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Abstract

Steady-state components of heat conduction solutions may have very slowly convergent series for temperatures and non-convergent
heat fluxes for temperature boundary conditions. Previous papers have proposed methods to remove these convergence problems. How-
ever, even more effective procedures based on insights of Morse and Feshbach are given herein. In some cases it is possible to replace
poorly-convergent or non-convergent series by closed-form algebraic solutions. Examples are given.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Exact transient heat conduction solutions have many
uses including verification of numerical solutions [1–4],
facilitating insight, and providing building blocks for the
unsteady surface element method [5, Chapter 12]. These
solutions are frequently the sum of steady-state and com-
plementary transient components [2,3]. The complemen-
tary transient components have rapid exponential
convergence, provided the dimensionless time is sufficiently
large. However, exact conduction steady-state solutions for
the temperature in a rectangle with prescribed temperature
boundary conditions typically converge slowly at the sur-
face with a non-homogeneous boundary condition [6].
The problem is acute for determining the heat flux at that
surface [7]. Solutions based on the separation of variables
method, which we relate to the long cotime Green’s func-
tion (with cotime defined as u = t � s), are particularly

prone to this problem; the series for the heat flux normal
to the surface may even fail to converge at that surface.

Cole, Yen, and Crittenden [6,7] have clearly identified
this problem and have proposed solutions. They have
shown that there are multiple forms of the Green’s function
that may be used for 2D and 3D problems. Choosing the
appropriate form can reduce considerably the number of
terms in the summations. Heat conduction textbooks com-
monly recommend that the eigenvalues in multi-dimen-
sional steady-state problems be chosen to be in the
direction of the homogeneous boundary conditions. See
Ref. [8] for more discussion of this point. However, this
recommendation is not usually the best one [6–8]. The con-
vergence is usually improved by using eigenfunctions in a
direction perpendicular to the nonhomogeneous surface
[7].

In this paper, a more nuanced approach is given that is
better for prescribed temperature boundary conditions; the
preferred eigenfunction direction depends upon the aspect
ratio. As noted in [6–8], the series may contain a term that
converges very poorly. These authors propose alternative
Green’s functions to improve convergence; the present
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paper removes this difficult term in a similar way. Beyond
this poorly-convergent term, however, another term is
present which impedes convergence. The removal of this
term is discussed next.

Over 50 years ago Morse and Feshbach [9] gave an alge-
braic expression for the classical series solution that
diverges at the boundary. The derivation is not transparent
and the result is not widely known, although it is given
(without reference) by Gebhart [10, p. 98] and Polyanin
[11, p. 470]; see also Ingersoll et al. [12, pp. 34 and 307]. Pri-
mary motivations for this paper are to use and extend the
Morse–Feshbach relation and also to elucidate some of its
subtle steps. The problem treated herein is a classic one for
a rectangle with a constant non-zero temperature at x = 0
and zero temperatures on the three surfaces at x = L, y = 0
and W. One limiting case is for a semi-infinite strip in the x-
direction, that is L ?1; this case is treated in [9] and is
denoted in this paper as X 10B1Y 11B00. (The notation is
described below.) Another limiting case is for a semi-infi-
nite strip in the y-direction, or W ?1 (denoted as
X 11B10Y 10B0); a new algebraic identity for the related
summation is derived herein for this case. The method is
applied here to 2D problems with temperature boundary
conditions, but it can be extended to other problems,
including 3D cases.

The algebraic solutions (partially algebraic, in some
cases) are convenient and aid in providing insight in several
ways. First, they remove the convergence problem associ-
ated with the series solution for the heat flux at the heated
boundary. That can prove helpful in verification of numer-
ical solutions. Second, algebraic forms are more insightful
than series solutions. For example, the algebraic expres-
sions can be readily used to determine the penetration dis-

tance of the non-homogenous condition at x = 0. Third,
the solutions may be helpful in experimentation by provid-
ing quickly evaluated expressions for parameter estimation.
Fourth, these steady-state solutions may be part of several
different transient solutions and several variations of the
basic problem are possible. The solutions can be utilized
in the unsteady surface element method [5, Chap. 12].

Other unrelated methods are available to improve con-
vergence of series in exact heat conduction solutions. The
time-partitioning method [2–5] is a powerful and general
method, but numerical integration is used in [4] and large
aspect ratios may cause difficulties. This paper incorporates
some of the ideas in [6] and extends them by removing
some slowly-convergent series for prescribed temperatures
replacing them with two algebraic forms, which do not
have convergence problems. The first of these algebraic
forms is given by Morse and Feshbach [9] and the second
is believed to an original contribution. These two algebraic
forms are particularly powerful for the large and small
(compared to one) aspect ratios of L divided by W.

Another method to obtain the steady-state component
uses the complementary transient component [8] with the
advantage of its exponential convergence. It is useful for
locations away from the non-homogeneous surface since
for sufficiently small dimensionless time it is the negative
of the steady-state solution. Herein however, the sum of
an algebraic term (which removes the slowly converging
component) and the remaining series is simpler and is not
restricted to particular regions in the rectangle.

The work of Melnikov [13,14] is important because it
introduces some algebraic 2D steady-state Green’s func-
tions. Duffy [15] also gives steady Green’s functions for sev-
eral 2D geometries including the rectangle and semi-infinite

Nomenclature

a dimensionless value of isotherm
c.t. denotes complementary transient component,

Eq. (6)
Cn modified eigenvalue, (¼ gn

eL, first appears in Eq.
(8))

GXIJ,GYIJ Green’s functions for rectangular plate with I

and J boundary condition kinds, m�1

I, J indication of boundary condition kinds, e.g., 1 –
1st kind, 2 – 2nd kind, 3 – 3rd kind

k thermal conductivity, W/(m K)
Kmax negative of natural logarithm of error
L thickness of slab, meL aspect ratio of the slab, (=L/W)
m summation index
Nm mth norm of Xm(x)
n summation index
nmax maximum number of terms needed for a speci-

fied error
qx, qy heat flux at the boundary planes, W/m2

t time, s
T temperature, �C
T0 temperature at x = 0, �C
u cotime (=t � s), s
W width of slab, m
XXIJ,m(x) mth eigenfunction
x length, m
xp, yp penetration lengths of the temperature signal, m
~x scaled length (=x/L)
y width, m
~y scaled width (=y/W)

Greek symbols

a thermal diffusivity, m2/s
bm eigenvalue in x-direction (mp)
e error
gn eigenvalue in y-direction
s variable of integration, s
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slab. Significant contributions have been made by de
Monte [16,17] and Haji-Sheikh et al. [18–20] for transient
and multidimensional heat conduction problems.

In order to be efficient in the description of multiple
problems related to the rectangle problem, the heat con-
duction number system in [5] is used. A brief description
is now given. Three common heat conduction boundary
conditions are prescribed temperature, prescribed heat flux,
and prescribed ambient temperature. For simplicity these
are termed boundary conditions of the 1st, 2nd, and 3rd
kinds and are used in the number system. Another kind,
called the 0th kind, is for a boundary at infinity in the x-
or y-direction. A plate with a temperature prescribed at
x = 0 and another temperature at x = L is denoted X 11.
The X denotes the x-direction; the first ‘‘1” denotes a
boundary condition of the first kind at x = 0 and the sec-
ond ‘‘1” denotes the 1st kind boundary condition at
x = L. Boundary condition modifiers, denoted by ‘‘B,”
are used to describe a boundary condition, with a ‘‘1”

denoting a constant in both space and time and a ‘‘0”

denoting a zero value of the boundary temperature T, heat
flux q or the ambient temperature; a zero value at a bound-

ary is commonly termed a homogeneous condition. For the
rectangular problem described above, the steady-state
notation is X 11B10Y 11B00; see Fig. 1a. If the problem is
transient with an initial temperature distribution of zero,
this notation is modified by adding ‘‘T0” at the end.

