doubts about
certificate revocation lists (CRLs), one common approach
to revoking certificates. Clarke [35] indicates that the
conventional PKI, built around ISO standard X.509 [36],
is inherently ineffectual and privacy-invasive. Sha and
Bai [37] discuss the deficiencies of PKI and the short-
coming of the current standard based on certificate, such
as X.509, PGP [38] and SPKI/SDSI [39]–[41].

In sum, PKI has several inherent deficiencies and its
abilities have been overtouted for a long time. In PKI
systems, a public key is bound to the key-holder’s name
by a certificate authority (CA). But the trustworthiness of
CA has long been considered illogical. Many current PKI
implementations employ a hierarchical CA model where,
since a single CA can service only a limited number of
users, PKI increases the scale of key management by
adding CAs, which in turn gives rise to the issue of
agency expansion and increasing network traffic. Most
PKI systems revoke certificates by issuing CRLs. But this
is not an assured, secure service. In order to confirm the

validity of a certificate, one has to rummage all over the
Internet to see if the certificate that she accepted is still
OK. In addition, as private digital signature keys attract
more attention; more attacks will be directed to these
keys. So far there are still very few products available to
enable users to safeguard their private keys. It is obvious
that more research should be conducted on alternative
technologies to PKI.

B.2. Authentication Based on IBE

In 1984 Adi Shamir [42] first proposed the idea of an
identity-based cryptosystem in which the public key can
be an arbitrary string. However, the fist practical identity
encryption scheme was not introduced until 2001 by
Boneh and Franklin [43]. Identity-based encryption (IBE)
schemes employ the identification of a user’s identity as a
public key or derive the public key from the user’s identity.
As a result, “Identity-based encryption schemes enable
any pair of users to communicate securely and to verify
each other’s signatures without exchanging private or
public keys, without keeping key directories, and without
using the services of a third party” (Shamir, 1984). In
contrast to PKI, IBE can work without the support of a CA
hierarchy, thereby eliminating the increasing demands on
bandwidth incurred by constantly expanded CA facilities.
Because of these inherent advantages, IBE is considered
a potential alternative technology to PKI.

B.3. Authentication Based on CPK

Although IBE addresses the crisis of trust that con-
founds PKI and can work without the support of a CA
hierarchy, IBE systems still rely on a large number of
public parameters to define their operations, and a user of
an IBE system needs to obtain these public parameters be-
fore any IBE operation can be carried out. So IBE systems
can not work without an on-line public parameter server
(PPS), which provides IBE public parameters and policy
information for an IBE private key generator (PKG). As a
result, IBE is not a true two-party authentication process
(i.e., devoid of a third party such as CA in PKI).

Nan [29] presents a combined public key (CPK) al-
gorithm, one of the IBE variants, that does not require
a third-party CA hierarchy. But unlike IBE, CPK holds
only a small number of public parameters, which can be
stored in a tiny chip. Thus CPK will be able to obtain the
necessary public parameters for a public key from the chip
without an on-line PPS. As a result, CPK fully implements
peer-to-peer authentication.

The main idea behind CPK is to use a small amount
of seeds to produce an almost limitless amount of keys
in order to meet the almost limitless demand for keys.
The CPK algorithm is based on the discrete logarithm

Table 3. A characteristic comparison of PKI, IBE and CPK systems.

Key ManagementSystem Certificate CA Support Generation Storage Scale Revocation Protection
PKI CA Cert Yes Decentralized On-line certificate database 103 CRL Media, password
IBE ID Cert No Centralized On-line public parameter server 103 Identity Media, password
CPK ID Cert No Centralized Build-in chip 1048 Identity Media, password, active parameter

problem (DLP). It constructs public and private key ma-
trices according to the hardness of DLP, and maps the
identity of an entity onto the sequence of the row and
column coordinate in these matrices. According to the
sequence, the CPK algorithm picks out and combines
the matrix elements to generate an enormous number of
public/private key pairs. For example, a 32 × 32 matrix
with 192-bit keys that occupies 24KB of memory can
generate 3232 = 1048 keys. Thus the size of a public
key matrix is small enough to be stored in any accessible
media, such as ATM and POS machine, or even be
distributed to a user in a smart card. Moreover, CPK first
introduces agent and active parameter technologies into
key protection in order to withstand the colluded attacks.
Besides the protection of traditional physical media and
password, the user’s private key in a chip is also under
the protection of the active parameters.

