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LETTER

Does species diversity limit productivity in natural
grassland communities?

James B. Grace,'* T. Michael
Anderson,? Melinda D. Smith,?
Eric Seabloom,* Sandy J.
Andelman,® Gayna Meche,® Evan
Weiher,” Larry K. Allain," Heli
Jutila,® Mahesh Sankaran,’
Johannes Knops,'® Mark Ritchie'!
and Michael R. Willig"?

Abstract

Theoretical analyses and expetimental studies of synthesized assemblages indicate that
under particular circumstances species diversity can enhance community productivity
through niche complementarity. It remains unclear whether this process has important
effects in mature natural ecosystems where competitive feedbacks and complex
environmental influences affect diversity—productivity relationships. In this study, we
evaluated diversity—productivity relationships while statistically controlling for environ-
mental influences in 12 natural grassland ecosystems. Because diversity—productivity
relationships are conspicuously nonlineat, we developed a nonlinear structural equation
modeling (SEM) methodology to separate the effects of diversity on productivity from
the effects of productivity on diversity. Meta-analysis was used to summarize the SEM
findings across studies. While competitive effects were readily detected, enhancement of
production by diversity was not. These results suggest that the influence of small-scale
diversity on productivity in mature natural systems is a weak force, both in absolute
terms and relative to the effects of other controls on productivity.

Keywords

Abiotic filtering, biomass production, disturbance, diversity, grasslands, meta-analysis,
nonlinear modelling, productivity, richness, structural equation modeling.
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INTRODUCTION

element in the debate over diversity—production relations is
the apparent dichotomy between the conclusions drawn

Although much has been written about the importance of
biodiversity for ecosystem functioning, there remains a
persistent debate about the relevance of the work behind
these conclusions to mature natural ecosystems (Aarssen
1997; Huston 1997; Grime 1998; Hector ¢/ a/. 1999; Huston
et al. 2000; Loreau 2001; Huston & McBride 2002;
Srivastava & Vellend 2005; Thompson e al. 2005). A key

from experimental studies of synthesized assemblages vs.
those that emerge from the study of mature natural
communities. Most studies of synthesized assemblages have
found that increasing diversity contributes to greater and
more stable biomass production, at least at low diversity
levels (e.g. Tilman ez o/ 2001; Hooper et al. 2005; Roscher
et al. 2005; Spehn ez al. 2005). In contrast, species reduction
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experiments in natural systems have found production to be
rather resilient to declines in diversity (Smith & Knapp
2003; Smith ef al. 2004; Wardle & Zackrisson 2005; Suding
et al. 2006), while species addition experiments have shown
the key importance of species pools (Foster et al. 2004).
Other studies have shown that minor species can play a
facilitative role (Boeken & Shachak 2006; Polley e# a/. 2000).

Those attempting to synthesize these disparate bodies of
information have argued that the information derived from
synthesized assemblages and natural communities can be
complementary, with each shedding light on somewhat
separate realms of system variation (Fridley 2001; Hooper
et al. 2005; Kahmen ez a/. 2005). Some of the disparities
may be resolved by considering the importance of
differences in scale (Chase & Leibold 2002). Howevert,
there are a variety of reasons why the results from
synthesized or early successional communities may not
translate to mature natural systems. For example, Yachi &
Loteau (2007) have shown that other biotic interactions,
such as competition, may reduce the importance of niche
complementarity. Also, there is an important difference
between showing that a force can operate under construc-
ted circumstances and showing that it is an important
force in natural systems. For the former purpose, an
experimental demonstration of effect is adequate. For the
latter purpose, a consideration of natural ranges of
conditions (e.g. Smith & Knapp 2003) and environmental
conditioning effects (rather than the elimination of their
influences) is needed. It is worth noting that another
important contributor to the debate is that some ecologists
see enhanced production as a contribution to ecosystem
services, and therefore, a justification for preserving
biodiversity (e.g. Naeem 2002) whereas others believe that
enhanced ecosystem production is in opposition to the
preservation of biodiversity, and therefore, an illogical
currency by which to measure ecological value (Grime
1997; Fridley 2001; Srivastava & Vellend 2005).

