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in heterogeneous materials: A self-consistent-field approach
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A treatment of multiscale quasistatic processes that combines an atomistic description of
microscopic heterogeneous �“near”� regions of a material with a coarse-grained �quasicontinuum�
description of macroscopic homogeneous �“far”� regions is presented. The hybrid description yields
a reduced system consisting of the original atoms of the near regions plus pseudoatoms �nodes of the
coarse-graining mesh� of the far regions, which interact through an effective many-body potential
energy Veff that depends on the thermodynamic state. The approximate nature of Veff gives rise to
“ghost forces,” which are reflected in spurious heterogeneities close to interfaces between near and
far regions. The impact of ghost forces, which afflict all previous hybrid schemes, is greatly
diminished by a self-consistent-field hybrid atomistic-coarse-grained �SCF-HACG� methodology.
Tests of the SCF-HACG technique on a fully three-dimensional prototypal model �Lennard-Jones
�12,6� crystal� yield thermomechanical properties �e.g., local stress� in good agreement with “exact”
properties computed in the fully atomistic limit. The SCF-HACG method is also successfully used
to characterize the grain boundary in a Lennard-Jones bicrystal. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2234776�

I. INTRODUCTION

Such practically important phenomena as the evolution
of defects in materials and thin-film lubrication are inher-
ently multiscale because they entail the dynamic coupling
between microscopic heterogeneous �“near”� regions and
macroscopic homogeneous �“far”� regions. A reliable de-
scription of the behavior of the whole system dictates an
atomistic treatment of the near regions, whereas the far re-
gions can be handled adequately on the continuum scale.
Several schemes that meld an atomistic description of the
near regions with a continuum description of the far regions
have been proposed since the early 1990s.1–8 These have
been reviewed ad nauseum in recent years.9–12

A. Quasicontinuum method

Introduced by Tadmor et al.,2 the quasicontinuum �QC�
method was devised to treat quasistatic propagation of de-
fects in crystals at absolute zero �T=0 K�. The QC method
coarse-grains the whole system by covering the crystal lattice
with a finite-element mesh. Coarse graining introduces con-
straints among the atomic coordinates, thereby greatly reduc-
ing the number of degrees of freedom. The myriad original
atoms are replaced by relatively few pseudoatoms that inter-
act via a coarse-grained many-body potential energy Uc�rNn�,
which is regarded as a functional of the 3Nn-dimensional

nodal configuration rNn, where Nn is the number of nodes.
Under given boundary conditions, which correspond to a
prescribed application of strains or stresses, Uc is minimized.
This procedure yields the optimum nodal configuration.

B. Local versus nonlocal elements

The coarse-grained potential energy is expressed as a
sum of contributions from individual finite elements, which
can be categorized according to their dimensions relative to
the range rc of interactions between atoms. In the relatively
vast far regions, where the crystal is deformed only slightly
from the reference configuration, elements with dimensions
much greater than rc can be employed. The contribution of
such a large element to Uc is computed as if the atomic
lattice underlying it were part of an infinite lattice deformed
from the reference configuration in the same manner.
�Throughout this article we take all elements to be constant-
strain elements, that is the lattice underlying any element is
homogeneously distorted as its nodes are displaced from a
given reference configuration. All of the underlying atoms
occupying the lattice sites move in unison and their positions
can be calculated from a knowledge of solely the nodal po-
sitions.� Such a large element is called “local” because its
contribution to Uc depends on only the positions of its own
nodes. As one moves from far �uniform� regions toward near
�nonuniform� regions, the elements must gradually become
smaller so that the increasing heterogeneity can be described.
When the dimensions of an element approach rc it becomesa�Electronic mail: ddiestler1@unl.edu
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“nonlocal” in that its contribution to Uc depends on both its
own nodal configuration and those of neighboring elements
whose underlying atoms lie within a distance rc from a “ref-
erence” atom under the nonlocal element. In the limit where
the dimensions of all elements equal the lattice constant �ev-
ery atom is a node� the expression for Uc is identical with
that based directly on the atomistic interactions. Thus, the
multiple scales are seamlessly merged.

C. Thermal effects

Depending on the thermodynamic state, the thermal con-
tribution to the stress can become significant already when
the thermal energy of an atom ��kBT, where kB is Boltz-
mann’s constant� is only a relatively small fraction of its
binding energy in the crystal.13 Hence, the T=0 K restriction
on the original QC method becomes critical. Over the past
decade or so we have been exploring ways of incorporating
thermal effects in the QC technique. Our first naïve idea was
simply to require that the nodal configurations satisfy the
Boltzmann distribution.14 We accomplish this by implement-
ing Uc in a standard Monte Carlo �MC� computer
simulation.15 However, when applied to a two-dimensional
�2D� Lennard-Jones �12,6� crystal, this crude treatment leads
to errors in the diagonal components of the �“global”� stress
tensor proportional to �N−Nn�, which is just the number of
nonnodal atoms underlying the finite-element mesh, when
the mesh is so constructed that nodes coincide with atoms.
The error is due to neglect of thermal motion of the under-
lying �non-nodal� atoms. Their random movements are
quenched by the dynamical constraint that they move in con-
cert with the nodes.

We have tried two alternative approaches that eschew
the dynamical constraint on underlying atoms. The first of
these is a precise analog of the original QC method: Uc is
just replaced with a free-energy functional Fc�rNn� appropri-
ate to the thermodynamic state variables that are controlled
in the quasistatic process of interest.13 This coarse-grained
free-energy functional technique applied to a fully three-
dimensional �3D� Lennard-Jones �12,6� crystal at fixed den-
sity and temperature yields stress components in excellent
agreement with “exact” results �obtained from conventional
atomic-scale computer simulation�.

In a second alternative approach16 conceived to avoid
dynamically constraining the underlying atoms, we require
that the nodes of the coarse-graining mesh coincide with at-
oms. The original atoms are consequently separated into two
groups: the nodal atoms and the non-nodal underlying atoms.
We then formally carry out the integrations over the phase
space of the underlying subsystem in the canonical partition
function for the whole system. This procedure yields an ef-
fective potential energy Veff�rNn� for the nodal subsystem that
depends on the thermodynamic state. Veff comprises two con-
tributions: the potential energy Uc�rNn� of the dynamically
constrained system and the Helmholtz energy of the under-
lying subsystem in the field of the nodal subsystem in a
given �instantaneous� configuration rNn. The free-energy
component, which is given as a sum of contributions from
individual elements by analogy with Uc, accounts precisely

for the thermal motion of the underlying atoms that is sup-
pressed in the dynamically constrained treatment. We em-
ployed Veff in a MC simulation of the 2D Lennard-Jones
�12,6� crystal, finding excellent agreement between coarse-
grained and exact results for the stress for a selection of
thermodynamic states.16

D. Hybrid atomistic-coarse-grained treatment

All of the above-described approaches suffer from an-
other limitation of the QC method, which is that it is incon-
venient to treat processes involving diffusion in the near re-
gions. To handle such situations we previously proposed a
hybrid atomistic-coarse-grained �HACG� technique. The key
idea behind the HACG scheme is to coarse-grain only the far
regions, which behave essentially as elastic solid for the du-
ration of the process of interest.17 We applied the dynami-
cally constrained version of the HACG to reversible shear-
ing of a 2D model tribological contact: two planar hard
Lennard-Jones �12,6� substrates that sandwich a softer
Lennard-Jones film.17,18 Constant-load MC simulations yield
shear-stress profiles �plots of “global” shear stress versus
shear strain� in good agreement with the exact profiles �ob-
tained from parallel atomic-scale simulations�, but mean
separation profiles �i.e., plots of the mean gap between the
substrates versus shear strain� that disagree with the exact
separation profiles. The discrepancy is again due to the ne-
glect of the underlying non-nodal thermal motion, the ab-
sence of which suppresses thermal expansion of the sub-
strates. Additional MC simulations19 of this 2D model that
include the neglected free-energy contribution give good
agreement between HACG and exact separation profiles.