B.4. Characteristic Comparison of PKI, IBE and
CPK systems

Table 3 summarizes the main characteristics and per-
formance properties of key management provided by PKI,
IBE and CPK systems. In the table, the Certificate column
describes the type of certificate used by these authentica-
tion systems. CA Cert and ID Cert stand for the authority
certificates issued by a certificate authority (CA) and the
identity certificates issued by a trusted authority (TA)
respectively. The CA Support column indicates whether
the authentication process needs a third party CA support.
The Key Management column includes five sub-columns:
Generation, Storage, Scale, Revocation, and Protection,
which stand for key generation mode, public key storage,
the size that a CA or TA can service, key revocation
method, and private key protection, respectively. PKI
systems revoke any public key certificate by issuing CRLs,
while IBE and CPK systems directly revoke a user’s
identity. It can be seen that CPK addresses the problems
that PKI and IBE can not solve.

Appendix C.
Cryptographic Overhead

We tested the raw speed of the cryptographic algo-
rithms used by our system, including the IDEAS and
CapSec implementations. These algorithms include tra-
ditional symmetrical and non-symmetrical cryptographic

AES encrypt

AES decrypt

HMAC-SHA1
RSA sign

RSA verify
IBE sign

IBE verify

0

2000

4000

6000

8000

10000

12000

14000

16000

 AES encrypt
 AES decrypt
 HMAC-SHA1
 RSA sign
 RSA verify
 IBE sign
 IBE verify

Ti
m

e
(u

s)

Figure 8. Performance of cryptographic algorithms.
Block size is 64KB except for sign & verify, which are
done on 160 bits input.

Table 4. Raw Speed of Cryptographic Operations.

RSA IBE
Hash - 11µs
Scalar multiplication - 7794µs
Exponentiation 4675µs 795µs
paring - 6781µs

algorithms as well as up-to-date identity-based crypto-
graphic algorithms; this provided insight into how fast the
identity-based algorithms are likely to be when compared
to the traditional cryptographic algorithms and how much
overhead can be caused when these algorithms are applied
to our system.

We used the Hess’s identity based signature scheme [44]
for the performance evaluation of identity-based signa-
ture algorithms, which is implemented using the PBC
library [45], and used the OpenSSL crypto library for
the AES, HMAC-SHA1 and RSA cryptographic algorithm
implementations. The AES and HMAC-SHA1 keys are
128 and 160 bits length respectively, while the RSA
and IBE keys are 1024 and 160 bits length respectively.
The performance of these cryptographic algorithms is
summarized in Figure 8. As the figure shows, the AES
and HMAC-SHA1 algorithms with an input of 64KB
requires about 2.0ms and 3.3ms respectively, while with
an input of 512 bits, roughly the length of a command,
the AES and HMAC-SHA1 algorithms, which provide the
confidentiality and integrity protection to commands in
the IDEAS implementation, incur latencies of only 17µs
and 14µs respectively. Such overheads are so sufficiently

insignificant that they should not constitute the primary
security cost.

The most expensive operation by far is signature gen-
eration, which takes about 5.8ms and 16.4ms in the
RSA and IBE cryptographies respectively. Compared to
signature generation, signature verification is cheaper,
which costs about 0.6ms and 6.8ms in the RSA and IBE
cryptographies respectively. For further analysis, we tested
the raw speed of cryptographic operations in RSA and
IBE signature algorithms. As shown in Table 4, the scalar
multiplication, exponentiation and paring computation are
computationally expensive operations. However, for the
RSA algorithm only one exponentiation is required in the
signing and verifying steps respectively. Without any pre-
computation3, the signing operation in the IBE algorithm
require one exponentiation, one hash function evaluation,
one paring computation and two scalar multiplication,
while the verifying operation require one exponentiation,
one hash function evaluation and two paring compu-
tation. With precomputation, the signing and verifying
operations can be optimized; thus the former requires
one exponentiation, one hash function evaluation and two
scalar multiplication, while the latter requires one paring
computation and one hash function evaluation. It should
be noted that though the signature takes the most amount
of running time, it usually occurs only in the logging
process.

Acknowledgments

The authors would like to thank Dongliang Lei, Wei
Yan, Junjian Chen, Qinhua Yan, Peng Li, Anli Chen and
other members of National Storage System Laboratory
at the Huazhong University of Science and Technol-
ogy for their hard work and help in implementing the
IDEAS system. This work was supported by National
Basic Research Program of China (973 Program) under
Grant No.2004CB318201, National Science Foundation
of China under Grant No.60703046 and No.60873028,
US National Science Foundation (NSF) under Grant No.
CCF-0621526, the Program for New Century Excellent
Talents in University NCET-04-0693 and NCET-06-0650,
the Program for Changjiang Scholars and Innovative Re-
search Team in University under Grant No. IRT-0725 and
Wuhan Project 200750730307.

