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PESTICIDES IN PRAIRIE WETLANDS
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and

William G. Crumpton

Department of Botany
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Abstract. There is abundant, albeit fragmentary, evidence that prairie wet
lands are being contaminated extensively by agricultural pesticides (prima
rily herbicides and insecticides) and other anthropogenic contaminants.
Such inputs can affect fundamental ecosystem properties such as primary
production which, in turn, affects habitat and resource supply for wetland
fauna. We review data on the use ofpesticides, off-site transport of residues
from treated land, and the frequency with which these residues are subse
quently detected in receiving streams and wetlands on the prairies. As the
environmental distribution of a pesticide is affected by its chemical and
physical properties, and the abiotic and biotic characteristics of the receiv
ing wetland, greater insight into its ecological impacts will be obtainedfrom
considering the underlying partitioning and degradative processes that de
termine distribution rather than from case-by-case studies of persistence.
Future research on chemical contamination ofprairie wetlands should in
clude the development and testing of dissipation and fate models under
conditions typical of prairie wetlands using a process-oriented approach,
emphasizing the roles ofadsorption and photolysis in a shallow, high area to
volume environment. Output from a computer model based on the fugacity
concept (QWASFI: Quantitative Water, Air, Soil, Film Interactions) indi
cates the potential to predict the environmental behavior of specific chemi
cals in wetlands.

Concern regarding the introduction of anthropogenic chemicals to
prairie wetlands is increasing (e.g., Sheehan et al. 1987; Grue et al. 1989)
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TABLE 1
FREQUENCY OF DETECTION OF TOXIC CHEMICALS IN SURFACE

WATERS (LAKES, PONDS, FARM DUGOUTS) OF SOUTHERN
MANITOBA, BASED ON ANALYSIS OF 160 SAMPLES

COLLECTED IN 1995 (GURNEY AND JONES 1997)

Chemical

microcystin LR
2,4-D
bromoxynil
dicamba
atrazine
MCPA
trifluralin

Chemical type

cyanobacterial toxin
herbicide
herbicide
herbicide
herbicide
herbicide
herbicide

Frequency of detection
(n = 160)

70.0%
17.5%

2.5%
8.8%
1.3%
0.6%
0.6%

because such inputs are known to negatively affect plant and animal popu
lations in the terrestrial environment. The Great Plains is an area of chemi
cally intensive agriculture in which pothole wetlands bordering cropland are
numerous. These wetlands are important as the breeding ground for over
50% of North American waterfowl (e.g., Batt et al. 1989); however, effects
of contaminants on wildlife are largely unknown. Prairie wetlands may
intermittently recharge groundwater (e.g., LaBaugh et al. 1987; van der
Kamp and Hayashi 1998), so the resource on which humans ultimately
depend may become contaminated. Although this review focuses on agri
cultural pesticides, they are not the only anthropogenic chemicals found in
prairie wetlands. Adjuvants contained in pesticide formulations, as well as
petroleum products from storage tanks and machinery, and fertilizers may
also contaminate wetlands. Furthermore, toxic chemicals arising from natu
ral sources, but exacerbated by agricultural inputs, may complicate the
cumulative effect of human activities on prairie wetlands. For example,
while pesticides were found in surface waters in Manitoba (Gurney and
Jones 1997), the most commonly encountered toxicant was microcystin LR,
a potent neurotoxin that is a metabolic by-product of blue-green algae
(cyanobacteria) that flourish on nutrients from sewage and fertilizer (Table
1).
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Figure 1. Use of agricultural chemicals (insecticide, herbicide, fertilizer) in the three
Canadian prairie provinces from 1971 to 1991. Data are from Environment Canada
(1996).