2. Problem

A transient version of the problem can be mathemati-
cally described by

o
2T

ox2
þ o

2T
oy2
¼ 1

a
oT
ot
; 0 < x < L; 0 < y < W ; t > 0 ð1Þ

T ð0; y; tÞ ¼ T 0; T ðL; y; tÞ ¼ 0

T ðx; 0; tÞ ¼ 0; T ðx;W ; tÞ ¼ 0 ð2Þ
T ðx; y; 0Þ ¼ 0 ð3Þ

The body is a rectangle with dimensions L and W in the x-
and y-dimensions, respectively. See Fig. 1a. The thermal
diffusivity a is the only property present in this temperature
problem and it is independent of location and temperature.
The temperature is T0 at x = 0 and zero at the other three

Fig. 1. Basic geometry for rectangular body, L by W, with a temperature of T0 and x = 0 and T = 0 at the other surfaces shown in Fig. 1a. Fig. 1b is for
the limiting case of L ?1. Fig. 1c is for the limiting case of W ?1 and Fig. 1d is for both L ?1 and W ?1.
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surfaces; the initial temperature is zero. The notation for
this problem as given in [5] is X 11B10Y 11B00T 0. It is a
classic problem and has been considered in many books.
As mentioned above and explained below, many of these
solutions do not satisfactorily converge, particularly for
the x-direction heat flux at x = 0.

The problem described by Eqs. (1)–(3) is investigated in
[7] and substantial improvements are given compared to
the solutions commonly given in textbooks. The methods
herein present further improvement and even eliminate
summations for certain aspect ratios and accuracies.

The solution can be obtained several ways, one of which
uses steady-state Green’s functions [6,7,21,22]. Another
method, and the one used here, is the long cotime form
of the Green’s functions; this solution has similarities with
the classical separation of variables solution. The Green’s
function solution [5, p. 51] is

T ðx; y; tÞ ¼ T 0a
Z t

u¼0

� oGX 11

on0
ðx; 0; uÞ

� �
�
Z W

y0¼0

GY 11ðy; y0; uÞdy 0 du ð4Þ

where [5, p. 482] (with n0 = �x0)

GX 11ðx; x0; uÞ ¼
2

L

X1
m¼1

sinðmp~xÞ sinðmp~x0Þe� mp
Lð Þ2au;

~x � x
L

ð5aÞ

� oGX 11

on0
ðx; 0; uÞ ¼ 2

L2

X1
m¼1

sinðmp~xÞmpe�
mp
Lð Þ2au ð5bÞ

Z W

y0¼0

GY 11ðy; y 0; uÞdy0 ¼ 4
X1
n¼1

sinðgn~yÞ
gn

e�
gn
Wð Þ2au;

~y � y
W
; gn ¼ ð2n� 1Þp ð5cÞ

Using Eqs. (5b) and (5c) in Eq. (4), the solution can be
written in two parts in the form

T ðx; y; tÞ ¼ T c:t:ðx; y; tÞ þ T ðx; yÞ ð6Þ
where the first term on the right is the ‘‘complementary
transient” and the second is the steady-state component
[2,3]. In explicit form these two solution components are

T c:t:ðx; y; tÞ ¼ �T 08
X1
m¼1

X1
n¼1

� mp sinðmp~xÞ sinðgn~yÞ
gn½ðmpÞ2 þ ðgn

eLÞ2� e�½ðmpÞ2þðð2n�1ÞpeLÞ2� at
L2

ð7aÞ

T ðx; yÞ ¼ T 08
X1
m¼1

X1
n¼1

mp sinðmp~xÞ sinðgn~yÞ
gn½ðmpÞ2 þ ðgn

eLÞ2�
¼ T 04

X1
n¼1

sinðgn~yÞ
gn

2
X1
m¼1

mp sinðmp~xÞ
½ðmpÞ2 þ ðgn

eLÞ2� ;
eL � L

W
ð7bÞ

When the time t is zero, observe that the complementary
transient is equal to the negative of the steady-state solu-
tion [3]. Eq. (7a) can be computed in an efficient manner
since it has exponential convergence, provided t 6¼ 0; the
terms in the exponent of the exponential term increase as
the square of the eigenvalues which further speeds conver-
gence. The steady-state term in Eq. (7b) should not be eval-
uated directly because it is a slowly-convergent double-
summation. It is possible to remove either the m or n series
to obtain a single sum. The relative convergence of the m

and n series depends upon the aspect ratio eL. Hence, to
cover the complete domain, two different single-sum series
are needed. They are generally exponentially converging
series. However, certain components of the series might
cause slow convergence, but using some summation identi-
ties these components can be replaced by algebraic
expressions.

3. Standard solution (eigenvalues in the homogeneous

direction)

The most common exact solution for the steady-state
component of Eq. (6) uses the separation of variables
method with the eigenvalues in the homogeneous direction
(y in this problem). It is also obtained using an identity
denoted XF 11B10 in [8, p. 267],

2
X1
m¼1

mp sinðmp~xÞ
ðmpÞ2 þ C2

n

¼ sinh½Cnð1� ~xÞ�
sinh½Cn�

¼ e�Cn~x � e�Cnð2�~xÞ

1� e�2Cn
;

Cn � gn
eL ð8Þ

Either way, this typical steady-state expression is given by
(and denoted X 11B10Y 11B00)

T ð~x; ~yÞ
T 0

¼ 4
X1
n¼1

sinðgn~yÞ
gn

sinh½gn
eLð1� x̂Þ�

sinh½gn
eL�

¼ 4
X1
n¼1

sinðgn~yÞ
gn

e�gn
eL~x � e�gn

eLð2�~xÞ

1� e�2gn
eL ð9aÞ

The number of required terms to obtain an error of e can
be obtained by using e = exp(�Kmax). For e = 0.01, Kmax =
4.61; for e = 0.00001, Kmax = 11.5; and for e = 10�10, Kmax

= 23. (see Section 7 for more discussion.) Then, the re-
quired number of terms for Eq. (9a) is

nmax ¼ ceil
Kmax

2p
W
x

� �
ð9bÞ

where ‘‘ceil” denotes the integer part plus 1. (Usually Eq.
(9a) indicates more terms than are necessary in the series
so it is conservative.) Eq. (9a) has exponential convergence
at all x-values except x = 0, at which point it converges
very slowly. Unfortunately, the T = T0 boundary, which
is at x = 0, is the most important one. Expressions similar
to Eq. (9a) are given in Carslaw and Jaeger [23, p. 167],
Gebhart [10, p. 101] and Arpaci [24, pp. 215, 216]; Myers
[25, p. 129] is the same if W = L = 1.

J.V. Beck et al. / International Journal of Heat and Mass Transfer 51 (2008) 4676–4690 4679



For L ?1, Eq. (9a) can be written as

T X 10B1Y 11B00ðx; yÞ
T 0

¼ 4
X1
n¼1

sinðgn~yÞ
gn

e�gnx=W ; L!1 ð9cÞ

This solution, denoted X 10B1Y 11B00 and depicted in
Fig. 1b, is the dominant term in Eq. (9a). Eq. (9c) is similar
to that given by Ozisik [26, p. 83] and Arpaci [24, p. 197]; it
converges slowly as x = 0 is approached.

Since Eq. (9c) is the slowly convergent component in Eq.
(9a), examining Eq. (9c) yields insight into the complete
solution for the X 11B10Y 11B00 problem. For that reason,
results obtained from Eq. (9c) are examined further. For-
mally, the heat flux in the x-direction is

qx;X 10B1Y 11B00W

kT 0

ð0; yÞ ¼ 4
X1
n¼1

sinðgn~yÞ; L!1 ð10aÞ

This series does not converge, which is unsatisfactory. The
heat flux in the y-direction at y = 0 is

qy;X 10B1Y 11B00W

kT 0

ðx; 0Þ ¼ �4
X1
n¼1

e�gnx=W ; L!1 ð10bÞ

This flux converges exponentially provided x 6¼ 0, and thus
is superior to Eq. (10a). However, algebraic expressions gi-
ven in Section 4 for the temperature and heat fluxes are
preferable.

