
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Publications from USDA-ARS / UNL Faculty U.S. Department of Agriculture: Agricultural 
Research Service, Lincoln, Nebraska 

5-21-2008 

Quantitative trait loci for resistance to pre-harvest sprouting in US Quantitative trait loci for resistance to pre-harvest sprouting in US 

hard white winter wheat Rio Blanco hard white winter wheat Rio Blanco 

Shubing Liu 
Kansas State University 

Shibin Cai 
Jiangsu Academy of Agricultural Science, Nanjing 210014, China 

Robert A. Graybosch 
University of Nebraska-Lincoln, bob.graybosch@ars.usda.gov 

Cuixia Chen 
Kansas State University 

Guihua Bai 
USDA-ARS, guihua.bai@ars.usda.gov 

Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub 

 Part of the Agricultural Science Commons 

Liu, Shubing; Cai, Shibin; Graybosch, Robert A.; Chen, Cuixia; and Bai, Guihua, "Quantitative trait loci for 
resistance to pre-harvest sprouting in US hard white winter wheat Rio Blanco" (2008). Publications from 
USDA-ARS / UNL Faculty. 216. 
https://digitalcommons.unl.edu/usdaarsfacpub/216 

This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research 
Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in 
Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of 
Nebraska - Lincoln. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/17220291?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/usdaarsfacpub
https://digitalcommons.unl.edu/usdaars
https://digitalcommons.unl.edu/usdaars
https://digitalcommons.unl.edu/usdaarsfacpub?utm_source=digitalcommons.unl.edu%2Fusdaarsfacpub%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1063?utm_source=digitalcommons.unl.edu%2Fusdaarsfacpub%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/usdaarsfacpub/216?utm_source=digitalcommons.unl.edu%2Fusdaarsfacpub%2F216&utm_medium=PDF&utm_campaign=PDFCoverPages


Theor Appl Genet
DOI 10.1007/s00122-008-0810-7

123

ORIGINAL PAPER

Quantitative trait loci for resistance to pre-harvest sprouting 
in US hard white winter wheat Rio Blanco

Shubing Liu · Shibin Cai · Robert Graybosch · 
Cuixia Chen · Guihua Bai 

Received: 20 February 2008 / Accepted: 21 May 2008
©  Springer-Verlag 2008

Abstract Pre-harvest sprouting (PHS) of wheat is a major
problem that severely limits the end-use quality of Xour in
many wheat-growing areas worldwide. To identify quanti-
tative trait loci (QTLs) for PHS resistance, a population of
171 recombinant inbred lines (RILs) was developed from
the cross between PHS-resistant white wheat cultivar Rio
Blanco and PHS-susceptible white wheat breeding line
NW97S186. The population was evaluated for PHS in three
greenhouse experiments and one Weld experiment. After
1,430 pairs of simple sequence repeat (SSR) primers were
screened between the two parents and two bulks, 112 poly-
morphic markers between two bulks were used to screen
the RILs. One major QTL, QPhs.pseru-3AS, was identiWed
in the distal region of chromosome 3AS and explained up
to 41.0% of the total phenotypic variation in three green-
house experiments. One minor QTL, QPhs.pseru-2B.1, was
detected in the 2005 and 2006 experiments and for the
means over the greenhouse experiments, and explained
5.0–6.4% of phenotypic variation. Another minor QTL,

QPhs.pseru-2B.2, was detected in only one greenhouse
experiment and explained 4.5% of phenotypic variation for
PHS resistance. In another RIL population developed from
the cross of Rio Blanco/NW97S078, QPhs.pseru-3AS was
signiWcant for all three greenhouse experiments and the
means over all greenhouse experiments and explained up to
58.0% of phenotypic variation. Because Rio Blanco is a
popular parent used in many hard winter wheat breeding
programs, SSR markers linked to the QTLs have potential
for use in high-throughput marker-assisted selection of
wheat cultivars with improved PHS resistance as well as
Wne mapping and map-based cloning of the major QTL
QPhs.pseru-3AS.