Use of Pesticides on the Prairies

Pesticides refer to chemicals which are toxic to the growth of living
organisms, and include chemicals targeted at plants (herbicides), fungi (fun
gicides), insects (insecticides), and others. Definitive data on the proportion
ate importance of these groups in prairie agriculture are lacking; however, it
is generally assumed that herbicides primarily and fungicides secondarily
comprise the majority of use. Pesticide use has increased in Canada by
roughly 500% over the past 25 years (Fig. 1) and a corresponding trend has
occurred on the American Great Plains (Grue et al. 1989). By one recent
estimate, 99% of the acres planted to corn and soybeans in Iowa are treated
with herbicides and 31 % of the corn acres are treated with insecticides
(Hartzler et al. 1997). Data for specific chemicals illustrate both the increase
in quantity of use and the diversification in the chemicals applied. Phenoxy
herbicides, including 2,4-D and MCPA, were introduced to the Canadian
prairies soon after World War II (Fig. 2). Use increased dramatically until
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Figure 2. The use (quantity and area treated) ofherbicides in Manitoba, Saskatchewan
and Alberta between 1947 and 1989. Categories are those used by the Manitoba
Department of Agriculture. Statistics for phenoxy herbicides include 2,4-D and
MCPA, "other herbicides" (bromoxynil, dicamba, dichlorprop, linuron, glyphosate,
picloram, propanil and unspecified others), and wild-oat herbicides (asulam, atrazine,
barban, diclofop methyl, difenzoquat, EPTC, flamprop methyl, triallate and trifluralin).
Data were obtained from Anonymous (1947-1989).

the midc1960s when it stabilized at about 10 million hectares treated annu
ally (almost half of improved arable land) or 4,000 tonnes applied annually.
Since the early 1970s, new groups of "specialty" herbicides introduced to
control wild oats (Avenafatua) and other specific weeds in field crops have
increased the number of active ingredients in use to 250 as of 1994 (Environ
ment Canada 1996). The net result over the past 50 years is that a larger
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number of pesticides have become available in greater quantity for off-site
transport.

Off-site Transport of Pesticide Residues

There is considerable evidence for off-site movement of pesticide
residues on the Great Plains, in gaseous and droplet drift (particularly when
applied aerially), drift of wind-blown particulates to which pesticides are
adsorbed, or transport of dissolved pesticides in surface water runoff, snow
melt, or groundwater flow (e.g., Leonard 1988; Smith et al. 1988; Waite et al.
1992, 1995). Moreover, these processes need not be confined to local pesti
cide transport, particularly if a pesticide formulation is volatile. Atrazine, a
herbicide used widely for com production in the central Great Plains, has
been detected in air at the Experimental Lakes Area of northwestern Ontario
(Muir and Grift 1991), hundreds of kilometers away. The means and extent
to which pesticides move off-site from cropland can vary with method of
application (ground sprayer or aircraft), spray droplet size, atmospheric
conditions (wind velocity, relative humidity, and temperature) at the time of
application, and the physico-chemical properties of the pesticide and its
formulation (volatility, water solubility, adsorption coefficients, and
photolability). Following deposition on soil or foliage, precipitation can
wash residues into receiving streams, resulting in correlation of pesticide
spikes with high streamflow after a storm (Fig. 3). The difficulty in relating
off-site transport to pesticide use in a watershed, however, is that chemicals
vary in water solubility, volatility, tendency to adsorb to suspended particu
lates, and other parameters that ultimately determine residues in streamflow.
The result is that chemicals and their concentrations may not reflect local
use (Waite et al. 1992). For example, a study of agricultural herbicides in the
Ochre River of western Manitoba, in which chemical use and the ensuing
load transported in the river were quantified, showed that herbicides widely
used in the watershed (e.g., diclofop-methyl) were comparatively minor
constituents of the river load compared to less used herbicides (e.g., 2,4-D)
(Table 2).

Pesticide Residues in Prairie Wetlands

Over 80% of ponds used by waterfowl on the Canadian prairies have
had their margins affected by agricultural burning, haying, grazing or culti
vation (Caswell and Bazin 1997). Pesticides can enter prairie wetlands when
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Figure 3. Transport of atrazine herbicide residues in water of the Big Blue River,
Nebraska as a function of stream flow (1990). Modified from Thurman et al. (1991).

their basins are tilled in dry periods or as a result of direct overspray during
aerial pesticide application, drift of airborne aerosols or particulates, runoff
from adjacent treated fields, and discharge from contaminated groundwater
(Grue et al. 1989). "Potholes" may be especially subject to contamination as
they typically occupy topographic depressions that are natural destinations
for surface runoff. Being small in size and closely interspersed with crop
land, they are also easily over-sprayed during aerial pesticide applications.
This may explain why, for example, the amount of ethyl parathion deposited
on five North Dakota potholes (0.21-0.40 kg/ha) was higher than on the
adjacent sunflower fields (0.06-0.12 kg/ha) over which the insecticide was
sprayed (Tome et al. 1991).

