
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

CSE Journal Articles Computer Science and Engineering, Department of

8-1996

Separate Computation of Alias Information fior
Reuse
Mary Jean Harrold
Ohio State University, 395 Dresse Lab, 2015 Neil Ave., Columbus, OH

Gregg Rothermel
University of Nebraska-Lincoln, grothermel2@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/csearticles

Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in CSE Journal Articles by an authorized administrator of DigitalCommons@University of
Nebraska - Lincoln.

Harrold, Mary Jean and Rothermel, Gregg, "Separate Computation of Alias Information fior Reuse" (1996). CSE Journal Articles. 12.
http://digitalcommons.unl.edu/csearticles/12

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csearticles?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csearticles?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csearticles/12?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages

442 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 7, AUGUST 1996

Se pa rat e Co m put at i o n
of Alias Information fior Reuse

Mary Jean Harrold, Member, /€E€ Computer Society,
and Gregg Rothermel, Member, /€E€ Computer Society

Abstract-Interprocedural data flow information IS useful for many software testing and analysis techniques, including data flow
testing, regression testing, program slicing, and impact analysis. For programs with aliases, these testing and analysis techniques
can yield invalid results, unless the data flow information accounts for aliasing effects. Recent research provides algorithms for
performing interprocedural data flow analysis in the presence of aliases; however, these algorithms are expensive, and achieve
precise results only on complete programs. This paper presents an algorithm for performing alias analysis on incomplete programs
that lets individual software components such as library routines, subroutines, or subsystems be independently analyzed. The paper
also presents an algorithm for reusing the results of this separate analysis when the individual software components are linked with
calling modules. Our algorithms let us analyze frequently used software components, such as library routines or classes,
independently, and reuse the results of that analysis when analyzing calling programs, without incurring the expense of completely
reanalyzing each calling program. Our algorithms also provide a way to analyze large systems incrementally.

Index Terms-Aliasing, data flow analysis, pointers, reuse, separate analysis, static analysis

1 INTRODUCTION
ANY software testing and analysis techniques, in- M cluding data flow testing, regression testing, program

slicing, and impact analysis, require interprocedural data
flow information. These techniques can be ineffective un-
less the data flow information accounts for the effects of
aliases (an alias occurs at some program point when two or
more names exist for the same object) caused by reference
parameters and pointer variables. Some techniques for in-
terprocedural analysis [4] represent all invocation paths in a
program, causing them to be potentially exponential in time
and space. Other techniques [21, [31, [lo], [ll] use some type
of summary information to avoid potential exponential
growth, but with some loss of precision. However, these
techniques require a complete program on which to per-
form analysis; for large systems this may be prohibitive in
both time and space.

Software engineering practices encourage modular de-
velopment of software, in which individual software
components are separately compiled and later linked with
other components. A similar process, wherein a software
component is analyzed separately and later linked with
other components, can provide savings in time and space.
Separate analysis can save time by eliminating the need to
reanalyze the component in each of its calling contexts;

M.J. Harrold and G. Rotlzermel are with the Department of Computer and
Information Science, Ohio State University, 395 Dresse Lab, 2015 Neil
Ave., Columbus, OH 43210-1277.
E-mail: Ikaurold, grother}@cis.ohio-s tate.edu.

Manuscript received Mar. 15,1996; revised July 12,1996. Recommended for
acceptance by S. Zeil. A preliminary version of this paper appeared in the Pro-
ceedings of the ACM International Symposium on Software Testing and Analysis,
Jan. 1996, p p . 107-120 171.
For information on obtaining reprints of this article, please send e-mail to:
transse@computer.org, and reference I E E E C S Log Number S96098.

separate analysis can save space by reducing the amount
of memory required to perform the analysis. To provide
such savings, a separate analysis technique must compute
as much information as possible about a software compo-
nent, and store it for later use. The technique must pro-
vide a link algorithm, that reuses previously computed
results when a piece of software that incorporates the
component is analyzed.

This paper presents a technique for separate analysis of
modules that addresses the interprocedural may alias prob-
lem. By module , we mean a single procedure, or a group
of interacting procedures that has a single entry point. By
interprocedural m a y alias problem, we mean the problem of de-
termining the set of all [N, (a, b)] in a program P, where N is a
statement, and a and b are names in P, such that there exists a
realizable path from the entry of P to the point that follows N
on which a and b may reference the same object. (A vealizable
path represents a legal call and return sequence in the pro-
gram such that whenever control returns from a procedure in
the program, it returns to the call site that invoked it.) Our
technique consists of two algorithms. The first algorithm per-
forms may alias analysis on a separate module M, simulating
the effects of calling contexts to produce may alias link in-
formation. The second algorithm performs may alias analysis
on programs that use M, reusing may alias link information
to avoid reanalyzing M. Our separate analysis and link algo-
rithms can be used when the calling module is a program or
another module. We first describe the way in which our
separate analysis and link algorithms can be used for mod-
ules that are separately analyzed and then linked with a
complete program. Then, we discuss the application of our
algorithms to modules that are analyzed and then linked
with other modules, enabling incremental analysis of a large
system. Our algorithms are based on the interprocedural

0098-5589/96$05.00 0 1 996 IEEE

http://tate.edu
mailto:transse@computer.org

HARROLD AND ROTHERMEL: SEPARATE COMPUTATION OF ALIAS INFORMATION FOR REUSE 443

algorithm Comput eMayAl ias
input
output
declare

P : a complete program
MayAlias : set of [N , P A] , where P A may be aliased after execution of N
G : an interprocedural control flow graph (ICFG)
CondMayAlias : set of [(N , A A) , P A] , where P A may be aliased at the end of N

if AA is aliased at the entry to the procedure that contains N
Workl is t : list of [(N , A A) , P A] ; initially empty

begin
construct ICFG G
foreach N in G do / * compute conditional may alias introductions */

if N is a call statement or an assignment to a pointer then
add conditional may aliases introduced by N to Worklis t and CondMayAlias

while Worklis t is not empty do /* compute conditional may aliases */
remove [(N , A A) , P A] from Worklis t
propagate through successors of N ; update Worklis t and CondMayAlias

foreach [(N , A A) , P A] in CondMayAlias do /* compute may aliases */
[91 add [N , P A] to MayAlias

end

Fig. 1 . Landi and Ryder’s algorithm for computing may alias information

may alias algorithms of Landi 181 and Landi and Ryder [9],
[lo]; thus, our algorithms handle aliasing due to reference
parameters and single and multiple level pointers, and han-
dle recursive procedures.

One advantage of our algorithms is that they let us ana-
lyze frequently used software modules, such as library
routines or classes, independently, and reuse the results of
that analysis when we analyze calling programs, without
incurring the expense of completely reanalyzing each call-
ing program. With this approach, the cost of interproce-
dural may alias analysis for a module can be amortized
over all programs that use the module. A second advantage
of our algorithms is that they provide a way to analyze
large systems incrementally.

In the next section, we present an overview of the algo-
rithm on which our technique is based. Section 3 presents
our separate analysis and link algorithms, discusses the
precision of our results, describes versions of the algorithms
that handle incomplete programs, discusses the complexity
of our technique, and reviews related work. Section 4 pres-
ents our conclusions and discusses future work.

2 INTERPROCEDURAL MAY ALIAS ANALYSIS
Landi and Ryder [8], [9], [lo] present an algorithm that
computes interprocedural may alias information for com-
plete programs. ComputeMayAlias, shown in Fig. 1, is a
version of their algorithm.

ComputeMayAlias takes a program P as input, and out-
puts a set, MayAlias, of ordered pairs of form [N, PA] ,
where N is a program statement and P A represents a pair of
names that may refer to the same memory location after the
execution of N. The algorithm uses a worklist, Worklist, to
compute a set of conditional may aliases, CondMqAlias.
Both CondMayAlias and Worklist consist of tuples, [(N, A A) ,
PA] , where N is a program statement, AA is a set of as-
sumed aliases,’ and P A is an alias pair. A tuple [(N, AA),

1. Although there may be an exponential number of possible sets of as-
sumed aliases, Landi and Ryder [lo] show that it is sufficient to consider
sets of assumed aliases of cardinality less than or equal to one.

PA] , is a predicate that is true if and only if AA holding on
entry to the procedure that contains N implies that P A
holds after N is executed.

To compute interprocedural may alias information for P,
ComputeMayAlias constructs G, an intevproceduval contvol
flow graph (ICFG) for P. An ICFG contains control flow
graphs for each procedure in P; a control flow graph consists
of nodes that represent statements in the procedure and
edges that represent flow of control between statements [l].
Control flow graphs are augmented with entry and exit
nodes. Call sites in P are rendered as call and return nodes.
Call nodes are connected to entry nodes of called proce-
dures, and exit nodes are connected to return nodes of
calling procedures. Fig. 2 shows a program and its ICFG.

After ComputeMayAlias builds G, it considers each
node N in G to identify conditional may aliases introduced
in P. If N is an assignment to a pointer,’ then N creates an
alias pair regardless of aliases that hold prior to N; the con-
dition, or assumed alias, responsible for such an alias pair is
4. For example, in Fig. 2, statement main2 is an alias intro-
duction site in which the address of z is assigned to s. After
execution of statement main2, *s and z are aliased regard-
less of aliases that exist before execution of main2.
Thus, ComputeMayAlias adds [(maina, @), (*s, z)] to
CondMayAlias and Worklist. Similarly, statement main3 is
an alias introduction site in which x is assigned to r;
thus, ComputeMayAlias adds [(main3, (b), (*r, *XI] to
CondMayAlias and Wosklist. Statements c2, C6, and ~7 also
contain assignments to pointers; ComputeMayAlias per-
forms similar actions at these statements.

Alias pairs may also be introduced at call sites where pa-
rameter bindings are present. For example, at the call site in
statement c3 of Fig. 2, p is passed to a, and q is passed to b.
Because q is global to D, *q and *b are aliased at D’s entry.
Thus, ComputeMayAlias adds [(Dl, (*b, *q)), (*b, *q)] to
CondMayAlias and Worklist. The assumed alias in this case is
(*b, *q) rather than @ because the existence of (*b, *q) fol-

2 We use N to refer to both a node in G and the program statement that
the node represents

444

int " g , xr, x ~ , *xi

main0 (C O (
int z; int "P. Y;

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 7, JULY 1996

Fig. 2. An example program and its ICFG

lowing DI is conditional on *b and "4 being aliased on en-
try to D. Assumed alias (*b, *q) facilitates computation of
may alias information that respects calling context.

