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Static and dynamic dipole polarizability of the helium atom using wave functions involving
logarithmic terms
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We present a calculation of the static and dynamic dipole polarizability of the helium atom using a varia-
tionally stable treatment that incorporates the coupled-channel hyperspherical representation of the wave func-
tions. Inclusion of logarithmic terms in intermediate functions as well as the effect of an optimization proce-
dure for the variational parameter are analyzed. When available, our coupled-channel results are compared
with other values in the literature.

DOI: 10.1103/PhysRevA.68.012508 PACS nuntber32.10.Dk, 32.80-t

[. INTRODUCTION static polarizability of under 2 ppm. This accidental cancel-
lation highlights the importance of highly accurate calcula-
It was demonstrated long ago that the wave function foitions of the polarizability in the nonrelativistic limit in order
the helium atom at the triple-collision point should formally to test the effect of these higher-order corrections. Although
be described as a power seriesRiand InR, whereR is the ~ many different methods and techniques exist, only a few of
hyperspherical radiu$l,2]. However, this description has them are able to give the requisite precision. Significantly,
only been applied in calculations of energy lev@s 7). The  none of the many prior calculations include logarithmic
main effect of this expansion is to speed up the convergencierms in their formulation.
of the calculated energy, reducing the large number of basis We present, in addition to energy levels, a calculation of
functions needed in usual variational calculations. More rethe static and dynamic dipole polarizability of the helium
cent works[8—14] have demonstrated that alternative kindsatom using a variationally stable, coupled-channel hyper-
of expansions, not involving logarithmic terms, can achievespherical approacti20,29-32, in which the initial- and
benchmark energy levels with reasonable basis sizes. Theg#ermediate-state wave functions are represented by Fock
methods involve doublg9,11] and triple[12] basis sets, non- expansions[1,2,33—36. Our results include logarithmic
integer([8] or complex[13,14] powers of the expansion vari- terms in the wave-function expansions in order to calculate
ables, or special kinds of configuration interaction expanan observable other than the energy. In the calculation of
sions [10]. In a recent work, Popov and Ancarafil5] energy levels, those terms have served only to speed up the
showed, in a rigorous mathematical study of the bound statesonvergence of the resulee, e.g., Ref$4,5]). On the con-
of the helium atom, how the logarithmic terms, as suggestetrary, in our calculation of the dipole polarizability, the loga-
by Bartlett[1], are linked to the electron-electron interaction rithmic terms play a crucial role in obtaining accurate values
in the region of small radii. Nevertheless, they discussedvhen using nonoptimized parameters in the intermediate-
only briefly possible numerical methods for getting approxi-state functions. When an optimization procedure is included,
mate energy levels. the logarithmic terms become less important, at the expense
The dipole polarizability of helium is another fundamen- of more CPU time. Comparing the results we obtain both
tal property of this prototypical two-electron system whosewith and without the logarithmic terms for the static polariz-
accurate calculation has generated much intele=#, e.g., ability, we are able to demonstrate their important role for
Refs.[16—27]). A comprehensive review on electric dipole the hyperspherical basis we employ. The present approach, in
polarizabilities for atoms has been given by Bonin andwhich we treat up to 12 couplets® channels and up to 15
Kadar-Kallen[28]. As pointed out in that review, polarizabil- coupled*P° channels, is able to furnish five digits of accu-
ities are important in a number of areas in physics and chentacy for polarizabilities. While this level of accuracy is un-
istry, such as interactions between matter and electromagble to provide benchmark results for the He static polariz-
netic fields, collision phenomena, and others. Many physicahbility (since the best results of others give seven or more
properties are related to the polarizability, as for instance théigits of accuracy, our method is nevertheless more than
dielectric constant and refractive index. Owing to such asufficient to provide competitive results for the dynamical
broad interest in determining polarizabilities, many theoreti-polarizabilities as well as for our next main goal, the calcu-
cal methods have been employed. However, many fewdation of multiphoton cross sections with an accuracy ex-
highly accurate methods exist for polarizabilities than forceeding that of current experimental capabilities.
energies. An interesting fact, recently shown by Pachucki This paper is structured as follows. In Sec. Il we summa-
and Sapirsteif27], is that the mass polarization, relativistic, rize the theoretical aspects of the present approach, giving
and QED corrections to the nonrelativistic static polarizabil-the fundamental equations. Section Il gives some details
ity cancel almost completely, giving a contribution to the Heregarding the numerical and calculational features of our ap-
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proach. In Sec. IV we present the results for the static anéurnishes a set of channel functiods,(R;{)) and a set of
frequency-dependent dipole polarizabilities as well as for theorresponding potential curvés, (R), where the index is
energies; we provide also an analysis of the convergence af collective label for all relevant quantum numbers. RAt
our results. In addition, comparisons with other results in=0, Eq. (5) is exactly solvable and the solutions can be
literature are given. Finally, Sec. V presents our conclusionsvritten in terms of Jacobi polynomials with the correspond-
and some perspectives. ing eigenvalues given by