4. Improved standard solution (eigenvalues in the
homogeneous direction)

The two equations, Eqs. (9a) and (9c), do not have
efficient convergence properties at the important location
of x = 0. Discussed in Section 4.1 are the improvements
afforded by the Morse and Feshbach [9, p. 1179] sum-
mation identity for the plate being semi-infinite in the x-
direction. Section 4.2 provides results for a finite body
(X 11B10Y 11B00), also using the same identity.

4.1. Solution for the semi-infinite body (X 10B1Y 11B00)

The temperature and heat flux expressions in this
subsection are for a semi-infinite plate. The identity given
by Morse and Feshbach is derived in a more direct manner
in Appendix A than it is in [9]. Interchanging x and y and
also L and W in Eq. (A.1) gives an alternative expression
for Eq. (9c). The solution, which is computationally appro-
priate for ‘‘large” L/W (and denoted X 10B1Y 11B00), is

T X 10B1Y 11B00ðx; yÞ
T 0

¼ 4
X1
n¼1

sinðgn~yÞ
gn

e�gn
eL~x

¼ 2

p
tan�1 sinðp~yÞ

sinhðpeL~xÞ

" #
ð11Þ

See Fig. 1b. Since no summation is present, this algebraic
solution does not have a convergence problem. Gebhart
[10, p. 98] and Polyanin [11, p. 470] give this expression
with the variables interchanged, but no derivation or refer-

ence is given; moreover, these references fail to note that
this solution is superior for finding the heat flux compo-
nents. Gebhart [10, p. 101] gives insight into plotting
isotherms for Eq. (11). Let the isotherm for the dimension-
less temperature be a. Setting Eq. (11) equal to a, multiply-
ing by p/2 and then taking the tangent gives

tan a
p
2

� �
¼ sinðp~yÞ

sinhðpeL~xÞ
ð12aÞ

If ~y is set equal to a value between zero and one, the corre-
sponding x-value is

x
W
¼ eL~x ¼ 1

p
sinh�1ðsinðp~yÞ= tanðap=2ÞÞ ð12bÞ

which is not given in [10]. Isotherms for a = 0.5, 0.1, 0.01,
and 0.001 are shown in Fig. 2. A measure of the penetra-
tion distance can be found by letting y/W = 1/2 in this
equation. This distance is at xp/W = 1.54, 2.27, and 3.74
for a = 0.01, 0.001, and 0.00001, respectively. For a =
0.001, the penetration ratio is about 2.27, as indicated by
Fig. 2. The ratio increases slowly with decreases of a since
decreasing a to 0.00001 (a factor of 1/100) increases the
penetration distance xp from 2.27 to 3.74 (only a factor
of 1.65).

For x = 0, the heat flux in the x-direction from Eq. (11)
is

qx;X 10B1Y 11B00ð0; yÞ ¼
kT 0

W
2

sinðpy=W Þ

� kT 0

W
2

W
py
þ 1

6

py
W

� �
; L!1 ð13aÞ

The approximation is for y/W� 1. For y = 0, the heat flux
in the y-direction is

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

x/W

y/
W a = 0.5

a = 0.1

a = 0.01

a = 0.001

Fig. 2. Isotherms for the X 10B1Y 11B00 case using Eq. (12b).
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qy;X 10B1Y 11B00ðx; 0Þ ¼ �
kT 0

W
2

sinhðpx=W Þ

� � kT 0

W
2

W
px
� 1

6

px
W

� �
; L!1 ð13bÞ

Again, Eqs. (13a) and (13b) present no convergence prob-
lems. Incidentally the corresponding heat fluxes for the
quarter-infinite X 10B1Y 1B0 (Fig. 1d) case are

qx;X 10B1Y 10B0ð0; yÞ ¼
2

p
kT 0

y
;

qy;X 10B1Y 10B0ðx; 0Þ ¼ �
2

p
kT 0

x
; L and W !1 ð14a; bÞ

Notice that these heat fluxes are proportional to 1/x and 1/
y, respectively, and are independent of W and L; as a con-
sequence the corresponding heat fluxes become unbounded
as x and y go to zero. Also observe that these terms are the
first terms in the approximate expressions in Eqs. (13a) and
(13b). The heat fluxes can be computed to within about 1%
accuracy using Eq. (14a) for y/W < 0.075 and using Eq.
(14b) for x/W < 0.075.

4.2. Finite body solution

The identity given by Eq. (A.1) is used to improve the
convergence of Eq. (9a).

The slowly convergent term is added and subtracted in
Eq. (9a) to get

T ð~x;~yÞ
T 0

¼ 4
X1
n¼1

sinðgn~yÞ
gn

e�gn
eL~x� e�gn

eL~xþ e�gn
eL~x� e�gn

eLð2�~xÞ

1� e�2gn
eL

 !
;

gn ¼ ð2n� 1Þp ð15Þ

Using Eq. (11) and incorporating �exp(�gnx/W) in the
fraction gives the solution denoted X 11B10Y 11B00 written
as

T ð~x; ~yÞ
T 0

¼ 2

p
tan�1 sinðp~yÞ

sinhðpeL~xÞ

" #
þ 4

X1
n¼1

sinðgn~yÞ
gn

� e�gn
eLð2þ~xÞ � e�gn

eLð2�~xÞ

1� e�2gn
eL ð16Þ

Eq. (16) is particularly efficient for eL greater than one. No-
tice that exponential convergence of the series is present for
all values of x, unlike Eq. (9a). Eq. (16) also can be modi-
fied using an expansion for the denominator given by

1

1� e�2gn
eL ¼X

1

m¼0

e�2mgn
eL

which yields the full expansion of

T ð~x; ~yÞ
T 0

¼ 2

p
tan�1 sin p~y

sinhðpeL~xÞ

" #

þ 2

p

X1
m¼1

tan�1 sin p~y

sinhðpeLð2mþ ~xÞÞ

" #(

� tan�1 sin p~y

sinhðpeLð2m� ~xÞÞ

" #)
ð17Þ

This expansion can be differentiated with respect to x and y

to get exponentially convergent series for the fluxes at the
boundaries x = 0 and y = 0.

The number of required terms in Eq. (16) is

gnmax
eLð2� ~xÞ ¼ ð2nmaxÞpeLð2� ~xÞ ¼ Kmax

nmax ¼ ceil
Kmax

2peL 1

ð2� ~xÞ

� � ð18aÞ

Using this equation for Kmax = 11.5, eL ¼ 0:1 and
x=L ¼ ~x ¼ 1=2 (or x/W = 0.05), gives a value of 13. This
is a conservative estimate since only 10 terms are needed
for this case for absolute errors of less than 0.00001. For
larger values of eL, fewer terms are needed such as foreL ¼ 1; in fact only one term in the summation is needed
for eL > Kmax=ð2pÞ ¼ 11:5=ð2pÞ ¼ 1:83.

The maximum number of terms in Eq. (17) is about

mmax ¼ ceil
Kmax

2peL þ ~x
2

� �
ð18bÞ

In general, this equation indicates more terms than Eq.
(18a), but Eq. (17) might be preferable to Eq. (16) in some
cases.