Table 1 shows the conditional may aliases that
ComputeMayAlias introduces for the program of Fig. 2.
(The notation "NV" that appears in the table is explained
later in this section.)

T A B L E 1
CONDMAYALIAS AFTER MAY ALIAS INTRODUCTIONS

FOR THE PROGRAM OF FIG. 2
I CondMayAlias [(N , AA) , P A] I explanation 1

After ComputeMayAlias identifies alias introductions, it
uses Worklist to compute CondMayAlias. The while loop at
line 5 iterates until Worklist is empty. On each iteration of
the loop, ComputeMayAlias removes a conditional may
alias [(N, AA), PA] from Wovklzst, and examines each suc-
cessor of N ; subsequent actions depend on the type of
statement associated with each successor. Table 2 shows
CondMayAlias after this step is complete. (The notation
"NV" that appears in the table is explained later in this
section.) The first column, and its subcolumns, list
CondMayAlias for each node in the example. For proce-
dures C and D, the left subcolumn lists the conditional may
aliases added to CondMayAlias for nodes in the procedures
for the first call to C from main, and the right subcolumn
lists the conditional may aliases added to CondMayAlias for
nodes in the procedures for the second call to C from
main. The rightmost column in the table lists the reason
for including the associated conditional may aliases in
CondMayAlias:

* introduction indicates that the conditional may alias is
added to CondMayAlzas during initial may alias intro-
duction (line 2 of ComputeMayAlias);

* propagation indicates that the conditional may alias
is added to CondMayAlias during propagation be-

cause it "flows through the node being considered
(lines 5 through 7 of ComputeMayAlias); and
generation indicates that the conditional may alias is
added to CondMayAlias during the propagation be-
cause of the interaction of the statement being consid-
ered with a propagated conditional may alias (also at
lines 5 through 7 of ComputeMayAlias).

At call statements, ComputeMayAlias computes the ef-
fects of conditional may aliases that reach the call on condi-
tional may aliases that hold following the entry node of the
called procedure. For example, at some point during analy-
sis of the program of Fig. 2, ComputeMayAlias adds
[(mainl, $), (*r, *x)] to Worklist, indicating that alias pair
(*r, *x), introduced in statement main3, may hold im-
mediately after the call to C in statement maid. When
ComputeMayAlias examines this conditional may alias, it
adds [(cl, (*r, *x)), (*r, *x)] to CondMayAlias and Worklist.
Another alias pair, (*s, z) , holds immediately after main4,
but z is nonvisible in (not in the scope of) C. However, the
fact that a variable 71 is nonvisible in a procedure P does not
prevent P from creating or destroying aliases that involve U
by manipulating other variables that are visible in P and are
aliased to v in P. Thus, an algorithm that computes may
alias information must account for aliases that involve non-
visible variables. Landi and Ryder show that their algo-
rithm needs only one place holder, NV, for nonvisible
variables. Thus, ComputeMayAlias adds [(Cl, (*s , NV),
(* s, N V)] , where NV represents nonvisible variables that
may be aliased to *s, to CondMayAlias, and to Worklist.

Comput eMayAl ias processes exit nodes by propagating
conditional may alias information to appropriate return
nodes. Suppose R is a return node, x is the exit node associ-
ated with R, E is the entry node associated with X, and C is the
call node associated with R. ComputeMayAlias creates [(R, AA),
PA] if and only if one of the following conditions holds:

1) [(x, q5), P A] holds (in which case AA = @), or
2) P A holds at x conditional on assumed alias AA'

holding at E, and AA' holds at c conditional on as-
sumed alias A A .

For example (case (l)), [(C6, $), (*q, *r)] is introduced at
statement C6, and after propagation, [(C8, q5), (*q, *r)]

HARROLD AND ROTHERMEL: SEPARATE COMPUTATION OF ALIAS INFORMATION FOR REUSE 445

CondMayAlzas [(N, AA), PA] explanation
[(main2,@), (*s,z)J introduction
[(mains, q5), (*s , z)] propagation
[(main3,@), (*r,*x)I introduction
(main4, @), (*s, z)], [(maln4, @) , (*r , *x)] propagation

' main^,@), (*r,*x):, :(main5,4), (*q, *.)I, :(main5,4), (*q, *r): propagation
(main6, d), (*r, *.)I, .(main6, q5), (*q, *x):, :(main6,@), (*q, *I). propagation

I :(main7,4), (*r, *x):, ~(main7, @), (*q, *x):, , (main~,d) , (*q, *I): propagation '

TABLE 2
CONDMAYALIAS AFTER PROPAGATION FOR THE PROGRAM OF FIG. 2

holds; thus, ComputeMayAl ias creates conditional may
alias [(mains, @), (*q, *r)l. As a further example (case (211,
in the program of Fig. 2, (*q, *x) is aliased at C8 condi-
tional on assumed alias (*r, *x) holding at c1, and
(*r, *x) holds at main4 conditional on assumed alias 4,
so ComputeMayAlias creates conditional may alias
[(main5, @), (*q, *XI]. Because ComputeMayAlias consid-
ers associated call nodes when it propagates conditional
may aliases forward from an exit node, it preserves the
calling context of called procedures; this restricts propaga-
tion to realizable paths in the ICFG.

To see how ComputeMayAlias handles conditional may
aliases that contain nonvisible variables, consider statement
c7. At statement c7, s is reassigned; this assignment
kills all aliases of * s because the reassignment to s changes
their bindings. Thus, when ComputeMayAlias examines

does not create conditional may alias [(~7, (* s , NV)),
(*s, ATV)]. In the statements in main after mains, (* s , z) is
no longer an alias pair.

A pointer assignment statement can affect alias informa-
tion in many ways. Landi and Ryder give rules for each
possible situation; we discuss a few of these rules. Con-
sider the effect of the pointer assignment in statement c2
on [(cl, (*r, *x)), (*r, *x)]. When [(CI, (*r, *x)), (*r, *x)l is
propagated through statement c2, conditional may alias
[(cz, (*r, *x)), (*p, *r)] is created: If *r and *x may be ali-
ased, and x is assigned to p, then *r and *p may be aliased.
Thus, ComputeMayAlias creates [(C2, (*r, *x)), (*p, *r)].
Similarly, [(CI, (*r, *x)), (*r, *x)] propagates through ~ 5 ,
causing ComputeMayAlias to create [(C6, (*r, *XI), (*q, *XI].

[(c5, (*s , NV)), (*s, NVII and [(C6, ("6, NV)), (*s, NWI, it

At any other type of statement, the conditional may
aliases that hold before the statement is executed also
hold after the statement is executed, because alias infor-
mation just "flows through these statements. Thus,
ComputeMayAlias just propagates conditional may aliases
through such statements.

Finally, when multiple conditional may aliases exist at
some program point, these aliases may combine to induce
further aliases. Landi and Ryder show that the cost of pre-
cisely calculating aliases created in this fashion is prohibi-
tive; however, they show that their algorithm computes
safe, conservative results with respect to these aliases. In
the example of Fig. 2, two such may aliases created
by multiple conditions are [(Dl, (*a, *q)), (*a, *q)] and
[(~l, (*a, *b)), (*a, *b)]. We postpone further discus-
sion of this issue and of the method for addressing it to
Section 3.3.

To compute may aliases, ComputeMayAlias converts
each [(N, AA), PA] in CondMayAIias to [N, PA], and adds it
to MayAlias. Table 3 shows the complete may alias solution
for the program of Fig. 2.

3 SEPARATE ANALYSIS OF MODULES
Separate analysis considers a module M in isolation. This
analysis provides information about M that can be stored
with M, and reused when programs that use M are ana-
lyzed, to obtain a complete solution without completely
reanalyzing M. Fig. 3 gives an overview of our separate
analysis and link algorithms. ComputeMayAlias -Module
takes a module M as input, calculates may alias link

446 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 7, JULY 1996

TABLE 3
MAYALIAS AFTER EACH STATEMENT FOR THE PROGRAM IN FIG. 2

r MayAlias[N, P A]

information for M, and stores that information. To obtain
may alias link information for M that is sufficient for use
in the contexts of applications programs that call M ,
ComputeMayAlias-Module simulates the aliasing effects
that are possible in all calling contexts. To do this, it ana-
lyzes M under the assumption that all possible aliases reach
the call to M , and tracks the effects of these aliases. When
AnalyzeApplicat ion analyzes an applications program P
that uses M, it uses the may alias link information for M to
obtain may alias information for P, instead of completely
reanalyzing M.

Section 3.1 presents ComputeMayAlias-Module. Section
3.2 presents AnalyzeApplication. The remainder of Sec-
tion 3 discusses additional issues.

ComputeMayAlias-Module I \

AniilyzeApplication

f

Fig. 3. Overview of separate analysis and link algorithms.

3.1 Computation of Link information for Separately
Analyzed Modules

Fig. 4 presents ComputeMayAlias-Module, our algorithm
for obtaining may alias link information for a module
M. Compu t eMayAl ias -Module, like Compu t eMayA1 i as,
propagates conditional may alias information throughout
the module using a graph, and calculates may alias
information from the conditional may aliases. The algo-
rithms differ, however, in two significant ways. First,

when ComputeMayAlias-Module analyzes a module, it
induces conditional may aliases at the entry to the module
and propagates them throughout the module, to track the
effects of external alias information on the may alias solu-
tion for the module. Second, ComputeMayAlias -Module
computes and outputs may alias link information that fa-
cilitates reuse of module-specific alias information when
the module is analyzed in the context of a calling program.

To enable ComputeMayAlias-Module to track the ef-
fects of external aliases that reach a call to a module, we use
inducement conditions. An inducement condition is a may
alias (a , b) that can reach a call to Ad. By adding inducement
conditions to conditional may alias information, we distin-
guish two classes of aliases: those whose existence depends
on may aliases that reach a call to M, and those whose ex-
istence does not depend on external may aliases. We spec-
ify this distinction more precisely as follows:

If [(N, AA), PA] is a conditional may alias at node N ,
and [(N, AA), PA] exists at N if and only if some may
alias IC exists on entry to M, then [(N, AA)[,,-, PA] is
true. In this case, IC is the inducement condition for
[(N, AA)IC, PA], and [(N, AA),,, PA] is an induced con-
ditional m a y alias.

e If [(N, AA), PA] is a conditional may alias at node N,
and [(N, AA), PA] exists at N independent of may ali-
ases that exist on entry to M , then [(N, AA),, PA] is
true. In this case, [(N, AA)$, PA1 is a noninduced condi-
tional m a y alias.