Il. THE VARIATIONALLY STABLE, COUPLED-CHANNEL UM(O) =—(l4+1,+ 2n+ 2)2, (6)
HYPERSPHERICAL APPROACH

) L wherel, andl, are the individual angular-momentum quan-
For two-electron systems, such as helium and its isoelec- ~
m numbers of the electrons amdis the degree of the

tronic series, the hyperspherical coordinate representation | bi Dol il of ficul luti It ts th
very suitable for describing the wave functidisee Ref[37] acobi polynomial ot a particular soiution. 1 represents the
number of nodes v (at R=0) of a given channel.

for a review on this subjegt The set of coordinates em- S : .
The initial- and final-state wave functions as well as the

. — (2 212
Fllct)gr?fj 1 (Irs if,)a’g\;’d(ﬁ;-, ezd’fsg}r’e Vtvhheerjsﬁal (;;‘Jrgﬁa)r c,oct)lr gi. functionsx and\’ are expanded in adiabatic hyperspherical
N 12 b 9 channel function$20,38,31; they all have similar forms:

nates.
The matrix element for a two-photon transition between
an initial statei) and a final statéf) is written as W(R,0)=(R%%sina cosa) 12, F,(RI®,(RQ), (7)
M
T (w)={ f b— bl (1)
o E+w—H ' MR, Q)= (R¥%sina cosa) 1>, N, (R)P,(R:Q), (8

whereD=¢€-(r{+r,) is the length form of the electric di-
pole operatorE; is the energy of the initial state is the , 5 1 , ]
light polarization vector, and is the photon energy. The N (R.Q)=(R"sina cosa) % M(RPL(RQ),
variationally stable form of Eq(l), according to Refs. 9)
[20,29-31], is
R where the expansion coefficierfts,(R) satisfy the coupled
T (w)=(fID|\)+(\'|D]i)—(\'|Ei+w—H|\), (2)  radial equations

—

2P

where|\) and(\’| represent unknown functions related to &2 U (R)+1/
,W(R)WQ

+
i) and (f|, respectively, by a one-photon transition. The | —+ “—214+2E) FL R+
two-photon transition rate in E@2) is variationally stable in R v
the sense that it depends only quadratically on errors in the
determination offA) and (\’| [30]. In Eq. (2), the Hamil- +QW(R)}FV(R):0, (10
tonian in hyperspherical coordinates is given &@tomic

units are used throughout this paper , ) o
andX\ (R) and\ ,(R) are determined by the variational pro-

. 1/ # ORQ)+1/4 cedure described below. The coupling terms in @d) are
H=— > ?-FT , 3 known as nonadiabatic couplings and are defined by
J
. d
and the operatot (R,Q)) is the angular part of the Hamil- PulR)={ @ 55| Py (11
tonian, with a parametric dependenceRn
- N and
O(R.0)= ? L7 L3 +2ZR+ 2ZR
, da? sirfa cofa Sina Ccosa d?
Q/J,V(R): (D/.L ﬁ (DV ) (12)
2R
- " ) (4) . . .
V1-sin(2a)cosf;, where the brackets mean integration over the angular vari-

R ~ ables(). In order to evaluate the radial integrals of E8),
wherel % andL3 are the usual angular-momentum operatorswve expand the unknown radial functions as
of the individual electrons and,, is the angle between their
position vectors: co§;,=r;-r,. An eigenvalue equation for

the operatotJ (R,Q), i.e.,

Bmax M

A(R)= ;l ]21 aj o} (R) (13)

U(RQ)®,(RQ)=U,(R)®,(R;Q), (5 and

012508-2
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FIG. 1. Set of potential curves U ,(R) for 1s°® states of the
helium atom.

Bmax Mi’
N(R)=2 X b (14
i'=1j'=1
where ¢;i(R) and 6/},
orbitals that include powers of R, i.e.,

¢|](R) N ij+2(i— 1)R 'J('ﬂR)I l ﬁl (15)

and

£ (R)=NE, RS'/(InR)'~le AR (16)

irjr+23i’ - l)
whereN{; is a normalization constant for the basis func-
tlon of each channelk and the exponents & are given by

=y—U,(0)+1/2+]j+2(i—1) (cf. Ref.[35]). The con-

(R) are chosen to be modified Slater

PHYSICAL REVIEW A 68, 012508 (2003
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FIG. 2. Same as Fig. 1 folP° states.

values for thep{ are chosen to be close to the value
V—2Ep, where—E;=0.903 724 a.u. is the electron binding
energy for the helium atom. Then, a spread of values around
the initial trial values are investigated and their convergence
properties and stability are examined with the aim of mini-
mizing error propagation. In this work, we have also devel-
oped an optimization procedure for searching for the best set
of B parameters. This procedure is based on the minimiza-
tion of the transition matrix elemefEq. (2)] with respect to
B. Note that for photon frequencies above the ionization
threshold, 3/ should be chosen to be complex in order to
correctly describe the oscillatory character of the
intermediate-state continuum wave functions.