E. Self-consistent-field HACG treatment: Local
properties

The HACG methodology has thus far been employed to
compute only the global properties of the system �i.e., prop-
erties of the system considered as a whole�, which are prop-
erties of the kind commonly measured. In order to character-
ize the system more completely, one can usefully define local
properties, that is, properties associated with specific sub-
systems �e.g., atoms or finite elements� of the whole system.
As it is currently implemented, however, the HACG
treatment17,18 is incapable of yielding reliable local proper-
ties. One of the main points of this article is to introduce a
modified implementation, that is, the self-consistent-field
�SCF-� HACG treatment, which not only accounts for ther-
mal effects in the coarse-grained far regions but at once per-
mits the dependable computation of local properties.

To test the SCF-HACG scheme properly, we must first
apply it to a system whose thermomechanical properties are
either known or can be determined by independent methods.
We adopt as a prototypal test system a Lennard-Jones �12,6�
crystal that is partitioned into three slabs. The outer two slabs
play the role of �coarse-grained� far regions and the inner
slab that of the �atomistic� near region. A correct description
of this system in a state of thermodynamic equilibrium
should give uniformly constant local properties, since every
identical subsystem �e.g., atom� is subject to the same envi-
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ronment. However, the partitioning gives rise to false hetero-
geneities in the vicinity of the two near-far interfaces. These
are manifested as discontinuities in the local stress, as com-
puted in the usual implementation17 of the HACG scheme
�see Sec. V�. The errors in local stress can be traced to “ghost
forces,”9,10,20 which are engendered by asymmetric contribu-
tions of atoms and finite elements to the coarse-grained ef-
fective potential energy.

The SCF-HACG treatment represents the culmination of
a lengthy search for an antidote to ghost forces. In the new
approach, a MC cycle comprises two stages: �1� random trial
displacements of the near-region atoms in the “external” field
of the frozen far regions and �2� random trial moves of the
far-region nodes in the external field of the frozen near re-
gion. The potential energy governing the acceptance of trial
moves is chosen so as to reduce the offending asymmetric
contributions. As the number of MC cycles increases, alter-
nating between the two stages, each region relaxes in the
external field due to its frozen counterpart. The whole system
thus relaxes self-consistently. In this fashion the impact of
ghost forces is mollified.

II. PROTOTYPAL TEST MODEL

A. Microscopic description

We simplify the analysis from the outset by restricting
consideration to the ideal model that we employ to test the
new SCF-HACG technique �see Sec. VI�. Schematized in
Fig. 1, the system consists of an Lx�Ly �Lz rectangular
prism of Lennard-Jonesium �12,6�. The potential �configura-
tional� energy U can be expressed as

U�r1,r2, . . . ,rN� = �
i=1

N

ui, �2.1�

where ri stands for the position of atom i and N is the total
number of atoms. The contribution ui of atom i is given by

ui = 1
2�

j�i

��rij�, rij � rc, �2.2�

where ��4���� /r�12− �� /r�6�, rij �ri−r j is the position of
atom i with respect to atom j, and rij = �rij� is the distance
between atoms i and j. In practice, the summation on j in Eq.
�2.2� is restricted by the inequality rij �rc, where rc is the
radius of a “cutoff” sphere centered on atom i. The Hamil-
tonian is

H = �
i=1

N

pi
2/2m + U�r1,r2, . . . ,rN� . �2.3�

Here pi=mṙi is the momentum conjugate to the position ri of
atom i, m is the mass of an atom, and the dot over the symbol
stands for the �total� derivative with respect to time.

A side view of the face-centered-cubic �fcc� structure of
the crystal in Fig. 1 depicts the atoms in their equilibrium
positions at T=0 K for the given density. This is the refer-
ence configuration used in the computer simulations de-
scribed in Secs. V and VI. Note that in the reference con-
figuration every atom is subject to the same environment as
every other atom. All ui �see Eq. �2.2�� are therefore equal
and U=Nu0, where u0 is the potential energy per atom.

To eliminate extraneous effects due to surfaces and
edges of the prism, we impose periodic boundary conditions
on the faces of the prisms in the x, y, and z directions. There
are n� unit cells along the � direction ��=x ,y ,z�; L�=n�a,
where a is the cell constant. Thus, the total number of atoms
is N=4nxnynz and the number density is �=N /V=4/a3.

B. Thermodynamics

The controlled thermodynamic state variables are the
side lengths L�, the absolute temperature T, and the number
of atoms N. For given fixed values of these independent state
variables the Helmholtz energy F=E−TS �where E is the
internal energy and S is the entropy� is minimum when the
system is in a state of thermodynamic equilibrium. Gibbs’s
fundamental relation governing quasistatic �reversible� trans-
formations of the system is

dF = − SdT + �dN + dW , �2.4�

where � stands for the chemical potential and dW for the
mechanical work done by the system on the surroundings. If
we restrict our attention to work resulting from homoge-
neous expansion or contraction of the crystal, then dW can
be written as

dW = 	xxLyLzdLx + 	yyLxLzdLy + 	zzLxLydLz, �2.5�

where 	��, the �� component of the �global� stress tensor, is
the mean force per unit area applied to the surface of the
crystal that points in the � direction. From Eqs. �2.4� and
�2.5� we deduce

FIG. 1. Schematic side view �in positive y direction� of Lennard-Jones
�12,6� crystal. Atoms depicted in equilibrium positions at T=0 K in near
region �inner slab� by open circles and in far regions �outer slabs� by
crosses; nodes in far regions represented by filled circles. The open triangles
on top and right boundaries signify periodic images of atoms �nodes�.
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	xx =
1

LyLz
	 �F

�Lx



T,N,Ly,Lz

�2.6�

and similar relations for 	yy and 	zz. We define the global
mean stress by

	̄ = 1
3�

�

	��. �2.7�

C. Coarse graining

The crystal is partitioned into three slabs by the planes
z=nz�a and z= �nz�+nz��a so that the outer two slabs are of the
same thickness nz�a �nz� is the number of layers of unit cells
comprised by the outer slabs and nz� is the number of layers
of unit cells composing the inner slab, see Fig. 1�. Each of
the outer slabs is then further divided into rectangular prisms
by planes normal to the coordinate axes. The division is sym-
metrical about the midplane z=Lz /2. In the lateral �x ,y� di-
rections the partitioning planes �x=mxa, x=2mxa , . . .x= �nx

−mx�a; y=mya, y=2mya , . . .y= �ny −my�a, where nx and ny

are integer multiples of mx and my, respectively, i.e., nx

=kxmx and ny =kymy� create �kxky� mxa�mya�nz�a rectangu-
lar prisms in each outer slab. Planes perpendicular to the z
axis �z=mz1a, z= �mz1+mz2�a , . . .z=� j=1

kz−1mzja; z= �nz

−� j=1
kz−1mzj�a , . . .z= �nz−mz1�a, where kz is the number of di-

visions of the outer slabs� divide these prisms into yet
smaller “subprisms” of varying z dimension. The set of inte-
gers �mzi , i=1,2 , . . .kz� satisfies the constraint �i=1

kz mzi=nz�.
Finally, we coarse-grain the lattice under each of these sub-
prisms by inscribing six tetrahedral finite elements. The
nodes of the resulting mesh coincide with atoms at the ver-
tices of the subprisms �see Fig. 1�. The total number of sub-
prisms is 2kxkykz. Therefore the number of elements in the
whole mesh is Ne=12kxkykz. Because of the periodic bound-
ary conditions the number of independent nodes is kxky�2kz

+1�. Likewise, the number of atoms �not all dynamically
independent� contained by the whole system is 4nxnynz: Nb�
=2nxny�2nz�+1� in the bottom �outer� slab; N�=2nxny�2nz�
−1� in the inner slab; Nt�=4nxnynz� in the top �outer� slab. The
total number of atoms underlying the finite-element mesh is
N�=Nb�+Nt�.