Unlike the slowly convergent equation given by Eq. (9c),
using Eq. (16) produces exponentially convergent expres-
sions for heat fluxes. The x-direction heat flux is

qxðx; yÞ
kT 0=L

¼ eL 2 coshðpeL~xÞ sinðp~yÞ
sinh2ðpeL~xÞ þ sin2ðp~yÞ

(

þ4
X1
n¼1

sinðgn~yÞ
e�gn
eLð2�~xÞ þ e�gn

eLð2þ~xÞ

1� e�2gn
eL

)
ð19Þ

The y-direction heat flux is

qyðx; yÞ
kT 0=L

¼ �eL 2 sinhðpeL~xÞ cosðp~yÞ
sinh2ðpeL~xÞ þ sin2ðp~yÞ

(

þ4
X1
n¼1

cosðgn~yÞ
e�gn
eLð2þ~xÞ � e�gn

eLð2�~xÞ

1� e�2gn
eL

)
ð20Þ

Evaluating the first of these at x = 0 and the second at
y = 0 gives

qxð0; ~yÞ
kT 0=L

¼ eL 2

sinðp~yÞ þ 8
X1
n¼1

sinðgn~yÞ
e�2gn

eL
1� e�2gn

eL
( )

;

gn ¼ ð2n� 1Þp ð21aÞ
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qyð~x; 0Þ
kT 0=L

¼ �eL 2

sinhðp~xeLÞ þ 4
X1
n¼1

e�gn
eLð2þ~xÞ � e�gn

eLð2�~xÞ

1� e�2gn
eL

( )
ð21bÞ

The heat flux given by Eq. (21a) is less than 1% in error
if the summation is dropped, provided eL P 1. Notice that
the first terms on the right hand side in these equations are
the same as those given by Eqs. (13a) and (13b) for the
X 10B1Y 11B00 semi-infinite case. Figs. 3 and 4 provide
plots of Eqs. (21a) and (21b), respectively. The shapes of
the curves are quite different.

Some numerical values for the dimensionless tempera-
ture and heat flux components are listed in Table 1a for

~x � x=L ¼ 0:5; ~y � y=W ¼ 0:25 and various values of eL.
The two Kmax values of 11.5 and 23 are used, with the for-
mer yielding values with absolute errors of about 0.00001
and the second yielding errors of about 10�10. The inaccu-
rate digits are indicated by the underlined values and are
consistent with the expected accuracy, such as indicated
by Eq. (18a). The results show that at most 2 terms in
the summation are needed for eL P 1.

5. Non-standard method (eigenvalues in the non-

homogeneous direction)

For steady conduction in the rectangle, the numerical
evaluation of Eq. (7b) can be also improved by reducing
the double summation to a single summation with eigen-
values in the non-homogenous direction. This might be
called the non-standard method. Re-arrange Eq. (7b) to

T ðx; yÞ ¼ T 0
1eL

� �2

2
X1
m¼1

mp sinðmp~xÞ4
X1
n¼1

sinðgn~yÞ
gn½ðmp=eLÞ2 þ g2

n�
ð22Þ

Let m be a known quantity in the second summation and
use the identity in [8], Eq. (A.1),

4
X1
n¼1

½sinðgn~yÞ�
gnðC2

m þ g2
nÞ
¼ 1

C2
m

1� e�Cm~y þ e�Cmð1�~yÞ

1þ e�Cm

� �
;

gn ¼ ð2n� 1Þp ð23Þ

Comparing the above two equations reveals that with
Cm ¼ mp=eL, the identity can be used to obtain

T ðx; yÞ ¼ T 02
X1
m¼1

sinðmp~xÞ
mp

1� e�mp~y=eL þ e�mpð1�~yÞ=eL
1þ e�mp=eL

" #
ð24aÞ

Using the identity (from the X 11B10 problem)

2
X1
m¼1

sinðmp~xÞ
mp

¼ 1� ~x ð24bÞ

in Eq. (24a) gives the steady-state solution

T ð~x; ~yÞ
T 0

¼ ð1� ~xÞ � 2
X1
m¼1

sinðbm~xÞ
bm

e�bm~y=eL þ e�bmð1�~yÞ=eL
1þ e�bm=eL ;

bm ¼ mp ð24cÞ

This equation is analogous to an improved equation [7].
The maximum number of terms analogous to Eqs. (9b)
and (18a) is

mmax ¼ ceil
Kmax

p
max

eL
~y
;
eL

1� ~y

 !( )
ð24dÞ

Eq. (24c) has exponential convergence everywhere except
at y = 0 and W. In particular it converges at all x values,
including x = 0, unlike Eq. (9a). Hence, it is superior to
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L/W = 1/6
L/W = 1/4

L/W = 1/2
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Fig. 3. Dimensionless heat flux given by Eq. (21a) in the x-direction at
x = 0 as a function of y/W. The L/W = 1 curve is also valid for L/
W ?1.
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Fig. 4. Negative of the y-direction heat flux at y = 0 for rectangular cases
denoted X 11B10Y 11B00 for various L/W values.
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Eq. (9a) when temperatures or heat fluxes are needed near
x = 0.

5.1. Improved non-standard solution

The convergence of Eq. (24c) can be further improved
by removing the poor convergence at y = 0 and W. Add
and subtract the slowly convergent term in Eq. (24c) to get

T ð~x; ~yÞ
T 0

¼ ð1� ~xÞ � 2
X1
m¼1

sinðbm~xÞ
bm

"
e�bm~y=eL þ e�bmð1�~yÞ=eL

� e�bmð1þ~yÞ=eL þ e�bmð2�~yÞ=eL
1þ e�bm=eL

#
ð25Þ

Now use the equality given by Eq. (B.3) to find the
X 11B10Y 11B00 solution (best for eL � 1Þ,

T ð~x; ~yÞ
T 0

¼ ð1� ~xÞ � 2

p
tan�1 sinðp~xÞ

ep~y=eL � cosðp~xÞ

" #

� 2

p
tan�1 sinðp~xÞ

epð1�~yÞ=eL � cosðp~xÞ

" #

þ 2
X1
m¼1

sinðbm~xÞ
bm

e�bmð1þ~yÞ=eL þ e�bmð2�~yÞ=eL
1þ e�bm=eL ;

bm ¼ mp ð26aÞ

Notice that the series converges exponentially for all values
of y. The heat flux components are

qx;X 11B10Y 11B00

kT 0=L
ðx; yÞ ¼ 1� e�p~y=eL � cosðp~xÞ

coshðp~y=eLÞ � cosðp~xÞ

� e�pð1�~yÞ=eL � cosðp~xÞ
coshðpð1� ~yÞ=eLÞ � cosðp~xÞ

� 2
X1
m¼1

cosðbm~xÞ

� e�bmð1þ~yÞ=eL þ e�bmð2�~yÞ=eL
1þ e�bm=eL ð26bÞ

qy;X 11B10Y 11B00

kT 0=L
ðx; yÞ ¼ � sinðp~xÞ

coshðp~y=eLÞ � cosðp~xÞ

þ sinðp~xÞ
coshðpð1� ~yÞ=eLÞ � cosðp~xÞ

� 2
X1
m¼1

sinðbm~xÞ

� �e�bmð1þ~yÞ=eL þ e�bmð2�~yÞ=eL
1þ e�bm=eL ð26cÞ

These equations are particularly efficient for small values ofeL. A full-expansion equation form for Eq. (26a) is

T ð~x; ~yÞ
T 0

¼ ð1� ~xÞ � 2

p
tan�1 sin p~x

ep~y=eL � cos p~x

" #

� 2

p

X1
n¼1

ð�1Þn tan�1 sin p~x

epðnþ~yÞ=eL � cos p~x

" #(

� tan�1 sin p~x

epðn�~yÞ=eL � cos p~x

" #)
ð26dÞ

This expansion can be differentiated with respect to x and y

to get exponentially convergent series for the fluxes at the
boundaries x = 0 and y = 0. The maximum number of re-
quired terms in each summation in Eqs. (26a)–(26c) is

mmax ¼ ceil
Kmax

eL
p

max
1

1þ ~y
;

1

2� ~y

� � !
ð27Þ

Numerical values for the dimensionless temperature and
heat flux components are listed in Table 1b for ~x ¼ x=
L ¼ 0:5; ~y ¼ 0:25 and various values of eL. The results
show at most two terms in the summation are needed foreL 6 0:5: At most only one term in the summation is needed
in Eq. (26a) if eL is less than p/Kmax = p/11.5 � 0.27 for
Kmax = 11.5, which corresponds to errors about 0.00001.
For such cases, Eq. (26a) reduces to the semi-infinite slab
problem, denoted X 11B10Y 10B0 which has the solution

