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524 EXPLODERS AND GUARDS TO REDUCE DEER DAMAGE

Economic loss from wildlife depredation to agri-
cultural producers has been estimated to approach
$4.5 billion annually in the United States (Conover
2002). Deer (Odocoileus spp.) are the species most
responsible for crop damage in many areas of the
United States (Conover and Decker 1991,
Wywialowski and Beach 1992). In 1993 over $30
million of corn was lost to deer damage in the 10
largest corn-producing states alone (Wywialowski
1996).

Deer feed on corn from its emergence through
harvest (VerCauteren and Hygnstrom 1998), but 
frequency of use peaks in late June to early July,
during the silking–tasseling stage of growth

(Hygnstrom et al. 1992). At this stage, silk-produc-
ing ears emerge from the nodes and pollen-produc-
ing tassels emerge from the meristem of the corn
plant. Cornfields are highly susceptible to deer
damage at the silking–tasseling stage because use
by deer is high and this is the most critical period
for damage that reduces yield (Eldredge 1935,
Shapiro et al. 1986,Vorst 1986). Producers may be
able to reduce damage and associated costs by
implementing control methods, such as frightening
devices, at the silking–tasseling stage.

Methods used to manage deer damage consist of
lethal and nonlethal techniques. Lethal techniques
in the form of sharpshooting or controlled hunting
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Propane exploders and Electronic
Guards were ineffective at reducing

deer damage in cornfields

Jason M. Gilsdorf, Scott E. Hygnstrom, Kurt C. VerCauteren, Erin E.
Blankenship, and Richard M. Engeman

Abstract White-tailed deer (Odocoileus virginianus) cause millions of dollars of damage to agri-
cultural crops annually.  We tested the effectiveness of propane exploders and Electronic
Guards (Pocatello Supply Depot, Pocatello, Id.) for reducing deer damage in cornfields
during the silking–tasseling stage of growth.  Track-count indices (F2,7=0.70, P=0.532),
corn yields (F2,6=0.14, P=0.873), and estimated damage levels (F2,12=1.45 P=0.272) did
not differ between experimental and control fields.  The size (F2,11=0.08, P=0.924), loca-
tion (F2,9=0.30, P=0.750), and percent overlap (F2,9=0.46, P=0.644) of use-areas of
radiomarked female deer in the vicinity of experimental fields did not differ among
before, during, and after 18-day treatment periods.  In a related study, we placed propane
exploders in cornfields within use-areas of 12 radiomarked female deer.  The deer did not
react appreciably to the devices: the size (F2,17=0.08, P=0.921), location (F2,22=1.37, P
=0.275), and percent overlap (F2,10 =0.47, P=0.636) of deer use-areas did not differ
among before, during, and after 14-day treatment periods.  We conclude that propane
exploders and Electronic Guards have limited potential for reducing deer damage to corn
at the silking–tasseling stage.

Key words animal damage control, Electronic Guard, frightening devices, Odocoileus virginianus,
propane exploder, white-tailed deer, wildlife damage management
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can be difficult to implement because of safety con-
cerns, local ordinances, and public attitudes against
the use of firearms and harvesting of animals (Jones
and Witham 1995, Kuser 1995, Mayer et al. 1995,
Kilpatrick et al. 1997). In many situations nonlethal
techniques are the only options available. The pub-
lic supports management of wildlife that is causing
damage to personal property, especially when non-
lethal techniques are employed (Green et al. 1997,
Loker et al. 1999, Reiter et al. 1999).

Propane exploders are the most commonly used
frightening devices for deer depredation (Koehler
et al. 1990, Craven and Hygnstrom 1994). Belant et
al. (1996) reported that periodically firing (every
8–10 minutes) propane exploders was effective in
frightening deer for ≤2 days while motion-activated
exploders provided protection at artificial feeding
sites for 1–2 weeks. Electronic Guards (Pocatello
Supply Depot,Pocatello, Id.) are frightening devices
originally developed for reducing coyote (Canis
latrans) predation on sheep (Linhart et al. 1992).
Belant et al. (1998) found that Electronic Guards
protected feeding sites from deer for <1 week.