Despite compelling evidence of off-site transport, data on pesticides in
prairie rivers and lakes (e.g., Gummer 1980; Waite etal. 1992; Donald and
Syrgiannis 1995), and considerable public and regulatory interest in wet
lands, there have been surprisingly few studies of pesticide occurrence in
prairie wetlands per se (Tables 3, 4). Available data indicate that residue
levels typically occur in the range of parts per billion (e.g., Waite et al. 1992;
Frankforter 1995). However, we report only the frequency of detection
rather than absolute pesticide levels because, in the absence of corres
ponding toxicological information, concentrations in water have limited
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TABLE 2
HERBICIDE LOAD IN THE OCHRE RIVER, MANITOBA (1984).

DATA ARE FROM MUIR AND GRIFT (1987)

79

Herbicide

diclofop-methyl
dicamba
trifluralin
bromoxynil
triallate
2,4-D

Total use in watershed
(kg/year)

5,928
3,285

984
890
708
171

River load
(g/year)

36
698
119

15
43

1,300

comparative value. Grover et al. (1997) monitored farm ponds in southern
Saskatchewan between 1987 and 1989, finding that nearly all ponds con
tained detectable levels of 2,4-D (Table 4), presumably as a result of its
widespread use. Pesticides were more frequently detected in ephemeral
freshwater lakes in Saskatchewan which are favored by waterfowl for feed
ing and nesting habitat whereas residues were less frequently detected in
permanent saline lakes (Table 5; Donald and Syrgiannis 1995).

The assumption that pesticides arise in prairie wetlands due to off-site
transport from areas of use implies that the frequency of pesticide detection
should, therefore, vary with the predominant land use in the wetland water
shed. Supporting evidence comes from observations that 53% of wetlands in
Nebraska rangeland (where pesticides are assumed to be used less fre
quently than in cultivated areas) contained detectable herbicides, as opposed
to 80% of wetlands in areas of mixed agriculture, and 96% of wetlands in
areas of active cropland (Frankforter 1995).

Pesticide Persistence and Dissipation Processes

Pesticide dissipation refers to residue loss as a result of degradation
processes (photolysis, abiotic hydrolysis, and biodegradation) and transfer
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TABLE 3
FREQUENCY OF HERBICIDE DETECTION IN NEBRASKA

WETLANDS (1994). DATA ARE FROM FRANKFORTER (1995).

Herbicide Frequency of detection (n =60)

alachlor 18%
atrazine 78%
deethylatrazine (atrazine metabolite) 55%
deisopropylatrazine (atrazine metabolite) 18%
cyanazine 33%
metolachlor 40%

into air (volatilization), adsorption to suspended particulates, sediments and
biota, and outflow in surface and groundwater. The relative importance of
these processes, which vary with properties of the chemical and the site,
determines persistence. Pesticides such as atrazine, entering wetlands pri
marily as nonpoint source loads in runoff and groundwater, are probably
among the most recalcitrant. By comparison, more labile pesticides such as
bromoxynil may dissipate before entering wetlands or, when input directly
to wetlands by aerial application, may degrade rapidly (e.g., Muir et al.
1991).

There is considerable information on the dissipation of agricultural
pesticides under controlled laboratory conditions and in lakes but the degree
to which these data apply to wetlands is unclear. There are several features
of wetlands, most of which relate to their shallow character, that could
increase or decrease the observed dissipation as compared to that in other
water bodies. Wetlands generally support high levels of biological produc
tivity (Mitsch and Gosselink 1993), one manifestation of which is profuse
submersed and emergent plant growth that results in high surface area
relative to the wetland's water volume. Area to volume ratios from Delta
Marsh, Manitoba, for instance, range as high as 15 m2 per m2 of bottom in
areas <1 m deep (Goldsborough and Robinson 1996). This increases oppor
tunities for surface adsorption, chemical sequestering in plant tissue, micro
bial biodegradation on surfaces, and exposure to solar irradiance for pesti-
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TABLE 4
FREQUENCY OF HERBICIDE DETECTION IN SASKATCHEWAN

PONDS (1987-89). DATA ARE FROM GROVER ET AL. (1997).

