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Spin blockade in ferromagnetic nanocontacts
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Department of Physics and Astronomy and Center for Materials Research and Analysis,
University of Nebraska, Lincoln, Nebraska 68588

A. V. Vedyayevb) and B. Dieny
CEA/Grenoble, De´partement de Recherche Fondamentale sur la Matie`re Condense´e, SPINTEC,
38054 Grenoble, France

~Received 10 July 2003; accepted 5 September 2003!

Using a free-electron model and a linear response theory we investigate spin-dependent electronic
transport in magnetic nanocontacts in the ballistic regime of conduction. We emphasize the fact that
in atomic-size ferromagnetic contacts it is possible to achieve the conductance value ofe2/h, which
implies a fully spin-polarized electric current. We explore some consequences of this phenomenon.
In particular, we show that the presence of a nonmagnetic region in the nanocontact separating two
ferromagnetic electrodes can lead to a spin blockade resulting in very large values of
magnetoresistance. ©2003 American Institute of Physics.@DOI: 10.1063/1.1622986#

The electrical conductance through a narrow constriction
is quantized when the constriction width is comparable to the
electron Fermi wavelength. This phenomenon was discov-
ered in two-dimensional electron gas semiconductor struc-
tures, in which the constriction width can be controlled by
the gate voltage.1 The quantized conductance was also ob-
served in metallic nanowires, where an atomic-size constric-
tion is created by pulling off two electrodes in contact.2–4

The conductance quantization can be explained within the
Landauer formula5 and the adiabatic principle,6 according to
which the conductance is given byG5Ne2/h, whereN is
the number of open conducting channels, i.e., the number of
transverse modes at the Fermi energy. When the constriction
width changes the number of conducting channels and con-
sequently the conductance vary in discrete steps. For dia-
magnetic nanowires the conductance is quantized in units of
2e2/h, where the factor 2 stands for spin degeneracy. If the
constriction is made of a ferromagnetic metal, such as Ni, the
exchange energy lifts the spin degeneracy and the conduc-
tance is quantized in units ofe2/h. Such a phenomenon was
observed in Ni break junctions,7 Ni nanowires electrodepos-
ited into pores of membranes,8 Ni atomic-size contacts made
by a scanning tunneling microscope,9 and electrodeposited
Ni nanocontacts grown by filling an opening in focused-ion-
beam-milled nanowires.10

An interesting observation that follows from these stud-
ies is the possibility to achieve the conductance value of
e2/h, which implies that one spin channel is open, whereas
the other spin channel is closed. In this regime the ferromag-
netic atomic-size constrictions resemble half-metallic bulk
ferromagnets, materials for which only one spin band is oc-
cupied at the Fermi level, resulting in a perfect 100% spin
polarization.11 We see, therefore, that by making a suffi-
ciently narrow nanoconstriction from an ordinary ferromag-
net it is possible to achieve a fully spin-polarized electric
current.

In this letter, using a free-electron model and quantum-
mechanical description of electronic transport in the ballistic
regime we explore some consequences of this phenomenon.
In particular, we show that the presence of a nonmagnetic
region in the nanocontact separating two ferromagnetic elec-
trodes can lead to a spin blockade resulting in very large
values of magnetoresistance.

We model nanoconstrictions by considering a segmented
cylindrical nanowire of a variable radius as shown in Fig.
1~a!. The electronic structure of the nanowire is described by
free electrons moving in a constant potentialVj within each
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FIG. 1. ~a! Segmented nanowire representing a nanoconstriction;~b! con-
ductance for up- and down-spin electrons in a nanowire of constant radius
R5R15R25R3 as a function ofR; ~c! conductance for up- and down-spin
electrons in a segmented nanowire ofR15R3515 Å and the length of the
middle segmentL2520 Å as a function ofR2 .
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segment, where indexj denotes the segment number. The
exchange splitting of the bands in a ferromagnet is intro-
duced using the Stoner model via an effective exchange field,
hex , so that the spin-dependent potential within segmentj is
Vs j5Vj1shex , wheres is the spin index. For an infinite
wire of potential Vs j the Fermi wave vector,kF

s j

5A2m(EF2Vs j )/\
2, depends on the radius of the nano-

wire, Rj , through the Fermi energyEF which is determined
by the number of valence electrons in a metal. In segmented
nanowires we fix the Fermi energy throughout the structure
and renormalize potentialsVs j ~and consequently the Fermi
momenta! to provide charge neutrality on average within
each segment. We assume that there is no variation in the
exchange energy with the radius of the nanowire.