General conclusions that emetge from a consideration of
diversity—production relations are that (1) an enhancement
of biomass production by diversity can be demonstrated for
at least a range of circumstances (low to modest diversities)
and (2) quantification of the forces controlling diversity and
productivity in natural systems is needed if results are to be
related to conservation priorities (Chapin e# a/. 2000; Lotreau
2001; Hooper ef al. 2005; Stevens 2006). As some authors
have pointed out (Wardle 2001; Kahmen ez o/ 2005), an
expansion of our understanding will in part depend on a
reconciliation of experimental with observational data
because of the substantial challenges associated with
performing controlled experiments involving multiple,
simultaneous processes within natural bounds of relevance.
In a recent review of the state of our knowledge about
biodiversity and ecosystem functioning, Hooper e a/. (2005)

emphasized that in particular, such a reconciliation will
require an integrated consideration of abiotic and biotic
controls.

Most analyses of diversity—production relationships for
mature natural ecosystems have relied on univariate
methods (ANOvA, regression) (Waide ef al 1999; Gross
et al. 2000; Mittelbach ez al. 2001; Thompson ef al. 2005)
and have not controlled for confounding environmental
effects or considered reciprocal interactions between
diversity and production. A few investigations have
examined more complex models involving abiotic and
biotic influences on species diversity (Grace & Pugesek
1997, Weiher 2003; Harrison et a/. 2006), but such models
have not sought to address the potential impact of
diversity on productivity in natural systems. Recently,
Kahmen ez a/ (2005) failed to find effects of diversity on
production in mature montane vegetation using linear
multivariate modelling. However, the generally nonlinear
nature of diversity—productivity relationships raises ques-
tions about the findings from such studies.

The potential for multivariate modelling to reveal signals
in data that better represent the multiplicity of processes
operating in natural systems is increasingly being understood
by ecologists (Shipley 2000; Grace 20006). The application of
such methods to complex ecological situations continues to
be limited by important technical issues, such as our ability
to model nonlinear effects in a way that allows them to be
directly compared with linear effects. Bivatiate diversity—
productivity relationships are conspicuously nonlinear,
suggesting a need for nonlinear modelling approaches that
will not be biased against detecting nonlinear effects. In this
paper, we first describe a general model for examining
interactions between diversity and productivity that controls
for environmental influences. We then develop a nonlinear
modelling approach by extending the conventional struc-
tural equation modeling (SEM) framework through a
modification of the LISREL equations. We present the
results from our analyses of mature natural grasslands.
Finally, we combine our SEM results using the additional
technique of meta-analysis (Gurevitch ez a/. 2001) for the
added benefit of allowing us a rigorous method for drawing
overall conclusions.

A NONLINEAR, MULTIVARIATE, MODELLING
APPROACH

From a multivariate perspective, it is understood that
relationships between system properties can be masked,
altered, or generated by the effects of correlated environ-
mental effects (here we mean ‘environment’ in its most
general sense). A degree of statistical control for such
correlated effects can be achieved via measurement and
incorporation into analyses (as a result, we have some
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confidence that smoking tobacco causes cancer despite the
fact that a controlled experimental study has never been
conducted). For the purposes of this paper, we have sought
to fit data to the model shown in Fig. 1. In this model, we
follow the lead of most other investigators by representing
diversity using species richness and community productivity
using biomass production. This model recognizes that both
richness and production can be jointly influenced by
complexes of environmental factors (shown as hexagons
in Fig. 1). A distinction between abiotic influences and
those classified as disturbances is represented in the model
both because of theoretical interest and because of the
statistical value of having multiple environmental factors in
the model (which increases the potential for model
identification, a fundamental requirement for successful
estimation). In this model we seck to control for the effects
of abiotic and disturbance factors (paths 1-4) so as to
quantify the effects that production can have on richness
(e.g. via competition or facilitation, path 5) and the effects
that richness can have on production (e.g. via niche
complementarity, path 6). Environmental effects (e.g.
abiotic factors and disturbances) can either be correlated
or uncortelated in this model. Any of the paths shown may
represent nonlinear influences.