Similarly, to allow ComputeMayAlias-Module to create
may alias link information, we augment may alias informa-
tion, which ComputeMayAlias keeps in tuples of the form
[N , PA], to include inducement conditions, by rendering it
in the form [NI,,-, PA], where IC may be an alias pair or 4.
This form distinguishes induced m a y aliases from noninduced
m a y aliases, and tracks inducement conditions for may ali-
ases in a module M.

HARROLD AND ROTHERMEL: SEPARATE COMPUTATION OF ALIAS INFORMATION FOR REUSE 447

algorithm ComputeMayAlias-Module
input M : a module
output CondMayAlias-Linkln fo: subset of CondMayAlias-Module

MayAliasIn f @Link: subset of MayAlias-Module
ICFG-Module: reduced ICFG for M
G : an interprocedural control flow graph (ICFG) for M , with entry node E and exit node X
Worklist : list of [(N , A A) / c , PA] , initially empty
CondMayAlias-Module : set of [(N , (A A)) / c , (P A)]
MayAlias-Module : set of [Nzc , (PA)]
PASet : set of names potentially aliased in M

declare

begin
construct G , an ICFG for M /* construct the ICFG for M */
compute PASet for M /* compute the PASet for M */
foreach P A in PASet do /* compute conditional may alias introductions for M */

foreach N in G do
add [(E, P A) p a , PA] to Worklist and to CondMayAlias-Module

if N is an assignment to a pointer or a call statement then
add conditional may aliases introduced by N to Worklist and to CondMayAlias-Module

while Worklist is not empty do / * compute conditional may alias information for M */
remove [(N , A A) / c , PA] from Worklist
propagate at N and update Worklist and CondMayAlias-Module

add [NIc , PA] to MayAlias-Module
foreach [(N ,AA)zc ,PA] in CondMayAlias-Module do /* compute may alias information for M */

ICFG-Module = node set { E , X } and edge set { (E , X) }
foreach [(X , A A) / c , P A] in CondMayAlias-Module do /* output may alias link information for M */

add [(X , AA) , PA] to CondMayAlias-LinkIn f o
foreach may alias [N l c , PA] in MayAlias-Module do

add [N l c , PA] to MayAEias-Linklnfo
output CondMayAlias-LinkIn f 0, MayAlias-Linkln f 0, and ICFG-Module

end

Fig. 4. Algorithm for computing may alias link information for a module

02: *a = *a+*b+*a
J

r", C8: exit C

Fig. 5. A module and its ICFG.

In the remainder of this section, we discuss ComputeMayAlias-Module first constructs G, the ICFG for
ComputeMayAlias-Module, and illustrate its operation on
the partial program of Fig. 5. This partial program is a

M.3 Fig. 5 shows the ICFG for our example module.

component of the program of Fig. 1.

3.1.1 Construct the ICFG for Module M

3. The constraints placed on call graphs (of which the ICFG is a variant),
and thus, their construction, depend on the intended application for the call
grauh 1141. We dace constraints that are suitable for our auulications, as
V I - -

Suppose ComDuteMayAlias -Module is called with mod-ule follows. When programs do not contain pointers to functions, the ICFG is

M. To compute may alias information for M , programs. When programs do contain pointers to functions, we make con-
trivial to compute; in our cxperience, function pointcrs are rarely used in C

scrvative assumptions about the targets of function calls; we can increase
the precision of these assumptions, at some cost, by using algorithms that
perform points-to analysis. In situations where we cannot determine pre-
cisely which function is invoked at a call site, the call and return nodes for
that site are attached to each function that may be a recipient of that call. In
this case, our algorithm may identify may aliases that do not hold in the
program in practice; however, the algorithm will produce conservative,
safe results. Such results are sufficient for many applications.

448 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 7, JULY 1996

Type
(global, global)
(global, nonaccessed)
all other types

3.1.2 Compute the PASet for Module M
Given a module M, our separate analysis computes analysis
information for M without knowledge of any calling envi-
ronment, while accounting for the effects of calling envi-
ronments. For the may alias problem, the analysis must
account for the potential effects on M of aliases introduced
by a calling environment. We refer to the set of aliases that
may be introduced by calling environments as the potential
alias set (P A S e t) . Alias pairs in the PASet may involve three
types of objects:

1) global variables that are defined or used in, and thus,

2) parameters to M (parameter), and
3) variables that do not appear in M but can appear in a

calling program (nonaccessed).
There are nine combinations of these three types of objects,
as Table 4 shows.

known during the analysis of, M (global),

Alias Pairs in PAS&
(*q, *rI, (*q, *SI, (*q, *XI, (*r, *SI, (*r, *XI, (* s , *XI
(*q, N A) , (*r, N A) , (*s, N A) , (*x, N A)
none

TABLE 4
POSSIBLE COMBINATIONS OF PAIRS OF OBJECTS

I Pairs of Types of Objects I
I (global. global)

(global, parameter), (parameter, global)
(global, nonaccessed), (nonaccessed, global)
(parameter. Darameter)
(parameter, nonaccessed), (nonaccessed, parameter)
(nonaccessed, nonaccessed)

For variables a and b, alias pairs (a, b) and (b , a) both rep-
resent the fact that a and b may be aliased. Because these
pairs are symmetric, we consider only one of them. Thus, to
consider aliasing effects caused by calling environments,
we consider the following types of pairs of objects: (global,
global), (global, parameter), (global, nonaccessed), (parameter,
parameter), (parameter, nonaccessed), and (nonaccessed,
nonaccessed). We discuss these types of P A S e t elements,
and illustrate them using our example. Tables 5 and 6 give
PASets for modules C and D, respectively. In the tables,
" N A stands for nonaccessed. We show the PASet for D
only to illustrate elements that would belong in the PASet
for D if D were analyzed separately. The remainder of our
treatment of the partial program of Fig. 5 views the pro-
gram as one module with C as its entry point.

Alias pairs of the form (global, global) may be cre-
ated in a calling module and propagated to M . For ex-
ample, in module C of Fig 5, global variables q, r, s,
and x are accessed in C. If they are aliased in some appli-
cation that calls C, these aliases could propagate to C.
Thus, ComputeMayAlias-Module adds (*q, *r), (*q, *SI,
(*q, *x), (*r, *SI, (*r, *x), and (*s, *x) to the P A S e t for C.

Alias pairs of the form (parameter, parameter) may be cre-
ated in a calling module and propagated to M. For example, a
and b are parameters to module D of Fig. 5, which has two
pointer variable parameters. If D were called with the same
actual parameter for both a and b, then *a and *b would be
aliased on entry to D. Thus, ComputeMayAlias-Module
adds (*a, *b) to the PASet for D.

Alias pairs of the form (global, parameter) may be cre-
ated in a calling environment and propagated to M . For

example, in module D of Fig. 5, q may be bound to the
actual parameter in a calling module and propagated to
D. Thus, ComputeMayAlias-Module adds (*q, *a) and
(*q, *b) to the PASet for D.

TABLE 5
PASET FOR MODULE c

I Alias Pairs in PASet
I (*a. *b)

Type
1 (parameter, parameter)

(global, parameter) I (*9, *a), (*9, *b)
(Darameter. nonaccessed) I (*a. NA) . (*b. N A)
(global, nonaccessed) I (*% N 4
(global, global) 1 none

Alias pairs of the form (global, nonaccessed) and
(parameter, nonaccessed) can also affect the may alias in-
formation in M. ComputeMayAlias-Module uses Landi
and Ryder's method, discussed in Section 2, of summariz-
ing nonaccessed variables using a placeholder; we choose
NA as this placeholder. ComputeMayAlias-Module cre-
ates an alias pair of the form (v, N A) for each parameter or
global variable D accessed in M. Thus, for the module of
Fig. 5, the algorithm adds (global, nonaccessed) pairs (*q,
NA), (*r, NA), (*s, NA), and (*x, NA) to the PASet for C. If
the algorithm were run on module D separately, it would
add (*a, NA), (*b, NA), and (*q, NA) to the P A S e t for D.

Aliasing effects that occur when nonaccessed variables
are paired with globals or parameters bear further discus-
sion. Nonaccessed variables may be visible (in scope) in
module M or nonvisible in M. Landi and Ryder's approach
handles only complete programs, in which all variables
visible in a procedure are known. In contrast, if we analyze
a module independently of a calling program, there may be
variables in particular calling programs that are visible in
the module, but are not explicitly referenced in the module
(nonaccessed); when we analyze the module, we do not
know the names of these variables. Where aliases that in-
volve a nonaccessed, nonvisible variable U are concerned, a
module M can create or destroy aliases of U that hold outside
NI However, M cannot affect aliases of U that hold inside M
In contrast, where aliases that involve nonaccessed, visible
variable D are concerned, M can create or destroy aliases
both inside and outside M . Thus, we must treat nonaccessed,
nonvisible variables and nonaccessed, visible variables dif-
ferently. However, this different treatment is confined to
the link algorithm, and does not affect the algorithm for
partial analysis; during the partial analysis, one placeholder
suffices for both types of nonaccessed variables.

Finally, alias pairs of the form (nonaccessed, nonac-
cessed) may be created in a calling module and propagated
to M . For example, in an applications program that uses
module C, global variables *k and *1 may be aliased. Nei-
ther k nor 1 appear in module C; nevertheless, alias pair

HARROLD AND ROTHERMEL: SEPARATE COMPUTATION OF ALIAS INFORMATION FOR REUSE 449

TABLE 7
CONDMAYALIAS-MODULE AFTER MAY ALIAS INTRODUCTIONS FOR THE MODULE OF FIG. 5

(*k, “1) holds at every statement in C. We could handle
these aliasing effects by introducing alias pair (N A , N A)
into PASet, but this promotes unnecessary work. Instead,
we account for the effects of these aliases during the link
algorithm.

3.1.3 Compute Conditional May Alias htroductions for

After ComputeMayAlias -Module computes PASet, it com-
putes conditional may aliases that may be introduced at
particular nodes in G. First, at the entry node to M , the al-
gorithm forces introductions of all conditional may aliases
that could reach M from an applications program, by cre-
ating a conditional may alias for each element in PASet.
Each of these conditional may aliases has itself as induce-
ment condition; that is, for each conditional may alias
[(E , PA),,, PA] created at this step, IC = PA. This induce-
ment condition indicates that the existence of the condi-
tional may alias depends on a conditional may alias of IC
holding at the call to M . For example, for the module of
Fig. 5, ComputeMayAlias-Module creates conditional may
alias [(cl, (*q, *r))(*q,*rr (*q, *I-)], and the nine other in-
duced conditional may aliases listed in Table 7.