The hyperspherical method focuses on the determination
of potential curves and the corresponding channel functions

stantsﬂ“ are free parameters whose determination is delsee Eq(5)]. Due to the nature of the angular operat&g.

scribed in Sec. Il

(4)], the solution of Eq(5) is the most difficult step of the

The frequency-dependent polarizability is calculated usmethod. Nevertheless, the angular operdd¢R,()) is not
ing the second-order transition matrix element as follows: dependent on the system’s energies, which means that the set

a(w)=—[TP(+w)+ T (- w)],

1—1 1—1

17

where the final statgf) is replaced by the initial stafé) in
Eqg. (2). In the static limit, i.e., the photon frequenay

—0, the expression for the polarizability reduces to a sim-

pler form: «(0)=—2T(?,(0).

Ill. CALCULATIONAL ASPECTS

of potential curves and nonadiabatic couplings are calculated
a single time for the system under consideration. Due to the
symmetry breaking caused by the electron-electron repul-
sion, the angular operator is not separable and(Bxqbe-
comes an angular coupled channel equafR8j. In solving

this eigenvalue equation, we have used an expansion in the
individual angular momenta of the electrof85]. The
coupled-channel expansions have been truncated at the maxi-
mum valuel '®=12=9 for the 1S® and 'P° channels with

In this section, we discuss the numerical aspects of outhe exception of the lowest potential curves of each symme-
calculations. It should be stressed here that these are numelty. These potential curves are the most important ones since
cally intensive calculations, particularly because our codeghey support the bound states. For the fit§* potential

uUseREAL*16 (quadruplé precision in order to minimize nu-

curve, 40 components of angular momentum have been in-

merical error propagation and to deal accurately with a mixcluded, i.e.,|T®=17®=39 and for the first'P° potential

of both small and large numbers.
In Egs.(7)—(12), the channel indiceg and » run from 1

curve, 60 components have been used, IE=15*=30.
Bound and scattered states are obtained using proper bound-

to a maximum numbeN, of coupled channels that are con- ary conditions in solving the radial equations. In the calcu-
sidered in the adiabatic expansions. The positive constantation of static and dynamic polarizabiliti€sking the initial

# introduced through the Slater basis functions in Egsstate as the ground stat@otential curves for botHS® and
(15) and (16), can be heuristically chosen: the starting trial 1P° states are required.
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TABLE |. Ground-state energy convergence as a function of the nuipef coupled radial equations.
The error is relative to the variational value of Frankowski and PeKdfisThe first row, withN.=1,
corresponds to the calculation in which all couplings are neglected, giving a lower-energy bound; the second
row, also withN.=1, corresponds to the one in which only the diagonal coupling matrix element is taken
into account, giving an upper-energy bound. Horizontal lines delimit groups of chaiseeldext

N¢ (|l,|2,ﬁ;n) E; (a.u) (Eva— Ei)/Evar (ppm)

1 (0,00;1) —2.930032616 —9060.171

1 (0,00;1) —2.895554 014 2813.753

2 (1,10;2) —2.898 646614 1748.707

3 (0,02;2) —2.903611486 38.878

4 (2,20;3) —2.903632473 31.650

5 (1,12;3) —2.903636415 30.293

6 (3,30;3) —2.903 658492 22.690

7 (0,04;4) —2.903717 088 2.510

8 (2,22:4) —2.903717 136 2.494

9 (4,40:4) —2.903 717238 2.459
10 (1,14;4) —2.903717 274 2.446
11 (3,32;5) —2.903717 376 2411
12 (5,50;5) —2.903717997 2.197
13 (0,06;5) —2.903 722980 0.481
14 (2,24:5) —2.903 723027 0.465

Variational valug/4] —2.903724 377
IV. RESULTS analyzing the convergence of our results as a function of the

The potential curves used in our calculations are shown iiumber of channels included in our calculations. Note the
Figs. 1 and 2, where thR=0 degeneracy is evident and apparent crossings between contiguous curves, especially for
exact, according to Ed6). The degenerate curves suggest athe higher ones. In fact, those are avoided-crossing regions,
natural grouping of channels, which will prove relevant forwhere the corresponding channel functions suddenly ex-

TABLE Il. Same as Table I, for thesPp 1po state, where the error is relative to the variational value of
Schiff et al. [43]. Horizontal lines delimit groups of channelsee text

N (14,15 ,ﬁ;n) E (a.u) (Evar—Ei)/Eyar (PPM)
1 (0,10;1) —2.145599 305 —10243.798
1 (0,10;1) —2.121 696 638 1010.643
2 (0,11;2) —2.123010231 392.145
3 (1,20;2) —2.123219 358 293.679
4 (0,12;2) —2.123611967 108.821
5 (1,21;3) —2.123621908 104.141
6 (2,30;3) —2.123 645237 93.156
7 (0,13;3) —2.123734421 51.165
8 (1,22;3) —2.123738246 49.363
9 (2,31;3) —2.123 750987 43.365