Introduction

Pre-harvest sprouting (PHS) in wheat (Triticum aestivum
L.) refers to germination of grains in a physiologically
mature wheat spike before harvest when prolonged wet
weather occurs. Pre-harvest sprouting is mainly due to early
breakage of seed dormancy and can lower wheat grain yield
signiWcantly through reduced test weight and negatively
aVect end-use quality of Xour products, substantially reduc-
ing grain sale price (Bentsink et al. 2006; Groos et al. 2002;
Mori et al. 2005). Poor Xour quality caused by PHS directly
translates to low bread-making quality. Flour from sprouted
wheat has decreased thickening power, which limits the
varieties of products that can be made, and bread baked
from sprouted wheat can have a smaller volume with com-
pact interior structure (Mansour 1993). To breed PHS-resis-
tant cultivars are the most eVective way of addressing the
problem, thus, PHS-resistant cultivars are highly desirable
in wheat growing areas where long periods of wet weather
occur frequently during harvest.
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Seed dormancy is considered the major component of
genetic variation for PHS of cereal crops (Bewley and
Black 1982). Seed dormancy and PHS in Arabidopsis,
wheat, barley, rice, and sorghum are expressed as quantita-
tive traits that are strongly inXuenced by environments as
well as interactions between genotype and environment
(Alonso-Blanco et al. 2003; Anderson et al. 1993; Gu et al.
2004; Kato et al. 2001; Lijavetzky et al. 2000). Red color
pericarp/testa has been associated with longer seed dor-
mancy and/or PHS resistance in crops, and red grain wheat
usually has a higher level of PHS resistance than white
wheat (Debeaujon et al. 2000; Gfeller and Svejda 1960;
Seshu and Sorrells 1986). Therefore, PHS resistance also
has been associated with the red grain color genes (Red),
and red grain color has been used as a marker to select for
PHS-resistant wheat in some wheat breeding programs
(Gale and Leuton 1987; Gfeller and Svejda 1960; Groos
et al. 2002). The Red genes as homoeologous loci have
been located on the long arms of chromosome group 3 by
studying populations derived from crosses between PHS-
resistant red wheat and PHS-susceptible white wheat, and
Xanking markers for some of the homoeologous R genes
have been reported (Flintham and Gale 1996; Groos et al.
2002; Kulwal et al. 2004, 2005; Nelson et al. 1995). Flin-
tham et al. (1999) demonstrated direct eVects of these Red
genes on seed dormancy. However, it is still unclear
whether the association between PHS and grain color is due
to a pleiotropic eVect of the Red genes or genetic linkage
between the Red and PHS-resistance genes.

White wheats have two advantages over red wheats:
lighter Xour color and higher Xour yield. White wheats are
used in domestic production of whole wheat breads and are
the preferred wheat of commerce in a number of export
markets, especially production of Asian wet noodles. To
expand markets for US wheat, hard winter wheat breeders
initiated programs to develop hard white wheats in the late
1980s. Tolerance to PHS is an essential trait for successful
white wheat marketing. Therefore, PHS-resistant cultivars
are highly desirable in PHS-favorable environments such as
in the Great Plains of the USA (Morris and Paulsen 1989;
Wu and Carver 1999). Unfortunately, selection for PHS
resistance has received little attention in this part of the
United States. Because PHS resistance associated with Red
genes is not usable for genetic improvement of PHS resis-
tance in white wheat, identifying QTLs for PHS resistance
in white wheat will facilitate genetic improvement of PHS-
resistant white wheat cultivars. Previous studies identiWed
several QTLs for PHS resistance. Anderson et al. (1993)
reported several QTLs for PHS resistance on chromosome
arms 1AS, 3BL, 4AL, 5DL, and 6BL. Kato et al. (2001)
detected a major QTL for PHS resistance on 4AL of a red
wheat cultivar, and Mares and Mrva (2001) reported the
same QTL, but with smaller eVect, for seed dormancy in

white wheat. Several recent studies demonstrated that the
major QTL on 4AL is present in both white and red wheat
cultivars of diverse origins (Chen et al. 2007; Lohwasser
et al. 2005; Mares et al. 2005; Torada et al. 2005).
Although QTLs for PHS resistance have been identiWed on
many chromosomes in diVerent studies, chromosome 4A
and all long arms of group 3 chromosomes appear to be
more critical for PHS resistance (Flintham and Gale 1996;
Groos et al. 2002; Kato et al. 2001; Kulwal et al. 2004;
Mori et al. 2005; Osa et al. 2003).

Rio Blanco is a hard white winter wheat (HWWW) with
a very high level of PHS resistance from Agripro Biosci-
ences Inc., KS, USA (Wu and Carver 1999) and has been
widely used as a parent in HWWW breeding programs
(Carver et al. 2003; Haley et al. 2003; Martin et al. 2001).
Identifying QTLs and associated molecular markers for
PHS resistance in Rio Blanco could facilitate immediate
application of marker-assisted selection (MAS) in genetic
improvement of PHS resistance in white wheat. Objectives
of this study were to identify major QTLs for PHS resis-
tance in Rio Blanco and develop molecular markers closely
linked to the QTLs for MAS in HWWW breeding pro-
grams.