Next, ComputeMayAl ias -Module computes conditional
may alias introductions at pointer assignment nodes, and
entry nodes other than the entry to M, using the same rules
used by ComputeMayAlias. However, these conditional
may aliases have null inducement conditions because their
existence does not depend on particular aliases reaching
a call to M . Table 7 lists these conditional may alias in-
troductions.

ComputeMayAlias-Module adds all conditional may
aliases, whether induced or not, to Worklist and to
CondMayAIias-Module.

3.1.4 Compute Conditional May Alias Information for

Like Landi and Ryder’s ComputeMayAl ias algorithm,
Comput eMayAl ias -Module next propagates conditional
may aliases introduced in the previous step throughout M
using G. However, to support the subsequent step of cal-
culating may alias information that can be reused during
analysis of a calling program, the algorithm preserves
inducement conditions during propagation. This means
that at each node N , ComputeMayAlias propagates
[(N, AA),,, P A] through N. if ComputeMayAlias propa-
gation rules state that [(N, AA), PA] holding at N causes

Module M

Module M

[(N’, AA’), PA’I to hold at successor node N’ of N , then
ComputeMayAl ias -Module generates [(N’, AA’)jc, PA’].
For example, in the module of Fig. 5, [(cl, (*r, * x)) (. ~ , * ~ ~
(*r, *XI] holds, and by ComputeMayAlias rules, if
[(cl, (*r, *XI), (*r, *x)l holds then [(~2, (*r, *XI), (*p, *r)l
holds. Thus, ComputeMayAlias-Module generates condi-
tional may alias [(a, (*r, *XI) (*r, *x), (*p, *r)], and adds it
to Worklist and to CondMnyAlins-Module. During this
propagation, aliases created by multiple conditions may
also be created. We postpone discussion of this issue until
Section 3.3. Table 8 shows the results of the conditional
may alias propagation for the example module.

3.1.5 Compute May Alias Information for Module M
By forcing all potential conditional may aliases at
entry to M , and propagating them throughout G ,
Compu t eMayAl i a s -Module collects conditional may
alias information that accounts for all possible calling
contexts. Compu t eMayAl i a s -Module uses this information
to calculate may alias information for M that also ac-
counts for all calling contexts. To calculate may aliases,
ComputeMayAlias-Module uses ComputeMayAlias rules
for obtaining may alias information from conditional
may alias information, but retains inducement condi-
tions with may aliases. For example, for the program of
Fig. 5, because [(C6, (*r, * x)) (* ~ , * ~ ~ (*q, *XI] is a con-
ditional may alias for c, ComputeMayAlias-Module cre-
ates may alias [(C6(*,,*,y (*q, *XI], and places it in
MayAlias-Module. Table 9 shows the may alias informa-
tion computed by ComputeMayAlias-Module for the
example module.

3.1.6 Output May Alias Link Information for Module M
ComputeMayAlias-Module packages the results of condi-
tional may alias and may alias analyses of module M into a
form that supports reuse of that information when a program
that calls M is analyzed. ComputeMayAlias-Module then
outputs that information. Three types of information must
be saved:

1) a reduced ICFG for M , ICFG-Module,
2) conditional may alias link information, CondMayAlias-

3) may alias link information, MayAlias-LinkInfo.

ICFG-Module is a reduced ICFG for M; this graph is used
to incorporate module analysis results for M into the analy-
sis of an applications program. The reduced graph contains

LinkInfo, and

450 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 7, JULY 1996

TABLE 8
CONDMAYALIAS-MODULE AFTER CONDITIONAL MAY ALIAS COMPUTATION FOR THE MODULE OF FIG. 5

explanation
introduction
introduction
introduction
introduction
introduction
propagation
propagation
propagation
propagation
generation
eeneration
propagation
introduction
propagation
propagation
propagation
propagation
propagation
generation
generation
introduction
propagation
propagation
propagation
propagation
propagation
propagation
introduction
propagation
propagation
propagat ion
propagat ion
generation
generation
generation
propagation

TABLE 9
MAYALIAS-MODULE AFTER MAY ALIAS CALCULATION FOR MODULE OF FIG. 5

MayAlias-Module [NIc , PAJ

only the entry and exit nodes of G, with a single edge from
the entry node to the exit node.

CondMuyAlias-Linklnfo is the conditional may alias in-
formation required to incorporate module analysis results
for M into the analysis of an applications program. It suf-

fices to output the conditional may aliases that reach the
exit node in G and do not involve local variables. Table 10
reports this information for the example program.

MayAlias-Linklnfo is the may alias information required
to incorporate module analysis results into the analysis of

HARROLD AND ROTHERMEL: SEPARATE COMPUTATION OF ALIAS INFORMATION FOR REUSE 451

TABLE 10
CONDMAYALIAS-LINKINFO FOR THE MODULE OF FIG. 5

algorithm AnalyzeApplication
input P : a program
output
declare

MayAlias : set of [N , P A] , where P A may be aliased after N
G : an interprocedural control flow graph (ICFG) for P
Workl is t : list of [(N , A A) , P A] ; initially empty
CondMayAlias : set of [(N , (A A)) , (P A)] for P
CondMayAlias-LinkIn f 0: conditional may aliases for modules
MayAlias-Linklnfo: alias link information for modules

begin
construct G, an ICFG for P
foreach N in G do /* compute conditional may alias introductions for P */

if N is an assignment t o a pointer or a call node then

if N is an exit node of a separately analyzed module M then
add conditional may aliases introduced by N t o Workl is t and CondMayAlias

foreach [(N , d)+, P A] in CondMayAlias-Linklnfo for M do
add [(N , +), P A] to Workl is t and CondMayAlias

while Workl is t is not empty do /* compute conditional may alias for P * /
remove [(N , A A) , P A] from Workl is t
if N is a call node then

propagate a t N ; add to Workl is t and CondMayAlias
elseif N is an entry node of a separately analyzed module A4 (with exit node X) then

foreach [(X , AA‘)lc, PA‘] in CondMayAlias-Linlc~nfo such tha t IC = P A do
add [(X , AA’), PA’] to CondMayAlias and Workl is t

else propagate a t N and add to Workl is t and CondMayAlias
foreach [(N , A A) , P A] in CondMayAlias where A A # (V, N A) do /* compute may alias for P */
foreach may alias [N l c , P A] in MayAlias-LinkZn f o do

add [N , P A] t o MayAlias

/* let E be the entry node of the module M tha t includes N */
if I C = 4 then add [N , P A] to MayAlias
elseif P A = (V, N A)

elseif [(E, I C) , I C] E CondMayAlias add [N , P A] t o MayAlias
foreach [E, (V, U)] E MayAlias where U is visible in M do add [N , (V, U)] to MayAlias

create aliases for (NA,NA) pairs where necessary
end

Fig. 6. Algorithm that uses separate analysis results to compute may alias information.

an applications program. We require knowledge of both
induced and noninduced may aliases, including induce-
ment conditions for the latter. MayAlias-Linkhfo output by
ComputeMayAlias-Module for the example program is
the same as the MayAlias-Module information shown in
Table 9.

3.2 Analysis of Applications Using Separate

When ComputeMayAlias-Module is used to analyze
modules, we can incorporate the results of that analysis
into the analysis of applications programs that call
those modules using algorithm AnalyzeApplication.
AnalyzeApplicat ion, shown in Fig. 6, takes an appli-
cations program P, and returns MayAlias, the set of may
aliases for P. After computing the ICFG for P,
Ana ly z eApp 1 i c at ion proceeds like Comput eMayAl i a s,
introducing conditional may aliases, propagating those
conditional may aliases, and using the results of that

Analysis Results

propagation to calculate may alias information for the pro-
gram. However, the procedures for performing these tasks
are modified to make use of the results of the separate
analyses of called modules.

3.2.1 Construct the ICFG for Program P
AnalyzeApplication first constructs an ICFG for P, us-
ing reduced ICFGs that were previously computed by
ComputeMayAlias-Module wherever possible. Fig. 7 de-
picts the ICFG that AnalyzeApglication builds for an
example program that calls previously analyzed module C
(initially presented in Fig. 5). We refer to this example
throughout this section.

3.2.2 Compute Conditional May Alias lntroductions for
Program P

When AnalyzeApplicat ion introduces conditional may
aliases, it follows the same procedures at call and assign-
ment statements as ComputeMayAlias (lines 3 and 4). For
example, for the program of Fig. 7, the algorithm introduces

452 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 7, JULY 1996

int *q, *x, *r, ' s ;

main0 {
int z;

s = & z ;
r = x;
C O ;
C O ;

I

Fig. 7. An example program and its reduced ICFG

conditional may alias [(main3, $1, (*r, *x) l . By introducing
these conditional may aliases, AnalyzeApplicat ion ac-
counts for aliases introduced in the portion of the applica-
tions program that was not previously analyzed.

AnalyzeApplication must also account, however, for
aliases that are introduced in separately analyzed modules
and propagate out of those modules. Because of the separate
analysis, these aliases are present, with assumed alias $, in
the Co~zdMayAlzas-~i~~Info for the separately analyzed mod-
ule. To account for such aliases, AnalyzeApplication
(lines 5-7) introduces conditional may alias [(N, Q), PA] for
each [(N, $)*, PA] in C o ~ ~ M a y A l i ~ s - ~ i ~ ~ r ~ ~ o . For example, in
separately analyzed module C, (*q, *r) was introduced at
C6 and found, when that module was analyzed, to reach
the exit of the module at C8. Thus, [(C8, @),, (*q, *r)] is in
CondMayAlias-Linklnfo, and thus, AnalyzeAppl ication
introduces conditional may alias [(C8, 41, (*q, * r)] . Table 11
shows the results of the conditional may alias introduction
step for the example program.