10 (3,40;4) —2.123 755209 41.377

11 (0,14;4) —2.123790757 24.639

12 (1,23;4) —2.123792018 24.045

13 (2,32;4) —2.123794 936 22.671

14 (3,41;4) —2.123797519 21.455

15 (4,50;4) —2.123798539 20.975

16 (0,15;4) —2.123811116 15.053

Variational valueg[43] —2.123843086
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TABLE llI. Static polarizability of the helium atom using fivg-Slater basis functions without and with logarithmic terffer N,
=N;), whereN, is the number of coupled channels. The difference between the two rowd\witii is explained in the caption of Table

I. The results fora(0) in columns 4 and 5 do not involve optimized values of Bfeparameters; those in columns 6 and 7 do.

«(0)
S state P state Neglecting Including Optimized Optimized
N (I,1,,n:n) (I3,1,,n:n) log terms? log terms? without log termg’ with log terms®
1 (0,00;1) 0,10;1) 1.386 392 1.386 392
1 (0,00;1) (0,10;1) 1.394 070 1.394 070 1.394 068 70 1.394 068 70
2 (1,10;2) 0,11;2) 1.381 100 1.395 580 1.395576 02 1.395576 03
3 (0,02;2) 1,20;2) 1.356 458 1.380733 1.380 73090 1.38073132
4 (2,20:3) 0,12:2) 1.387 758 1.383117 1.38311607 1.383116 44
5 (1,12:3) 1,21:3) 1.387 457 1.382986 1.38297307 1.38297312
6 (3,30;3) (2,30;3) 1.387 635 1.383 227 1.383225 32 1.383 22555
7 (0,04;4) (0,13;3) 1.392171 1.383 045 1.383 066 40 1.383067 30
8 (2,22;4) (1,22;3) 1.393 330 1.383 086 1.383 068 82 1.383069 73
9 (4,40;4) (2,31;3) 1.392 195 1.383067 1.383069 74 1.38307043
10 (1,14;4) (3,40;4) 1.392073 1.383094 1.383074 42 1.383074 30
11 (3,32;5) 0,14;4) 1.397 085 1.383163 1.38315243 1.38315273
12 (5,50:5) (1,23:4) 1.391 545 1.383193 1.383162 64 1.383162 94

Five nonoptimizeds/* parameters.
bOne,B{‘ parameter. Results from Table V.
“Two B} parameters.

change their behaviors, resulting in sharp peaks in the nond}, horizontal lines delimit groups of channels. Inside each
diabatic couplings due to the first and second derivativegiroup the convergence is steady but slow. One could also try
present in their definitions, as seen in E@kl) and(12). grouping of channels using the asymptotic thresholas a

For reasons of consistency, the ground-state ené&rgy parameter. We believe that grouping of channels using their
used in Eq(1) is the calculated hyperspherical value for theR=0 characters is the most appropriate method since the
number of channels included in our calculations, as shown imorresponding potential well[see Eq.(3)] are in the small-
Table I. In this table, as the number of coupled channel&ind midR regions and, consequently, in this region the chan-
increases, the corresponding calculated energy approachgs| functions are better characterized by tHei0 behav-
the variational value of Ref4]. The first row withN.=1  jors than by theirR— o behaviors. As noted from Tables |
corresponds to the calculation in which all couplings are neand II, a new group of channels starts when an angular chan-
glected, giving a lower bound for the enerf§9,4Q. The  nel with anl;=0 component is included. Note how every
second row withN,=1 corresponds to the calculation in time a new channel havirg=0 is included, the error drops
which only the diagonal coupling is taken into account. Thisdramatically. This behavior(and its associated channel
value, and all subsequent ones, are upper-energy boungsouping will prove useful for analyzing the convergence of
[39,40. The second column lists tfe=0 angular quantum the static polarizability, for which bothS® and *P° symme-
numberssee Eq.(6)] as well as the asymptotic hydrogenic tries are involved.
thresholdn; this set of numbers labels each potential curve
(and the corresponding angular channé&lor second-order
processes such as the dipole polarizability of the ground
state, the mterme_dlate states possess symmietty For this In our calculation of the static polarizability without the
reason, Table Il is included in order to analyze the conver- . .~ " . .