Materials and methods

Plant materials

The initial mapping population of 171 F6 recombinant
inbred lines (RILs) was developed by single seed decent
from the cross of Rio Blanco/NW97S186 made by USDA-
ARS at the University of Nebraska, Lincoln, NE, USA.
Another RIL population (Rio Blanco/NW97S078) from the
University of Nebraska was used to verify QTLs identiWed
in the Wrst population. Rio Blanco (OK11252A/W76-1226)
is a PHS-resistant HWWW cultivar developed and released
by Agripro Biosciences Inc., KS and NW97S186 and
NW97S078 are PHS-susceptible HWWW lines developed
by USDA-ARS at the University of Nebraska-Lincoln, Lin-
coln, NE, USA; NW97S186 also is a sister line of the
HWWW cultivar Arrowsmith developed by USDA-ARS at
the University of Nebraska-Lincoln.

Pre-harvest sprouting evaluation

Pre-harvest sprouting of both mapping populations (Rio
Blanco/NW97S186 and NW97S078/Rio Blanco) and their
parents were evaluated in three greenhouse experiments at
Manhattan, KS from 2005 to 2007. The RIL population
Rio Blanco/NW97S186 also was evaluated in a Weld
experiment at the University of Nebraska Agricultural
Research and Development Center, Mead, NE in 2005. In
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the greenhouse experiments, six plants per line were
transplanted into a 13-cm £ 13 cm tora pot (Hummert
Int., St Louis, MO, USA) Wlled with Metro Mix 360 soil
mix (Hummert Int., St Louis, MO, USA) after vernaliza-
tion at 4°C in a growth chamber for 8 weeks and grown on
a greenhouse bench at 22°C day/15°C night temperature
with a supplemented daylight of 16 h. Each experiment
was arranged in a randomized complete block design with
two replicates. Five spikes were harvested from each pot
at physiological maturity, which is characterized by loss
of green color on the spike (Kulwal et al. 2005). Har-
vested spikes were air dried for 5 days in the greenhouse
at 25 § 5°C and then stored in a freezer at ¡20°C to
maintain dormancy. After all RILs were harvested, all
spikes were taken out from the freezer and air dried again
for an additional 2 days on greenhouse benches. Dried
spikes were immersed in de-ioned water overnight and
then surface sterilized with 0.025% Terraclor (Southern
Agricultural Insecticides Inc., Rubonia, FL, USA) for
3 min before they were incubated in a moist chamber at
20 § 2°C. Wheat spikes were kept at 100% relative
humidity in the moist chamber by running a cool humidi-
Wer inside the chamber for 10 min twice daily. Terraclor
solution (0.025%) was sprayed on the wheat spikes using
a hand mister to control fungal contamination when
needed. After 7 days of incubation, geminated spikes
were dried at 100°C for 2 h and then at 80°C for 12 h in an
oven. Dried spikes were threshed by hand, and germinated
and non-germinated kernels in each spike were counted.
Percentage of germinated kernels in a spike was used as
phenotypic data for PHS-resistance QTL analysis.

In the Weld experiment, RILs and their parents were
seeded in un-replicated four-row, 5 m2 plots at Mead, NE,
USA. Plots were trimmed to 2.9 m2 before harvest. At
physiological maturity, 20 heads per plot were harvested,
dried for 7 days in a greenhouse, and then stored at ¡20°C
until evaluation. Sprouting resistance was assessed by plac-
ing ten heads per plot in a misting chamber set with a diur-
nal temperature regime of 21°C day/16°C night. Heads
were kept moist by applying 20 min of misting six times
daily at 4-h intervals. After 7 days, heads were removed
and assigned a sprouting score ranging from 0 to 100%,
with 0 = no seed sprouted and, 100% = all seeds sprouted
in a spike. The experiment was run in duplicate, and a mean
score was calculated for each sample.

SSR analysis

Leaf tissue was harvested at the three-leaf stage, dried in a
freezer dryer (ThermoSavant, Holbrook, NY, USA) for
3 days, and ground to Wne powder in a Mixer Mill (Retsch
GmbH, Haan, Germany) for 3 min at 30 times per second
with the aid of a 3.2-mm metal bead in each tube. DNA was

isolated using a modiWed CTAB method (Saghai-Maroof
et al. 1984).