We analyze the electrical conductance using a linear re-
sponse theory. The central quantity to be calculated within
this approach is the one-electron Green’s function. Following
the method developed in Ref. 12, we obtain the Green’s
function G(r ,r 8,z,z8,u,u8) by taking into account cylindri-
cal symmetry of the problem. For a given segmentj the
solution can be expanded in terms of radial and angular
eigenfunctions:

G~r ,r 8,z,z8,u,u8!

5(
lmn

eil (u2u8)

2p H f lm~r !f lm~r 8!eik lm
s j uz2z8u

2ik lm
s j

3dmn1Almnf lm~r !f ln~r 8!e2 ik lm
s j ze2 ik ln

s j z8J , ~1!

whereklm
s j5A(kF

s j )22(n lm /Rj )
2 is the longitudinal compo-

nent of the wave vector at the Fermi energy. Radial functions
f lm(r ) are given by

f lm~r !5&Jl S n lm

Rj
r D Y RjJl 11~n lm!, ~2!

wheren lm is themth node of the Bessel functionJl(x). The
coefficientsAlmn are calculated from the continuity condition
of the Green’s function and its derivatives at the interfaces.
Mathematically the problem is reduced to the inversion of
infinite rank matrices which can be performed using an ap-
propriate truncation procedure.13 A similar problem was en-
countered when considering the conductance of 2D and 3D
nanowires of variable radius using the scattering matrix
formalism.14

Using the Green’s function~1! we calculate spin conduc-
tanceGs at zero temperature from the Kubo formula. The
result can be represented as follows:

Gs52
2e2

h (
lmn

F Im~klm
s j !S uAlmnu22

dmn

4uklm
s j u2D

1Re~klm
s j !ImS Almn

~klm
s j !* D G Im~kln

s j !. ~3!

Note that due to the current continuity conditionGs does not
depend on the choice of segmentj in which it is calculated.

Figure 1~b! shows the calculated spin-dependent conduc-
tance of a uniformly magnetized wire of constant radiusR
5R15R25R3 . In the calculations we used the commonly
accepted values of the material parameters typical for Ni and

Co: EF53.5 eV, hex51 eV.15 As is seen from Fig. 1~b!, the
conductance is different for up- and down-spin electrons and
changes in discrete steps ofe2/h with the increasing radius
of the nanowire. At small values ofR the down-spin channel
is closed, and the conductance is equal to the spin conduc-
tance quantume2/h. The closure of the spin channel occurs
at the critical radiusR0 given by the following expression:

R0
25

2Amhex

p2\n
, ~4!

where n is the total number of valence electrons per unit
volume. In our caseR0'1.5 Å, so that the diameter of the
nanowire is of the order of the lattice parameter in the bulk
ferromagnet. The up-spin channel is never closed due to the
charge neutrality condition imposed on the system.

In the case of a segmented nanowire with radiusR2

,R15R3 @Fig. 1~a!#, the conductance displays irregular os-
cillations with increasingR2 @see Fig. 1~c!#. These oscilla-
tions are the consequence of scattering at the interfaces be-
tween the segments. Abrupt changes in the radius of the
segmented wire violate the adiabatic principle6 smearing out
the conductance steps. These fluctuations do not, however,
prevent the closure of the down-spin channel atR25R0 ,
similar to the case of a wire of constant radius. AtR2,R0

only the up-spin channel is open, and the electric current in
the nanowire is 100% spin-polarized. We note that the van-
ishing up-spin conductance seen in Fig. 1~c! at small values
of R2 is the result of the potential well created within the
constriction region. The charge neutrality condition requires
the depth of the potential well being inversely proportional to
R2

2 which leads to a strong reflection of incident electronic
waves at smallR2 .