TABLE 1 1
CONDMAYALIAS AFTER MAY ALIAS INTRODUCTIONS

FOR THE PROGRAM OF FIG. 7
I CondMauAlias I(N. AA\. PA1 I exulanation I , L \ I / I 1 ,
[(main2,@), (*s,z)J, [(main3, b), (*r, *x)] 1 pointer assignment
[(C8,4), (*q, *r)J I exit node

3.2.3 Compute Conditional May Alias Information for
Program P

When AnalyzeApplicat i on p r o p a g a t e s c o n d i t i o n a l may
alias information, it follows the same procedures as Com-
puteMayAlias at all nodes other than call nodes to, and
entry nodes of, separately analyzed modules. At call nodes
to separately analyzed modules, AnalyzeApplicat ion
behaves exactly like ComputeMayAlias except for aliases
that involve two variables that are nonaccessed in the mod-
ule: ComputeMayAlias propagates these aliases directly to
the associated return nodes because these aliases necessarily
survive the call. At the entry node E of separately analyzed
module M, for each conditional may alias [(E , AA), PA] ,
AnalyzeApplicat ion considers each conditional may
alias [(X, AA'),,, PA'] in CondMayAlias-Li~kInfo (where X is

the exit node of M) that has inducement condition IC = PA.
For each such conditional may alias AnalyzeApplication
adds [(X, AA'), PA'] to Worklist and to CondMayAlias. In this
way, the algorithm uses link information to account for the
effects of aliases that reach the module, without reanalyzing
the module. Table 12 shows the results of the conditional
may alias propagation step for the example program.

3.2.4 Compute May Alias Information for Program P
To calculate may aliases, AnalyzeApplication, like Com-
puteMayAlias, uses the conditional may aliases present at
nodes in a program P, and drops the conditional portion of
each conditional may alias to obtain the associated may
alias. For example, at node main3 of the example program
of Fig. 7, AnalyzeApplication finds conditional may alias
[(main3, $1, (*r, * x)] , and from this, computes may alias
[main3, (*r, *x) l .

After calculating the aforementioned may aliases,
AnalyzeApplicat ion uses MayAlias-Linldnfo for each
separately analyzed module M to determine the may ali-
ases that hold in those modules in the context of the appli-
cation. For each may alias INra P A] in MayAlias-LinkIrzfo for
separately analyzed module M with entry node E , there are
three cases to consider:

If IC is 4, then [N,, PA] is a may alias in M independent
[N, PA] to MayAlias (line 20). For example, in the pro-
gram of Fig. 7, when AnalyzeApplication considers
may alias [cab (*p, *XI], it adds [c2, (*p, *x)] to
MayAlias .
If PA = (V, NA), and if V is in the scope of M, then every
nonaccessed object U that may be aliased to V at E may
be aliased to Vat N. In this case (lines 21 and 22), the al-
gorithm adds [N, (V, U)] to MayAlias for each such U.

* If neither of the preceding cases holds, [N,, PA] holds
conditional on alias IC holding on entry to M, and
[Nlo PA] does not involve a nonaccessed object. For each
such [Nlo PA], AnalyzeApplication (line 23) adds it
to MayAlias only if conditional may alias [(E, IC), IC]
holds. For example, in the program of Fig. 7, when
AnalyzeApplication considers may alias [C6 (*r,*xr
(*p, *q)], it notes that [(cl, (*r, *x)), (*r, *x)] holds, and
thus, adds [C6, (*p, *q)] to MayAlias.

HARROLD AND ROTHERMEL: SEPARATE COMPUTATION OF ALIAS INFORMATION FOR REUSE

CondMayAlias [(N , AA) , PA]
[(mainl, +), (*s, z) J
Ifmain3.d). (*s.z)l

453

explanation
introduction
propagation

I . , , \ . ,,

~(main6, +), (*r, *x)., .(mainb,+), (cq, *x):, r(main6,+), (*q, *r).
'(main7,+), (*r, *XI:, I(main7, +), (*q, *x):, ;(main7,+), (*q, *r):

Tuples obtained for first call to C

[(C8, (*r,x)),(*r,*x)], [(C8,+), (*q,*r)], [(C8,(*r,*x)), (*q,*x)]

Tuples obtained for second call to C
[(Cl, (* s , N V)) , (*s, NV)I, [(C l , (*r, *XI), (*r,*x)l [(Cl, (*q, *XI), (*q, *.)I, l (C L (*q, *r)L (*% *.)I

[(CS,(*q,x)),(*q,*x)]

introduction
propagation
propagation
propagation
propagation

propagation
propagation

TABLE 13
MAYALIAS FOR THE PROGRAM OF FIG. 7

MayAlias[N, PA]

One final action is required, to handle aliases of the
form (nonaccessed, nonaccessed). For each separately ana-
lyzed module, for each conditional may alias [(N, AA),
PA] that reaches a call to that module such that PA con-
tains two variables nonaccessed but visible in the module,
AnalyzeApplication attaches may alias [N', PA] to each
node in the module.

Table 13 gives the MayAlias set computed by
AnalyzeApplication for the program of Fig. 7.

3.3 Computation of Aliases Introduced by Multiple

During may alias analysis, aliases may be introduced
when multiple conditional may aliases reach a program
point along some path. We call these aliases aliases infuo-
duced by multiple conditions. For example, we saw in the
program of Fig. 2 that in the second call to C, where (*q, *x)
and (*a, *x) reach the entry to D, ComputeMayAlias gen-
erates may alias pair (*a, *q) at DI. In this case, AA repre-
sents both (*q, *x) and (*a, *x). Because the cost of
tracking multiple conditions is prohibitive, Landi and
Ryder show that it is sufficient to use just one of these two
assumed aliases. Thus, ComputeMayAlias can create
either [(Dl, (*q, *x)), (*a, *q)l or [(Dl, (*a, *x)),
(*a, *q)]; in the illustration of ComputeMayAlias in Sec-

Conditions

tion 2, the algorithm generated the second conditional
may alias.

Whereas ComputeMayAlias uses conditional may ahases
that actually occur in a program, ComputeMayAlias-Module
uses a set of assumed conditional may aliases that is a su-
perset of those that may actually occur in a particular call-
ing context. If ComputeMayAlias-Module handles aliases
introduced by multiple conditions in the same manner as
ComputeMayAlias, it may produce results that are less
precise than those produced by ComputeMayAlias. For
example, when ComputeMayAl ias -Module analyzes
the module of Fig. 5, it generates conditional may aliases
[(DL (*a, *x))(*~,*~? (*a, *XI] and [(DL (*q, * x)) (, ~ , * ~ ,
(*q, *XI]. In applications programs where both (*r, *x) and
(*q, *x) reach C, (*a, *q) holds at ~ 1 ; however, if either
(*r, *x) or (*q, *x) does not reach C, then (*a, *q) does not
hold at D1. If ComputeMayAlias-Module either creates, or
does not create, link information that lists (*a, *q), there
may be applications programs for which this information is
incorrect. Thus, aliases introduced by multiple conditions
require special handling.

ComputeMayAlias -Module calculates aliases intro-
duced by multiple conditions that are triggered by pairs
of conditional may aliases in which neither conditional
may alias is induced, or in which inducement conditions

454 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 7, JULY 1996

algorithm ComputeMayAlias-Module(PrecisionLewel)
input M : a module
output CondMayAlias-LinkIn fo: subset of CondMayAlias-Module

MayAliasIn f +Link: subset of MayAlias-Module
ICFG-Module: reduced ICFG for M
G : an interprocedural control flow graph (ICFG) for M , with entry node E and exit node X
Workl is t : list of [(N , A A) l c , P A] , initially empty
CondMayAlzas-Module : set of [(N, (A A)) r c , (PA)]
MayAlias-Module : set of [N I c , (P A)]
PASet : set of names potentially aliased in M

declare

begin
construct G , an ICFG for M / * construct the ICFG for M */
compute PASet for M /* compute the PASet for M */
foreach P A in PASet do /* compute conditional may alias introductions for M */

foreach N in G do
add [(E , P A) ~ A , P A] to Workl is t and to CondMayAlias-Module

if N is an assignment to a pointer or a call statement then
add condi%onal may aiiases introduced by N to Workl is t and to CondMayAlias-Module

while Workl is t is not empty do /* compute conditional may alias information for M */
remove [(N , A A) , c , P A] from Workl is t
propagate at N and update Workl is t and CondMayAlias-Module

if PrecisionLevel is “CMA-overestimate” then /* generate aliases introduced by multiple conditions */
add aliases introduced by multiple conditions to Workl is t and CondMayAlias - Module */

endif
foreach [(N , AA) lc , P A] in CondMayAlias-Module do /* compute may alias information for M * /

add [N l c , P A] to MayAlias-Module
if PrecisionLewe1 is “CMA-precise” ICFG- Module = G

else ICFG-Module = node set { E , X } and edge set { (E , X) }
foreach [(N , A A) I ~ , P A] in CondMayAlias-Module, /* output may alias link information for M */

such that N = X , N = E , or N is a pointer variable assignment node do
add [(X , AA), PA] to CondMayAlias-LinkIn fo

foreach may alias [N I ~ , P A] in MayAlias-Module do
add [N I c , P A] to MayAlias-LznkInfo

output CondMayAEias-Linkln f 0, MayAlias-Linkln f o, and ICFG-Module
end

Fig. 8. Algorithm for computing may alias link information for a module, with three possible levels of precision. This algorithm is a modification of
algorithm ComputeMayAlias-Module of Fig. 4; new or modified lines are marked with asterisks.

are identical, during the propagation step in lines 8
through 10; these conditional may aliases do not present a
problem. However, there may be additional pairs of con-
ditional may aliases introduced by multiple conditions in
particular calling contexts that depend on induced condi-
tional may aliases. Our technique provides three levels of
analysis with respect to these aliases. These levels differ in
terms of the precision of the alias information that they
produce, relative to the precision of the alias information
that ComputeMayAl ias produces. In the following discus-
sion, we differentiate these three levels of analysis by referring
to them as CMA-underestimate analysis, CA&-overestimate analy-
sis, and CMA-precise analysis. Using CMA-underestimate analy-
sis, ComputeMayAlias-Module may onut some aliases that
ComputeMayAl ias identifies. ushg CMA-overestknate andysk,
ComputeMayAlias-Module may identrfy some sp~inous aliases
that ComputeMayAlias does not idenbfy. using CM-preciSe
andyss, ComputeMayAl ias -Module identifies precisely the
aliases that ComputeMayAlias identifies.

To accommodate these three levels of analysis, we use
modified versions of ComputeMayAlias-Module and
AnalyzeApplicat ion that have a precision level, Pveci-
sionlevel, as a parameter. This parameter takes on one of
the values ”CMA-underestimate,” ”CMA-overestimate,”
or ”CMA-precise.” Fig. 8 and Fig. 9 show algorithms Com-
put eMayAl ias -Module(PvecisionLevel) and AnalyzeAp -
pl icaeion(Precisionlevel), respectively. These algorithms
are similar to ComputeMayAlias-Module and Ana-

lyzeApplication, respectively; in the figures, new or
modified lines are marked with asterisks.