Bulked segregant analysis was used to screen potential
polymorphic simple sequence repeat (SSR) markers associ-
ated with PHS resistance. The two bulks consisted of Wve
highly PHS-resistant RILs and Wve highly PHS-sensitive
RILs, respectively, from the RIL population of Rio Blanco/
NW97S186. A total of 1,430 SSR primer pairs were
screened between parents and bulks, which included BARC
(Song et al. 2005), GWM (Röder et al. 1998), WMC (Som-
ers et al. 2004), GDM (Pestsova et al. 2000), CFA, CFD
(Guyomarc’h et al. 2002; Sourdille et al. 2003), DUP
(Eujayl et al. 2002), and KSM primers developed at Kansas
State University, Manhattan, KS, USA. Polymorphic mark-
ers between the bulks were analyzed further in the RIL pop-
ulation. A 12-�l PCR mixture containing 40 ng of template
DNA, 1 mM each of reverse and M13-tailed forward prim-
ers, 1 pmole Xuorescence-labeled M13 primer, 0.2 mM of
each dNTP, 1X PCR buVer, 2.5 mM MgCl2, and 0.6 units
of Taq polymerase was used for PCR analysis. PCR was
performed in a DNA Engine Tetrad Peltier Thermal Cycler
(Bio-Rad Lab, Hercules, CA, USA). A touch-town program
was used for PCR ampliWcation. The reaction mixture was
incubated at 95°C for 5 min, then underwent Wve cycles of
45 s of denaturing at 96°C, 5 min of annealing at 68°C with
a decrease of 2°C in each subsequent cycle, and 1 min of
extension at 72°. For another Wve cycles, the annealing tem-
perature started at 58°C for 2 min with a decrease of 2°C
for each subsequent cycle. Then, PCR progressed through
an additional 25 cycles of 45 s at 95°C, 2 min at 50°C, and
1 min at 72°C with a Wnal extension at 72°C for 5 min.
AmpliWed PCR fragments were separated in the ABI Prism
3730 DNA sequencer (Applied Biosystems, Foster City,
CA, USA). SSR data were analyzed using GeneMarker
software version 1.5 (SoftGenetics LLC, State College, PA,
USA).

Data analysis

The initial genetic linkage map was constructed using
marker data from 96 RILs of the Rio Blanco/NW97S186
population and JoinMap version 3.0 (Van Ooijen and Voo-
rrips 2001). Recombination fractions were converted into
centiMorgans (cM) using the Kosambi function (Kosambi
1944). The threshold value of logarithm of odd (LOD)
score was set at 3.0 to claim linkage between markers with
a maximum fraction of recombination at 0.4. The good-
ness-of-Wt between observed and expected segregation
ratios between two alleles was analyzed for each marker
locus using a �2-test. Both simple interval mapping (SIM)
and composite interval mapping (CIM) were performed for
the data from each individual experiment and from line
means for all three-greenhouse experiments using
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WinQTLCart 2.5 (Wang et al. 2005). Likehood ratio (LR)
thresholds to declaim signiWcant QTL were set at 10.0 in
the Rio Blanco/NW97S186 population and 8.0 in the Rio
Blanco/NW97S078 population based on 1,000 permutation
tests (Doerge and Churchill 1996). Analysis of variance on
seed germination rate from each experiment was performed
using the GLM procedure of SAS (SAS Institute Inc, Cary,
NC, USA). Total R2 was calculated by multiple linear
regression using the SAS REG procedure. Designation of
QTLs for PHS resistance detected in the present study fol-
lowed the Inernational Rules of Genetic Nomenclature
(http://wheat.pw.usda.gov/ggpages/wgc/98/Intro.htm). QPhs.
pseru was designated as the QTL for PHS resistance
reported from Plant Science and Entomology Research
Unit, USDA/ARS, Manhattan, KS, USA.

Validation of the detected QTLs

The QTLs detected in the Rio Blanco/NW97S186 popula-
tion were validated in another population, Rio Blanco/
NW97S078. This population had 80 F6 RILs and was eval-
uated for PHS resistance in the greenhouse experiments, as
described previously for the Rio Blanco/NW97S186 popu-
lation. All molecular markers that showed signiWcant asso-
ciations with PHS resistance in the Rio Blanco/NW97S186
population were analyzed in the Rio Blanco/NW97S078
population.

Results

Pre-harvest sprouting in the parents and RILs

Seed germination rate in a spike was 10.7% in Rio Blanco,
the PHS-resistant parent, and 64.2% in NW97S186, the
PHS-susceptible parent. The wide range in response of the
two parents indicated that they were suitable lines for this
study. The frequency distribution of PHS ratings for the F6

RILs derived from Rio Blanco/NW97S186 was continuous
and showed a nearly bimodal distribution with the larger
peak toward Rio Blanco (Fig. 1). This result suggests that
both major and minor QTLs might be involved in PHS
resistance in the population.