Herbicide

2,4-D
diclofop
bromoxynil
MCPA
triallate
dicamba
trifluralin

Frequency of detection (n = 150)

93 - 100%
46 - 95%
50 - 85%
33 - 70%
28 - 63%
17 - 55%
0-18%

cide photolysis. Most wetland sediments are richly organic (>20% dry mass),
providing surfaces for pesticide adsorption. As wetlands are characteristi
cally <2 meters deep, sunlight may reach the bottom, further increasing the
potential for photolytic decomposition. Enzymatic degradation reactions
may be facilitated in the shallow warm water. Dissolved organic carbon
(DOC), generally higher in wetlands than in lakes (e.g., Thurman 1985;
Robarts and Waiser 1998), absorbs ultraviolet radiation that otherwise pro
motes photolysis. On the other hand, some constituents of DOC may act as
sensitizing agents that facilitate degradation (Cessna and Muir 1988). The
significance of DOC as a determinant of pesticide photolysis is especially
intriguing in the context of changes in UV-B irradiance due to atmospheric
ozone depletion (e.g., Vincent and Roy 1993). Finally, the shallow and, in
many cases, ephemeral nature of prairie wetlands means that evaporative
concentration of residues will occur to a greater extent than in deeper, more
stable water bodies.

Pesticide fate in prairie wetlands is poorly understood, complicated by
the large variety of pesticide compounds, limited information on pesticide
transformation products, and the difficulties of studying pesticide fate in the
complex wetland matrix. However, research indicates that common pesti
cide contaminants of surface and groundwaters disappear rapidly from wet
land waters, primarily as a result of adsorption by the organic fraction in
sediments and decomposing litter. For example, pesticide fate studies using
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TABLE 5
FREQUENCY OF PESTICIDE DETECTION (N, NUMBER OF

SAMPLES) IN SASKATCHEWAN LAKE WATER
AS A FUNCTION OF ITS SALINITY (1988 - 1991).

DATA ARE FROM DONALD AND SYRGIANNIS (1995).

Group 1 Group 2 Group 3
(oligosaline) (mesosaline) (eusaline - hypersaline)

Pesticide 1,730-5,600 /lS/cm 5,800-19,380 /lS/cm 28,000-83,000 /lS/cm

a-HCH 78% (9) 88% (8) 33% (6)
lindane 78% (9) 63% (8) 17% (6)
2,4-D 100% (9) 75% (8) 50% (6)

wetland microcosms and mesocosms have shown that atrazine, fonofos,
metolachlor, or trifluralin becomes rapidly associated with sediments, with
the formation of persistent pesticide-humus complexes leaving little chance
of subsequent desorption of the parent pesticide (Huckins et al. 1986; Matter
1993; Crumpton et al. 1994, 1997).

A summary of wetland dissipation data (Fig. 4) based on pesticide
additions under controlled field conditions (Table 6) indicates half-lives
(time for residues to decrease by 50%) ranging from less than a day for
bromoxynil to several months for hexazinone. Some dissipate via zero-order
kinetics (linear change with time) whereas first-order kinetics (exponential
concentration change) are appropriate for others. Waite et al. (1992) found
that no water sample collected from Saskatchewan ponds over a two-year
period contained detectable levels of bromoxynil, an observation consistent
with its rapid dissipation when applied experimentally to water (Fig. 4).
Decreases in glyphosate concentration in ponds in eastern Manitoba was
concurrent with increases in the concentration of its primary metabolite,
aminomethylphosphonic acid (AMPA) (Goldsborough and Brown 1993).

Research indicates that the rate of pesticide dissipation in wetlands
may vary with the quantity and composition of vegetation. Lee et al. (1995)
reported that atrazine dissipated most quickly from the water column of
mesocosms deployed in a Kansas wetland when emergent plants were present
(half-life = 62-72 days), as opposed to rates in the presence of submersed
plants or in open water (96-112 days and 94-99 days, respectively). The
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Figure 4. Dissipation of several common herbicides added experimentally to natural
wetlands or wetland mesocosms in Manitoba and Saskatchewan. A. Triallate data
from Desy (1996). B. Hexazinone data from Goldsborough (unpublished). C.
Glyphosate data from Goldsborough and Brown (1993). D. Bromoxynil data from
Muir et al. (1991). Note that the time and concentration ranges differ for each panel.

basis for this observation is unclear; enhanced dissipation due to high sur
face area of emergent macrophytes should also apply when submersed plants
were present.