Koehler et al. (1990) suggested that frightening
devices should be tested in field conditions rather
than at artificial feeding sites to generate more
applicable results. Our objective was to determine
the efficacy of propane exploders and Electronic
Guards for reducing white-tailed deer (O. virgini-
anus) damage to cornfields during silking–tassel-
ing. We also evaluated the influence of propane
exploders on use-areas of female white-tailed deer.

Study area
We conducted the study during the summer of

1999 at the DeSoto National Wildlife Refuge
(DNWR) and the Loess Hills State Forest (LHSF).
The DNWR is 30 km north of Omaha, Nebraska in
the Missouri River valley. The 3,166-ha area con-
sisted of a mosaic of forests, grasslands, wetlands,
and agricultural fields. Crops were cultivated on a
3-year rotation and included: corn (239 ha), soy-
beans (258 ha), grain sorghum, alfalfa, and a
wheat/clover mix. The average size of test fields
was 9 ha (range=4–15 ha). The density of deer at
DNWR was approximately 19 deer/km2, based on
previous estimates (VerCauteren 1998) and consis-
tent subsequent harvest rates (DNWR unpublished
data). The LHSF is 80 km north of Omaha and con-
tained 3,774 ha of forest, prairie, and agricultural
fields. Crops in the area included: corn (215 ha),

soybeans (161 ha), grain sorghum, and alfalfa. The
average size of the test fields was 2 ha (range=1–3
ha). Density of deer was 5–7 deer/km2 (B. Olsen,
Iowa Department of Natural Resources, personal
communication).

We selected 4 groups (blocks) of 3 test fields on
DNWR and 4 groups of 3 test fields on LHSF. Test
fields were similar in size, shape, and location and
>1 km apart to minimize the potential for depend-
ence among the fields (Belant et al. 1996). Fields
containing propane exploders or Electronic Guards
are referred to as “experimental” while fields with
no frightening device are referred to as “control.”
The average distance between experimental and
control fields on DNWR and LHSF was 1.4 km
(range = 1.0–2.5 km) and 0.8 km (range = 0.5–1.4
km), respectively. Wooded areas between the fields
on DNWR dissipated acoustic intensity while test
fields in the LHSF were located in valleys where
ridges and dense forests attenuated the sounds
from the devices greater than the level floodplains
of DNWR,minimizing the potential for dependence
between experimental and control fields.

Methods
Efficacy of propane exploders and
Electronic Guards

Treatments tested included propane exploders
and Electronic Guards. We connected each
propane exploder (Thunderbird Scare Away, Reed-
Joseph International, Greenville, Miss.) to a 9.1-kg
bottle of propane. Propane exploders were set to
discharge (130 dB output at 75 m) at 15-minute
intervals throughout the night, and we manually
turned them on and off at sunset and sunrise,
respectively.

Each Electronic Guard consisted of a photocell,
timer, flashing white strobe light (70,000 cp, flash
rate = 60/minute), and a 1.4-kHz modulating siren
(15–20 modulations/minute,116-dB output at 1 m).
A 12-volt lantern battery powered the unit. The
photocell automatically activated and deactivated
the device at sunset and sunrise,respectively. When
operational, the timer randomly activated the sys-
tem to sound for 7–10 seconds at 6–7-minute inter-
vals throughout the night.

We randomly assigned treatments to each of the
3 fields in each group. We placed 2 frightening
devices of the same type on opposite sides of the
perimeter of each experimental field. We placed
the devices on corners of fields and along

Exploders and guards to reduce deer damage • Gilsdorf et al. 525
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forest–field edges that experienced the highest lev-
els of damage to maximize the visual and auditory
effectiveness of the device (Figure 1).

Frightening devices were applied at the first sign
of silking–tasseling in the cornfields (13 July 1999
on DNWR, 25 July 1999 on LHSF) and were active
for 18 days, which was sufficient time for the ears
of corn to develop past silking–tasseling and
become less susceptible to deer damage. We repo-
sitioned the devices on the perimeters of each field
after the ninth day to minimize habituation to the
devices (Koehler et al. 1990, Nolte 1999).