Table 1a
Dimensionless temperature and heat flux components for the eigenvalues in the homogeneous direction using Eqs. (16), (19) and (20)

x/W ~y eL Kmax nmax T ðx=W ; ~yÞ=T 0 qx(x,y)L/kT0 qy(x,y)L/kT0

0.10 0.25 0.20 11.50 7 0.4874534798 0. 9992242348 �0.0393756128
0.10 0.25 0.20 23.00 13 0.4874535168 0.9992238948 �0.0393751511
0.25 0.25 0.50 11.50 3 0.3640566550 0.9169913479 �0.3798303110
0.25 0.25 0.50 23.00 5 0.3640566638 0.9169912516 �0.3798302130
0.50 0.25 1.00 11.50 2 0.1820283319 0.6387957292 �0.5371610385
0.50 0.25 1.00 23.00 3 0.1820283319 0.6387957290 �0.5371610386
1.00 0.25 2.00 11.50 1 0.0388578672 0.2453678480 �0.2435418264
2.50 0.25 5.00 11.50 1 0.0003495056 0.0054900240 �0.0054900207

Underlined digits are inaccurate; Kmax = 23 gives values accurate to 10�10.
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T X 11B10Y 10B0ð~x; ~yÞ
T 0

¼ ð1� ~xÞ � 2

p
tan�1 sinðp~xÞ

ep~y=eL � cosðp~xÞ

" #
;

W !1 ð28aÞ

This solution is for eL ! 0; by also requiring that ~y < 1=2,
the second arc tangent term in Eq. (26a) disappears. The
heat flux components associated with this equation are

qx;X 11B10Y 10B0

kT 0=L
ð~x; ~yÞ ¼ 1� e�p~y=eL � cosðp~xÞ

coshðp~y=eLÞ � cosðp~xÞ

¼ sinhðp~y=eLÞ
coshðp~y=eLÞ � cosðp~xÞ

ð28bÞ

qy;X 11B10Y 10B0

kT 0=L
ð~x; ~yÞ ¼ � sinðp~xÞ

coshðp~y=eLÞ � cosðp~xÞ
ð28cÞ

Evaluating these two equations at x = 0 and y = 0, respec-
tively, yields

qx;X 11B10Y 10B0ð0; yÞ ¼
kT 0

L
sinhðp~y=eLÞ

coshðp~y=eLÞ � 1

¼ kT 0

L
coth

p
2

~yeL
� �

� kT 0

L
2

p
L
y
þ p

6

y
L

� �
; W !1 ð28dÞ

qy;X 11B10Y 10B0ðx; 0Þ ¼ �
kT 0

L
sinðp~xÞ

1� cosðp~xÞ

¼ � kT 0

L
cot

p
2

~x
� �

� � kT 0

L
2

p
L
x
� p

6

x
L

� �
; W !1 ð28eÞ

Notice that the first terms on the right side in Eqs. (28d)
and (28e) are exactly the same as for those given by Eqs.
(14a) and (14b) for the X 10B1Y 10B0 case and those by
Eqs. (13a) and (13b) for the X 10B1Y 11B00 case. In addi-
tion to showing that the magnitudes of these heat fluxes be-
come unbounded as the origin is approached, the similarity
of these equations is an indication of intrinsic verification
[3]. See Fig. 1c, which shows this geometry and the temper-
ature solution, Eq. (28a). Also shown are the heat flux
equations given by Eqs. (28d) and (28e).

Isotherms for Eq. (28a) can be found by equating it to a

and then solving for y/L,

y
L
¼ 1

p
ln cosðp~xÞ þ sinðp~xÞ

tan½pð1� a� ~xÞ=2�

� �
ð29aÞ

Because of the restrictions used in deriving Eq. (29a) from
Eq. (28a), all the x/L values from 0 to 1 cannot be used.
For a = 0.8, as shown in Fig. 5, the x/L range is from 0
to about 0.2. The deviation in Eq. (28a) from the 1D solu-
tion is

d ¼ 2

p
tan�1 sinðp~xÞ

ep~y=eL � cosðp~xÞ

" #
ð29bÞ

Evaluating this equation at ~x ¼ 1=2 and solving for the y-
direction penetration distance gives

~ypeL ¼ yp

L
¼ � 1

p
ln tan d

p
2

� �� �
ð29cÞ

Numerical values for this penetration distance are
yp/L = 1.32, 2.06 and 3.52 for d = 0.01, 0.001 and
0.00001, respectively. This is for the X 11B10Y 10B0 case
while the other case mentioned below Eq. (12b) is for the
body being semi-infinite in the x-direction; the numerical
values are not greatly different with the values of 1.54 for
a = 0.01 and 1.32 for d = 0.01. It might be helpful to
remember that the penetration of the temperature T to
about 1% of its maximum value is an aspect ratio of about
1.5, which is quite short.
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0

0.5

1

1.5

2

2.5

x/L

y/
L

a = 0.8

a = 0.6

a = 0.4

a = 0.2

a = 0.01

Fig. 5. Isotherms for the X 11B10Y 10B0 case.

Table 1b
Dimensionless temperature and heat flux components for the eigenvalues in the homogeneous direction using Eqs. (26a)–(26c)

x/W ~y eL Kmax nmax T ðx=W ;~yÞ=T 0 qx(x,y)L/kT0 qy(x, y)L/kT0

0.10 0.25 0.20 11.50 1 0.4874535168 0.9992238948 �0.0393751511
0.25 0.25 0.50 11.50 2 0.3640566638 0.9169912516 �0.3798302129
0.25 0.25 0.50 23.00 3 0.3640566638 0.9169912516 �0.3798302130
0.50 0.25 1.00 11.50 3 0.1820283315 0.6387960309 �0.5371610446
0.50 0.25 1.00 23.00 6 0.1820283319 0.6387957290 �0.5371610386
1.00 0.25 2.00 11.50 6 0.0388579638 0.2453681441 �0.2435397294
1.00 0.25 2.00 23.00 12 0.0388578672 0.2453678480 �0.2435418264
2.50 0.25 5.00 11.50 15 0.0003494552 0.0054958392 �0.0054926397
2.50 0.25 5.00 23.00 30 0.0003495056 0.0054900240 �0.0054900207

4684 J.V. Beck et al. / International Journal of Heat and Mass Transfer 51 (2008) 4676–4690



6. Steady solution for spatial variation of temperature at the

heated surface

The methods in this paper can be extended in several
ways, one of which is to spatial variations of the tempera-
ture at x = 0. Two cases are discussed in this section. The
first is for a linear variation in the y-direction and the other
for a constant temperature from y = 0 to W1 and then zero
thereafter. In both cases solutions are given for the eigen-
values in the homogeneous direction, but a partial solution
for the second problem is also given with the eigenvalues in
the non-homogeneous direction.