Rudimentary predictions of the environmental behavior of a pesticide
in water can be made based on its chemical properties; water-soluble chemi
cals, for instance, are likely to persist in water longer than more insoluble
chemicals. There are many mitigating factors, however, such as the quantity
of DOC and plant surface area. An interesting laboratory study that may have
implications for wetland pesticide dissipation found that photolysis of the
insecticide methyl parathion was stimulated in proportion to the quantity of
phytoplankton present (Table 7; Zepp and Schlotzhauer 1983). These algae
can be seasonally abundant in wetlands (e.g., Robarts et al. 1995) so that
pesticide degradation may vary with changes in biotic (e.g., grazer density)
and abiotic (e.g., nutrients) conditions regulating algal abundance.
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TABLE 6

LIST OF SOME PESTICIDES ADDED EXPERIMENTALLY

TO NATURAL WETLANDS OR WETLAND MICROCOSMS

IN CENTRAL NORTH AMERICA.

Pesticide Type Reference

2,4-D herbicide Forsyth et al. (1997)

alachlor herbicide Lee et al. (1995)

atrazine herbicide Klaassen and Kadoum (1979), Huckins et al. (1986),

Johnson (1986), Lee et al. (1995),

Detenbeck et al. (1996)

bromoxynil herbicide Muir et al. (1991)

carbofuran insecticide Johnson (1986), Klaassen and Kadoum (1979)

chlorpyrifos insecticide Giddings et al. (1997), Hann and Goldsborough

(unpublished data)

clopyralid herbicide Forsyth et al. (1997)

cyanazine herbicide Fintschenko et al. (1995)

diazinon insecticide Giddings et al. (1996)

diclofop-methyl herbicide Arts et al. (1996)

difenzoquat herbicide Goldsborough (unpublished data)

fonofos insecticide Huckins et al. (1986), Johnson (1986)

glyphosate herbicide Goldsborough and Brown (1993)

hexazinone herbicide Goldsborough (unpublished data)

phorate insecticide Dieter et al. (1995), Johnson (1986)

pichloram herbicide Forsyth et al. (1997)

sethoxydim herbicide Goldsborough (unpublished data)

simazine herbicide Goldsborough and Robinson (1983, 1985)

terbutryn herbicide Goldsborough and Robinson (1983)

triallate herbicide Arts et al. (1996), Desy (1996), Johnson (1986),

Waiser and Robarts (1997)

trifluralin herbicide Huckins et al. (1986), Johnson (1986)

Modeling Pesticide Persistence in Wetlands

It is often impractical, for logistic, financial or ecological reasons, to

determine the environmental behavior of a pesticide in wetlands via experi

mental additions. An alternative initial approach is to mathematically model
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TABLE 7
EFFECT OF THE BIOMASS OF PHYTOPLANKTON ALGAE,
MEASURED AS CHLOROPHYLL CONCENTRATION (jlG/L),

ON THE RATE OF PHOTOLYTIC DECOMPOSITION
OF THE INSECTICIDE METHYL PARATHION.

DATA ARE FROM ZEPP AND SCHLOTZHAUER (1983).

85

Chlorophyll (jlg/L)

o(control - no algae)
0.0068
0.68
1.8
6.3
6.8

Photolysis constant

0.06
0.06
0.10
0.16
0.39
0.53

Ratio to control

1.0
1.7
2.7
6.5
8.8

processes affecting pesticide degradation and partitioning between air, wa
ter, and soil. These models, when combined with features of a hypothetical
receiving wetland, may allow the focusing of in situ research efforts on
specific processes or environmental compartments that are critical to deter
mining the net distribution of a pesticide.