We used track-count indices, corn-yield data,
damage assessments, and use-areas of radiomarked
deer to evaluate the efficacy of the frightening
devices on DNWR. We used only damage assess-
ments on the LHSF.

We conducted track counts around the perime-
ters of all test fields on DNWR every 6 days. We
conducted track counts before applying frighten-
ing devices,during the 18-day treatment period and
after the treatment period. We used a tractor-
mounted, 2-m drag to maintain a smooth dragline.
We counted deer tracks that were oriented into and
out of cornfields in the 1-m width of the dragline
nearest the corn. A single observer counted tracks
on all fields to eliminate observer bias. We record-
ed 1 track count before the frightening-device
application, 2 during the 18-day treatment period,
and 1 after the treatment.

Data on corn yield were available for 10 of 12 test
fields on DNWR. Farmers obtained yield data from
grain elevators when the corn was delivered or
directly measured yield from Global Positioning
System (GPS)-linked monitors on their harvesting
equipment that calculated yields once every second

during harvest. We compared corn yield from exper-
imental fields and those that served as controls.

We used a variable-area-transect sampling
method (Engeman and Sugihara 1998,Engeman and
Sterner 2002) to assess the amount of damage
caused by deer in all experimental and control
fields immediately following the treatment period.
We used a numbered grid to randomly locate 10
test plots in fields ≤4.0 ha (n=12), 20 test plots in
fields 4.4–12.1 ha (n=9), and 30 test plots in fields
>12.1 ha (n=3). At each test plot we inspected a
row of corn, counting the total number of ears of
corn including damaged and undamaged ears.
When 5 deer-damaged ears were tallied, we record-
ed the distance traveled and the total number of
ears. If 5 deer-damaged ears were not tallied in 100
m, the observer recorded the total number of ears
and any deer-damaged ears observed in that 100 m.
We estimated and compared the average percent-
age of damage/plot [damaged ears/(damaged ears+
undamaged ears)] between experimental and con-
trol fields. We used a multilocation trial to test for
any differences in damage assessments between
DNWR and LHSF test fields.

526 Wildlife Society Bulletin 2004, 32(2):524–531

Figure 1.  Propane exploder (left) and Electronic Guard (right) on the edge of a cornfield.
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We used the chronologically sequenced use-areas
of radiomarked female deer associated with fright-
ening devices as supporting data to further ascer-
tain effectiveness of the treatments on DNWR. Use-
areas were the spaces that the radiomarked deer
occupied during 3 18-day study periods. We chose
to use the term “use-area” rather than “home range”
because of the limited time period in which we col-
lected the data. A home range should include all
normal activities—feeding, resting,mating,and rear-
ing young  (Shivik and Gese 2000). We monitored
12 radiomarked deer in the vicinity of the test fields
for 18 days pretreatment (x- = 18 locations, range
=15–20), 18 days during treatment (x- = 20 loca-
tions, range=18–21), and 18 days post-treatment (x-

= 11 locations, range=9–12). Telemetry locations
were distributed equally throughout the day and
night. We generated use-areas with the Spatial
Ecology Analysis System (SEAS) and harmonic
mean method (Dixon and Chapman 1980) using a
Geographic Information System (TNTmips,
MicroImages, Lincoln, Nebr.). The use-area was
defined by the 95% isopleth, 20% isopleth core
area, and arithmetic center. If the core area was <1
km from an experimental field or control field, the
deer was assigned to the respective treatment.

We evaluated the impact of frightening devices
on radiomarked deer by comparing the: 1) size of
use-areas, 2) location of the center of use-areas, and
3) percent of overlap of consecutive use-areas,
among the 3 periods.

We collected data for track-count indices and
use-areas in the 3 periods with a repeated-measures
design. A randomized complete
block design was used, and the data
were analyzed using a mixed linear
model (e.g., McLean et al. 1991),
implemented in SAS Proc Mixed
(Littell et al. 1996, SAS Institute, Inc.
2000) with means estimated as
least-squares means. We used
Akaike’s Information Criterion
(AIC) as a means of selecting the
covariance structure that provided
the best-fit model for the repeated
measures (Littell et al. 1996), as well
as the Kenward-Roger adjustment
for denominator degrees of free-
dom.