Because we assume all elements are constant-strain ele-
ments, the �equilibrium� position ri of atom i under element
e is given in terms of the positions �Rk

e ,k=1,2 ,3 ,4� of the
nodes of e by

ri = �
k=1

4

Rk
eNk

e�i� , �2.8�

where the Nk
e�i� are linear interpolation functions that depend

on the reference configuration.21 Hence, we can express the
atomic configuration of the whole coarse-grained subsystem
economically in terms of the nodal configuration as

r�
�N�� = dR�

�Nn�, �2.9�

where r�
�N�� is the N��1 matrix of atomic ��=x ,y ,z� coordi-

nates and R�
�Nn� is the Nn�1 matrix of nodal � coordinates.

The elements of the N��Nn matrix d can be obtained from
the relation in Eq. �2.8�.

III. EFFECTIVE POTENTIAL ENERGY OF THE
COARSE-GRAINED SYSTEM

The classical-limit canonical partition function Q, which
provides the bridge between microscopic and macroscopic
descriptions of the system, is given formally by

Q = h−3N dpN drN exp�− H/kBT� . �3.1�

In Eq. �3.1� H stands for the Hamiltonian �see Eq. �2.3��,
rN= �r1 ,r2 , . . . ,rN� for the collection of positions of the at-
oms, pN= �p1 ,p2 , . . . ,pN� for the collection of conjugate mo-
menta, and h for Planck’s constant.

The partial coarse graining described above in Sec. II C
divides the atoms of the prototypal test model into two sub-
sets: primary atoms, which comprise the nodal atoms plus
the atoms of the near region, which do not lie under the
finite-element mesh; and secondary atoms, which are the
non-nodal atoms underlying the mesh.

A. Harmonic approximation

We now expand the configurational energy U�rN� in Tay-
lor’s series about the “minimum” configuration of secondary
atoms, keeping the primary atoms fixed in a given configu-
ration. In other words, we expand U about the configuration
r0

Nq of secondary atoms in which U is minimum when the
primary atoms are fixed in an arbitrary, but admissible, con-
figuration rNp, where Np and Nq are the respective numbers
of primary and secondary atoms. Thus, we obtain

U�rN� = U�rNp,rNq�

= U�rNp,0� + �
i=1

Nq

�
�

��U/�ri��0
ri�

+ 1
2�

i=1

Nq

�
�

�
j=1

Nq

�
�


ri���2U/�ri��rj��0
rj� + ¯ ,

�3.2�

where we neglect terms of degree higher than the second
�i.e., we make the harmonic approximation�. In Eq. �3.2� the
subscript 0 denotes the equilibrium �minimum� configuration
r0

Nq of secondary atoms, � and � label Cartesian components,
and 
ri�=ri�−ri�

0 is the � component of the displacement of
atom i from its equilibrium position. By definition, the forces
on the secondary atoms vanish in the equilibrium configura-
tion, where U is minimum with the fixed primary-atom con-
figuration. We can then recast Eq. �3.2� succinctly as

U�rN� = U�rNp,rNq� = U�rNp,0� + 1
2
xT · ��rNp� · 
x ,

�3.3�

where 
x stands for the 3Nq�1 matrix of Cartesian compo-
nents of secondary-atom displacements, � for the 3Nq

�3Nq matrix of “force constants,” and T for the transpose.
Note that � depends implicitly on the primary-atom configu-
ration. Substituting Eqs. �2.3� and �3.3� into Eq. �3.1� and
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performing the integrations over the primary momenta, we
get

Q = �−3Np drNp exp�− �U�rNp,0� + Fq�rNp��/kBT� ,

�3.4�

where ���h2 /2mkBT�1/2 and

Fq�rNp� � − kBT ln Qq�rNp� �3.5�

is the Helmholtz energy of the secondary subsystem in the
field of the primary subsystem in configuration rNp. The cor-
responding canonical partition function of the secondary sub-
system is

Qq�rNp� = h−3Nq dpNq drNq exp�− ��
i=1

Nq

pi
2/2m

+ 1
2
xT · ��rNp� · 
x�� kBT� . �3.6�

We can write Qq in terms of the normal-mode frequencies �i

as

Qq�rNp� = �
i=1

3Nq

kBT/��i�rNp� , �3.7�

where ��h /2. The normal-mode frequencies are obtained
in principle by a unitary transformation of the dynamical
matrix D�rNp��m−1��rNp�,

UTDU = ��2�d, �3.8�

where the subscript d signifies that �2 is diagonal. Combin-
ing Eqs. �3.5� and �3.7�, we obtain the effective potential
energy

Veff�rNp� � U�rNp,0� + Fq�rNp�

= U�rNp,0� + kBT�
k=1

3Nq

ln���k�rNp�/kBT� , �3.9�

which depends on the thermodynamic state.

B. Local harmonic approximation

Though the expression for Veff in Eq. �3.9� is exact
�within the harmonic approximation�, it is impractical, since
we cannot afford to compute all normal-mode frequencies of
the secondary subsystem for all admissible primary-atom
configurations that must be generated in the MC simulations
�see Sec. V�. We therefore resort to the local harmonic ap-
proximation, in which the atoms are taken to be independent
of one another �i.e., each atom is assumed to vibrate about its
equilibrium position as if its neighbors were fixed in their
equilibrium positions�.22 In this approximation D is block
diagonal and Eq. �3.8� can be recast as

Ui
TDiUi = ��i

2�d, i = 1,2, . . . ,Nq, �3.10�

where the subscript i refers to the ith atom and all matrices
are 3�3. Then Fq can be rewritten as

Fq�rNp� = kBT�
i=1

Nq

ln��
�=1

3

��i�/kBT� , �3.11�

where ��i� ,�=1,2 ,3� are the three local normal-mode fre-
quencies associated with atom i. We can write the product of
local normal-mode frequencies appearing in Eq. �3.11� as

�
�

�i� = �det��i
2�d�1/2 = �det�Ui

TDiUi��1/2 = �det Di�1/2,

�3.12�

where the last equality follows because Ui is unitary �i.e.,
Ui

T=Ui
−1�. Substitution of Eq. �3.12� into Eq. �3.11� yields

Fq�rNp� = 3kBT�
i=1

Nq

ln���det Di�1/6/kBT� . �3.13�

In the case of a perfect crystal this expression simplifies to

Fq�rNp� = 3NqkBT ln���det D�1/6/kBT� �3.14�

since all atoms are equivalent. The local dynamical matrix D
is given by

�D��� = m−1	 �2U

�ri��ri�



0
= m−1� �2

�ri��ri�
��

j�l

��rij���
0

,

�3.15�

where i denotes an atom of the infinite crystal that serves as
a reference and the summation on j includes all neighbors of
i that lie within the cutoff sphere of radius rc centered on i.
An analytical expression for D�� is derived in Appendix B.

C. Coarse-grained formula for the effective potential
energy

Since the deformation of a constant-strain element is ho-
mogeneous, which implies that the lattice underlying the el-
ement is that of a slightly strained perfect crystal, we can
express the dynamically constrained contribution to Veff �see
Eq. �3.9�� as

U�rNp,0� = �
i=1

N�

ui + �
e=1

Ne

N�
e ue, �3.16�

where N� is the number of atoms in the near region �inner
slab, see Fig. 1�, Na

e is the �total� number of atoms lying
under element e, ue is the potential energy per atom, and Ne

is the total number of elements. Likewise, we can write the
free-energy contribution Fq to Veff as

Fq = �
e=1

Ne

Nq
e fq

e , �3.17�

where fq
e is the Helmholtz energy per atom and Nq

e is the
number of secondary �i.e., non-nodal� atoms under element
e. From Eqs. �3.9�, �3.16�, and �3.17� we obtain the coarse-
grained approximation
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Veff�rNp� = �
i=1

N�

ui + �
e=1

Ne

Na
eue + �

e=1

Ne

Nq
e fq

e . �3.18�

The expression for ui is given by Eq. �2.2�. It remains to
calculate ue and fq

e.
Mixed local-non-local approximation. In the original QC

method2 the computation of ue depends on the status of ele-
ment e �i.e., whether e is local or nonlocal, according to the
criteria laid down in Sec. I B�. If e is local, then ue is taken to
be equal to u for the perfect �infinite� crystal at T=0 K sub-
ject to the same strain as the piece of crystal under e. From
Eq. �2.2� we have

ue = ui = 1
2�

j�i

��rij�, rij � rc �3.19�

since all atoms of the perfect crystal are equivalent. Here the
index i refers to any atom of the infinite perfect crystal taken
as a reference and the summation on j runs over all neigh-
bors of i that lie within the cutoff sphere. On the other hand,
if element e is nonlocal, then ue is approximated by the same
formula �Eq. �3.19��, but the reference atom is now taken to
be the atom nearest the centroid of e and the summation on j
to run explicitly over the neighbors of i within the cutoff
sphere, regardless of which elements they lie under or of
whether they lie in the near region �inner slab� or not.