Map construction and QTL analysis

After 1,430 pairs of SSR primers were screened, 324 pairs
of SSR primers ampliWed at least one polymorphic band
between Rio Blanco and NW97S186. Among them, 112
primers were polymorphic between the two bulks and were
used to analyze a subset of the RILs from Rio Blanco and
NW97S186. Linkage analysis of the 112 segregating mark-
ers using the RIL population identiWed nine linkage groups

covering a total genetic distance of 394.1 cM (Table 1).
The partial genetic linkage map was used for initial QTL
screening.

Single marker analysis based on data from three green-
house experiments and one Weld experiment indicated that
22 markers showed a signiWcant association with PHS
resistance in 96 RILs of the Rio Blanco/NW97S186 popu-
lation in at least one experiment. These markers included
15 SSR markers on chromosomes 3AS and 2B. These
markers were analyzed further for an additional 75 RILs
from the same population. The linkage map constructed
using the expanded population of 171 RILs was the same as
the map constructed with 96 RILs (data not shown).

Composite interval mapping using the data from 171
RILs identiWed one to three QTLs for PHS resistance that
varied by experiment (Fig. 2; Table 2). Three markers,
Xbarc12, Xbarc57, and Xbarc321, showed tight linkage to
a QTL on 3AS in all four experiments. This QTL explained
18.5–41.0% of the phenotypic variation in the three green-

Fig. 1 Distribution of PHS in the F6 RIL population Rio Blanco
£ NW97S186. The values were the grant means over three experi-
ments in the greenhouses. P1 and P2 represent resistant and sensitive
parent, respectively
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Table 1 Partial linkage map constructeded using SSR markers and
the recombinant inbred population of Rio Blanco/NW97S186

Chromosome No. of markers Length (cM)

1A 20 105.4

2B 18 100.2

5B 8 58.5

6D 8 35.6

5A 5 5.7

6A 4 24.1

1D 4 22

3A 4 20.1

6B 3 22.5

Total 74 394.1

http://wheat.pw.usda.gov/ggpages/wgc/98/Intro.htm
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house experiments, 10.1% of the phenotypic variation in
the Weld experiment, and 41.0% when the line means from
all three greenhouse experiments were analyzed. This QTL,
designated as QPhs.pseru-3AS, was most likely a major
QTL for PHS resistance in Rio Blanco (Table 2; Fig. 3).
SSR marker Xbarc321 had the largest eVect on PHS resis-
tance in all four experiments and was the closest marker to
QPhs.pseru-3AS. A minor QTL was detected on chromo-
some 2B for data from the 2005 and 2006 greenhouse

experiments and from the means over three greenhouse
experiments. It was Xanked by markers Xdup398 and
Xbarc54 and designated as QPhs.pseru-2B.1. The second
minor QTL, QPhs.pseru-2B.2 that was Xanked by the
markers Xbarc105 and Xbarc334, was detected in only the
2006 greenhouse experiment and had a R2 value of 4.5%.
Total phenotypic variation explained by all three QTLs
ranged from 33.8 to 45.6% in the three greenhouse experi-
ments (Table 2).

Fig. 2 QTLs detected in the Rio Blanco/NW97S186 population. Bars
on the right hand of each linkage group means the QTLs detected in
diVerent experiments, ,  , , , , means QTLs detected in 2005,
2006 and 2007 greenhouse experiments, mean over three-greenhouse
experiments and the 2005 Weld experiment, respectively

Xgwm3690

Xbarc12
18

Xbarc57-119
Xbarc32120

Xdup207-10

Xbarc1057

Xbarc33413

Xwmc47425
Xbarc1830
Xbarc23032
Xbarc115635
Xbarc12939
Xgwm12045
Xwmc14946
Xwmc500-248

Xdup207-2, Xgwm111 60

Xgwm132-173

Xdup39880

Xbarc54, Xbarc50,90

Xwmc500-1100 Fig. 3 The Cartographer plot for the major QTL for pre-harvest
sprouting resistance on chromosome 3AS obtained using composite
interval mapping (CIM) in four diVerent environments and mean over
three greenhouse experiments. The marker names are given at the bot-
tom of the plot

Table 2 Name, Xanking markers, position, likehood ratio (LR), eVect
(R2) and additive values of quantitative trait loci (QTL) for pre-harvest
spouting resistance in the RIL population of Rio Blanco/NW97S186

identiWed using composite interval mapping (CIM) based on pheno-
typic data collected from 2005 to 2007 greenhouse (Manhattan, KS,
USA) and 2005 Weld (Mead, NE, USA) experiments

a G represents greenhouse experiments in Manhattan, KS, USA and F represents Weld experiment in Mead, NE, USA