. . optimization of the exponential parametg®s, our expan-

gence of the §2p energy. One sees in Table | that as addi- _. ; . . .
tional adiabatic hyperspherical channels are included in ouro"s of the radial Eunpﬂon; in Eq15) and (16) include
calculations, the deviations from the variational value of Reffactors such asR%0/(InR)'"!, where I<i=<Bp,, and
[4] decrease monotonically. Large decreases occur when tHesj<M; so thatB,—1 is the highest power of IR and
hyperspherical channels that convergente2 (N.=2, 3, M+ S/ is the highest power oR for a given power {
n=3 (N.=4, 5, 6, and the first channel converging o —1) of InR. We have used in the expansions of E(fs)
=4 (N.=7) are included. The largest decreases occur wheand (14), Bn»=5 with g{=0.3, g5=0.5, B5=0.8, B4
the last channel included has an angular function containing=1.2, andB5=1.7. For each value oB/, M;=M=12,
swaves(i.e., electron orbital angular momeritg=1,=0) at  althoughM =8 or evenM =6 suffices to obtain reasonable
R=0; this occurs foN.=3, 7, and 13. A similar pattern can precision. Although for H we have found thaB =1 suf-
be found in Table Il for the 42p state. In both Tables | and fices[32], which implies the absence of logarithmic terms in

A. Static polarizability

012508-5
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TABLE IV. Convergence for the calculated static dipole polarizability of the helium atom as a function of the number of coupled channels fot greunitistate Il.) and for the

intermediate states\(,). Calculations employ one optimizeg|* parameter. Horizontal and vertical lines delimit groups of chanfsels texx

N,

N! 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 1394069 [1.353977| | 1.324336 1.324337 1324098 (1.324162] | 1.323510 1.323511 1323510 1.323504 1.323510 (1.323519| [ 1.323460 1.323460
2 1427833 1395576 |1.380032 1.379974 1379764 1.379803 |[1.379160 1379160 1379160 1.379154 1379159 1379169 (1379110 1.379110
3 1428627 (1.395777| | 1380731 1.380723 1.380515 [1.380555( | 1.379910 1.379911 1379910 1.379905 1.379910 [1.379919| | 1.379861 1.379861
1431625 1.398484 |1.383111 1.383116 1.382930 1.382980 | 1.382345 1382346 1382345 1.382340 1.382345 1382354 (1.382297 1.382297
1431669 1398502 |1.383140 1.383149 1.382973 1.383022 | 1.382387 1.382388 1382387 1.382382 1.382387 1382397 |1.382341 1.382341
1431888 [1.398665| | 1.383275 1.383302 1.383126 (1.383225( | 1.382588 1.382589 1.382588 1.382583 1.382588 |[1.382598| [ 1.382543 1.382543
1432474 1399150 |1.383652 1.383672 1.383483 1.383645 | 1.383066 1.383067 1383066 1.383061 1.383066 1383076 |1.383021 1.383021
1432479 1399152 | 1383655 1.383675 1.383484 1.383647 |1.383068 1383069 1383068 1.383063 1.383068 1383077 |[1.383023 1.383023
1432480 1.399153 |[1.383656 1.383676 1383485 1.383648 |1.383070 1383070 1383070 1.383064 1.383070 1383079 |[1.383024 1.383024
10 1.432484 |1.399158( | 1.383660 1.383680 1.383490 |1.383658|]1.383079 1383080 1.383080 1.383074 1.383080 |1.383089( |1.383034 1.383034
11 1432585 1399247 |[1.383736 1.383756 1.383565 1383737 |1.383152 1383153 1383152 1.383147 1383152 1383162 (1.383107 1.383107
12 1432586 1.399247 1383736 1383756 1383566 1.383738 |1.383153 1383153 1.383153 1.383148 1383153 1.383163 |1.383108 1.383108
13 1432588 1.399249 |1.383738 1383757 1383567 1.383739 |1.383154 1383155 1.383154 1383149 1383155 1.383164 |1.383109 1.383109
14 1432590 1.399250 |1.383739 1383759 1383568 1.383740 |1.383155 1383156 1.383155 1.383150 1.383156 1.383165 |1.383110 1.383110
15 1432601 |1.399259( | 1.383747 1383767 1383576 |1.383747|]1.383162 1383163 1.383162 1.383157 1383164 |1.383174(]1.383119 1.383119
16 1432621 1.399278 |1.383763 1383783 1.383593 1.383764 |1.383179 1383179 1.383179 1383174 1383196 1.383208 |1.383157 1.383157
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TABLE V. Comparison of the present variationally stable results for the ground-state static dipole polarizability of the He atom with

theoretical results of other authors and available experimental values. The result in the first line was calculatég=using12, whereas
the two subsequent lines show results udihg=12 andN/=15.