While several computer models are available for predicting pesticide
persistence and environmental fate (Mackay and Paterson 1993), only re
cently have they been applied to wetlands (e.g., Alvord and Kadlec 1996).
Consequently, the accuracy of these models for wetlands remains to be
determined. One model that is conceptually simple yet sufficiently robust to
provide reasonable simulations across a wide range of conditions is the
Quantitative Water, Air, Sediment, Film Interactions (QWASFI) model.
QWASFI is a modification (Southwood et al. 1998) of the QWASI model of
Mackay et al. (1983) that provides for pesticide partitioning into organic
films at the air/water interface, a behavior common for hydrophobic pesti
cides (Muir et al. 1992). The scenario modeled by QWASFI is a simplified
aquatic environment consisting offive compartments among which a chemi
cal potentially moves: water, sediment, suspended solids and biota, surficial
film, and air. All compartments are well mixed with uniform properties (an
assumption unrealistic of natural conditions that may lead, for example, to
artificially high exposure of residues to adsorptive surfaces) and changes in
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TABLE 8
INPUT PARAMETERS USED TO MODEL THE BEHAVIOR OF

ATRAZINE IN A SIMULATED, 1 M DEEP WETLAND MESOCOSM
IN DELTA MARSH, MANITOBA.

Parameter (units) Input value Reference / comment

Degradation - film (h- I
) 0.007

Atrazine input - air (mol/m3
) 0

Atrazine input - water (mgIL) 0

Atrazine input - sediment (mg/g dry weight) 0

Atrazine input - inflow (mgIL) 0

Atrazine input - film (mgIL) 200

Atrazine molecular mass (g/mol)

Atrazine vapor pressure (pa)

Atrazine solubility - water (mol/m3
)

Atrazine octanol/water partition coefficient

Ambient temperature (oq

Sediment organic C content (%)

Volume - water (m3)

Volume - sediment (1 cm thickness - m3
)

Volume - suspended sediment (m3
)

Volume - biota (m3
)

Volume - film (100 j.lIll thickness - m3
)

Area - air/film interface (m2)

Area - sediment/water interface (m2)

Area - film/water interface (m2)

Mass transfer coefficient - air (rnIh)

Mass transfer coefficient - water (rnIh)

Mass transfer coefficient - film (rnIh)

Degradation rate - sediment (h- I )

Degradation rate - water (h- I
)

215.7

3.84E-05

0.153

479

25

15

25

0.25

6.25E-04

o
2.50E-03

25

25

25

8.36

7. 17E-03

7.17E-03

0.003

0.007

Solomon et al. (1996)

Solomon et al. (1996)

Solomon et al. (1996)

Solomon et al. (1996)

typical midsummer value

Goldsborough, unpubl. data

5 m x 5 m x 1 m enclosure

based on enclosure area

Goldsborough, unpubl. data

Goldsborough, unpubl. data

Muir, pers. comm.

based on enclosure area

based on enclosure area

based on enclosure area

Smith et al. (1981)

Smith et al. (1981)

assumed equal to water

Muir (1988)

Burkhard and Guth (1976),

Muir (1988), Crumpton,

unpubl. data

assumed equal to water

film input only

film input only

film input only

film input only

aerial spray input (see text)
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the quantity of the modeled chemical in each compartment are assumed to
occur with time. In other words, the dynamic nature of the environment is
recognized.

Modeling of environmental movement of chemicals by QWASFI is
done using the concept of fugacity (Mackay 1979), which is the "escaping
tendency" of a molecule to migrate from one environmental compartment to
another. Fugacity relates to mass diffusion as temperature relates to heat
diffusion. Chemicals move from high to low fugacity, which is usually
expressed in units of pressure (Pascals) although fugacity is linearly propor
tional to concentration. When the fugacities of two compartments are equal,
they are in equilibrium.