We calculated costs of equipment
and labor (at $10/hr) required to
operate the 2 frightening devices.

Effect of propane exploders on
radiomarked deer

We also conducted a supplemental study on
DNWR (5 September 1999–16 October 1999) to
determine the effect of propane exploders placed
within the use-areas of radiomarked deer. We placed
propane exploders on the edge of a cornfield being
used by a radiomarked deer. We calculated use-areas
for 12 radiomarked deer for 3 14-day periods.
Fourteen-day periods were established using meth-
ods previously described. The “Before,”“During,”and
“After”use-areas consisted of an average of 23 (range
=21–24),43 (range=42–46),and 20 locations (range
=20–21), respectively, for each deer in each period.
We analyzed size, location of the center, and per-
centage of overlap of use-areas, among periods.

All procedures involving animals were approved by
the University of Nebraska-Lincoln Institutional Ani-
mal Care and Use Committee (IACUC # 99-03-014)
and the United States Department of Agriculture/Ani-
mal and Plant Heath Inspection Service/ Wildlife Ser-
vices/National Wildlife Research Center Institutional
Animal Care and Use Committee (QA-726).

Results
Efficacy of propane exploders and
Electronic Guards

Use of cornfields by deer increased similarly in all
experimental and control fields across the time peri-
ods (Figure 2). We found no differences in track-
count indices among treatment effects (F2,7=0.70,P
= 0.532) and treatment-by-time interaction (F6,8 =

Exploders and guards to reduce deer damage • Gilsdorf et al. 527

Figure 2.  Indices of deer track counts from perimeters of cornfields protected by
propane exploders, Electronic Guards, and unprotected (control) fields on DeSoto
National Wildlife Refuge, Missouri Valley, Iowa 1999.
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0.84, P=0.575). However, we detected differences
among time periods (F3,7=20.48, P ≤ 0.001).

The mean yields of corn (kg/ha) for fields with
Electronic Guards (x- = 7,511, SE = 1,371, n = 3),
propane exploders (x-=6,930, SE=1,218, n=4), and
control fields (x-=7,915,SE=1,390,n=3) did not dif-
fer (F2,6 =0.14, P=0.873). The field size (ha) was
not a factor in corn yield/ha (F1,6=0.01, P=0.911).

Damage rates between DNWR and LHSF fields
did not differ (F2,12=0.59, P=0.571); therefore, we
pooled data from the 2 locations. We found no dif-
ferences in the percentage of damage/plot among
fields protected by Electronic Guards (x-=19%, SE=
3, n=8), propane exploders (x-=16%, SE=3, n=8),
and control fields (x-=15%, SE=3, n=8) (F2,12=1.45
P=0.272).

Frightening devices had no effect on the use-
areas of radiomarked deer (Table 1). Mean size of
use-areas of radiomarked deer exposed to the treat-
ments did not differ throughout the study. Size of
use-areas was not influenced by treatment (F2,11=
0.08, P=0.924), time (F2,12=0.69, P=0.521) or the
treatment-by-time interaction (F4,13 = 0.86, P =
0.513). Mean location of centers of the use-areas of
radiomarked deer did not differ throughout the
study. Treatment (F2,9=0.30, P=0.750), time (F2,8=
1.10, P=0.379), and the treatment-by-time interac-
tion (F4,9 = 0.97, P = 0.471) did not differ among
periods. Spatial information from radiomarked deer
indicated that deer continued to use cornfields
whether protected by frightening devices or
unprotected. Regarding use-areas of the “Before to
During” period, of the 5 deer exposed to propane
exploders, 4 shifted their use-areas closer to exper-
imental fields. Use-areas of the 2 deer exposed to
Electronic Guards also moved closer to the experi-
mental fields. “During to
After” use-area shifts
revealed that deer once
again moved closer to 
the cornfields. The mean
overlap of chronologically
sequenced use-areas of
radiomarked deer ex-
posed to the different
treatments did not differ
throughout the study.
Overlap of use-areas were
not influenced by treat-
ment (F2,9 = 0.46, P =
0.644), time (F2,8=3.00, P
=0.107), and treatment-by-

time interaction (F4,9=1.86, P=0.203). Overlap of
use-areas was high, indicating that radiomarked deer
did not alter their choice of habitat and continued
to use cornfields that contained frightening devices.