Reference a(0)
Theoretical results

This work (coupled-channel result including log terins 1.383193

This work (optimized coupled-channel result without log tefims 1.38317359

This work (optimized coupled-channel result including log tefms 1.38317394

K. Pachucki and J. Sapirste{2000 (Ref.[27]) 1.383192174

Z.-C. Yanet al. (1996 (Ref.[25]) 1.3831925

M. J. Jamieson, G. W. F. Drake, and A. Dalgaii895 (Ref. [24]) 1.383192

A. K. Bhatia and R. J. Drachmaii994 (Ref.[23]) 1.383192179

D. M. Bishop and J. Pipiri1993 (Ref.[22]) 1.383192

D. M. Bishop and B. Lam(1988 (Ref. [19]) 1.383192

R. M. Glover and F. Weinhold'®ower bound (1976 (Ref.[17]) 1.38259

R. M. Glover and F. Weinhold'sipperbound(1976 (Ref.[17]) 1.384 11

S. J. A. van Gisbergeat al. (1998 (Ref. [26]) 1.3824

H. P. Saha and C. D. Caldwell99)) (Ref.[21]) 1.374

B. Gaoet al. (1990 (Ref.[20]) 1.3559

E.-A. Reinsch(1985 MC-SCF result(Ref. [18]) 1.383

K. T. Chung (1968 (Ref.[16]) 1.3841
Experimental results

C. R. Mansfield and E. R. Peck969 (Ref.[44]) 1.3861

P. W. Langhoff and M. Karplu$1969 (Ref.[45]) 1.3838

D. Gugan and G. W. Miche]1980 (Ref.[46]) 1.383717)

D. Gugan(199)) (Ref.[47]) 1.383 794)

K. Grohmann and H. Luthef1992 (Ref.[48]) 1.383 7467)

Five nonoptimizeds parametersN.=N;= 12 channelgcf. Table IlI).
One optimized3* parameterN,=12, N, =15 channelgcf. Table IV).
“Two optimizedB# parametersN.=12, N.=15 channels.

the intermediate-state functions, for the helium atom we dis{such as the number @ constantsand the same number
covered that not only shoulB,, be greater than unity but of basis functions. Comparison of the two variational calcu-
also that it needs to be at least greater than or equal to thregtions clearly indicates the importance of the use of the
in order to obtain convergence to the correct value of tthganthmm expansion_ They are important not 0n|y for ac-
static polarizability. In the adiabatic approximation, wherece|erating the convergence but also for obtaining the correct
Nc=1, the three matrix elements in E@) are equal to each y5ye. Note that in calculating the polarizability there are two
other (to ten digits of accurady For the nonadiabatic gets of coupled channels: tH&® channels, which couple to

coupled-channel calculation, i.eN.=2, they are typically yhe ground state, and theP° channels which constitute the
converged to within five or six digits of accuracy. We regardi termediate states. One sees from Table Il that the conver-

the accuracies of these equalities as indicators of the Ievgl ence is not a monotonically decreasing function of the num-
accuracy of our results. Note also that for these calculation : . o
%r N, of coupled channels. An interesting question is

we have not altered the parameters as the number of channe o
is increased; doing so may be necessary for larger numbel¥ ether the convergence would become smoother if different

of channels, as these correspond to higher-energy levels GEMPers of channels were coupled in ground and intermedi-
He' . ate states. For example, one might include all hyperspherical

Table Il lists the calculated values of the static polariz-channels that converge to a particular lewaf the He'" ion
ability according to Eq(17), with ©=0, as the number of N both ground and intermediate states. Alternatively, one
coupled channels increases. The quantum numbers that ladg|ght group the various adiabatic hyperspherical channels in
the potential curves, listed in Tables | and Il, are also in-some other way, such as according to their charactd® at
cluded to help identify the groups of channels. This table=0. We have carried out this study coupling all available
lists the values obtained by neglecting the logarithmic termghannels in ground and intermediate states. In Table IV, we
in Egs. (15 and (16) alongside the results obtained by in- study the convergence of the static polarizability as a func-
cluding the logarithmic terms. Other than the inclusion ortion of N, andN., which are the numbers of coupled chan-
exclusion of the logarithmic terms, both calculations werenels in both ground and intermediate states, respectively,
otherwise the same. That is, they used the same parameteriere we have used for this purpose a singfe, which
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TABLE VI. Selected values of our best calculated & N.=6) dynamic polarizability of helium compared with results from other
authors and with experimental values.

w This work Ref.[16] Ref.[17] Ref.[18] Ref.[19] Expt2
0.050 1.387 094 1.386 8 1.387 22 1.387 066
0.100 1.398 857 1.3990 1.39898 1.398 1.398 820 1.399
0.150 1.418 998 1.4192 1.41912 1.418 957
0.200 1.448 388 1.448 3 1.44851 1.448 1.448 341 1.449
0.250 1.488 389 1.4887 1.488 53 1.488 335
0.300 1.541 045 1.5407 1.54119 1.540 1.540981 1.542
0.350 1.609 399 1.6095 1.609 56 1.609 325
0.400 1.698 070 1.698 0 1.698 3 1.696 1.697 985 1.700
0.450 1.814 308 1.8147 1.8145 1.814214
0.500 1.970129 1.9706 1.9705 1.966 1.970037 1.973
0.550 2.187 047 2.1872 2.1875 2.182 2.186 990
0.600 2.508 200 2.509 1 2.509 1 2.501 2.508 292 2.502
0.650 3.036 655 3.0380 3.0391 3.022 3.037 345
0.700 4.107 153 4.1103 4.1184 4.079 4.111 021 3.884
0.750 7.967 789 7.968 4 8.1640 7.967 8.014 127
0.770 17.070 652 16.866 8
0.780 1765.866 727 56.096 9 —1073.68
0.782 —90.326 704 116.456 0
0.784 —42.857 302 —968.8395
0.785 —33.466 465 —31.46
0.790 —14.990171 —30.746 1 —14.56
0.795 —8.852173 —-8.71
0.800 —5.722 310 —10.3290 —5.66
0.805 —3.768979 —-3.75
0.810 —2.380470 —2.38
0.815 —1.286 429 -1.30
0.820 —0.336927 -0.37
0.825 0.578 338 0.52
0.830 1.581 768 1.47
0.835 2.894 517 2.65
0.840 5.173 656 4.52
0.845 12.633 684 9.75
%Referencd18].