In applications where CMA-underestimate analysis is suf-
ficient, Comput eAl i as Inf o -Module-(Precision-Leud) simply
does not introduce aliases introduced by multiple conditions.
For example, if PvecisionLevel is ”CMA-underestimate,” and
ComputeAliasInf o-Module analyzes the module of Fig.
5, the algorithm finds both I (D ~ , (*a, *x))(*~,*~~ (*a, *x)l
and [(~l, (*q, *x))(,~,*~, (*q, *XI], at ~ 1 , but does
not introduce either [(DI, (*a, *x))(*~,*~~ (*a, *q)] or
[(Dl, (*q, *x))(*~,*~, (*a, *q)]. At the second call to C in
main, inducement conditions (*r, *x) and (*q, *x) are both
true. However, in this case, the algorithm misses alias pair
(*a, *q), and computes a may alias set that is a subset of the set
of may ahses computed by ComputeMayAlias. Thus, m-
underestimate analysis is not safe: it may omit may aliases.

If a safe set of may aliases is required, but an overestimate
is sufficient, ComputeMayAl ias -Module-(Precisionlevel)
overestimates the set of conditional may aliases introduced
by multiple conditions, by calculating all conditional may
aliases that occur because of the existence of pairs of in-
duced conditional may aliases in M, and adding them to
Worklist and to CondMayAlias-Module. Lines 10.1, 10.2, and
10.3 in Comput eMayAl ias -Module(PrecisionLevel) perform
this action. In the example, when PvecisionLevel is ”CMA-
ovembmate,” Comput eMayAl ias -Module(Pveckimhe/) intre
duces two new conditional may aliases: [(DI, (*a, *x))(,,,*~~
(*a, *q)l and [(DI, (*q, *x)) (,~ ,+ , (*a, *q)l. In this case, in a

HARROLD AND ROTHERMEL: SEPARATE COMPUTATION OF ALIAS INFORMATION FOR REUSE

~

455

algorithm
input P : a program
output
declare

Analyze Appl i cat ion (Precision Level)

MayAlias : set of [N , P A] , where P A may be aliased after N
G : an interprocedural control flow graph (ICFG) for P
Worklis t : list of [(N , A A) , P A] ; initially empty
CondMayAlias : set of [(N , (A A)) , (P A)] for P
CondMayAlias-LznkIn f o: conditional may aliases for modules
MayAlias-LinkIn f o: alias link information for modules

begin
construct G, an ICFG for P
foreach N in G do /* compute conditional may alias introductions for P */

if N is an assignment to a pointer or a call node then

if N is an exit node of a separately analyzed module M then
add conditional may aliases introduced by N to Worklis t and CondMayAlias

foreach [(N , 4)4, P A] in CondMayAlias-Linklnfo for M do
add [(N ,c$) ,PA] to Worklis t and CondMayAlias

while Worklis t is not empty do /* compute conditional may alias for P */
remove [(N , AA) , ‘PA] from Worklis t
if N is a‘call node then

propagate at N ; add to Worklis t and CondMayAlias
elseif N is an entry node of a separately analyzed module M (with exit node X) then

foreach [(X , A A ’) l c , P A ’] in CondMayAlias-LinkInfo such that I C = P A do
add [(X , AA’) , PA’] to CondMayAlias and Worklis t

else propagate at N and add to Workl is t and CondMayAlias

calculate and propagate aliases introduced by multiple conditions
[15:1*] if PreczsionLevel is “CMA-precise” then
[15.2*]
[I61 foreach [(N , A A) , PA] in CondMayAlias where A A # (V , N A) d o /* compute may alias for P */
~171 add [N , P A] t o MayAlias
[18] foreach may alias [N l c , P A] in MayAlias-LinkInfo do

[201
/* let E be the entry node of the module M that includes N */
i f IC = C#J then add [N , PA] to MayAlias
elseif P A = (V, N A)

elseif [(E , I C) , I C] E CondMayAlias add [N , P A] to MayAlias

~ 9 1

~ 3 1
foreach [E , (V, U)] E MayAlias where U is visible in M do add [N , (V, U)] to MayAlias

1211
[221

[24] create aliases for (NA,NA) pairs where necessary
end

Fig. 9. Algorithm that uses separate analysis results to compute may alias information for an applications program, with three possible
levels of precision. This algorithm is a modification of algorithm AnalyzeApplication of Fig. 6; new or modified lines are marked with
asterisks.

calling context in which (*r, *x) and (“9, *x) do not both
hold on entry to C, spurious may aliases may be identi-
fied. For example, if there were only one call to C in
main, (*a, *q) would be a spurious may alias. Thus,
CMA-overestimate analysis may yield results that are
less precise than those calculated by ComputeMayAlias.

To obtain sets of conditional may aliases and may aliases
that are identical to those computed by ComputeMayAlias,
ComputeMayAl ias -Module(Precision~eve/) performs CMA-
precise analysis. To do this, the algorithm postpones consid-
eration of aliases introduced by multiple conditions (for those
that depend on different inducement conditions) until M is
linked with a calling program by AnalyzeApplication. In
this case, lines 10.1 through 10.3 in ComputeMayAlias-
Module(PrecisionLeve1) are not executed; aliases that would
otherwise be generated by these steps are not generated.
Furthermore, the graph computed by ComputeMayAlias-
Module for M is G, the entire ICFG for M4; lines 13 and
13.1 of the algorithm handle these actions. Finally, Com-
puteMayAlias -Module also includes, in CondMayAlias-
LinkInfo, conditional may alias information for entry nodes
and pointer variable assignment nodes (line 14). For exam-

4. An optimization to this step uses a reduced graph that is a sparse rep-
resentation for ICFG-Module, which contains nodes that represent pointer
assignments, and summary nodes, to enable the propagation.

ple, for module C and applications program main shown in
Fig. 10, CondMayAlias-Link information is saved for only
the nodes that are shaded.

When called with a PrecisionLevel other than ”CMA-
precise,” AnalyzeApplication(PrecisionLevel) behaves
exactly like AnalyzeApplication. When called with a
PrecisionLevel of “CMA-precise,” however, the algo-
rithm performs additional actions. In this case, Ana-
lyzeApplication(Precisionlevel) inspects each entry or
pointer assignment node N, and each [(N, AA)Ic, PA] at N ,
to see if inducement condition IC is met in this calling
environment. If there is a conditional may alias
[(entry(M), AA’)rc!, PA’] such that IC = PA’, then the in-
ducement condition IC that was used in the partial
analysis now holds on some path to entry(M) in the
calling environment; this implies that conditional may
alias [(N , AA),,, PA] can be rendered as conditional may
alias [(N, AA), PA], and added to CondMuyAlias. The next
step is to consider this new conditional may alias with other
conditional may aliases at N, to see if any new aliases are
introduced by multiple conditions. If so, these new aliases
are added to CondMayAlias and to Worklist for further
propagation. These actions produce the same analysis in-
formation as ComputeMayAlias because only those aliases
that are introduced by multiple conditions that arise in the
applications program are generated and propagated. How-

456 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO 7, JULY 1996

int *q, *r,

main0 {
int z;

* s , *x;

C O {
i n t *p, y;

p = x;
D(p, 9);
if ("q 1 0)

q = r;
s = & y ;

1

Fig. 10. A module and its ICFG. To produce precise nodes with respect to aliases introduced by multiple conditions,
ComputeMayAlias(Precisi0nLevel) outputs CondMayAlias-Module information for the nodes that are shaded.

ever, we only need to propagate aliases introduced by mul-
tiple conditions because other previously computed alias
information remains valid.

Alias pairs of the form (nonaccessible, nonaccessible)
also may produce aliases induced by multiple conditions;
these pairs are handled similarly.

To illustrate the actions of AnalyzeApplication
(PrecisionLeuel) when PrecisionLevel is "CMA-Precise," consider
conditional may aliases [(Dl, ("9, *x))(*q, *x) (*q, *x)], [(Dl,
(*a, *x))(*a, *x), (*a, *XI], and [(D L (*b, *x))(*q, *x), (*b, *x)l,
that are saved by ComputeMayAl ias -Module(PrecisionLrmel)
for entry node ~ 1 . On the first call to C in main4, (*r, *x)
reaches the entry to C, and subsequently the call to D at
~ 3 . Alias pair (*p, *x) also reaches the call to D at ~ 3 . Be-
cause p is bound to a at the call, (*p, *a) is introduced at the
call. Both (*p, *a) and (*p, *x) hold on entry to D, so
AnalyzeApplicat ion(PrecisionLevel) creates [(Dl, (*a, *XI),
(*a, *x)] and adds it to CondMayAlias and to Worklist. Because
("9, *r), created in C6, reaches the return from C at C8, and
then reaches the second call to C in main6, it subsequently
reaches D1. when AnalyzeApplication(~recisionbel) proc-
esses tlus con&tional may h, it create [(DL (*q, *XI), (*q, *XI].
Then, in line 15.2, Analyze App 1 i ca t ion(Precisi0nLevel)
notes the existence of these conditional may aliases, cre-
ates either [(~l, (*q, *XI), (*a, *q)] or [(Dl, (*a, *x)),
(*a, *q)], and adds it to CondMayAlzns and to Worklist for
later processing. Similarly, when the algorithm finds that
both (*a, *x) and (*q, *x) reach D1, it creates either
t(D1, (*a, *XI), (*a, *b)l or [(Dl, (*q, *x)), (*a, *b)l, and
adds it to CondMayAlias and to Worklist.

3.4 Hybrid Analysis of Modules
We presented versions of our separate analysis and link
algorithms for modules that were analyzed and then linked
with complete programs. However, our technique can also
be used for modules that are analyzed and then linked with
other modules; this enables incremental analysis of a large
system. Suppose we wish to perform may alias analysis

separately on each of procedures C and D of Fig. 5; Fig. 11
illustrates this situation. In this case, we first analyze mod-
ule D, and compute may alias link information for it, using
ComputeMayAlias-Module. Next, we wish to analyze C;
however, we must do this in a manner that both makes use
of alias link information for D, and outputs link informa-
tion for C. To provide separate analysis of C in this case, we
use a hybrid algorithm that incorporates actions from both
ComputeMayAlias-Module and AnalyzeApplication.
We call this algorithm ComputeMayAlias-Hybrid, and
present it in Fig. 12.

ComputeMayAlias-Hybrid takes a module R, and may
alias link information for a previously analyzed module NI
that is called by R.5 The algorithm first constructs an ICFG
for module R using the reduced ICFG for module M , in the
same manner as AnalyzeApplication. The algorithm
then constructs the PASet for R by considering the poten-
tial alias pairs that can reach the entry to R. Like Com-
PuteMayAlias -Module, the algorithm next creates condi-
tional may alias introductioiis at pointer assignment and
call nodes in R; however, like AnalyzeApplicat ion, the
algorithm also introduces conditional may aliases at the exit
node of the ICFG-Module for M .