Experimentsa QTL name Flanking markers QTL Position (cM) LR R2 (%) Additive value (%)

2005G QPhs. pseru-3AS Xbarc12-Xbarc321 19.7 43.79 18.48 ¡7.91

QPhs. pseru-2B-1 Xdup398-Xbarc54 46.78 14.34 5.54 ¡4.27

Total R2 (%) – – – – 33.81 –

2006G QPhs. pseru-3AS Xbarc12-Xbarc321 20.68 71.38 31.26 ¡16.61

QPhs. pseru-2B.1 Xdup398-Xbarc54 44.78 15.58 6.40 ¡7.45

QPhs. pseru-2B.2 Xbarc105-Xbarc334 7.01 10.56 4.50 ¡6.27

Total R2 (%) – – – – 45.58 –

2007G QPhs.pseru-3AS Xbarc12-Xbarc321 20.68 88.13 40.96 ¡16.29

Mean-G QPhs. pseru-3AS Xbarc12-Xbarc321 20.68 104.97 41.01 ¡15.54

QPhs. pseru-2B.1 Xdup398-Xbarc54 42.78 13.94 4.95 ¡4.75

Total R2 (%) – – – – 49.27 –

2005F QPhs. pseru-3AS Xbarc12-Xbarc321 20.68 15.78 10.11 ¡4.02
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Validation of QTLs in the Rio Blanco/NW97S078 
population

All 22 markers that showed signiWcant associations with
the three QTLs in the Rio Blanco/NW97S186 population
were analyzed in the Rio Blanco/NW97S078 population.
Among the 22 markers, 17 were polymorphic between Rio
Blanco and NW97S078; these were analyzed further in the
80 RILs of Rio Blanco/NW97S078. These markers in the
Rio Blanco/NW97S078 population were mapped to the
same linkage groups as in the Rio Blanco/NW97S186 pop-
ulation. The QTL on 3AS was detected in all three green-
house experiments and explained 18.0–34.1% of the
phenotypic variation in three greenhouse experiments and
58.0% when overall line means from the three greenhouse
experiments were analyzed. All other QTLs were not
detected in the second population (Table 3).

EVectiveness of MAS for PHS resistance

Because the QPhs.pseru-3AS was detected in all the experi-
ments, it is likely that this is a stable QTL with a major
eVect on PHS resistance. The QPhs.pseru-2B.1 QTL was
detected in two greenhouse experiments and the mean over
three greenhouse experiments. It is possible that this QTL
is more stable than the other minor QTL for PHS resistance
in Rio Blanco. EVectiveness of the marker loci tightly
linked to the two QTLs for MAS to improve PHS resistance
was estimated (Table 4). The RILs that contained the 3AS
PHS-resistance marker allele Xbarc321 (R) showed the
greatest diVerence in PHS resistance compared with that
RILs with the susceptible allele (S) in all greenhouse exper-
iments with signiWcant decreases in seed germination rates
ranging from 19.2% (2005 greenhouse experiment) to
34.4% (2006 greenhouse experiment) (Table 4). The RILs
that carried the resistance marker allele Xbarc54 (R) for
QPhs.pseru-2B.1 locus showed lower germination rates
than RILs carrying susceptible allele Xbarc54 (S), but the
diVerence was much smaller than that for the Xbarc321
locus, and only 2006 greenhouse data showed a signiWcant
diVerence between the two allelic groups. The RILs carry-
ing both resistance alleles (R/R) at the two marker loci

showed a greater decrease in seed germination rate than
RILs that carried only one or none of the two resistance
alleles.

Discussion

The most eVective way to minimize losses caused by PHS
is to grow cultivars that have delayed germination time and
reduced germination rate when long periods of wet weather
occur between plant maturity and harvest. However, pro-
gress in genetic improvement of PHS resistance in wheat
using classical methods is slow due to complexity in PHS
phenotyping. Suitable weather for PHS evaluation is not
always available, and setting up controlled environments
for large-scale PHS Weld screening is costly and diYcult. In
addition, a screening nursery with constant high moisture
also induces various diseases that will interfere with the

Table 3 Name, Xanking markers, position, likehood ratio (LR), eVect (R2) and additive values of quantitative trait loci (QTLs) detected in the
population of Rio Blanco/NW97S078 based on greenhouse experiments in Manhatan, KS, USA

a G represents greenhouse experiments in Manhattan, KS, USA

Experimentsa QTL name Flanking markers Position (cM) LR R2 (%) Additive 
value (%)