6.1. Linear variation with y at the x = 0 surface temperature

(X 11Bðy2Þ0Y 11B00)

Consider the case of the boundary temperature condi-
tion at x = 0 replaced by

T ð0; y; tÞ ¼ T 0y=W ; 0 < y < W ð30Þ

This problem is denoted X 11Bðy2Þ0Y 11B00; the ‘‘y2” de-
notes a linear variation of the temperature at x = 0. Eq.
(5c) becomesZ W

y0¼0

GY 11ðy; y0; uÞ
y0

W
dy0 ¼ 2

X1
n¼1

� sinðnp~yÞð�1Þnþ1

np
e�

gn
Wð Þ2au

ð31Þ

Similar to Eq. (9a) the steady state temperature is then

T ð~x; ~yÞ ¼ T 04
X1
m¼1

X1
n¼1

mp sinðmp~xÞ sinðnp~yÞð�1Þnþ1

np½ðmpÞ2 þ ðnpeLÞ2�
¼ T 02

X1
n¼1

sinðnp~yÞð�1Þnþ1

np
e�npeL~x � e�npeLð2�~xÞ

1� e�2npeL ð32Þ

where Eq. (8) is used. However, the single summation does
not converge well at x = 0. The slowly converging term (for
small values of x) is added and subtracted from the second
form of Eq. (32) to get,

T ð~x; ~yÞ ¼ T 02
X1
n¼1

sinðnp~yÞð�1Þnþ1

np

� e�npeL~x � e�npeL~x þ e�npeL~x � e�npeLð2�~xÞ

1� e�2npeL
" #

ð33aÞ

Now use the summation identity given by Eq. (B.5) and
combine the remaining summations in Eq. (33a) to get

T ðx; yÞ
T 0

¼ 2

p
tan�1 sinðp~yÞ

epx=W þ cosðp~yÞ

� �
þ 2

X1
n¼1

sinðnp~yÞð�1Þnþ1

np
e�np2Lþx

W � e�np2L�x
W

1� e�2npeL ð33bÞ

Notice that the summation disappears for x = 0 and the arc
tangent term yields a linearly increasing temperature equal
to the boundary temperature. Also note that the solution
simplifies to

T X 10Bðy2ÞY 11B00ðx; yÞ
T 0

¼ 2

p
tan�1 sinðp~yÞ

epx=W þ cosðp~yÞ

� �
ð33cÞ

for large eL � L=W . This case is denoted as X 10Bðy2Þ
Y 11B00. This solution has some mathematical similarities
with the X 10B1Y 11B00 case given by Eq. (11).

6.2. Constant non-zero temperature on part of surface
(X 11Bðy5Þ0Y 11B00)

The problem with the x = 0 surface at T0 over the region
0 < y < W1 and the rest of the surface at zero is denoted
X 11Bðy5Þ0Y 11B00, with ‘‘y5” denoting a step change in
the surface condition. Convergent solutions for the temper-
ature can be found using the solution given by Eq. (4) with
the upper y0 integration limit changed to W1 instead of W.
Then Eq. (5c) becomesZ W 1

y0¼0

GY 11ðy; y0; uÞdy0

¼ 2
X1
n¼1

sinðnp~yÞ½1� cosðnp eW 1Þ�
np

e�
gn
Wð Þ2au ð34aÞ

and analogous to Eq. (9a) the steady state temperature is

T ð~x; ~yÞ ¼ T 04
X1
m¼1

X1
n¼1

� mp sinðmp~xÞ sinðnp~yÞ½1� cosðnp eW 1Þ�
np½ðmpÞ2 þ ðnpeLÞ2�

¼ T 02
X1
n¼1

sinðnp~yÞ½1� cosðnp eW 1Þ�
np

� e�npeL~x � e�npeLð2�~xÞ

1� e�2npeL ð34bÞ

Using the trigonometric identity, sin(A)cos(B) =
(sin(A + B) + sin (A � B))/2, we can write

Sxyðx;y; eW 1Þ

¼ 2
X1
n¼1

sinðnp~yÞ½1� cosðnp eW 1Þ�
np

e�npeL~x

¼ 2
X1
n¼1

sinðnp~yÞ� 1
2

sinðnpð~yþ eW 1ÞÞ� 1
2

sinðnpð~y� eW 1ÞÞ
np

e�npeL~x

ð35aÞ

Then using the identity given by Eq. (B.3) yields
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Sxyðx; y; eW 1Þ ¼
2

p
tan�1 sinðp~yÞ

epeL~x � cosðp~yÞ

" #

� 1

p
tan�1 sinðpð~y þ eW 1ÞÞ

epeL~x � cosðpð~y þ eW 1ÞÞ

" #

� 1

p
tan�1 sinðpð~y � eW 1ÞÞ

epeL~x � cosðpð~y � eW 1ÞÞ

" #
ð35bÞ

The final solution is then Eq. (34b) re-written as

T ðx; yÞ
T 0

¼ Sxyðx; y; eW 1Þ þ 2
X1
n¼1

� sinðnp~yÞ½1� cosðnp eW 1Þ�
np

� e�npeLð2þ~xÞ � e�npeLð2�~xÞ

1� e�2npeL ð35cÞ

Analogous comments made below Eq. (33b) also apply.
Also Eq. (35c) can be applied to determine an expression
for the solution for the region between W1 and W2 at tem-
perature T0 and elsewhere equal to zero. The result is (for
W1 < W2)

T ðx; yÞ
T 0

¼ Sxyðx; y; eW 2Þ � Sxyðx; y; eW 1Þ

þ 2
X1
n¼1

sinðnp~yÞ½cosðnp eW 1Þ � cosðnp eW 2Þ�
np

� e�npeLð2þ~xÞ � e�npeLð2�~xÞ

1� e�2npeL ð35dÞ

This equation can be used to approximate any variation
of the surface temperature if it is modeled as a series of
steps.

The above results for spatial variations are particularly
appropriate for large values of eL � L=W ; they use eigen-
values in the homogeneous direction. Space is not available
herein to give complete results for small values of eL; how-
ever, for small values of eL (or W/L large) and also for W1 /
L large, the temperature distribution for y > W1 is

T ðx; yÞ
T 0

¼ 1

p
tan�1 sinðp~xÞ

ep
y�W 1

L � cosðp~xÞ

" #
ð36aÞ

and for y < W1 is

T ðx; yÞ
T 0

¼ ð1� ~xÞ � 1

p
tan�1 sinðp~xÞ

ep
W 1�y

L � cosðp~xÞ

" #
ð36bÞ

Eqs. (36a) and (36b) can be considered solutions for the
X 11Bðy5Þ0Y 00 problem; it might be convenient to visualize
the problem as a plate 0 < x < L �1 < y <1. The x = 0
surface over �1 < y+ = y �W1 < 0 is at T0 while the
other surfaces are at zero temperature. The origin of the
new coordinate y+ is at y = W1. Eq. (36b) has some similar-
ities with Eq. (28a) which is for the X 11B10Y 10B0 problem.

7. Comparison of the number of terms in summations

Several ways are possible to determine the required
number of terms in a series. One way is to use the criterion
given in this paper in which the exponent is less than Kmax.
This method has at least two advantages. The ‘‘for” loop in
Matlab can be used instead of the less efficient ‘‘if” state-
ment. Also a comparison can be readily made between
competing solutions when they contain exponential terms.
Before continuing with the comparison of the solutions in
this paper, the significance of the criterion is considered.

Consider the similar series in Eqs. (19) and (20); note
that the sine and cosine functions are not different in effect
in the analysis below. The absolute value of the error in the
slower convergent series of Eq. (19) is

jerrorj ¼
X1

n¼nmaxþ1

sinðð2n� 1Þp~yÞ e�ð2n�1ÞpeLð2�~xÞ

1� e�2ð2n�1ÞpeL
�����

�����
<

1

1� e�2ð2nmaxþ1ÞpeL X1
n¼nmaxþ1

e�ð2n�1ÞpeLð2�~xÞ

¼ 1

1� e�2ð2nmaxþ1ÞpeL epeLð2�~xÞe�2nmaxpeLð2�~xÞ

e2peLð2�~xÞ � 1

¼ 1

1� e�2ð2nmaxþ1ÞpeL e�2nmaxpeLð2�~xÞ

2 sinh½peLð2� ~xÞ�

<
e�2nmaxpeLð2�~xÞ

0:99
if nmax P 1 and eL P

1

4
ð37Þ

Then, the absolute value of the error in the series is less that
about e if the maximum number of terms in this series in
Eq. (19) satisfies

e�2nmaxpeLð2�~xÞ ¼ e�Kmax ¼ e ð38Þ
which gives the maximum number of terms equal to

nmax ¼
� lnðeÞ

2peLð2� ~xÞ
¼ Kmax

2peLð2� ~xÞ
ð39Þ

This is the same result as given by Eq. (18a), except for its
more conservative use of the ‘‘ceiling” value. Not only does
Eq. (39) give the absolute error, it also gives approximately
the relative error for that series. Note that an upper bound
of the summation given in Eq. (37) can be found by letting
nmax = 0 to get

max
X1
n¼1

sinðð2n� 1Þp~yÞ e�ð2n�1ÞpeLð2�~xÞ

1� e�2ð2n�1ÞpeL
�����

�����
<

1

1� e�2peL 1

2 sinh½peLð2� ~xÞ�

� 1

2 sinh½peLð2� ~xÞ�
for eL P

1

4
ð40Þ

Comparing this equation with Eq. (37) shows that e is also
approximately the relative error in the series providedeL > 1=4 which should be satisfied when Eq. (19) is used.
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Eq. (19) has a second term in the series, but it also
behaves in the same manner as just described. This analysis
can also be extended to the series with ð1þ ~yÞ in Eq. (26b).
The result is the criterion of

mmax ¼
Kmax

eL
pð1þ ~yÞ ð41Þ

where eL can be any value. See Eq. (27) for the condition for
both series in Eq. (26b).