For a local element fq
e should, by analogy with the origi-

nal QC method, be taken to be equal to f for the perfect
infinite crystal under the same strain as the part of the crystal
under e. By analogy with Eq. �3.14� we have for the perfect
crystal

fq
e = f = F/N = 3kBT ln���det D�1/6/kBT� �3.20�

because of the equivalence of all atoms. The dynamical ma-
trix D, which refers to any atom i as a reference, is given by
Eq. �3.15�. For a nonlocal element one should use the same
formula �Eq. �3.20��, taking the reference atom to be the
“centroid” atom and evaluating D according to Eq. �3.15� by
summing over neighbors explicitly.

Note that the computation of ue�fq
e� for local elements is

much less demanding than that for nonlocal elements. If an
element is local, the reference atom “sees” only neighboring
atoms that lie under itself. They belong to the same uni-
formly strained crystal and their positions can be calculated
from a knowledge of the positions of the nodes of that ele-
ment alone. In contrast, if an element is nonlocal, then the
reference atom sees neighbors not only under itself but also
under all neighboring elements intersected by the cutoff
sphere. The positions of atoms under intersected elements of
course depend on the positions of the nodes of all those
elements.

All-local approximation. In a prior article,13 in which we
proposed the free-energy functional method as an exact
nonzero-temperature analog of the original QC method,2 we
observed discontinuities in the local stress in regions of a
homogeneous crystal where local and nonlocal elements are
juxtaposed, or in regions where the elements are strictly non-
local but vary in their dimensions. These discontinuities re-
flect so-called “ghost forces,” which are spurious forces on

the nodes that give rise to false minima in the free-energy
functional. They are due to asymmetric contributions to Veff

from conterminous local and nonlocal elements or from con-
tiguous nonlocal elements that differ in their dimensions.

Although prescriptions to counteract ghost forces have
been suggested,9,10,20 all of these necessitate the explicit han-
dling of nonlocal elements, which is extraordinarily intensive
computationally. We proposed an alternative remedy for the
ghost-force malady: just regard all elements as if they were
local, irrespective of their actual status.13 This prescription,
which we call the “all-local” approximation, was successful
in tests of the free-energy functional technique on our proto-
type: the 3D Lennard-Jones �12,6� crystal. We therefore em-
ploy it here again in testing the HACG methods �see Secs. V
and VI�.

IV. COARSE-GRAINED THERMOMECHANICAL
PROPERTIES

Supposing that the controlled thermodynamic state vari-
ables are �T ,N ,Lx ,Ly ,Lz� �see Eqs. �2.4� and �2.5��, we per-
form our statistical-thermodynamic analysis within the
framework of the canonical ensemble, whose characteristic
function, the Helmholtz energy F�T ,N ,Lx ,Ly ,Lz�, can be ex-
pressed in terms of the canonical partition function Q as

F = − kBT ln Q , �4.1�

where Q is given by Eq. �3.1�.

A. Global stress

From Eqs. �4.1�, �2.6�, and �3.4� we deduce

	xx = −
kBT

LyLz

1

ZNp

	 �ZNp

�Lx



T,N,Ly,Lz

�4.2�

and similar expressions for the yy and zz components of the
global stress tensor, where the configurational integral ZNp

is
defined by

ZNp
� drNp exp�− Veff�rNp�/kBT� �4.3�

and Veff is given by Eq. �3.9�. Following the standard
procedure,23 we evaluate the partial derivative in Eq. �4.2�,
obtaining

	xx = −
NpkBT

V
+

1

V��
i=1

Np �Veff

�xi
xi�

= −
NpkBT

V
+

1

V
��

i=1

N�
�Veff

�xi
xi�

+
1

V��
k=1

Nn �Veff

�Xk
Xk� . �4.4�

Here V=LxLyLz stands for the volume of the system. The
brackets signify an ensemble average of the enclosed dy-
namical quantity. In general,
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�G� �  drNp�B�rNp�G�rNp� , �4.5�

where the configurational distribution function is defined by

�B�rNp� � exp�− Veff�rNp�/kBT�ZNp

−1 . �4.6�

Now exploiting the relation in Eq. �2.9�, we can recast the
summation over nodes appearing in Eq. �4.4� generally as

�
k=1

Nn �Veff

�Rk�

Rk� = �
i=1

N�
�Veff

�ri�
ri�, �4.7�

where N� is the number of atoms underlying the coarse-
graining mesh.14 Inserting Eq. �4.7� into Eq. �4.4�, we can
express the xx component of the stress tensor strictly in terms
of atomic coordinates,

	xx = −
NpkBT

V
+

1

V��
l=1

N
�Veff

�xl
xl� . �4.8�

Analogous expressions obtain for the yy and zz components.
We turn next to the derivation of an explicit formula for

the ensemble average in Eq. �4.8�. From Eq. �3.18� we have

��
l=1

N
�Veff

�rl�
rl��

= �
i=1

N� ��
l=1

N
�ui

�rl�
rl�� + �

e=1

Ne

Na
e��

l=1

N
�ue

�rl�
rl��

+ �
e=1

Ne

Nq
e��

l=1

N
�fq

e

�rl�
rl��

= �
i=1

N�

�Wi�� + �
e=1

Ne

Na
e�We�� + �

e=1

Ne

Nq
e�Xe�� , �4.9�

where the second line defines for convenience the quantities
Wi�, We�, and Xe�, which are evaluated explicitly in terms of
the atomic interactions in Appendix C. Combination of Eqs.
�4.8� and �4.9� gives

	xx = −
NpkBT

V

+
1

V
��

l=1

N�

�Wix� + �
e=1

Ne

Na
e�Wex� + �

e=1

Ne

Nq
e�Xex�� .

�4.10�

This is the xx component of the “global” stress. Like formu-
las for the yy and zz components hold. Note that 	�� refers to
the whole system. The global mean stress is given by Eq.
�2.7�.

B. Local stress

Following previous authors,24,25 we define the local
stress at an atom �more precisely, in the volume of an atom�
or in an element by formally recasting the global expression
in Eq. �4.10� as

	��V = �
i=1

N� �−
kBT

Vi
+

�Wi��
Vi

�Vi

+ �
e=1

Ne �−
Nn

ekBT

Ve
+

Na
e�We��

Ve
+

Nq
e�Xe��
Ve

�Ve,

�4.11�

where Vi and Ve are, respectively, the “volumes” of atom i
and element e and Nn

e is the number of nodal atoms under e.
We identify the coefficient of Vi or Ve as the �� component
of the local stress tensor,

	i,�� � −
kBT

Vi
+

�Wi��
Vi

,

�4.12�

	e,�� � −
Nn

ekBT

Ve
+

Na
e�We��

Ve
+

Nq
e�Xe��
Ve

.