2005G QPhs. pseru-3AS Xgwm369-Xbarc12 13.90 13.55 17.97 ¡8.74

2006G QPhs. pseru-3AS Xgwm369-Xbarc12 12.01 27.25 34.12 ¡12.18

2007G QPhs. pseru-3AS Xgwm369-Xbarc12 10.01 21.44 31.00 ¡10.60

Mean-G QPhs. pseru-3AS Xgwm369-Xbarc12 10.01 41.91 58.02 ¡11.70

Table 4 Allelic eVect of markers closely linked to QTLs on 3AS and
2B on pre-harvest sprouting resistance in the wheat population of Rio
Blanco/NW97S186 based on data from 2005, 2006, and 2007 green-
house experiments in Manhattan, KS, USA and a 2006 Weld experi-
ment in Mead, NE, USA

§ A and B represent the resistant (R) and susceptible (S) alleles of a
marker locus from Rio Blanco and NW97S186, respectively, and
dif = phenotypic diVerence between means of two contrasting geno-
types
a,b,c Within columns, diVerent letters indicate signiWcant diVerence at
P < 0.05

Locus Genotype§ 05 GH 06 GH 07 GH 05 Field

Xbarc321 A (R) 9.82a 19.34a 21.54a 41.01a

B(S) 29.06b 53.73b 53.69b 47.61a

dif 19.24 34.39 32.15 6.60

Xbarc54 A(R) 13.43a 25.66a 33.74a 44.29a

B(S) 21.56a 39.56b 37.21a 45.61a

dif 8.13 13.90 3.47 1.32

Xbarc321/
Xbarc54

A/A (R/R) 7.03a 12.50a 20.56a 39.77a

A/B (R/S) 12.55a 25.25a 22.77a 42.90a,b

B/A (S/R) 22.36b 43.19b 46.89b 47.66b

B/B (S/S) 36.03c 63.45c 60.30c 48.03b

dif 29.0 50.95 39.74 8.26
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accuracy of PHS evaluation. In Weld conditions, extreme
hot weather during maturity can kill late matured plants,
which introduces a signiWcant amount of non-genetic varia-
tion in germination rates between genotypes due to non-
uniform maturity. Several factors, including seed dor-
mancy, seed color, and other morphological characteristics,
contribute to PHS resistance and complicate the phenotypic
selection process under Weld conditions. Therefore, MAS
might be able to improve selection eYciency and expedite
the breeding process. IdentiWcation of QTLs and associated
markers is the Wrst step toward MAS, and Wne mapping and
map-based cloning of the QTL. One major QTL on 3AS
was consistently signiWcant across all environments tested,
indicating this QTL is a stable QTL for PHS resistance in
Rio Blanco. However, other QTLs were detected in only
the greenhouse experiments. This could be due to the larger
environmental variance in Weld grown plants compared
with that of greenhouse grown plants. Also, phenotypic
variation explained by the QPhs.pseru-3AS from the Weld
experiment was much smaller than that from the green-
house experiments. These results further indicate that accu-
rate evaluation of PHS in Weld-grown plants is diYcult and
aVected by many non-genetic factors. In addition, it is more
diYcult to control physiological maturity and harvest time
in Weld experiments. Therefore, evaluation of PHS resis-
tance in greenhouse conditions could provide more accu-
rate data for QTL identiWcation, especially for QTLs with a
minor eVect.

Genes on the long arms of group 3 chromosomes of red
wheat have long been associated with PHS resistance (Flin-
tham and Gale 1996; Nelson et al. 1995). Further research
demonstrated that QTLs for PHS resistance on the long
arms of group 3 chromosomes co-segregated with the Red
genes (Groos et al. 2002; Kulwal et al. 2004, 2005).
Although it is unclear whether the association between
PHS-resistance QTLs and Red genes is due to a pleiotropic
eVect of the Red genes or the linkage of Red genes and
PHS-resistance QTLs. PHS-resistance genes that were
associated with red seed color cannot be used to improve
PHS resistance in white wheat. Therefore, it is important to
identify QTLs for PHS resistance in white wheat that are
independent of any grain color gene. Recently, QTLs from
white wheat germplasm have received increased attention.
A major QTL on 4AL has been reported in white wheat
from China and Africa (Chen et al. 2007; Mares et al.
2005). In another study, two markers, Xbarc55 and
Xbcd1434, were found to be associated with PHS resis-
tance in a U.S. white wheat cultivar Clark Cream (http://
maswheat.ucdavis.edu/protocols/PHS). These QTLs were
derived from white wheat cultivars and are not related to
any Red genes; therefore, they can be used to breed white
wheat for improved PHS resistance. Several recent studies
demonstrated a major QTL for PHS on the short arm of 3A