In Appendix S1, we describe in more detail the
mathematical basis for the nonlinear modelling approach
used in our analyses. Basically, there are three major
problems that must be solved simultaneously to arrive at a
nonlinear modelling formulation that would be appropriate
to our modelling effort. First, we require an approach that is

Richness
1 3
6 5
2 4
Biomass
Production

Figure 1 Multivariate statistical model used to evaluate data from
12 grassland studies. Path 1 represents the effects of abiotic
conditions on richness operating independent of those mediated
indirectly through biomass production. Path 2 represents the net
effect of abiotic conditions on production. Path 3 represents the
disturbance history on tichness. Path 4 represents the change in
production associated with disturbance history. Path 5 represents
the combined effects of competitive exclusion, competitive
inhibition, and facilitation, while path 6 represents the influences
of niche complementarity as well as any other effects of richness
on production (e.g. facilitation).

flexible and general in its approximation of nonlinear
relationships. To accomplish this, we used an expanded
polynomial approach in which higher order transformations
were included in the model. Second, because nonlinear
interactions between production and richness are internal
(endogenous) to the model, we requited an approach in
which the interactions between the terms included for
nonlinear modelling with the other variables in the model
were controlled. This was handled using a system of
appropriate correlated errors. Third, a significant problem
with nonlinear modelling relates to interpretability. As Heise
(1972) first articulated, the individual coefficients in poly-
nomial regressions are largely uninterpretable and certainly
not directly comparable to the coefficients associated with
linear relationships. One way to solve this problem is
through the use of composite variables that capture the
collective effects of the set of coefficients associated with
the polynomials. We applied the methods developed in
Grace & Bollen (2007) for composite modelling to the
problem of representing nonlinear effects, resulting in the
development of nonlinear coefficients that are directly
comparable to the coefficients representing linear effects in
the model. Again, more detail is provided in the online
Appendix S1.

Returning to the model to be solved for this study, there
are four important implications of the graphical representa-
tion in Fig. 1: (1) it implies a non-recursive specification
because of the reciprocal pathways between richness and
production, (2) it contains composite variables (‘abiotic’ and
‘disturb’) that potentially represent collections of variables,
(3) it represents a snapshot expectation based on underlying
dynamic processes, and (4) it represents a family of possible
models depending on the coefficients estimated for the
numbered pathways. Elaborating on these points: (1) Non-
recursive models possess several properties of importance.
One is that they represent a static feedback process that
summarizes an implied time sequence of events. Another is
that solution procedures are required for such models that
accommodate the inherent non-independence of errors for
the variables included in the loop (in this case, richness and
production). Yet another is that results obtained from the
analysis of such models represent an estimated equilibrium
among the feedback processes. (2) While underlying
processes are dynamic, the data available to us are not
sufficient for estimating a dynamic SEM. Because of this, an
interpretational consistency between pattern and process
must be assumed. Such a consistency depends on a
correlation between current measures of system states and
those that existed at the times when influences occurred.
This is, in effect, a quasi-equilibrium assumption that applies
to many forms of data analysis. (3) By describing the
graphical representation in Fig. 1 as a family of models, we
make reference to the fact that the results of our analysis
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may indicate that the data support a model that is some
simplification of Fig. 1.

Field data

A substantial number of data sets were examined for
inclusion in this study as part of a multicampus course
involving six universities that participated in the Knowledge
Network for Biocomplexity Project conducted at the
National Center for Ecological Analysis and Synthesis
(Andelman ez al. 2004). A requirement to be included in this
analysis, beyond the measurement of richness and biomass
production, was that data sets must include measutements
of environmental factors that could be referenced to each
plot. Also, sites recently disturbed in a major way (e.g. by
agricultural tillage within the past few years) were excluded,
as were very small data sets (fewer than 20 independent
plots). Plot sizes ranged from 0.5 X 0.5 to 10 X 10 m” for
the various studies. Data sets that relied on larger plots were
excluded because the magnitude of within-plot heterogen-
eity was deemed to be too great for comparability to results
from smaller plots. It should be noted that for the analyses
conducted in this paper, plots and sample spans were not
required to be identical nor did we attempt to scale the data
to the same level because we based comparisons among
sites on internally standardized coefficients.

For this investigation, we confined our attention to data
sets whose samples were contained within a landscape or
smaller span. While a consideration of this spatial scale
leaves unanswered questions relating to regional variations
in diversity, the data analysed here are of the type most
commonly examined in studies addressing theories of niche
complementarity and competition. The reliance on small-
plot data also has the desirable property of reducing
complications posed by having large amounts of unde-
scribed spatial heterogeneity within large plots. For simpli-
city and for consistency with most other studies of this
topic, we used species richness (number of species) as a
focal measure of diversity (though we recognize that
richness and diversity are not strictly synonymous). Also
for consistency across data sets and because of its relevance
to our model, we used estimated annual biomass production
as our measure of productivity. Using these criteria, we were
able to obtain 12 appropriate data sets that contained both
measures of richness and production as well as reasonably
good measures of environmental conditions (Table 1).
These studies included prairies, meadows, wetlands and
other grasslands from a variety of regions of the world and
included a total of 1339 individual plots. Environmental
variables were classified as being either abiotic influences or
disturbance influences. We recognize that the distinction
between these two classes of factors is not always
unambiguous; however, for consistency we always included

herbivory, fire and mowing as disturbances, and soil and
physical characteristics as abiotic factors.