Here Ve is just the volume of a tetrahedron, which is express-
ible in terms of its nodal coordinates �Rk

e=Xk
eex+Yk

eey +Zk
eez,

k=1,2 ,3 ,4� as

Ve = 1
6�

1 1 1 1

X1
e X2

e X3
e X4

e

Y1
e Y2

e Y3
e Y4

e

Z1
e Z2

e Z3
e Z4

e
� . �4.13�

The �instantaneous� volume of atom i is more difficult to
reckon. One possibility would be to approximate Vi by the
mean volume of atoms within a “control sphere” centered on
i.26 Another, more exacting, procedure would be to employ
Voronoi tessellation, in which atom i occupies a polyhedron
whose faces bisect line segments connecting i to its nearest
neighbors.27 However, as both of these procedures are rather
intensive computationally, we adopt the crude approximation
that the volume assigned to every atom is fixed at Vi=�−1,
the reciprocal of the global density. By analogy with Eq.
�2.7� we define the local mean stress at atom i and in element
e, respectively, by

	̄i = 1
3�

�

	i,��,

�4.14�
	̄e = 1

3�
�

	e,��.

The definition of local stress that we adopt here is prob-
lematic in several respects. One is the approximation Vi

=�−1, which clearly is accurate only in homogeneous re-
gions, where every atom is subject to the same environment
�e.g., homogeneously strained perfect crystal�. As the degree
of heterogeneity increases, the accuracy of the approximation
decreases accordingly. Further the definition appears to be
equivalent to what is customarily referred to as the “virial
stress,” questions about the interpretation of which as a true
mechanical stress have been raised recently.28 Although these
concerns must yet be resolved, they need not preclude our
usage of the defined local stress in the present context. Our
specific purpose is to determine whether the HACG methods
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generate atomic configurations of the system that are so
weighted as to yield �ensemble average� local properties in
agreement with the “exact” ones �i.e., those of the system
treated completely at the atomistic scale�. For this purpose
we choose a local property, namely, the local stress as de-
fined in Eq. �4.12�, that is highly sensitive to the configura-
tional weighting. In states of thermodynamic equilibrium all
atoms of the prototype are equivalent in that they are all
subject to exactly the same environment. The local mean
stress 	̄i�	̄e� is therefore uniformly constant and equal to the
global mean stress 	̄ throughout the system. This observation
forms the basis of our quantitative assessment of the perfor-
mance of the HACG techniques. Other local properties such
as number density or potential-energy density might also
serve our purpose, although they seem to offer less sensitive
measures.

V. STANDARD HACG COMPUTER SIMULATION

A. General procedure

In the limit T=0 K we employ the conjugate gradient
technique 29 to minimize the �effective� potential energy. The
initial configuration is “random” �i.e., it is generated from
the reference configuration �see Fig. 1� by giving each atom
�node� a random displacement within a small cube centered
on the atom �node��.

In case T�0 the Helmholtz energy is effectively mini-
mized by means of the Metropolis Monte Carlo procedure.15

The initial configuration is taken to be the “randomized”
final �minimum potential� configuration obtained at T=0 K.
A MC cycle consists of N� sequential random trial displace-
ments of atoms in the inner slab �near region� followed by Nn

sequential random displacements of nodes in the outer slabs
�coarse-grained far regions�. The effective potential energy
governing acceptance of trial moves is given by Eq. �3.18�.
Separate maximum displacements �drmax� for atomic and
nodal moves are periodically adjusted so that about 50% of
attempted moves are accepted. A typical MC run consists of
105 cycles. The first 2�104 “equilibration” cycles are dis-
carded and the remaining ones are used to compute ensemble
averages. For the latter purpose the MC sequence is sampled
every cycle.

To ascertain the reliability of the HACG techniques, we
simulate the same thermodynamic states of the system in the
fully atomistic limit and take the “atomistic” properties to be
exact.

All computations are performed, and all results are
stated, in dimensionless units based on the parameters of the
Lennard-Jones potential �see Appendix B�.

B. Fully nonlocal treatment at T=0 K

We test the standard HACG methodology17 by applying
it first to the several prototypal systems whose parameters
are listed in Table I. Since the cutoff radius rc�=2.5� is
greater than one-half of the smaller �x ,y� overall dimension
of the elements, 3a /2��2.25�, all elements are strictly non-
local and ue and fq

e are computed according to the mixed
local-non-local formulation described in Sec. III C. Figure 2
displays a plot of local mean stress versus z for system I at

T=0. The discrete points correspond to values of the local
mean stress �	̄i or 	̄e, see Eq. �4.14�� at atoms or in elements.
These values are projected onto the z axis at the position of
the atom or of the centroid of the element. The plot may
therefore be multivalued in some locations because of the
variation of the stress in the x and y directions. One would
expect the plot to be a horizontal line whose intercept coin-
cides with the value of the global mean stress �indicated by
the horizontal dashed line in Fig. 2�, since the stress in a
perfect crystal in a state of thermodynamic equilibrium
should be uniform. We observe, however, that 	̄i�	̄e� is uni-
formly equal to the global value 	̄ only in the far regions of
the crystal well removed from the near-far interfaces, in the
vicinity of which strong discontinuities appear. Note that the
symmetry of the plot about the midplane �z /a=Lz /2a=18�
suggests that the numerical method is properly implemented,
even though use of Eq. �3.18� somehow gives rise to the
observed discontinuities in 	̄i�	̄e�.

Although 	̄e is very nearly equal to 	̄ in the two outer-
most subprisms �top or bottom slab�, it exhibits discontinui-
ties at the boundaries between the second and third sub-
prisms and between the third subprism and the inner slab
�atomistic near region�. These discontinuities are traceable to

TABLE I. Parameters of system pictured in Fig. 1. In all cases the following
are fixed, unless otherwise indicated: Lx=Ly =6a, nx=ny =6, nz�=6, kz=3,
N�=792, and �=1.190 �a=1.498�.

System I II III

mx �=my� 3 2 3
kx �=ky� 2 3 2
mz1 8 8 8
mz2� 4 4 4
mz3 3 3 9
nz� 15 15 21
Ne 144 324 144
Nn 28 63 28
Np 820 855 820
N 5184 5184 6912

FIG. 2. Local mean stress �	̄� 	̄e , 	̄t� �Eq. �4.14�� vs z /a for system I �see
Table I� at T=0, computed treating elements according to their true status
�nonlocal�. The vertical dotted lines indicate positions of planes z=nz�a and
z= �nz�+nz��a of interfaces between near and far regions. In far regions
�z�nz�a ,z��nz�+nz��a� discrete points �	̄e� plotted at positions of centroids of
elements; in near region �nz�a�z� �nz�+nz��a� discrete points �	̄i� plotted at
positions of atoms. The horizontal dashed line indicates “exact” global mean
stress computed in fully atomistic limit.
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ghost forces �see discussions in Secs. III C and IVD�, which
are due to asymmetric contributions to U�rNp ,0� of two
types: �1� from conterminous nonlocal elements of different
dimensions at the boundary between the second and third
subprisms and �2� from elements in the third subprism and
atoms in the near region.

C. All-local approximation

According to the discussion in Sec. III C, we were able,
in the context of the free-energy functional technique, to
eliminate the impact of ghost forces at nodes shared by local
and nonlocal elements, or by nonequivalent nonlocal ele-
ments, simply by treating all elements as if they were local,
regardless of their true status. The result of our attempt to do
so in the present context of the standard HACG simulation is
shown in Fig. 3, where we plot local mean stress versus z for
the same system �I� to which Fig. 2 pertains, except that we
employ the “all-local” approximation to Veff. Although the
local stress still exhibits discontinuities in elements border-
ing the near-far interfaces and at atoms in the two layers
closest to the interfaces, their magnitude is much reduced.
We therefore utilize the all-local approximation henceforth.