Next, ComputeMayAlias-Hybrid, like Compute May-
Alias -Module, uses a worklist to compute conditional
may aliases; however, a conditional may alias computed to
hold in M inherits the inducement condition from the
conditional may alias in R that causes it to exist. Finally,
ComputeMayAlias-Hybrid computes may alias link in-
formation for R, using a combination of tactics from
AnalyzeApplication and ComputeMayAlias-Module;
this preserves information on inducement conditions, and
stores link information for later use. The may alias link infor-
mation output by ComputeMayAlias-Hybrid may be used
byAnalyzeApplication,or againby ComputeMayAlias-
Hybrid, to analyze a program or module that calls R.

5. For simplicity, we present the algorithm for the case where R calls only
one previously analyzed module M; however, the approach can be ex-
tended to handle multiple previously analyzed modules.

457 HARROLD AND ROTHERMEL: SEPARATE COMPUTATION OF ALIAS INFORMATION FOR REUSE

--.

int * a , *b;

*a = *at*b+*q
I

C O {
i n t *p, y;

p = x;
} D (P , 9);
if (“q > 0)

q = r;
s = &y:

I

_ ~ _

Fig. 11. An example showing analysis steps using the hybrid algorithm

_- ~ ~ ~ ~ - - -
I may alias link;
, information ~ ._- _____,

algorithm ComputeMayAlias-Hybrid
input

output

alias link information for previously analyzed module M
R : a module that calls M
CondMayAlias-LinkZn f 0: subset of CondMayAlias-Module
MayAliasZn fo-Link: subset of MayAlias-Module
ZCFG-Module: reduced ICFG for R
G : an interprocedural control flow graph (ICFG) for M , with entry node E and exit node X
Worklist : list of [(N , A A) l c , PA] , initially empty
CondMayAlias-Module : set of [(N , (A A)) l c , (P A)]
MayAlias-Module : set of [N l c , (P A)]
PASet : set of names potentially aliased in M

declare

begin
construct G , an ICFG for R using ZCFG-Module for M /* construct the ICFG for R */
compute PASet for R /* compute the PASet for M */
foreach P A in PASet do /* compute conditional may alias introductions for R */

foreach N in G do
add [(E , P A) P A , P A] to Worklist and CondMayAlias-Module

if N is an assignment to a pointer or a call statement then

if N is an exit node of separately analyzed module M then
add conditional may aliases introduced by N to Worklist and CondMayAlias-Module

foreach [(N , @) I C , P A] in CondMayAlias-LinkZn fo for M do
add [(N , 4) , P A] to Worklist and CondMayAlias

while Worklist is not empty do /* compute conditional may alias information for M */
remove [(N , A A) l c , P A] from Worklist
if N is a call node then

elseif N is an entry node of M (with exit node X) then
propagate at N and update Worklist and CondMayAlias- Module

foreach [(X , AA’) l c , , PA’] in CondMayAlias-Linkln fo such that IC’ = P A do
add [(X , AA’) Ic , PA’] to CondMayAlias and Worklist

foreach [(N , A A) l c , P A] in CondMayAlias-Module where A A # (V, N A) do

ZCFG-Module = node set { E , X } and edge set { (E , X) }
foreach may alias [N l c , P A] in MayAlias-Linklnfo do

/* let E and X be the entry and exit nodes, respectively, of M */
if IC = 4 then add [N, P A] to MayAlias-Module
elseif P A = (V, N A)

elseif [(E , I C) , I C] E CondMayAlias-Module add [N , PA] to MayAlias-Module
foreach [(X , A A) , c , P A] in CondMayAlias-Module do /* output may alias link information for M */

add [(X , A A) l c , P A] to CondMayAlias-Linkln f o
foreach may alias [N r c , P A] in MayAlias-Module do

add [N l c , P A] to MayAlias-LinkZn fo
output CondMayAlias-LinkIn fo, MayAlias-LinkInfo, and ICFG-Module

else propagate at N and add to Worklist and CondMayAlias

add [N l c , P A] to MayAlias-Module

foreach [E, (V, U)] E MayAlias-Module where U is visible in M do
add [N , (V, U)] to MauAlias-Module

end

Fig. 12. Algorithm for computing may alias link information for a module that calls another separately analyzed module.

458 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 7, JULY 1996

Module
Name

3.5 Complexity
Landi and Ryder’s ComputeMayAlias algorithm runs in
time O(n3) for ICFGs of size n; thus, the algorithm is poly-
nomial in program size [8] . Preliminary experimentation
with ComputeMayAlias suggests, however, that in practice
the algorithm runs in time linear in the size of the may alias
solution [8].

ComputeMayAlias propagates only aliases that actually
occur in a program. ComputeMayAlias -Module, in con-
trast, propagates all aliases in PASet. For modules that ref-
erence n global variables and parameters, PASet has size
(n * (n + l)) /Z ; thus, in the worst case, the size of PASet is
quadratic in the number of names in the program. However,
the worst-case runtime analysis of ComputeMayAl ias as-
sumes that the number of aliases that occur in the pro-
gram is quadratic in the number of names in the pro-
gram; thus, the upper bound on the worst-case runtime
of ComputeMayAlias-Module is the same as that for
ComputeMayAlias. In practice, since ComputeMayAlias-
Module propagates all aliases in PASet, the size of the may
alias solution computed by ComputeMayAlias-Module for
module M may exceed the size of the solution computed by
ComputeMayAlias for module M.

Because design principles for reusable modules, such as
ADTs, classes, and library routines, discourage the indis-
criminate use of global variables, we expect that for most
reusable modules, the number of global variables will be
small. Furthermore, reusable modules designed with low
coupling will have few parameters; thus, we expect that the
number of parameters for well-designed reusable modules
will be relatively small. For such modules, PASef size is
small, facilitating separate analysis. We also expect that for
certain well-designed systems, some submodules will have
small PASets. These submodules can be candidates for
separate analysis, facilitating incremental analysis of the
modules from which they are called.

To demonstrate that our expectations for PASet size are
reasonable, we analyzed a number of software modules to
determine the sizes of the PASets for those modules. The
results of our analyses are shown in Tables 14,15, and 16.

Table 14 shows the results of our analysis of four ADT
modules. The STACK, SET, and QUEUE modules are ADTs
written in C, provided with the Aristotle program analy-
sis system [6]. The STRING CLASS is an ADT written in
C++ , provided with a commercial compiler. Most of the
modules in the ADTs make no use of global variables; those
that use globals use at most two. No module uses more
than three parameters. In the worst case, for these ADT
modules, the size of the PASet is 10: small enough for our
separate analysis technique to be practical.

Table 15 shows the results of our analysis for four li-
brary modules. The first three modules are part of the
Aristotle program analysis system: the first is a library of
hash functions, the second provides a set of routines that
access a database, and the third provides a set of routines
that insert probes into a program to trace the program’s
execution. The last library module is a mathematical func-
tion contained in a library of such functions obtained from
Siemens corporation. Like the ADT modules, these library
modules use global variables sparsely and use few pa-

Number of Lines of Number of Number of Size of
Functions Code Params Globals PASet

rameters; the PASet for the modules contains at most 10
members. For such modules, PASet size is manageable.

initstack
popstack
pushstack
empty s t a c k
A S E T ADT:
add-toset
compare
copyset
duplicate
intersection
i s i n s e t
issubset
make-array-ofsets
makeset
pr intset
removefromset
s e t d e a r
set-diff
setfree
setfreearray
setis-empty
set-union
A QUEUE ADT:
dequeue
init-queue
release-queue
enqueue

I is-enmtv

TABLE 14
ANALYSIS RESULTS SHOWING PASET SIZES

FOR ADT MODULES

1 19 1 0 1
1 13 1 0 1
1 11 2 0 3
1 9 1 0 1

1 11 2 0 3
1 33 2 0 3
1 11 2 0 3
1 16 1 0 1
1 33 3 0 6
1 11 2 0 3
3 29 2 0 3
1 24 2 0 3
1 19 1 0 1
1 15 1 0 1
1 11 2 0 3
1 21 1 0 1
4 37 3 0 6
1 9 1 0 1
1 13 2 0 3
1 13 1 0 1
1 12 3 0 6

1 17 1 0 1
1 15 0 0 0
3 26 1 0 1
1 26 2 0 3
1 10 1 0 1 . .

print-queue 1 16 1 0 1

string
iseoual

1 9 1 2 6
1 5 2 2 10

isLT
hash
print

len
concat

Finally, Table 16 shows the results of our analyses for
three sets of software modules that either are reusable, or
might be analyzed separately in order to incrementally
analyze the systems in which they are contained. The first
set of modules is a set of routines from the Aristotle pro-
gram analysis system that implements computation of
reverse control flow graphs, dominator trees [l], control

1 4 2 1 6
1 10 0 2 3
1 4 2 1 6
1 14 2 2 10
1 4 0 2 3

Module
Name

Number of Lines of Number of Number of Size of
Functions Code Params Globals PASet

hash 2
hash-insert 4
hashiemove 3
hashsearch 3
hash-tableinit 1
THE CF HANDLER LIBRARY:
cfbegin 1
cfcreate 1
cfend 1
cffree 1
cfgetedgelist 1
cfgetedgenumber 1
cfread 1
cfwrite 1
THE BRANCH ‘TRACE FUNCTION
1PF.bt.SetBranch 1
IPF-bt.Set SWBranch 1
IPF-btmainlni t 1
1PF.bt.proclnit 1
1PF.bt.Term 1

52 3 1 10
106 3 1 10
85 2 1 6
77 2 1 6
39 1 1 3

32 1 0 1
40 1 0 1
28 1 0 1
58 1 0 1
56 2 0 3
43 4 0 10
156 3 0 6
56 3 0 6

24 4 0 10
20 2 0 3
80 4 0 10
29 4 0 l o
42 0 0 0

LIBRARY:

IPF-ht.TestEdge 1 1 1 10 2 0 3

HARROLD AND ROTHERMEL: SEPARATE COMPUTATION OF ALIAS INFORMATION FOR REUSE 459

I main event loop

dependencies, and control dependence graphs [5]. These
program analysis modules were designed to be reusable;
they do not use global variables, and they have few pa-
rameters. The maximum size of a PASet for these mod-
ules is six. The modules are good candidates for separate
analysis.