Statistical evaluations

The model shown in Fig. 1 was evaluated separately for each
community. Prior to fitting SEMs, we screened for a minimal
set of indicators of abiotic and disturbance effects on richness
and biomass production. Stepwise procedures were used to
select from a parsimonious set of predictors (including
higher-order transformations) to avoid inflating the estima-
ted importance of environmental factors by overfitting using
a large numbers of predictors. In actuality, for most studies
only a few environmental variables were available for analysis
(Table 1), reducing the potential for overfitting.

Estimation and model fitting were performed using the
software Mplus (Muthén & Muthén 2006). Maximum
likelihood solution procedures were used for all data sets
for consistency. Nonlinear relationships were evaluated
through the inclusion of polynomial terms and the
performance of single-degree-of-freedom chi-square tests.
Only where higher-order terms were found to contribute
significantly were they retained in models.

We subsequently performed meta-analyses of the
individual SEM results for each community with the
MetaWin software (Rosenberg ez a/. 2000). Effect strengths
were calculated based on standardized path coefficients. The
decision to base the meta-analysis on standardized path
coefficients was based on their comparability, the fact that
the coefficients themselves are relatively insensitive to
sample size, and the relevance to SEM’s regression-
parameter underpinnings. Standardized path coefficients
from the SEMs were converted effect size estimates using
Fisher’s z-transformation. Weighting was used where the
weights were the reciprocal of the sample variance, thus,
giving us cumulative effect size estimates. A random model
without structure was chosen for the analysis. Bootstrapping
was used to estimate 95% confidence intervals. Because the
effects of abiotic conditions were not expected to have
consistent coefficient signs across studies (because meas-
ured properties varied widely), for the paths associated with
abiotic conditions we analysed the absolute values of the
coefficients. Analyses of heterogeneity were conducted
using chi-square tests to judge significance.

RESULTS
Bivariate patterns

For 10 of the 12 studies, a non-random bivariate relation-
ship was observed between richness and biomass produc-
tion (Fig. 2). The two sites for which no significant bivariate
relationship were observed included the Tanzanian grass-
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lands (one of the least productive sites) and the Louisiana
prairie (a moderate productivity site). For four of the sites
where a significant pattern was found, a negative monotonic
relationship was detected. These included the Utah montane
grassland, the Kansas prairie, the Finnish meadows, and the
Indian tropical savanna. While the first three of these were
highly productive sites, the fourth (Utah) was not. Import-
antly, three of the sites contained plots that were very low in
production and still retained high richness values (all except
the Kansas site, which possessed no low productivity plots).

Six of the sites were found to have a positive segment to
the relationship, with five of the six being unimodal (having
both positive and negative segments). Those with unimodal
patterns included the Louisiana coastal wetlands, the
Louisiana riverine marsh, the Mississippi prairie, the Texas
grasslands, and the Wisconsin prairie. The Mississippi praitie
relationship was predominately positive, with only a few
points on the right side of the peak, while the other sites
with a unimodal patterns possessed numerous plots on both
sides of the apparent peak. Only one site, the Minnesota
prairie, was found to demonstrate a purely positive
relationship between richness and production. This site
was among the least productive, though in actuality, it bore
some resemblance to the Mississippi prairie except for the
few plots from the Mississippi site in which richness
declined at higher production levels.

Structural equation modeling results — abiotic and
disturbance effects

The paths from abiotic conditions to richness and biomass
production in the SEM results (Fig. 2) were significant for all
sites. Associations between richness and abiotic conditions
ranged from modestly strong (e.g. Wisconsin praitie, Y =
0.27) to extremely strong (e.g. Texas grasslands, ¥ = —0.95).
Signs of these path coefficients were not consistent;
however, we do not place any particular interpretation on
this because they would not be expected to be consistent
given that environmental conditions were not measured in
consistent fashions at different sites (for example, at one site
increased elevation might represent less flooding stress and
more favourable conditions for growth while at another site
it might represent decreased nutrient supply). In contrast,
disturbance effects on richness and production were less
consistently strong. For some sites, recent disturbances had
little measurable effect (e.g. the Louisiana praitie, ¥ = ns for
both), whereas for others (e.g. Texas grasslands, y = 0.77
for richness and Y = —0.58 for production), impacts were
conspicuous. With regard to the particular environmental
and disturbance factors found to be important, all results are
based on statistically significant contributions to the SE
models. Additional details about the individual environmen-
tal variables that were important can be found in Table 1.