means that the basis functions do not include logarithmidew coupled channels have been computed and displayed in
terms. The horizontal and vertical lines correspond to thehe last column of Table Ill. One sees that the improvement
horizontal lines of Tables | and Il, i.e., they show the begin-is beyond the sixth or seventh decimal digit, with a high cost
ning of each group of channels, where each group beging terms of computer resources.

with a channel having;=0 atR=0 [see Eq.(6)]. In our Some information about the convergence of the calculated
calculations fora(0), we have introduced an optimization (0) value with the number of channels can be extracted
procedure for the parametegf‘. The optimal set of8{*  from Table IV. For each column, the same convergence pat-
parameters is found by minimizing the transition matrix ele-tern of 1P° states, shown in Table II, is found ay. in-
ment [Eq. (2)] with respect to eacl{’. Table lil lists the  creases. Within each group of channels the polarizability in-
results using optimize@{ in the intermediate functions. A creases slowly and monotonically whereas larger increments
side-by-side comparison shows that only a single optimizeéccur when a new group is included. A different pattern is
value for thesf* parameter is sufficient to achieve results noted when looking at the rows, which show the conver-
very close to the ones obtained with five nonoptimiz#d  gence as the numbé\, of channels included in the ground-
parameters and logarithmic terms. On the other hand, addgtate wave function is increased. Within each group the con-
tional CPU time is required for the optimization procedure.vergence oscillates with increasintl.. However, the
Anticipating that readers will wish to know what would hap- important feature is that considering only the values obtained
pen if one combines the inclusion of logarithmic terms to-with a complete groupmf N, channels included, the results
gether with the optimization of thg!, a sample for the first are monotonically decreasing. These results are represented
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FIG. 3. Convergence of the dynamic polarizability of helium for ~ FIG. 4. Comparison of our best result for the dynamic polariz-
photon frequencies below the first ionization thresh¢fl.Below  ability of helium with other theoretical calculations and with experi-
the first excitation frequencyb) Resonance region. mental values(a) Below the first excitation frequencyb) Reso-

nance region.
by the values to the immediate left of the vertical lines. The
numbers inside the boxes are the results after completgapolated values with our result of=1.383174 N =12
groups of channels in both ground and intermediate states agg,q N.=15), we can assure a convergence of at least five
included. Thus, this analysis relates the convergence pattegjigits. It is remarkable how our method is capable of provid-
of the polarizability with the behavior of theS® and 'P°  jng results for polarizabilities that possess almost the same
energy convergence, shown in Tables | and IIl. The converaye| of accuracy as for the ground-state eneiefy Table |,
gence withN should be examined for entire groups of chan-N_=12), which is usually not true.
nels and the convergence wily, is monotonic and conse- | Table V, a comparison of our coupled channel values
quently one does not need to group channels, although ongith the results of calculations of other authors and with
should expect jumps at the beginning of a new group. Taexperimental values is given. Our result using one optimized
further investigate the convergence and reliability of our rE—lgiu without logarithmic terms.=12 andN.=15) and five
sults, an extrapolation procedure can be used. If one ta i mo i it i —N’
into account solely the results inside boxes from Table IV?j)f;)pggzs:jefém;C.lli/(\j,:anaslgg:lggcvmtlﬁe trir;llst §f° th\(l)C opti-

each row and column can be fitted to a function of the typemizeol B plus inclusion of logarithmic termsN,= 12 and

b N.=15). As noted before, the improvement in the latter is
a(X)=a+ —, (18 beyond the sixth decimal digit. Not all of the results of others
¢ lie between the rigorous bounds from Glover and Weinhold
[17]. Our results fall between these limits. Indeed, our pre-
whence one can extrapolate to an infinite number of groupsise results are comparable to the most accurate ones from
in both directions. This extrapolation procedure may be donghe literature, such as that of R¢27]. Among the various
in two ways: starting by rows or by columns. Within six theoretical calculations, the works by Bishop and co-workers
digits of accuracy, the resulting values asg,=1.38318 [19,22, Bhatia and Drachmal23], Jamiesoret al.[24], and
and aq—1.383 10, respectively. Comparing these two ex-Pachucki and Sapirste[27] appear to be the most accurate
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TABLE VII. Comparison of the one-photon transition reso- the literaturg16—19 and also with experimental valuéas
nances extrapolated from Fig(b} with results in the literature. listed in Ref.[18]). Most calculations are unable to achieve
results over the photon energy range &#<0.9 (in a.u)