The QWASFI model, based on a computer spreadsheet (Southwood et
al. 1989), requires as input, various parameters describing the nature of the
receiving system and the properties of the modeled chemical (Table 8).
Some of the latter data are available in the literature; others must be esti
mated from empirical relationships with known parameters (e.g., Kenaga
and Goring 1980). For the purposes of demonstration, we modeled the
environmental behavior of atrazine in a simple wetland system, specifically
a 5 meter x 5 meter mesocosm that we have used for toxicological studies in
Delta Marsh, Manitoba. Our rationale was that atrazine is a widely used
agricultural herbicide so it is a common constituent of surface water in much
of the Great Plains (e.g., Thurman et al. 1991; Frankforter 1995; Alvord and
Kadlec 1996; Detenbeck et al. 1996). Unlike many agricultural pesticides,
for which basic chemical properties are unavailable, atrazine has been widely
studied so most of the input parameters are available. Atrazine input to the
film compartment was calculated from the recommended application rate
for Manitoba of 200 grams per hectare (Manitoba Agriculture 1997). Being
moderately water soluble (33 mg/L at 25°C), we hypothesized a priori that
atrazine would be relatively persistent in the water column although its
moderate octanol-water partition coefficient (479) indicates that it should
also partition into sediments. Degradation due to photolysis, hydrolysis and
biodegradation was estimated from rates determined in the laboratory, whose
applicability to a wetland setting can be questioned.

In the model simulation, atrazine disappeared from the water column
of the wetland with a first-order half-life of 2 days (Fig. 5) and it subse
quently appeared in the sediments, an observation that is confirmed by
microcosm and mesocosm experiments (Huckins et al. 1986; Detenbeck et
al. 1996). Herbicide degradation affected dissipation, as shown by the dif
ference in model results when this factor was set to zero (Fig. 5). Most
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Figure 5. Sample output from two iterations ofa QWASFI model for the environmental
behavior of the herbicide atrazine in a simulated wetland mesocosm (25 m2 surface
area; 25,000 L volume). In the second iteration, atrazine degradation rates in
sediment, water and film were set to zero.
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published studies on atrazine dissipation in wetlands concur that the herbi
cide disappears "rapidly" from the water column although the reported half
life varies ten-fold (Crumpton unpublished data). Even controlled studies in
wetland mesocosms report half-lives ranging from about 7 days (Crumpton
et al. 1997; Detenbeck et al. 1996) to greater than 60 days (Klaassen and
Kadoum 1979; deNoyelles et al. 1982, Lee et al. 1995). Thus, wetlands
appear to vary widely in their efficiency as pesticide dissipaters. Most of the
reported variability of atrazine half-lives can be explained, however, by an
area-based, first-order loss model (Crumpton 1998). If pesticide loss is due
primarily to adsorption in organic sediments, then half-lives (derived from a
volume-based, first-order model) are inappropriate for comparing systems
having different depths. The published results, however, are consistent with
an area-based, first-order model in which surfaces such as sediment and
litter provide most of the active sites for pesticide adsorption and in which
loss rates are limited by transport to these sites. Moreover, if pesticide
humus complexes are the ultimate fate of adsorbed pesticides, models should
accurately predict not only pesticide flux from wetland water to sediment,
but also subsequent pesticide desorption from wetland sediments if contami
nation events are followed by a flush of pesticide-free water.

A concern is the extent to which the case of atrazine can be generalized
to include other pesticides. For short-lived pesticides, degradation might be
expected to compete effectively with adsorption in wetland systems. Be
cause of their relatively labile nature, however, these pesticides may be less
common contaminants of receiving waters in agricultural watersheds. If
adsorption is the dominant fate of most pesticides of concern, then wetland
assimilative capacity for pesticides in general will be simpler to understand
and model.

Research Needs

Information on the quantity and distribution of pesticides in wetlands
is needed before informed predictions of their toxicological impact to wet
land flora and fauna can be made. Unfortunately, there are currently too few
data on too few chemicals to enable more than superficial evaluations. We
contend that focusing field research effort on the environmental fate of a
wide suite of pesticides will not be productive, as the results are likely to be
both chemical- and site-specific without general applicability to the entire
Great Plains. Instead, we advocate the wider use of predictive models, with
validation based on field data for a few selected pesticides monitored under
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a well-defined range of environmental conditions. A caveat is that before
such models can perform adequately, additional model development and
testing under conditions typic~l of prairie wetlands are needed. Particular
emphasis should be placed on the roles of chemical adsorption to surfaces in
the high area to volume environment of prairie wetlands, and the magnitude
and determinants of photolysis, paiticularly under a scenario of increased
input of ultraviolet radiation. Therefore, we feel that future research should
adopt process-oriented rather than case-study approaches to pesticide distri
bution in wetlands.
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