The propane exploders we used cost $310
apiece, and each consumed about 4.5 kg of fuel
($6) during the 18-day period. About 1 hour was
required to recondition and calibrate each exploder
to fire at 15-minute intervals, and each had to be
turned on and off each day. It cost about $20/day
to purchase and operate each propane exploder
during the 18-day test period.

The Electronic Guards we used cost about $260
apiece, including the Electronic Guard ($250), a 12-
volt lantern battery ($13),and a piece of re-bar to sus-
pend the device. About 0.5 hours was required to
install each device in the field. It cost about $15/day
to purchase and operate each Electronic Guard dur-
ing the 18-day test period. Electronic Guards
required no labor after being placed in fields because
they were activated by photoelectric sensors.

Effect of propane exploders on
radiomarked deer

Radiomarked deer in the supplemental study were
not deterred from using cornfields protected by
propane exploders. Mean size of use-areas did not
differ for 12 radiomarked female deer (F2,17=0.08, P
=0.921). Mean size of the “Before” use-area was 42
ha (SE=11,n=12),“During”was 38 ha (SE=5,n=12),
and “After” was 38 ha (SE=6, n=12). Mean locations
of centers of use-areas of the 12 radiomarked deer
exposed to propane exploders did not differ among
periods (F2,22 = 1.37, P= 0.275). The mean center
shift of the “Before to During”period was 95 m (SE=
20, n=12),“During to After” was 108 m (SE=20, n=

528 Wildlife Society Bulletin 2004, 32(2):524–531

Table 1.  Use-areas of radiomarked female deer exposed to propane exploders and Electronic
Guards on DeSoto National Wildlife Refuge, Missouri Valley, Iowa 1999.

x- size (ha) x- center shift (m)a x- % overlapb

Treatment nc Befored Duringe Afterf B–D D–A B–A B–D D–A B–A

E. Guard 2 11 42 31 195 174 164 27 76 32
P. exploder 5 24 21 63 71 198 225 78 47 47
Control 5 33 37 30 135 100 177 51 82 55

a B–D = “Before to During” shift, D–A = “During to After” shift, B–A = “Before to After” shift.
b B–D = “Before to During” overlap, D–A = “During to After” overlap, B–A = “Before to

After” overlap.
c Number of deer exposed to corresponding frightening device or control.
d Before = 24 June 1999–11 July 1999.
e During = 12 July 1999–30 July 1999.
f After = 31 July 1999–17 August 1999.
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12), and “Before to After”was 130 m (SE=20,n=12).
Six of the 12 deer shifted their use-areas closer to the
fields with propane exploders. Four of the 12 deer
moved away from the propane exploders. Two of
the 12 deer moved neither away nor toward the
fields with the propane exploder but shifted their
use-area only slightly and parallel to the field with
the propane exploder. Mean overlap of use-areas for
radiomarked deer did not differ among periods
(F2,10=0.47, P=0.636). Mean overlap of the “Before
to During”period was 72% (SE=5,n=12),“During to
After” was 76% (SE=8, n=12), and “Before to After”
was 70% (SE=7, n=12).

Discussion
We found no differences among the effects of

frightening devices in our analysis of the 4
response variables. Although no significant differ-
ences were observed, we feel that some trends in
our data merit discussion. Track counts increased
from the pretreatment to the treatment periods,
decreased during the treatment period, while the
devices were active, and increased from the treat-
ment to the post-treatment periods (Figure 2). The
initial increase in deer use from pretreatment to
treatment likely was due to the appearance of new
ears of corn, which was a preferred food source
and an attractant of deer to cornfields. Track
indices in cornfields with frightening devices
increased at a lower rate than control fields, which
may suggest that the frightening devices were ini-
tially effective at reducing deer intrusions, but not
to a significant degree. Deer intrusions decreased
throughout the treatment period, which may have
been due to the growth of the ears of corn beyond
the preferred size and stage of development. At the
end of the treatment period, most ears of corn
exceeded 20 cm in length and were less palatable.