D. Origin of ghost forces

The all-local approximation clearly does not eliminate
ghost forces, as the plot in Fig. 4 indicates. The essential
reason for its failure can be seen by explicitly calculating the

ghost force on an atom at a near-far interface in the perfect
crystal at T=0. This is the true state of minimum potential
energy; the forces on all atoms, which are in equivalent en-
vironments, should be zero. However, consider an atom �l�
sufficiently close to an interface that it interacts with atoms
lying under the contiguous �interfacial� elements, as illus-
trated in Fig. 1. From Eqs. �3.18� and �2.2� we compute the
force acting on l,

fl = − �rl
Veff = 1

2��
k�l

���rkl�rkl/rkl + �
k�l

N�

���rkl�rkl/rkl� .

�5.1�

Here the prime on �� denotes the derivative with respect to
the argument. Note that the first summation on the right side
of Eq. �5.1� runs over all atoms k lying within the cutoff
sphere, whereas the second runs over only atoms within the
cutoff sphere that lie in the near region �inner slab�. Were it
not for this asymmetry, we could combine the sums to obtain

�fl�exact = �
k�l

���rkl�rkl/rkl, �5.2�

which is the expression for the exact force on l. On account
of the symmetry of the perfect crystal, the terms in the sum
in Eq. �5.2� cancel in pairs to yield �fl�exact=0. Because of the
absence of counterbalancing terms in the second sum in Eq.
�5.1�, fl does not vanish. It is indeed the spurious ghost force
that arises on account of the noted asymmetry at the inter-
face. In essence, one-half of the potential energy of interac-
tion between the atom l and its neighbors under the contigu-
ous elements is subsumed into ue, which does not change as
l moves. Obviously, a near-region atom sufficiently distant
from the interface that it interacts only with other near-region
atoms “feels” no ghost force.

When an interfacial node is moved, the �equilibrium po-
sitions of� atoms underlying all elements that share the node
move in concert. However, the atoms in the contiguous near
region remain stationary. This asymmetry leads to a net
�ghost� force on the node. When a node located sufficiently
far away from the interface is moved, then the distortions of
the �assumed� local elements that share the node compensate
one another so as to yield no net force on the node.

As a consequence of ghost forces the configuration de-
termined by minimizing the approximate Veff at T=0 is not
that of the perfect crystal, but rather is distorted. The distor-
tion is of course reflected in the discontinuities in the local
stress.

VI. SELF-CONSISTENT-FIELD HACG METHODOLGY

One possible recipe to neutralize ghost forces at T=0 is
to apply a constant external “dead load” fi

ex to each node and
atom such that minimization of a modified effective potential
energy

Veff� = Veff + �
i=1

Np

fi
ex · ui �6.1�

yields the correct configuration. In Eq. �6.1� ui stands for the
displacement of the atom or node from its reference position

FIG. 3. Same as Fig. 2, except that all elements treated as local.

FIG. 4. z component of “ghost force” on node �atom� vs z /a for system I
�see Table I�, in which atoms are in configuration of perfect crystal at T
=0. The vertical dotted lines define regions �see Fig. 2�. Discrete points
plotted at positions of atoms or nodes.

064705-9 Hybrid treatment of multiscale processes in heterogeneous materials J. Chem. Phys. 125, 064705 �2006�

Downloaded 13 Apr 2007 to 129.93.16.206. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



in the perfect crystal at T=0. The condition for a minimum
of Veff� is

fl� = − �rl
Veff� = − �rl

Veff − fl
ex = 0, l = 1,2, . . . ,Np.

�6.2�

Therefore, the dead load on atom �node� l should be
fl

ex=−�rl
Veff= fl, which is just the ghost force on l. Now

minimization of Veff� leads to the correct configuration at T
=0 and consequently to a uniform local mean stress.

It is unfortunate that one does not in general know a
priori the correct minimum �T=0� configuration of the sys-
tem. Moreover, our attempts to extend this “dead-load”
scheme to nonzero temperature, using the ghost forces deter-
mined at T=0 as an approximation, failed. Many additional
attempts to palliate the spoiling effects of ghost forces led us
eventually to what we dub as the “self-consistent-field”
�SCF� HACG method.

In the SCF-HACG Monte Carlo procedure one MC
cycle comprises two stages. In stage 1 the Nn nodes of the
coarse-grained far regions are held fixed while the N� near-
region atoms of the inner slab are sequentially subjected to
random displacements. The potential energy controlling ac-
ceptance of trial displacements is taken to be

U1 = �
i=1

N�

ui + �
j=1

N�

ui, �6.3�

where ui is given by Eq. �2.2�. The second summation in Eq.
�6.3� runs over only the N� far-region atoms that interact
with near-region atoms �i.e., those far-region atoms i for
which rij �rc, where j refers to a near-region atom�. The
change in the potential energy associated with a trial move-
ment of atom i is


U1 = 
��
j�i

��rij��, rij � rc. �6.4�

Note that this expression, which follows from Eqs. �2.2� and
�6.3�, is identical to the one obtained from the original po-
tential energy �Eq. �2.1��. That is, 
U1 is just the change in
the potential energy of atom i displaced in the field of all
other atoms j, which remain stationary. In stage 2 the atoms
in the near region are kept fixed in the final configuration of
stage 1 while the Nn nodes are given random trial displace-
ments sequentially. We assume the potential energy govern-
ing acceptance of nodal movements is

U2 = �
e

Na
eue + �

e

Nq
e fq

e − �
e

��
i

�fi
e · di

e, �6.5�

where fi
e is the “external” force on atom i under element e

due to near-region atoms and di
e is the displacement of i from

its reference position at the start of stage 2. The force is
given by the exact expression

fi
e = − �ri

U = − �
j�l

���rij�rij/rij, rij � rc, �6.6�

where the summation of j runs over only those atoms that lie
in the near region within the cutoff sphere. The primes on the
summation symbols in Eq. �6.5� serve to emphasize the re-
striction that atom i lie within a distance rc from the closest

near-region atom. The fi
e are kept fixed �i.e., “dead loads”� at

the initial values throughout stage 2. This approximation,
which amounts to the Taylor series expansion of the exact
potential energy �as a function of the coordinates of the un-
derlying atom� truncated at first order, should be reasonable
in light of the small displacements of the nodes compared
with the displacements of atoms in stage 1.

The change in the potential energy accompanying the
trial displacement of a node can be expressed as


U2 = �
e

�Na
e
ue + �

e
�Nq

e
fq
e − �

e
��

i
�fi

e · 
di
e, �6.7�

where the primes on the first two summations on e signify
the restriction to elements sharing the moved node and 
x
denotes the change in the quantity x. Note that the restriction
on the sums to elements that share the moved node reflects
the “all-local” approximation. The first two terms of Eq.
�6.7� give the change in the “internal” �effective� potential
energy of the coarse-grained far regions; the third term rep-
resents the change in the potential energy due to the external
field arising from the near region.

Results of the SCF-HACG simulation of system I �see
Table I� at T=0 are shown in Fig. 5�a�. Comparison of Fig. 3
with Fig. 5�a� reveals that the SCF method essentially elimi-
nates the discontinuities in local mean stress at near-region
atoms close to the near-far interfaces. On the other hand, a
small discontinuity in the local stress remains in elements
that border the interface. Figure 5�b�, which displays a plot
of local mean stress versus z for the same system �I� at T
=0.30, shows that the SCF technique works comparably well
at nonzero temperature, although there is now evidence

FIG. 5. Same as Fig. 2, except system simulated by SCF HACG scheme. �a�
T=0; �b� T=0.3.
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�smearing of discrete points due to variation of 	̄i in the x and
y directions� of greater nonuniformity of local stress in the
near region. We note also that the slight discrepancy between
coarse-grained and exact values is due to the limitations of
the harmonic approximation.

The effect of finer partitioning of the far regions in the x
and y dimensions is shown in Fig. 6, where we plot 	̄i�	̄e� vs
z for system II defined in Table I. Comparing Fig. 6 with Fig.
5, we observe that the results are essentially unchanged. The
considerable additional expense incurred by use of a finer
coarse-graining mesh does not yield a significant return in
accuracy. In contrast, coarsening the mesh in the z direction
at the near-far interfaces leads to a distinct gain in accuracy
for less computational effort, as shown in Fig. 7, which re-
fers to system III �see Table I�. We note that the main im-
provement appears in 	̄e for the elements that border the
interfaces. That these elements are more nearly local in the z
dimension, which is indicated by the greater distances of the
centroids from the interfaces, may rationalize the improve-
ment. It is encouraging to know that one may be able to
employ truly local elements at near-far interfaces, as long as
the integrity of the near region in the vicinity of the inter-
faces is maintained during the process of interest.