Structural equation modeling results — interactions
between richness and biomass production

Structural equation modeling results indicated that in 5 of
the 12 sites examined, neither an effect of richness on
production nor an effect of production on richness could be
detected. The sites for which this pattern was found
included the Tanzanian grasslands, Minnesota prairie,
Louisiana prairie, Indian tropical savanna, and Texas
grasslands. The seven remaining sites all showed effects of
production on richness; for three of those seven (Mississippi
prairie, Wisconsin prairie and Louisiana coastal wetlands),
the effects of production on richness were nonlinear. For
two of these cases (Mississippi and Louisiana), the nonlinear
effect of production on richness was fit by a second-order
polynomial. For the Wisconsin prairie, a linear and third-
order term were required. For all sites with nonlinear effects,
the predominant effect was negative (meaning that the net
effect was a decrease). For the remaining sites where effects
of production on richness were detected (Utah montane
grassland, Kansas prairie, Wisconsin prairie, Finnish mead-
ows and Louisiana riverine marsh) those effects were simple
linear ones. Effect strengths measured for the effects of
production on richness varied from as low as —0.17
(Louisiana riverine marsh) to as high as —0.41 (Mississippi
prairie). It can be noted that for all sites evidencing a
significant effect of production on richness, the bivariate
relationship between these two variables included a negative
slope. However, the reverse was not the case. For two sites
(Indian tropical savanna and Texas grasslands), a negative
bivariate slope between production and richness was
observed, though no multivariate effect of production on
richness was detected.

Meta-analysis results

Meta-analysis (Table 2) allowed for the estimation of effect
sizes for the paths in the multivariate models across sites
(summarized in Fig. 3). Effect sizes for abiotic influences on
production and richness were significant in all cases and the
averages across the study were found to be 0.70 and 0.73.
The relationships between production and disturbance were
significantly different from zero in 7 of the 12 cases (Such
tallies are not used for significance testing). The meta-
analysis supported a finding of a significant effect of
disturbance on production across the study (—0.26). In
contrast, relationships between richness and disturbance
were divided nearly equally between positive and negative in
the site-specific studies and showed no consistent pattern
across studies (0.01). A consistent effect of production on
richness was supported by the meta-analysis (—0.19).
Interpretation of this result was complicated slightly by
the fact that three of the studies showed nonlinear effects
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Table 2 Summary of results from meta-analysis of model paths,
including average effect sizes (detransformed), bootstrapped 95%
confidence intervals (CIs) and measures of data heterogeneity (QT)
and its significance for the six paths in the statistical multivariate
model (Fig. 3) for all sites.

Pathway  Effect size  Cls Qr p df
A—R 0.73* 0.49 to 1.05 171 010 11
A—B 0.70% 0.56 to 0.85 11.8 038 11
D —R 0.01 —0.33 to 0.35 148 014 10
D—-B —0.26* —0.51 to —0.01 78 064 10
B—-R —-0.19* -035t0 -0.03 133 027 11
R—>B -0.03 —0.12 to 0.06 9.8 054 11

*Found to be consistently different from zero over all studies.

Richness
0.73 | — Y 0.01
1
1
-0.03 : -0.19
1
1
0.70 y —0.26
Biomass
Production

Figure 3 Summary of meta-analysis results (for more detail see
Table 2). Shown are average effect sizes as standardized path
coefficients.

and it was not possible to estimate the independent
contributions of the contributing terms. Still, the total
information available indicated negative effects of produc-
tion on richness across studies, though the individual effects
ranged from moderately strong to undetectable. There was
no indication of a positive path from richness to production
in any of the cases. This was true despite the fact that positive
bivariate relationships between the two variables (including
unimodal relationships, which included a positive phase)
were common (found in 6 of 12 studies). Meta-analysis
results indicated an average effect size of —0.03 (ranging
between —0.12 and 0.06), thereby providing no evidence
supporting the positive relationship predicted by theory.