A comparison is given of the required number of terms
for the four solutions for the X 11B10Y 11B00 problem. For
generality, the equalities are used rather that the ceiling
values. Also to avoid specifying values of Kmax and eL,
the homogeneous direction eigenvalue cases use nmax

eL2p=
Kmax versus ~x. For the standard number of terms given
by Eq. (9b), we write

nmax ;std2eLp
Kmax

¼ 1

~x
ð42aÞ

For the improved equation number of terms given by Eq.
(18a), we write

nmax ;imp
eL2p

Kmax

¼ 1

2� ~x
ð42bÞ

This criterion is for T obtained from Eq. (16) and the heat
fluxes from Eqs. (19) and (20).

For the case of the eigenvalues in the non-homogeneous
direction, Eq. (24d) now gives (which we now denote as
‘‘standard” to contrast with ‘‘improved”)

mmax ;std2p

Kmax
eL ¼ 2 max

1

~y
;

1

1� ~y

� �
ð43aÞ

The improved (non-homogeneous eigenvalue) case has the
normalized number of terms,

mmax ;imp2p

Kmax
eL ¼ 2 max

1

1þ ~y
;

1

2� ~y

� �
ð43bÞ

which comes from Eq. (27) and is used for T and q found
from Eqs. (26a)–(26c).

Notice that the definitions of the normalized number of
terms are similar, but different in a significant respect relat-
ing to the aspect ratio eL � L=W . Eqs. (35a) and (35b) need
fewer terms as the aspect ratio becomes large while Eqs.
(36a) and (36b) indicate that their required numbers of
terms are reduced when the aspect ratio becomes small
compared with unity.

Plots for Eqs. (42a), (42b) and (43a), (43b) are given in
Fig. 6. Scaled values are plotted versus ~x � x=L for Eqs.
(42a) and (42b) and versus ~y � y=W for Eqs. (43a) and
(43b). To promote understanding, it is convenient to imag-
ine that Kmax/2p = 1 and eL ¼ 1. Then, the ordinate of the
plot is simply the number terms. The improved equation
for the number of eigenvalues in the homogeneous direc-
tion, nmax2peL=Kmax ¼ nmax produces the smallest number
and the preferred curve. It is the lowest curve in Fig. 6
and is less than one for about all values of ~x which go from

0 to 1. Hence for 1 < eL <1 and Kmax/2p = 1, the summa-
tion may not be needed in Eqs. (16), (19), and (20). These
conditions give accuracy of about 0.2% compared to the
maximum surface temperature or heat flux at the same y-
value. On the other hand, for small values of eL, such as,
0 < eL < 0:2, the nmax,imp values are less than unity and
Eqs. (26a)–(26c) may not need the summations.

Whether the final answers are of relative or absolute
accuracy needs discussion. The value of a given series is
of relative accuracy if its accuracy lies within a given frac-
tion of its true value, which might be small relative to other
values. However, if there are two exponential functions,
with one subtracted from the other such as in Eq. (26c),
the difference may not have this relative accuracy, but the
difference of the exponential terms will have the claimed
absolute accuracy. Specifically, if Kmax = 11.5, it is expected
that the values will be correct to about 0.00001 compared
to a maximum value of 1. For example, see the next to last
row and last column of Table 1b. The dimensionless heat
flux of �0.005496 is given, while the correct value is
�0.005490, which are different by 0.000006. Also note in
Eq. (26c), there are other terms besides the series. These
terms can be accurately calculated, but if they have about
the same and opposite values as the series sum, then the rel-
ative accuracy may not be obtained even though the abso-
lute accuracy will be.

8. Comparison with the X11B10Y11B00 results of Cole and

Yen [7]

Cole and Yen [7] give some results for the same problem
in this paper (denoted X 11B10Y 11B00), but with the x- and
y-directions interchanged. If the standard x-direction heat

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

x/L or y/W

mmax,std2π/(KmaxL)

nmax,imp2πL/Kmax, Eq. (42b)

nmax,std2πL/Kmax, Eq. (42a)

mmax,imp2π/(KmaxL)

Fig. 6. Scaled number of terms needed in the summations. One scaling is
nmax2peL=Kmax for which the eigenvalues are in the homogeneous direction
(y-direction for the X 11B10Y 11B00 problem) and is plotted versus
~x � x=L; nmax is small for large values of the aspect ratio eL. The other
scaling is mmax2p=ðKmax

eLÞ, which has small values mmax for small eL.
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flux equation (such as those coming from Eq. (9a)) is used,
the solution does not converge; see Eq. (10a), which does
not converge. In Table 2 of [7], most of the locations for
the heat flux require only a moderate number of terms.
See Table 2 of the present paper, last two columns. Aster-
isks denote those solutions that do not converge in [7].
They consider four different solutions, two for qx and
two for qy. These solutions correspond to those coming
from Eqs. (9a) and (24c). In the method presented here,
the same number of terms is used for both heat flux com-
ponents. Conversely in [7] the number of terms in each case
is computed separately; the ‘‘ratio of the sum of the (abso-
lute values of) the last five terms to the current sum is
examined. The series is truncated when this ratio is smaller
than 10�8.” The values in [7] are given to six decimal places
as shown in Table 2. The values are computed using Kmax

= 4p for which exp (�Kmax) = exp(�4p) = 0.0000035; this
gives answers accurate to six decimal places in this case.

The problem in Table 2 of [7] is for an aspect ratio eL of
one; hence, based on the results shown in Fig. 6, the
improved equation with the eigenvalues in the homoge-
neous direction should be used. See the Eq. (35b) curve
(the lowest one) in Fig. 6; the number of terms on the ordi-
nate should be doubled for Kmax = 4p, because it is twice
the 2p in the definition of the dimensionless number of
terms. Notice that the numbers of terms in the third col-
umn of Table 2 are just 1 or 2, which is in contrast to
the numbers in the last two columns varying from 1 to
70 in [7]. In a certain sense, the difference in computer time
between 1 and 70 terms may be insignificant. However,
when ~y is near zero or one, the number of terms can be
large. See the extrapolated value of 580 for ~y ¼ 0:01 and
0.99 in Table 2. (Parentheses denote values not given in
[7].) In contrast, computations based on Eqs. (19) and
(20) do not have convergence problems.

9. Summary and conclusions

The exact steady-state heat conduction problem for a
rectangle with temperature boundary conditions is treated.
It is associated with one or more transient problems. The
series solutions available in some advanced heat conduc-
tion books for the temperature, and particularly the heat
flux, converge slowly at the surface where a non-zero tem-
perature is prescribed. Solutions with improved conver-
gence are available [2,4–8]. Even with these latter
solutions, further improvement is possible based on a series
identity given by Morse and Feshbach [9]. This identity is
used in this paper and extended. The solution given in [9]
is particularly effective for large aspect ratios in the non-
homogeneous direction, which is the x-direction for the
X 11B10Y 11B00 problem. (When the body is semi-infinite
in the x-direction and T(0) = T0, it is denoted as the
X 10B1Y 11B00 problem since eL ¼ L=W !1:Þ Another
algebraic form for a series present in the semi-infinite in
the y-direction problem is derived in Appendix B. This
problem is denoted X 11B10Y 10B0 and is for the aspect
ratio eL ¼ L=W ! 0: These two complementary semi-infi-
nite heat conduction problems are examined in some detail.