TABLE 16
ANALYSIS RESULTS SHOWING PASET SIZES

FOR POTENTIALLY REUSABLE MODULES

I Module 1 Number of I L i n e s o f u m b e r of I Number of I Size of 1

~. -..
58 I 1430 0 23 276

I Name I Functions I Code I Params 1 Globals I PASet I
PROGRAM ANALYSIS MODULES:
cfg-reverse 1 2 I dom-tree-construct
cdep-calculate
fow-build-cdg 1 3 7 1 3 5 6 5 1 Z i 0 1 3
GAME MODULES:
move 1 72 I 1760 I 9 I 34 I 946

The second set of modules that are described in Table 16
contains two modules from an Internet-based game. These
modules are reusable, and are called from multiple loca-
tions in the game software. However, the code for the game
has evolved over several years, at the hands of numerous,
independent coders who, presumably, did not make code
reuse a priority. The modules make heavy use of global
variables. PAS& size for these modules is large; thus, these
modules may not be favorable candidates for separate
analysis.

The third set of modules that are described in Table 16
are submodules in a calculator whose source code is pro-
vided with a commercial compiler. These modules are not
designed for reuse; however, they could, at first glance at
the call graph for the system, be considered candidates for
separate analysis if we wished to incrementally analyze the
system. Unfortunately, the modules are coupled to the rest
of the system strictly through global variables, and use
many such variables. Thus, the PAS& for the modules are
large, and the modules may not be favorable candidates for
separate analysis.

AnalyzeAppl ica t ion, like Compu t eMayAl ias, propa-
gates only aliases that actually occur in a program; thus,
steps 1-17 of AnalyzeApplication, which compute the
may alias solution for an application program P, run in
time polynomial in the size of the (possibly reduced)
ICFG for P. Lines 18-22 of AnalyzeApplication consider
each may alias in MayAlias-linklnfo. In the worst case, for
each may alias, these lines consider each member of
CondMayAlias. Because MayAlias-Linklnfo and CondMay-
Alias have size polynomial in the size of ICFG-Module,
the work done by AnalyzeApplication for these lines is
polynomial in the size of ICFG-Module. An efficient imple-
mentation, in which CondMayAlias entries are organized in
terms of inducement conditions, may yield a lower run
time in practice.

3.6 Relation to Previous Work
Marlowe and Ryder 1121 present a hybrid algorithm for
data flow analysis that decomposes the control flow graph
of a program into regions. Their algorithm first solves data

flow problems within regions separately. Then, the algo-
rithm propagates local data flow information throughout a
condensed graph of the program, which consists of regions
and their connections. The key to the solution of the local
data flow problem within a region is to solve this problem
using virtual data flow information to represent data flow
information that is external to the region. Then, during
propagation of data flow information throughout the con-
densed graph, no further propagation is required within
regions-nly the virtual data flow information must be
updated. Marlowe and Ryder [131 extend their hybrid ap-
proach to handle aliases for Fortran programs. In this work,
they introduce the idea of using one representative global
variable to stand for any global variable aliased to a formal
parameter at the entry node.

Landi and Ryder [91 present an algorithm to compute
may alias information in the presence of pointer variables
that uses alias assumptions at the entry to a function to
compute this may alias information. A subsequent algo-
rithm [lo] uses a worklist approach that, instead of consid-
ering all alias assumptions at the entry to a function, com-
putes the solution to the may alias problem for only the
alias pairs that actually reach the function.

Our separate analysis algorithms are similar to the above
work. First, like Marlowe and Ryder‘s, we compute data
flow information for modules separately, and use repre-
sentative data flow information to facilitate this computa-
tion. Then, when we compute data flow information for a
module that calls a previously analyzed module, we need
only update this precomputed information; we avoid com-
plete reanalysis of the called module. However, instead of
the global data flow problems and the Fortran aliasing
problem that Marlowe and Ryder’s hybrid algorithms
solve, our separate analysis algorithms solve the may alias
problem.

Second, like Landi and Ryder’s initial may alias algo-
rithm, our algorithm computes the effects of aliases that
could reach a module in all possible contexts, by assuming
aliases at the entry to a module. However, we put all these
possible aliases on a worklist and propagate them using an
approach similar to that of Landi and Ryder’s subsequent
algorithm. By using the features of these two approaches,
and adding the concept of inducement conditions, we are
able to compute may alias information for modules sepa-
rately, in a manner that lets us reuse that information dur-
ing the analysis of applications programs that use those
modules.

4 CONCLUSIONS AND FUTURE WORK

We have presented a technique that permits separate analy-
sis of a module M, and supports reuse of analysis informa-
tion when analyzing a program, or another module, that
calls M . We described our algorithms for the interproce-
dural may alias problem, for languages with reference pa-
rameters and pointers. However, a similar technique can be
applied to the separate computation of other interproce-
dural analysis information such as reaching definitions. The
main benefits of our approach are that it can amortize the
cost of module analysis over all programs that use the

460 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 7, JULY 1996

module, and facilitate incremental computation of may
alias information for larger systems.

To demonstrate the practicality of our algorithms, we
analyzed several ADT modules, library modules, and po-
tentially reusable or separately analyzable modules to de-
termine the sizes of the PA%-which is the dominant fac-
tor in the expense of our algorithms-for those modules
We found that in most cases, for well designed modules,
the PASet is small. In several cases, where the modules
were not designed for reusability, we found large PASets.

We are implementing several tools for experimentation
and future research. The first tool is a prototype imple-
mentation of our separate analysis and link algorithms.
With this prototype, we will experiment with the practical-
ity of our approach, and determine situations in which each
of the three levels of precision is applicable. The second tool
will let us automatically compute the size of a module’s
PAW. We will use our experiments to develop metrics to
guide both the selection of appropriate algorithms for in-
terprocedural analysis, and the design of modules that are
amenable to separate analysis.

ACKNOWLEDGMENTS
This work was partially supported by grants from Micro-
soft and Data General Corporation, and by the US. Na-
tional Science Foundation under Grant No. CCR-9357811 to
Clemson University and Ohio State University.

REFERENCES
A.V. Aho, R. Sethi, and J.D. Ullman, Compilers, Principles, Tech-
niques, and Tools. Reading, Mass.: Addison-Wesley, 1986.
D.R. Chase, M. Wegman, and F.K. Zadeck, “Analysis of Pointers
and Structures,” Proc. ACM SIGPLAN ’90 Colif. Programming Lnn-
guage, Design, and Implementation, pp. 296-310, June 1990.
J.-D. Choi, M. Burke, and P. Carini, ”Efficient Flow-Sensitive In-
terprocedural Computation of Pointer-Induced Aliases and Side
Effects,” Proc. 20th A m . ACM Symp. Principles o j Programming
Languages, pp. 232-245, Jan. 1993.
M. Emami, R. Ghiya, and L.J. Hendren, ”Context-Sensitive Inter-
procedural Points-To Analysis in the Presence of Function Point-
ers,” Proc. A C M SIGPLAN ‘94 Conf. Programming Language, Design,
and Implementation, pp. 242-256, June 1994.
1. Ferrante, K.J. Ottenstein, and J.D. Warren, ”The Program
Dependence Graph and its Use in Optimization,” A C M Trans.
Programming Languages and Systems, vol. 9, no. 3, pp. 319-349,
J ~ l y 1987.
M.J. Harrold, L. Larsen, J. Lloyd, D. Nedved, M. Page, G. Rother-
mcl, M. Singh, and M. Smith, “Aristotle: A System for the Devel-
opment of Program-Analysis-Based Tools,” Proc. 33rd Ann. South-
east Coizf., pp. 110-119, ACM Press, Mar. 1995.
M.J. Harrold and G. Rothermel, ”Separate Computation of Alias
Information for Reuse,” Puoc. A C M lnf’l Syunp. Suffware Testing and
Analysis, pp. 107-120, Jan. 1996.
W. Landi, Intevprocedinral Aliasing in fhe Presence of Pointers, PhD
thesis, Rutgers Univ., 1992.
W. Landi and B.G. Ryder, ”Pointer-Induced Aliasing: A Problem
Classification,” Proc. 17th A n n . A C M Symp. Priizczples of Program-
ming Languages, pp. 93-103, Jan. 1990.
W. Landi and B.G. Ryder, ”A Saf? Approximate Algorithm for
Interprocedural Pointer Aliasing,” Proc. A C M SIGPLAN ’92 Coizf.
Programming Language, Design, and Implementation, pp, 235-248,
June 1992.
J.R. Larus and P.N. Hilfinger, ”Detecting Conflicts Between
Structure Accesses,” Proc. ACM STCPLAN ’88 Conf. Programming
Language, Design, and Implementation, pp. 21-34, June 1988.

[121 T.J. Marlowe and B.G. Ryder, “An Efficient Hybrid Algorithm for
Incremental Data Flow Analysis,” Conf. Record 17th A n n . ACM
Symp. Principles of Programming Languages, pp, 184-196, Jan. 1990.

[131 T.J. Marlowe and B.G. Ryder, “Hybrid Incremental Alias Anal-
ysis,” Proc. 24th Hawaii Ini’l Conf. System Sciences, pp. 428-437,
Jan. 1991.

[141 G. Murphy, D. Notkin, and E. Lan, ”An Empirical Study of Static
Call Graph Extractors,” Proc. 18th lizt’l ConJ Softzuare Engineeuing,
pp. 90-99, Mar. 1996.

Mary Jean Harrold received PhD and MS de-
grees in computer science from the University of
Pittsburgh, and MA and BA degrees in mathe-
matics from Marshall University. She is currently
an assistant professor in the Department of
Computer and Information Science at Ohio
State University.

Dr. Harrold’s research interests include pro-
gram analysis and testing, testing of object-
oriented software, and maintenance and testing
environments. She is a recipient of the National

Science Foundation’s National Young Investigator award. She is a
member of the IEEE Computer Society and the ACM.

Gregg Rothermel received a PhD in computer
science from Clemson University, an MS in
computer science from the State University of
New York at Albany, and a BA in philosophy
from Reed College. He is currently a senior
research associate at Ohio State University.
Previous positions included vice president for
quality assurance and quality control at Palette
Systems Inc.

Dr. Rothermel’s research interests include
software engineering and program analysis, with

an emphasis on the application o f program analisis techniques to
problems in software maintenance and testing. He is a member of the
IEEE Computer Society and the ACM.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	8-1996

	Separate Computation of Alias Information fior Reuse
	Mary Jean Harrold
	Gregg Rothermel

	Separate Computation of Alias Information for Reuse - Software Engineering, IEEE Transactions on