VII. APPLICATION OF THE SCF-HACG METHOD
TO BICRYSTAL

To this juncture we have presented only the results of
tests of the new SCF-HACG scheme on an idealized system
whose thermodynamic states and their properties are known.
Our ultimate aim is to utilize the method in studies of more
complex systems of practical import, such as polycrystalline

films or fibers, which are in general not in states of thermo-
dynamic equilibrium. To get some idea of the viability of the
SCF-HACG MC technique in a practical setting, we apply it
here to the antisymmetrically tilted bicrystal, which is fre-
quently employed as a model for investigation of the prop-
erties of grain boundaries.30

Our prototypal bicrystal, which is pictured in Fig. 8, is
constructed as follows. A perfect Lennard-Jones �12,6� crys-
tal is cleaved along the �201� plane and a second such crystal

is cleaved along the �201̄� plane. “One-half” of each crystal
is discarded, the remaining halves are rotated relative to each
other about the y axis ��010� direction� by the misorientation
angle �, and the �201� face of one crystal is superposed on

the �201̄� face of the other. The interface is oriented parallel
with the x-y plane and the irregular chunk is trimmed to
create the prism shown in Fig. 8. The far regions are coarse
grained symmetrically about the interface in a manner simi-
lar to that described in Sec. II for the single crystal. Periodic
boundary conditions are imposed in all dimensions.

Plots of 	̄i�	̄e� vs z are displayed in Fig. 9. �We note in
passing that the macroscopic strain due to the bonding of the
two crystals is uniaxial in the z direction.� As Fig. 9 indi-
cates, not only do relatively small residual discontinuities
remain at the near-far interfaces, as they do in the single
crystal �see Figs. 5–7�, but strong oscillations in local stress
confined close to the center of the near region also now ap-
pear. These sharp variations reflect the truly heterogeneous
character of the grain boundary. Note that the scale of the
abscissa in Fig. 9 is expanded so that the detailed structure of
the local stress in the grain boundary can be discerned. In the
homogeneous far-region ranges �0�z�14� and �26�z

FIG. 6. Same as Fig. 5, except for system II �see Table I�. FIG. 7. Same as Fig. 5, except for system III �see Table I�.
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�40�, which are not visible in the plots, 	̄e is constant and
equal to 	̄i in the homogeneous near-region ranges �16�z
�18� and �22�z�24�. Moreover, 	̄i�	̄e� in these regions is
very close to, but slightly higher �more negative� than, 	̄ for
the single crystal from which the bicrystal is constructed. We
ascribe this to a slight compression of those regions upon
relaxation of the strained interface �where some atoms are
initially crowded very close together� toward a state of “lo-
cal” equilibrium.

Care should be taken in the interpretation of the plots in
Fig. 9. In ranges of z sufficiently removed from the grain
boundary, where the atoms are in essentially equivalent en-
vironments and the atomic volume is constant, 	̄i is constant
and equal to the global mean stress 	̄. However, in the grain
boundary, where local density varies strongly and the atoms
are subject to disparate local surroundings, the implicit as-
sumption of a constant atomic volume is obviously wrong.
Therefore the numerical values of 	̄i in the grain boundary
should be regarded with caution. Consider, however, the bi-
crystal at T=0 and compute the “average normal stress” at a
cross section parallel with the x-y plane, which we define as
the z component of the total force on the atoms on one side
of the plane �of the cross section� due to atoms on the other
side, divided by the cross-sectional area. If the bicrystal is in
a mechanically stable �or metastable, see discussion below�

state, then the magnitude of the average normal stress at any
cross section should be the same. We have computed the
defined average normal stress, finding it to be sensibly con-
stant as the z coordinate of the cross section traverses the
grain boundary. We therefore conclude that the SCF-HACG
method describes a physically realistic state of the bicrystal.
�We note in passing that our definition of “average normal
stress” can be viewed as the atomistic analog of the �mean�
Cauchy stress defined at the continuum level.28�

We emphasize that the system cannot be in a state of true
equilibrium, that is, in a state of minimum Helmholtz energy
at the given fixed density and temperature, since this state
corresponds to the original perfect single crystal. The state of
the bicrystal is necessarily metastable. On the time scale of
our observation, determined in essence by the number of MC
cycles, as well as the nature of the allowed trial displace-
ments �i.e., short, single-atom, or -node displacements�, the
system is frustrated in reaching the true equilibrium state.
Nevertheless, the “frustrating” MC procedure leads to a state
of local equilibrium that resembles the actual metastable
state that would be observed on the experimental time scale.
Our objective is, of course, to mimic this latter state.

VIII. CONCLUDING REMARKS

The self-consistent-field hybrid atomistic-coarse-grained
�SCF-HACG� technique presented here allows the treatment
of multiscale thermomechanical processes in heterogeneous
systems that cannot be handled by the original quasicon-
tinuum method. The new hybrid scheme has three salient

FIG. 8. Side view �along positive y axis� of Lennard-Jones �12,6� bicrystal
with misorientation angle �=126° 52�. Only top layer of atoms shown in
initial configuration. The open circles represent atoms in near region,
crosses atoms in far regions, and filled circles nodes. The open triangles on
top and right boundaries stand for periodic images. Dimensions in x and z
directions given in units of �5a and in y direction in units of a: Lx

=3��5a�; Ly =6�a�; Lz=18��5a�; kx=3, mx=1; ky =3, my =2; kz=3, mz1=4,
mz2=2, mz3=1; nz�=4; nz�=7; and nz=18.

FIG. 9. Local mean stress �	̄� 	̄e , 	̄i� vs z for bicrystal described in Fig. 8.
�a� T=0; �b� T=0.3. The vertical dotted line in center represents plane in

which �201� and �201̄� faces initially superposed. The horizontal line per-
tains to single crystal at same density.
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features. �1� Only the portion of the system whose structural
integrity is preserved during the process is coarse grained;
the remainder is described strictly at the atomic scale. This
feature conveniently permits the treatment of processes �e.g.,
thin-film lubrication� involving fluid-solid interfaces. �2� The
thermal motion of non-nodal atoms underlying the coarse-
graining mesh is properly accounted for by an effective ther-
modynamic state-dependent potential energy. �3� The use of
a two-stage Monte Carlo cycle, in which the potential energy
controlling the acceptance of trial movements depends on the
stage, mitigates the impact of “ghost forces.”

The new SCF-HACG technique was first tested on an
ideal system whose properties can be computed by indepen-
dent methods: a pure Lennard-Jones �12,6� crystal. The crys-
tal is partitioned into three slabs such that two thick outer
slabs sandwich a thinner inner slab. The outer slabs �far re-
gions� are coarse grained; the inner one �near region� is
treated explicitly at the atomic scale. The presence of near-
far interfaces engenders artificial heterogeneities in the di-
mension normal to the interfaces. These heterogeneities are
manifest in the local stress. If we employ the standard
HACG procedure �see Sec. V� to simulate the crystal, we
find that the local stress exhibits discontinuities near the in-
terfaces. We note, however, that in regions sufficiently far
removed from the interfaces the local stress is uniform, as it
should be in the crystal in thermodynamic equilibrium. The
value of the local stress also agrees with the “exact” global
stress for the given thermodynamic state. In other words,
while the standard HACG method functions well in regions
far enough from the interfaces, it breaks down in regions
close to the interfaces.