The recommended solutions for the temperature are
Eqs. (16) and (26a). The former is efficient for 0:8 < eL <
1 and the latter for 0 < eL < 0:2 since then the series com-
ponents of the temperature and heat fluxes solutions may
not be needed. In the mid-range of 0:2 < eL < 0:8, two or
three terms may be needed, depending upon the accuracy
desired. In the limiting cases, the isotherms are relatively
easy to obtain and they are displayed in Figs. 2 and 5.

Contrary to common usage, Cole, Yen, Beck, and
coworkers [6–8,21,22] have shown that convergence in
steady-state problems is frequently improved by using the
eigenvalues in direction of the nonhomogeneous boundary
conditions, rather than in the homogeneous direction. This
statement is generally true. However, this paper shows for
temperature boundary conditions, when the algebraic iden-
tities can be used, it might not be valid for certain aspect
ratios.

Numerical values are given for some cases. An analysis is
given to determine the required number of terms in the series
to obtain a desired accuracy; the number of terms can be
specified in ‘‘for” loops in Matlab or ‘‘DO” loops in Fortran,
providing better computer programming practice.

The methods have many possible extensions and some
are given in Section 6. These include prescribed spatial tem-
perature variations at the non-homogenous surface. Two
cases are illustrated, one for a linear variation in space
and the other for a step change. Others are possible and
a basic equation is given for extension to arbitrary pre-
scribed spatial variations.
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Table 2
Comparison of the number of terms with those of ref. [7] for eL ¼ L=W ¼ 1

~x ~y nmax
qxL
kT 0

qy L
kT 0

qx [7] qy [7]
nmax nmax

0.00 0.01 1 63.672921 0.000000 (580) (1)
0.00 0.20 1 3.411401 0.000000 35, * 1, *

0.00 0.40 1 2.117159 0.000000 20, * 1, *

0.00 0.60 1 2.117159 0.000000 20, * 1, *

0.00 0.80 1 3.411401 0.000000 35, * 1, *

0.00 0.99 1 63.672921 0.000000 (580) (1)
0.10 0.00 2 0.000000 �6.257891 *, 5 *, 65
0.10 0.01 2 0.640928 �6.194827
0.10 0.10 2 3.290213 �3.071473
0.10 0.20 2 2.767053 �1.150880 35, 65 35, 70
0.10 0.40 2 1.998812 �0.194620 20, 70 25, 75
0.10 0.60 2 1.998812 0.194620 20, 70 25, 75
0.10 0.80 2 2.767053 1.150880 35, 65 35, 70
0.10 1.00 2 0.000000 6.257891 *, 75 *, 65

The last two columns are taken from Ref. [7] except the values inside
parentheses, which are estimated to be about what would have been
needed.
* Series did not converge at boundary.
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Appendix A. Derivation of Morse–Feshbach identity [9,

p.1179]

The Morse–Feshbach relation [9, p. 1179] can be written
as

4

p

X1
m¼1

e�ð2m�1Þpy=L sinðð2m� 1Þpx=LÞ
2m� 1

¼ 2

p
tan�1 sinðpx=LÞ

sinhðpy=LÞ

� �
ðA:1Þ

Using complex variables the summation can be expressed
by

4

p

X1
m¼1

e�ð2m�1Þpy=L sinðð2m� 1Þpx=LÞ
2m� 1

¼ 4

p

X1
m¼1

e�ð2m�1Þpy=L Im½eið2m�1Þpx=L�
2m� 1

¼ 4

p
Im
X1
m¼1

e�ð2m�1Þp y
L�ix

Lð Þ
2m� 1

¼ 4

p
Im
X1
m¼1

eið2m�1Þpxþiy
L

2m� 1

¼ 4

p
Im
X1
m¼1

eipz
Lð Þ2m�1

2m� 1
¼ 4

p
Im tanh�1eipz

L
	 


ðA:2Þ

where [27, Eq. 4.6.33] is used in the last line. Let

w ¼ tanh�1ðfÞ; f ¼ eipz=L ðA:3Þ

Then taking the hyperbolic tangent of this equation gives

tanhðwÞ ¼ f or
ew � e�w

ew þ e�w
¼ f ðA:4Þ

Solving for w gives

w ¼ � 1

2
ln

1� f
1þ f

¼ � 1

2
ln

1� eipz=L

1þ eipz=L
ðA:5Þ

Multiply the numerator and denominator inside the loga-
rithm by exp (�ipz/2L) to get

w ¼ � 1

2
ln

e�ip z
2L � eip z

2L

e�ip z
2L þ eip z

2L
¼ � 1

2
ln tanh �ip

z
2L

� �h i
ðA:6Þ

The hyperbolic tangent of a complex number is [27, Eq.
4.5.51]

tanhðzÞ ¼ sinhð2xÞ þ i sinð2yÞ
coshð2xÞ þ cosð2yÞ ðA:7Þ

Then

w ¼ � 1

2
ln tanh �ip

z
2L

� �h i
¼ � 1

2
ln tanh p

y
2L
� ip

x
2L

� �h i
¼ � 1

2
ln

sinhðpy=LÞ � i sinðpx=LÞ
coshðpy=LÞ þ cosðpx=LÞ ðA:8Þ

The natural logarithm of a complex number is given by [28,
p. 490] as

lnðzÞ ¼ ln jzj þ iðhP þ 2kpÞ; k ¼ 0;�1;�2; . . . ðA:9Þ

Then the expression for the imaginary part of w is

Imw ¼ � 1

2
tan�1 � sin px=L

sinh py=L

� �
¼ 1

2
tan�1 sin px=L

sinh py=L

� �
ðA:10Þ

This expression leads directly to Eq. (A.1) and a related
function given in [9] is

4

p

X1
m¼0

e�ð2m�1Þpy=L cosðð2m� 1Þpx=LÞ
2m� 1

¼ 2

p
tanh�1 cosðpx=LÞ

coshðpy=LÞ

� �
ðA:11Þ

Appendix B. Derivation of summation identity used in

Eq. (26a)

Consider the summation and utilization of a complex
identity to get

2
X1
m¼1

sinðmpx=LÞ
mp

e�mpy
L ¼ 2

X1
m¼1

Im eimpx
Lð Þ

mp
e�mpy

L

¼ 2

p
Im
X1
m¼1

e�pm y
L�ix

Lð Þ
m

ðB:1Þ

which can also be written in the form (using Mathematica)

2

p
Im
X1
m¼1

e�py�ix
L

h im

m
¼ 2

p
Im � ln 1� e�py�ix

L

� �h i
¼ 2

p
Im � ln 1� e�py

Lðcosðpx=LÞ
�h

þ i sinðpx=LÞÞ
�i

ðB:2Þ

Using Eq. (A.9) then gives the desired identity for y > 0

2
X1
m¼1

sinðmpx=LÞ
mp

e�mpy
L ¼ � 2

p
tan�1 �e�py

L sinðpx=LÞ
1� e�py

L cosðpx=LÞ

� �
¼ 2

p
tan�1 sinðpx=LÞ

epy
L � cosðpx=LÞ

� �
ðB:3Þ

Related summation identities areX1
m¼1

cosðmpxÞ
mp

e�mpy ¼ � 1

2p
ln½2e�pyðcoshðpyÞ � cosðpxÞÞ�;

y > 0 ðB:4ÞX1
m¼1

ð�1Þmþ1 sinðmpx=LÞ
mp

e�mpy=L

¼ 1

p
tan�1 sinðpx=LÞ

epy=L þ cosðpx=LÞ

� �
; y > 0 ðB:5Þ
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