References

[1] P. J. Braam, “The Lustre storage architecture,”
http://www.lustre.org/documentation.html, Cluster File
Systems, Inc., Aug. 2004.

[2] S. Ghemawat, H. Gobioff, and S. Leung, “The Google file
system,” in Proc. of SOSP’03, Oct. 2003.

3. See Section 2 in [44].

[3] G. A. Gibson et al., “A cost-effective, high-bandwidth
storage architecture,” in Proc. of 8th ASPLOS, Oct. 1998.

[4] D. Nagle, D. Serenyi, and A. Matthews, “The Panasas ac-
tivescale storage cluster-delivering scalable high bandwidth
storage,” in Proc. of 8th ASPLOS, Nov. 2004.

[5] O. Rodeh and A. Teperman, “A scalable distributed file
system using object disks,” in Proc. of Mass Storage
Systems and Technologies Conf., 2003.

[6] F. Schmuck and R. Haskin, “GPFS: A shared-disk file
system for large computing clusters,” in Proc. of FAST’02,
Jan. 2002.

[7] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long,
and C. Maltzahn, “Ceph: A scalable, high-performance
distributed file system,” in Proc. of OSDI ’06, 2006.

[8] F. Wang, Q. Xin, B. Hong, S. A. Brandt, E. L. Miller,
and D. D. E. Long, “File system workload analysis for
large scale scientific computing applications,” in Proc. of
the Conference on Mass Storage Systems and Technologies,
Apr. 2004.

[9] M. K. Aguilera, M. Ji, M. Lillibridge, J. MacCormick,
E. Oertli, D. Andersen, M. Burrows, T. Mann, and
C. A. Thekkath, “Block-level security for network-attached
disks,” in Proc. of FAST ’03, 2003.

[10] A. Azagury, R. Canetti, M. Factor, S. Halevi, E. Henis,
D. Naor, N. Rinetzky, O. Rodeh, and J. Satran, “A two
layered approach for securing an object store network,” in
Proc of IEEE Security in Storage Workshop, 2002.

[11] M. Factor, D. Nagle, D. Naor, E. Riedel, and J. Satran, “The
OSD security protocol,” in Proc. of 3rd IEEE Security in
Storage Workshop, 2005.

[12] Z. Niu, K. Zhou, D. Feng, H. Jiang, F. Wang, H. Chai,
W. Xiao, and C. Li, “Implementing and evaluating security
controls for an object-based storage system,” in Proc. of
MSST’07, Sep. 2007.

[13] H. Gobioff, “Security for a high performance commodity
storage subsystem,” Ph.D. dissertation, Carnegie Mellon
University, July 1999.

[14] R. A. Oldfield, A. B. Maccabe, S. Arunagiri, T. Korden-
brock, R. Riesen, L. Ward, and P. Widener, “Lightweight
I/O for scientific applications,” Sandia National Lab, Tech.
Rep. 2006-3057, May 2006.

[15] Y. Zhu and Y. Hu, “Snare: A strong security scheme for
network-attached storage,” in Proc. of the 22nd Symp. on
Reliable Distributed Systems, 2003.

[16] C. A. Olson and E. L. Miller, “Secure capabilities for
a petabyte-scale object-based distributed file system,” in
Proc. of the 1st ACM Workshop on Storage Security and
Survivability, Nov. 2005.

[17] A. W. Leung and E. L. Miller, “Scalable security for large,
high performance storage systems,” in Proc. of the 2nd
Workshop on Storage Security and Survivability, 2006.

[18] A. W. Leung, E. L. Miller, and S. Jones, “Scalable security
for petascale parallel file systems,” in Proc. of SC07, Nov.
2007.

[19] B. C. Reed, E. G. Chron, R. C. Burns, and D. D. E. Long,
“Authenticating network-attached storage,” in Proc. of Hot
Interconnects VII, Aug. 1999.

[20] V. Kher and Y. Kim, “Decentralized authentication mech-
anisms for object-based storage devices,” in Proc. of the
Second IEEE International Security In Storage Workshop,
2003.

[21] B. C. Neumann, J. G. Steiner, and J. I. Schiller, “Kerberos:
An authentication service for open network systems,” in
Proc. of Winter USENIX Conference, 1988.