Shelter provided by the corn plants may be a factor
responsible for the tendency of deer use of cornfields
to increase throughout the study period. Mature
cornfields may offer protection from predators and
environmental conditions. Deer may not feed on
mature corn as much as during the silking–tasseling
period, but may use the cornfields for cover through-
out the day rather than returning to forest cover.

On average, control fields produced 7,946 kg/ha
of corn, which was 1,051 kg/ha and 419 kg/ha
more than fields containing propane exploders and
Electronic Guards, respectively. If propane
exploders and Electronic Guards were effective in

reducing deer damage, experimental fields would
have had higher yields of corn than control fields.
Deer that used cornfields before the devices were
activated may have caused damage in the fields
before frightening devices were installed. We
observed deer damage to corn plants before the
silking–tasseling stage. Damage in some cases was
sufficient to prevent plants from producing ears.

Variability in damage levels among fields may be
the result of several factors. Feeding patterns of
deer are difficult to change once they are estab-
lished (Koehler et al. 1990, Nolte 1999, DeNicola et
al. 2000). Thus, deer that fed on cornfields before
the frightening devices were deployed may not
have been deterred from the fields. Another possi-
bility is that the frightening devices protected only
2 sides of the test fields. Deer may have not been
frightened from the acoustic stimuli if they could
not see the propane exploder or the flashing strobe
of the Electronic Guard. Finally, habituation to the
devices may have allowed deer to quickly disregard
the stimuli and continue feeding in the cornfields.
Motion-activated propane exploders are available
and may be more cost-effective (Belant et al. 1996).

Density of deer was approximately 3 times lower
on LHSF than on DNWR;however,damage rates were
similar. A possible explanation for this trend could be
that fields on LHSF were smaller than fields on
DNWR. The perimeter:area ratio is greater on small-
er fields,and damage by deer tends to be most severe
on the perimeters of cornfields. Therefore, damage
per unit of area may be greater on smaller fields.

Interestingly, the field that sustained the least
damage (<1%) had ears that were about 1.4 m
aboveground, as opposed to other fields in which
ears were about 1 m above ground. Soil type and
fertility were most likely responsible for the differ-
ence in corn height because the producer used the
same variety of corn in many fields. However,
development of a hybrid in which the ears form
higher on the stalk may help reduce deer damage
because the ears are less accessible to the deer.

When selecting a home range estimator,
researchers should consider the behavior of subject
animals, landscape of the study area, and statistical
capabilities of the estimator since there is no single
“best”estimator for all circumstances (Worton 1995,
Shivik and Gese 2000). An optimal sample size for
the number of locations to estimate a home range is
about 50 locations per animal but may vary from as
few as 20 to as many as 200 locations,depending on
the home-range estimator used (Kernohan et al.

Exploders and guards to reduce deer damage • Gilsdorf et al. 529
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2001, Leban et al. 2001). In our study, we evaluated
use-areas over 18-day periods and were concerned
with spatial relationships rather than comparing
estimator accuracy for inliers and outliers. We used
the harmonic mean home-range estimator because
it is less sensitive to small sample sizes than are
other estimators. The harmonic mean is a special
case of the kernel methods (Larkin and Halkin
1994). We believe we selected the most applicable
estimator to achieve our objectives.

Management implications
Electronic Guards and systematic propane

exploders used in this study were sonic frightening
devices that lacked negative reinforcement, which
probably allowed deer to rapidly habituate to the
stimuli (Belant et al.1996,Belant et al.1998). Belant
et al. (1996) recommended motion-activated
propane exploders rather than systematic
exploders because of reduced habituation to the
devices. Belant et al. (1998) also reported that the
Electronic Guard was effective for <1 week in
reducing use of preferred feeding sites. Our data
similarly suggests that systematic propane
exploders and Electronic Guards are relatively inef-
fective in reducing damage to agricultural fields.
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