This work' Variationaf Hyperspherical owing to the approach of the resonance region. Our calcula-

0.780 100 0.779 881 0.779 920 tion for the dynamic polarizability is presented in Figs. 3 and

0.848 527 0.848 578 0.848 618 4. In Fig. 3 one sees the rate of convergence as the number of

0.872 964 0.872 655 0.872677 coupled channelévith N.=N_) increases. Figure 4 shows a

0.883 820 0.883818 0.883 830 comparison of our best resulN{=N_=6) with the theoret-

ical results of Chund16], Glover and Weinhold17], and

MN=N¢=6. Bishop and Lan{19] as well as with experimental values
"Referencq41]. from Ref. [18]. For photon frequencie®<0.7 a.u.[Fig.
‘Referencg 42]. 4(a)] our results compare very well with the results of other

authors. However, in the resonance regjéig. 4(b)] our
ones. Those are all based upon techniques that use varigalculation compares best with the results from Glover and
tional wave functions for both the ground state and the intery\einhold[17].
mediate states that involve large basis sets, ranging from 100 The resonancessharp antisymmetric peaksn the dy-
basis function$22] to 900[27]. Their wave functions do not namic polarizability correspond to one-photon transitions to
include the logarithmic contributions, which can explain theintermediateP° excited states of He. Whew approaches
large number of basis functions needed to achieve good cofhis region @=0.7 a.u.), conventional methods start to fail
vergence. Three of theifi22,23,27 used extendedor qua-  due to the approximation of the poles present in E,
druple numerical precision to avoid round-off error propa- making the calculation increasingly difficult. As our formal-
gation. Nevertheless, our calculation using basis functiongm transforms Eq(1) into Eq.(2), in which the poles have
that include logarithmic terms needs fewer basis functionspeen removed, there is no difficulty in the calculation in the
namely, 60 terms in the expansions given by H4S) and  region w>0.7 a.u. From the calculation of the dynamic po-
(14), whereas in the calculation using only one optimig#d  |arizability in the resonance region, one can extract the fre-
parameter, 16 termsV;=16) have been used in these ex- quencies for the one-photon transitions by simply inspecting
pansions. We reiterate that we have not pushed our variationthe calculated data and, in the vicinity of an abrupt change of
ally stable approach using a coupled adiabatic hypersphericalgn, extrapolate the values of the resonant frequencies. The
basis to obtain the seven or more digits of accuracy necesirst few one-photon transition energies obtained are listed in
sary to achieve benchmark predictions for the static polarizTable VII. In this table, a comparison with results of a varia-
abilities. To do that we would have to couple more than thetional calculation[41] is given. Also listed are the hyper-
12-15 channels of each symmetry that we currently includgpherical results from Ref42]. Unlike the usual methods
and, in particular, we would have to include one or more offor obtaining polarizabilities, one notes that the present
the next complete groups of channels of each symmetryariationally stable approach provides very accurate values
What we have shown is that for a given number of channel$or the one-photon transition energies.
the inclusion of logarithmic terms allows one to obtain com-
parable accuracy to calculations that optimize gheparam- V. CONCLUSIONS
eters but do not use logarithmic terms. A key additional point . )
is that the five digits of accuracy we have achieved at the In summary, we have presented a calculation for the static
level of approximation permitted by our computational con-dipole polar|zab|llty_ of the helium ground.state tha}t includes
straints is sufficient to obtain competitive predictions for thelogarithmic terms in both ground and intermediate states

dynamical polarizabilties, which we discuss next. within a variationally stable, coupled-channel adiabatic hy-
perspherical approach. Within this basis set, the inclusion of

logarithmic terms appears to be necessary to obtain conver-
gence to the correct value of the static polarizability when
Our results for the static polarizability have determinednonoptimized parameters in the intermediate basis functions
the set of optimized parameters which provide results comare used. We have shown that for any fixed number of
parable to the use of logarithm terms in the initial- andcoupled channels this approach is capable of obtaining a
intermediate-state expansions. We use this information to s&alue for the static polarizability that is comparable to the
lect the parameters for our calculations of the frequencyresults obtained with optimized parameters. The two meth-
dependent(or dynami¢ polarizability of He. For the dy- ods appear comparable in their use of computer resources.
namic case, the determined optimal valuesggf for each  Use of logarithmic terms requires more basis functions, but
coupled channel in the static limit have been used. We havene does the calculation only once; use of optimized
used an equal number of coupled channels for both groungarameters—without logarithmic terms—implies fewer basis
and intermediate states, thathg, =N =6 since this number functions, but the calculations must be repeated as often as
of coupled channels constitutes a closed group of channelsecessary to obtain the optimum values of the parameters.
for both ground and intermediate states, according to Results for the dynamic polarizability have also been
Table IV. In Table VI, our results for the dynamic polariz- presented whose accuracy is comparable to that of the best
ability of helium are compared with previous calculations inresults of other authors, especially in the photon frequency

B. Dynamic polarizability
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