DISCUSSION

What is most conspicuous in the results of this study is that
we were not able to detect a positive effect of species
richness on biomass production for any of the individual
sites. For some sites this result is not surprising. For
example, the data for the Kansas prairie contained no low-
production, low-richness plots. Examination of the bivariate

relationship showed only a negative relationship between
richness and production of the sort one would expect to
reflect strong and persistent competitive effects of produc-
tion on richness. Such was not the case for several other
sites. For example, both the Louisiana coastal wetlands and
the Louisiana riverine marsh showed a positive relationship
between richness and production through at least a portion
of the range of the data. The analyses petformed in this
study have the potential to extract a positive signal from
richness to production if a measurable effect has taken place
(verified in simulation studies; Grace, unpublished data).
More surprising among the findings is that for both the
Minnesota and Mississippi prairies, where the relationships
of richness to production were strongly positive and
monotonic or neatly so, thete was no indication of an
effect of richness on production. Rather, for the Minnesota
site, the bivariate relationship appears to be driven by a
convergence of forces (soil and fire effects). For the
Mississippi site, the bivariate pattern appears to tesult from
convergent abiotic effects plus a complex influence of
production on richness.

Evidence for influences of production on richness was
conspicuous. The SEM results imply that negative effects of
production on richness were common in these systems.
However, it is also clear that such negative effects, which we
cautiously interpret as resulting from competitive exclusion,
do not dominate in the control of species richness (see also
S.D. Wilson, unpublished data). For three of the sites,
Mississippi prairie, Wisconsin prairie and Louisiana coastal
wetlands, the nonlinear path from production to richness
implies that some positive process may have also been
operating (while not shown in the figures, a nonlinear pathway
involves multiple terms and each implies a separate process).
There is experimental and observational evidence to suggest
that such an effect might represent facilitation of richness,
such as through shading and protection of young seedlings,
but it could also be abiotic ameliorations or enhancements of
the rhizosphere community (Bertness & Callaway 1994;
Goldberg ez al. 2001; Molofsky & Bever 2002).

Not surprisingly, biomass production was found to
strongly and consistently vary with abiotic conditions.
Disturbance also consistently reduced production in these
sites. In principle, negative effects of disturbance on
biomass production indirectly promote species richness by
relaxing competitive pressure (estimated indirect effect =
—0.26 times —0.19 = +0.05). We found a consistently
strong influence of abiotic conditions on richness
independent from indirect effects mediated through
abiotic influences on production. We interpret the direct
pathway from abiotic factors to richness as environmental
filtering. Environmental filtering of species richness at
large spatial scales and extents is well documented (e.g.
Hawkins e a/. 2003; Curtie e a/. 2004) and can be shown
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to operate at fine scales as well (Gough e a/. 1994; Grace
1999). Less anticipated was the lack of consistent effects
of disturbance on richness. We interpret these results to
imply that mortality and species loss was modest in most
of the systems studied (or that recovery was rapid).
Because the analyses control for the indirect effect of
disturbance on richness mediated through biomass pro-
duction, they support the interpretation of positive paths
from disturbance to richness (found in Indian savanna,
Louisiana riverine marsh and Texas grasslands) as
indications of some kind of storage effect whereby sites
with a substantial history of disturbance have higher levels
of richness than do other sites.

In conclusion, while there has been much written about
the importance of niche complementarity as a mechanism
for promoting production, our results (along with others,
Smith & Knapp 2003; Smith ez a/. 2004; Kahmen ez a/. 2005;
Wardle & Zackrisson 2005; Suding e¢# a/. 2006) suggest that
the importance of such processes cannot be extrapolated
from studies of synthesized assemblages to mature natural
ecosystems. There are various reasons why this lack of
extrapolation might occur. First, it is known based on
theoretical grounds that competitive interactions can reduce
the effects of niche complementarity (Yachi & Loreau 2007)
and we would expect that the effects of competition would
be more evident in mature systems than in synthesized
mixtures. Clearly detectable competitive influences were
observed in 7 of the 12 systems examined. Second,
experimental studies of the sort conducted to examine the
influence of species number on production create artificial
conditions that may not be relevant to natural systems. We
should not automatically expect that effects shown by such
experiments will be sufficiently important to be detectable in
mature natural communities where myriad factors influence
biomass production. As in physics where it is important to
distinguish strong forces from weak forces to understand
quantum dynamics, in ecology a similar distinction should
be made if research findings are to be relevant to
conservation priorities.
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