[22] SCSI Object-Based Storage Device Commands -2 (OSD-2),
Project t10/1729-d, revision 3 ed., T10 Technical Commit-
tee, NCITS, January 2008.

[23] Draft Standard for Information Technology - Portable
Operating System Interface (POSIX) - Amendment: Protec-
tion, Audit, and Control Interfaces, Portable Applications
Standards Committee (PASC), November 1992.

[24] M. M. Swift, A. Hopkins, P. Brundrett, C. V. Dyke, P. Garg,
S. Chan, M. Goertzel, and G. Jensenworth, “Improving
the granularity of access control for Windows 2000,”
ACM Transactions on Information and System Security
(TISSEC), vol. 5, no. 4, pp. 398 – 437, Nov. 2002.

[25] Y. Yang, R. Ding, and Y. Min, “Object-based access control
model,” Automation of Electric Power Systems, vol. 27,
no. 7, pp. 36 – 40, 2003, (in Chinese).

[26] C. Li, C. Liu, M. Hong, and W. Cai, “Object-based
multi-subject access control model,” Computer Integrated
Manufacturing Systems, vol. 11, no. 3, pp. 342 – 346, 2005,
(in Chinese).

[27] “Trusted Computer Security Evaluation Criteria,” DOD
5200.28-STD, Department of Defense, 1985.

[28] J. F. Barkley, A. V. Cincotta, D. F. Ferraiolo, S. Gavrila,
and D. R. Kuhn, “Role based access control for the world
wide web,” in Proc. 20th NIST-NCSC National Information
Systems Security Conference, 1997, pp. 331–340.

[29] X. Nan, Identity Authentication Based on CPK, 1st ed.
Beijing, China: National Defense Industry Press, January
2006, (in Chinese).

[30] Q. Yuan and S. Li, “A new efficient ID-Based authenticated
key agreement protocol,” Cryptography ePrint Archive,
Report 2005/309, March 2005.

[31] R. C. Merkle, “A digital signature based on a conven-
tional encryption function,” in Advances in Cryptology-
Crypto’87, 1987, pp. 369–378.

[32] T. Moreau, “Thirteen reasons to say ’no’ to pu-
bilic key cryptography,” CONNOTECH Experts-conseils,
Inc., http://www.connotech.com/13REAS.HTM, Draft pa-
per, March 1998.

[33] C. Ellison and B. Schneier, “Ten risks of PKI: what you’re
not being told about public key infrastructure,” Computer
Security Journal, vol. 16, no. 1, pp. 1–7, Winter 2000.

[34] R. L. Rivest, “Can we eliminate certificate revocations
lists?” Lecture Notes in Computer Science, vol. 1465, p.
178, 1998.

[35] R. Clarke, “Conventional public key infras-
tructure: An artefact ill-fitted to the needs
of the information society,” November 2000,
http://www.anu.edu.au/people/Roger.Clarke/II/PKIMisFit.html.

[36] R.Housley, W.Ford, W.Polk, and D.Solo, Internet X.509
Public Key Infrastructure Certificate and CRL Profile, RFC
2459, January 1999.

[37] Y. Sha and S. Bai, “On the research and analysis of
the main problem of PKI,” Microelectronics & Computer,
no. 6, pp. 18–21, 2002, (in Chinese).

[38] S. Garfinkel, PGP: Pretty Good Privacy. O’Reilly &
Associates, 1995.

[39] C. Ellison, SPKI Requirements, RFC 2692, IETF, Septem-
ber 1999.

[40] C. Ellison, B. Frantz, R. Rivest, B. Thomas, and T. Ylonen,
SPKI Certificate Theory, RFC 2693, IETF, September
1999.

[41] R. L. Rivest and B. Lampson, “SDSI-a simple
distributed security infrastructure,” September 1996,
http://people.csail.mit.edu/rivest/sdsi10.html.

[42] A. Shamir, “Identity-based cryptosystems and signature
schemes,” in Proc. of CRYPTO 84 on Advances in cryptol-
ogy, 1985.

[43] D. Boneh and M. Franklin, “Identity-based encryption from
the weil pairing,” Lecture Notes in Computer Science, 2001.

[44] F. Hess, “Efficient identity based signature schemes based
on pairings,” SAC 2002, LNCS 2595, pp. 310C324, 2003.

[45] B. Lynn, PBC Library Version 0.4.12,
http://crypto.stanford.edu/pbc/.

	IDEAS: An Identity-based Security Architecture for Large-scale and High-performance Storage Systems
	

	tmp.1250261467.pdf.lV5bW