of the Japanese red wheat cultivar Zen (Miura et al. 2002;
Mori et al. 2005; Osa et al. 2003), but whether it exists in
white wheat remains unknown. In the current study, one
major QTL, QPhs.pseru-3AS, was repeatedly detected on
chromosome 3A of a white wheat cultivar Rio Blanco.
Therefore, this QTL is not linked to red seed color and is
independent from the Red gene. The QTL QPhs.ocs-3A1 on
3AS from red wheat cultivar Zen (Mori et al. 2005) is about
2 cM distal to QPhs.pseru-3AS from Rio Blanco identiWed
in this study according to Xbarc321 that is a closely linked
marker to both QTLs (Song et al. 2005), thus they could be
the same QTL. The discrepancy in locations of the two
QTLs could be due to the diVerence in genetic backgrounds
and environmental conditions for PHS evaluation. This
study is the Wrst to identify the major QTL for PHS resis-
tance on 3AS from white wheat. Direct transfer of
QPhs.pseru-3AS from white wheat will avoid interference
of Red genes-associated PHS resistance.

The QTL QPhs.pseru-3AS was signiWcant in three
greenhouse experiments and one Weld experiment and
explained a large portion of phenotypic variation. There-
fore, it is a major QTL with a stable eVect on PHS resis-
tance. Furthermore, this QTL also was validated in another
population (Rio Blanco/NW97S078) and explained up to
58.02% of phenotypic variation in the greenhouse experi-
ments. Rio Blanco is a hard winter wheat with many
improved agronomic traits and has been used widely as a
parent in U.S. hard winter wheat breeding programs
(Carver et al. 2003; Haley et al. 2003; Martin et al. 2001;
Wu and Carver 1999). Therefore, markers for QPhs.pseru-
3AS can be immediately applied in MAS for hard white
wheat. In this study, three SSR markers, Xbarc12, Xbarc57
and Xbarc321, closely linked to QPhs.pseru-3AS were
identiWed and they were linked to each other within 1 cM in
genetic distance in Rio Blanco, these markers are breeder-
friendly markers and will signiWcantly facilitate deploy-
ment of the major QTL in white wheat breeding programs.
Among the three SSR markers we detected, Xbarc321
appeared to have the largest eVect and is a good candidate
marker for MAS of QPhs.pseru-3AS.

Besides the major QTL on 3AS, two minor QTLs also
were detected in some of the experiments. One minor QTL,
QPhs.pseru-2B.1, Xanked by marker interval Xdup398-
Xbarc54 was detected in the 2005 and 2006 greenhouse
experiments and in the mean data over the three greenhouse
experiments. This QTL appeared to have a more consistent
eVect than the other minor QTL. This locus is near marker
Xbarc55 (Somers et al. 2004), which was reported to be
linked to the QTL in cultivar Clark Cream (http://mas-
wheat.ucdavis.edu/protocols/PHS). Thus, it is possible that
they share the same locus. The smaller eVect of the QTL
detected in this study could be due to lack of closely linked
markers to the QTL or to a diVerent allele. The other minor

http://maswheat.ucdavis.edu/protocols/PHS
http://maswheat.ucdavis.edu/protocols/PHS
http://maswheat.ucdavis.edu/protocols/PHS
http://maswheat.ucdavis.edu/protocols/PHS
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QTL, QPhs.pseru-2B.2, was detected in only a single
experiment and might not be consistent in eVect across
environments. This QTL was new and has not been
reported previously. Further investigation on eVects of this
QTL is needed before it can be used in breeding.

Germination rate of the RILs carrying the PHS-resis-
tance allele Xbarc54 for QTL QPhs.pseru-2B.1 also
showed diVerences from the RILs carrying the susceptible
allele, but the diVerences are much smaller than for marker
Xbarc321 and were signiWcant in only the 2006 green-
house experiment. When the two QTLs were combined,
PHS resistance of plants with both resistant alleles was
much higher than that of those carrying only a single QTL
(Table 4). Results indicated that MAS for the QPhs.pseru-
3AS using marker Xbarc321 will signiWcantly improve
PHS resistance. However, MAS for both QPhs.pseru-3AS
and 2B might be able to achieve a higher level of PHS
resistance than from selection for the QPhs.pseru-3AS
alone.
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