This breakdown is traceable to ghost forces on atoms
�nodes� close to the near-far interfaces, which are due to
errors in the forces on atoms �nodes� that arise from the
approximate form of the coarse-grained effective potential
energy. Investigation of various approaches to the palliation
of ghost forces led us eventually to the most successful one:
the SCF-HACG method. Use of the exact form of the poten-
tial energy �Eq. �2.1�� to compute 
U1 in stage 1 and fi in
stage 2 effectively eliminates the imbalance of forces at the
near-far interfaces that results from direct use of the coarse-
grained form �Eq. �3.18�� in the standard HACG MC proce-
dure. The two approximations invoked in stage 2, namely,
the “all-local” approximation to ue and the constancy of the
“external” forces fi, are presumably responsible for the small
residual errors.

Application of the SCF-HACG method to a truly hetero-
geneous system, namely, the Lennard-Jones bicrystal, gives
results in conformity with one’s expectations. Even though
small residual nonphysical discontinuities remain in the vi-
cinity of the near-far interfaces, the truly heterogeneous grain
boundary, which is entirely contained within the atomistic
near region, seems to be properly characterized. On one
hand, the sharp variation of the local mean stress mirrors the
heterogeneity of the grain boundary. On the other hand, the
constancy of the “average normal stress” throughout the
grain boundary reflects the stability of the bicrystal.
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APPENDIX A: ANALYTICAL EXPRESSION
FOR �rij /�rl�

The derivations presented in appendixes B and C call for
an explicit expression for the partial derivative �rij /�rl�,
where rl� is the � Cartesian component of the position of
atom l and rij = �ri−r j�. We start with the relation

rij
2 = �

�

rij�
2 , �A1�

where

rij� = ri� − rj�. �A2�

The partial derivative of Eq. �A1� yields

�rij

�rl�
= rij

−1�
�

rij�
�rij�

�rl�
. �A3�

From Eq. �A2� we have

�rij�

�rl�
=

�ri�

�rl�
−

�rj�

�rl�
= ��il − � jl����, �A4�

where � represents the Kronecker delta. Substituting Eq.
�A4� into Eq. �A3� gives

�rij

�rl�
= rij

−1rij���il − � jl� . �A5�

APPENDIX B: ANALYTICAL EXPRESSION
FOR D��

To obtain a closed expression for the dynamical matrix
elements D��, we begin with Eq. �3.15�

D�� = m−1�
j�i

�

�ri�

���rij�
�ri�

, �B1�

where it is implicit that the expression is to be evaluated
finally at the equilibrium configuration. The first partial de-
rivative can be written as

��

�ri�
= ���rij�

�rij

�ri�
= ���rij�rij

−1rij�, �B2�

where the prime means the total derivative with respect to
the argument �rij� and the second line depends on Eq. �A5�.
Inserting Eq. �B2� into Eq. �B1�, we obtain
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D�� = m−1�
j�i

�

�ri�
����rij�rij

−1rij��

= m−1�
j�i

�����rij�rij
−2 − ���rij�rij

−3�rij�rij�

+ ������rij�rij
−1� . �B3�

We now use Eqs. �2.1� and �2.2� to calculate expressions for
the required derivatives of � and substitute them into Eq.
�B3� to get

D�� = 24��−2m−1�
j�i

�aij
* rij�

* rij�
* − bij

* ���� , �B4�

where

aij
* � 28rij

*−16 − 8rij
*−10,

�B5�
bij

* � 2rij
*−14 − rij

*−8,

and

rij
* � rij/� . �B6�

We perform the computer simulations, and state the re-
sults, in reduced �dimensionless� units based on the Lennard-
Jones �12,6� interatomic potential. Distance is given in units
of �, mass in units of the mass m of the atom, energy in units
of �, time in units of �m�2�−1�, and temperature in units of
�kB

−1. An asterisk attached to a symbol signifies a reduced
dimensionless quantity. From Eq. �B4� we see that in dimen-
sionless units the dynamical matrix elements are

D��
* = 24�

j�i

�aij
* rij�

* rij�
* − bij

* ���� . �B7�

Now casting Eq. �3.20� in dimensionless units, we have

fq
e* = fq

e/� = 3T* ln��*�det D * �1/6/T*� , �B8�

where

�* � ���m�2�−1/2 �B9�

is the reduced �modified� Planck constant. Since � is a fixed
constant, we need to adopt a specific material as reference in
order to evaluate �*. We arbitrarily select Ar, for which �
=3.405�10−10 m, �=1.656�10−21 J, and m=6.633
�10−26 kg. Then �*=0.029 56.

APPENDIX C: EXPLICIT EXPRESSIONS
FOR Wi� ,We� ,Xe�

Recalling that ui for a near-region atom is expressed by
Eq. �3.17�, we have from the definition of Wi� given by Eq.
�4.9�

Wi� � �
l=1

N
�ui

�rl�
rl�

= 1
2�

j�i
�
l=1

N
���rij�

�rl�
rl�

= 1
2�

j�i

���rij��
l=1

N
�rij

�rl�
rl�. �C1�

From Eq. �A5� follows the relation

�
l=1

N
�rij

�rl�
rl� = rij

−1rij�
2 . �C2�

Insertion of Eq. �C2� into Eq. �C1� yields

Wi� = 1
2�

j�i

���rij�rij�
2 rij

−1. �C3�

From Eq. �4.9� and Eq. �3.19�, which gives ue, we immedi-
ately have

We� = 1
2�

j�i

���rij�rij�
2 rij

−1, �C4�

where i stands for the centroid atom of element e.
From the expression for fq

e in Eq. �3.20�, we obtain

Xe� � �
l=1

N
�fq

e

�rl�
rl� =

kBT

2 �
l=1

N
� ln�det De�

�rl�
rl�, �C5�

which we can write more explicitly as

Xe� =
kBT

2 det�De�
��DyyDzz − Dyz

2 �Sxx
����

+ �DxxDzz − Dxz
2 �Syy

���� + �DxxDyy − Dxy
2 �Szz

����

+ 2�DxzDyz − DzzDxy�Sxy
����

+ 2�DxyDyz − DyyDxz�Sxz
���� + 2�DxyDxz

− DxxDyz�Syz
�����e, �C6�

where

S��
���� � �

l=1

N
�D��

�rl�
rl�. �C7�

The subscript e on De �which is dropped on matrix elements�
and on the braces �¯�e in Eq. �C6� signifies that the associ-
ated dynamical quantity pertains to element e.

Substitution of Eq. �B4� for D�� into Eq. �C7� gives

S��
���� = 24��−2m−1�

j�i
���

l=1

N
�aij

*

�rl�
rl��rij�

* rij�
*

+ aij
*��

l=1

N
�rij�

*

�rl�
rl��rij�

* + aij
* rij�

* ��
l=1

N
�rij�

*

�rl�
rl��

− ��
l=1

N
�bij

*

�rl�
rl������ . �C8�

From Eq. �B5� we have
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�
l=1

N
�aij

*

�rl�
rl� = Aij

* �
l=1

N
�rij

*

�rl�
rl�, �C9�

where

Aij
* � − 448rij

*−17 + 80rij
*−11 �C10�

and

�
l=1

N
�bij

*

�rl�
rl� = Bij

* �
l=1

N
�rij

*

�rl�
rl�, �C11�

where

Bij
* � − 28rij

*−15 + 8rij
*−9. �C12�

From Eqs. �A4� and �A5� we deduce, respectively,

�
l=1

N
�rij�

*

�rl�
rl� = �

l=1

N

��il − � jl����rl�
* = rij�

* ��� �C13�

and

�
l=1

N
�rij

*

�rl�
rl� = �

l=1

N

rij
*−1rij�

* ��il − � jl�rl�
* = rij

*−1rij�
*2 . �C14�

Combining Eqs. �C8�–�C14�, we arrive finally at

S��
���� = 24��−2m−1�

j�i

�Aij
* rij�

* rij�
* rij�

*2 rij
*−1 + aij

* rij�
* rij�

* ���

+ aij
* rij�

* rij�
* ��� − Bij

* rij�
*2 rij

*−1���� . �C15�
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