The possibility to achieve a fully spin-polarized conduc-
tance in the regime when only one spin-channel is open leads
to another phenomenon that might occur in atomic-size con-
tacts. If there is a nonmagnetic region within the constriction
that separates two ferromagnetic electrodes, as is shown in
Fig. 2~a!, electronic conduction can be blocked by the spin
conservation rule. Indeed, if magnetizations of the two fer-
romagnets are antiparallel the spin channel that is open in the
one ferromagnet is closed in the other ferromagnet and vice
versa. Thisspin blockadeeffect makes the conductance be-
tween the antiparallel-aligned electrodes equal to zero. This
is opposite to the case of the parallel-aligned electrodes for
which a conduction channel is open for up-spin electrons and
the conductance is not equal to zero. We see that the magne-
toresistance of such an atomic-size constriction can be infi-
nite.

We model this effect by considering a segmented nano-
wire in which ferromagnetic electrodes are separated by a
thin nonmagnetic spacer layer which is placed within the
constriction region and has the same radius as the radius of
the inner part of the nanowire, i.e.,R2 @Fig. 2~a!#. The only
role of the spacer is to decouple magnetic moments of the
electrodes which allows one to magnetize the ferromagnets
in opposite directions. In our calculations we assume that the
spacer is metallic, although the spin blockade effect survives
in the case of an insulating barrier as well.

Figure 2~b! shows the conductance for parallel and anti-
parallel magnetization of the ferromagnets in a nanowire of
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constant radiusR5R15R25R3 as a function ofR. As is
evident from this figure, at smallR such thatR,R0 the spin
blockade quenches the conductance of the aniparallel-
aligned nanowire, whereas the conductance for the parallel-
aligned nanowire remains nonzero, aboute2/h. This effect is
also present in a segmented nanowire of radiusR2,R1

5R3 @Fig. 2~c!#. WhenR2 becomes smaller than the critical
radiusR0 , the conductance for the antiparallel magnetization
vanishes.16 Sizable fluctuations in the conductance seen in
Fig. 2~c! are caused by scattering at the interfaces between
the segments of different radius which irregularly changes
the conductance, reflecting some specific interrelations be-
tween longitudinal momenta.

Figure 2~d! shows magnetoresistance~MR! defined by
the standard ratio MR5(GP2GAP)/GAP , whereGP andGAP

are the conductance for the parallel and antiparallel magne-
tization of the electrodes. For the nanowire of variable radius
the MR displays noisy features, but the overall dependence
on R2 is similar to that for the nanowire of constant radius.
As is seen from Fig. 2~d!, the MR increases at small radius of

the constriction. This is consistent with the experimental ob-
servations of MR in ballistic Ni break junctions,17 which
were explained in terms of a constrained domain wall formed
within the nanocontact.15,18,19At R2,R0 the MR becomes
infinitely large. In this regime the nanoconstriction works as
a perfect spin valve that can be switched between conducting
and nonconducting states. We note, however, that this
mechanism cannot explain huge values of MR in electrode-
posited nanocontacts20 which were observed not only for
atomic-size contacts but also for larger cross sections of the
constrictions up to a few nm.2

In conclusion, we have shown that atomic-size constric-
tions can be used to obtain a fully spin-polarized current as
well as a valve which can be switched between conducting
and nonconducting states. The latter can be achieved due to
the spin blockade effect which quenches the conductance of
the aniparallel-aligned nanowire in the regime when only
one spin channel is open in each electrode.

This work is supported by NSF~Grant Nos. DMR-
0203359 and MRSEC: DMR-0213808!, the Nebraska Re-
search Initiative, and W. M. Keck Foundation. A.V.V. is
grateful to J. Fourier University, Grenoble for hospitality and
the Russian Fund for Basic Research for partial financial
support.
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FIG. 2. ~a! Segmented nanowire representing a nanoconstriction with a
nonmagnetic region;~b! conductance for parallel and antiparallel alignment
in a nanowire of constant radiusR5R15R25R3 as a function ofR; ~c!
conductance for parallel and antiparallel alignment in a segmented nanowire
of radiusR15R3515 Å andL2520 Å as a function ofR2 . The length of
the middle segment is 2 Å;~d! magnetoresistance as a function ofR2 .
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