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Static and dynamic dipole polarizability of the helium atom using wave functions involving
logarithmic terms
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Anthony F. Starace
Department of Physics and Astronomy, The University of Nebraska, 116 Brace Laboratory, Lincoln, Nebraska 68588-0111, USA

~Received 10 June 2002; revised manuscript received 15 May 2003; published 23 July 2003!

We present a calculation of the static and dynamic dipole polarizability of the helium atom using a varia-
tionally stable treatment that incorporates the coupled-channel hyperspherical representation of the wave func-
tions. Inclusion of logarithmic terms in intermediate functions as well as the effect of an optimization proce-
dure for the variational parameter are analyzed. When available, our coupled-channel results are compared
with other values in the literature.

DOI: 10.1103/PhysRevA.68.012508 PACS number~s!: 32.10.Dk, 32.80.2t

I. INTRODUCTION

It was demonstrated long ago that the wave function for
the helium atom at the triple-collision point should formally
be described as a power series inR and lnR, whereR is the
hyperspherical radius@1,2#. However, this description has
only been applied in calculations of energy levels@3–7#. The
main effect of this expansion is to speed up the convergence
of the calculated energy, reducing the large number of basis
functions needed in usual variational calculations. More re-
cent works@8–14# have demonstrated that alternative kinds
of expansions, not involving logarithmic terms, can achieve
benchmark energy levels with reasonable basis sizes. These
methods involve double@9,11# and triple@12# basis sets, non-
integer@8# or complex@13,14# powers of the expansion vari-
ables, or special kinds of configuration interaction expan-
sions @10#. In a recent work, Popov and Ancarani@15#
showed, in a rigorous mathematical study of the bound states
of the helium atom, how the logarithmic terms, as suggested
by Bartlett@1#, are linked to the electron-electron interaction
in the region of small radii. Nevertheless, they discussed
only briefly possible numerical methods for getting approxi-
mate energy levels.

The dipole polarizability of helium is another fundamen-
tal property of this prototypical two-electron system whose
accurate calculation has generated much interest~see, e.g.,
Refs. @16–27#!. A comprehensive review on electric dipole
polarizabilities for atoms has been given by Bonin and
Kadar-Kallen@28#. As pointed out in that review, polarizabil-
ities are important in a number of areas in physics and chem-
istry, such as interactions between matter and electromag-
netic fields, collision phenomena, and others. Many physical
properties are related to the polarizability, as for instance the
dielectric constant and refractive index. Owing to such a
broad interest in determining polarizabilities, many theoreti-
cal methods have been employed. However, many fewer
highly accurate methods exist for polarizabilities than for
energies. An interesting fact, recently shown by Pachucki
and Sapirstein@27#, is that the mass polarization, relativistic,
and QED corrections to the nonrelativistic static polarizabil-
ity cancel almost completely, giving a contribution to the He

static polarizability of under 2 ppm. This accidental cancel-
lation highlights the importance of highly accurate calcula-
tions of the polarizability in the nonrelativistic limit in order
to test the effect of these higher-order corrections. Although
many different methods and techniques exist, only a few of
them are able to give the requisite precision. Significantly,
none of the many prior calculations include logarithmic
terms in their formulation.

We present, in addition to energy levels, a calculation of
the static and dynamic dipole polarizability of the helium
atom using a variationally stable, coupled-channel hyper-
spherical approach@20,29–32#, in which the initial- and
intermediate-state wave functions are represented by Fock
expansions@1,2,33–36#. Our results include logarithmic
terms in the wave-function expansions in order to calculate
an observable other than the energy. In the calculation of
energy levels, those terms have served only to speed up the
convergence of the result~see, e.g., Refs.@4,5#!. On the con-
trary, in our calculation of the dipole polarizability, the loga-
rithmic terms play a crucial role in obtaining accurate values
when using nonoptimized parameters in the intermediate-
state functions. When an optimization procedure is included,
the logarithmic terms become less important, at the expense
of more CPU time. Comparing the results we obtain both
with and without the logarithmic terms for the static polariz-
ability, we are able to demonstrate their important role for
the hyperspherical basis we employ. The present approach, in
which we treat up to 12 coupled1Se channels and up to 15
coupled 1Po channels, is able to furnish five digits of accu-
racy for polarizabilities. While this level of accuracy is un-
able to provide benchmark results for the He static polariz-
ability ~since the best results of others give seven or more
digits of accuracy!, our method is nevertheless more than
sufficient to provide competitive results for the dynamical
polarizabilities as well as for our next main goal, the calcu-
lation of multiphoton cross sections with an accuracy ex-
ceeding that of current experimental capabilities.

This paper is structured as follows. In Sec. II we summa-
rize the theoretical aspects of the present approach, giving
the fundamental equations. Section III gives some details
regarding the numerical and calculational features of our ap-
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proach. In Sec. IV we present the results for the static and
frequency-dependent dipole polarizabilities as well as for the
energies; we provide also an analysis of the convergence of
our results. In addition, comparisons with other results in
literature are given. Finally, Sec. V presents our conclusions
and some perspectives.

II. THE VARIATIONALLY STABLE, COUPLED-CHANNEL
HYPERSPHERICAL APPROACH

For two-electron systems, such as helium and its isoelec-
tronic series, the hyperspherical coordinate representation is
very suitable for describing the wave functions~see Ref.@37#
for a review on this subject!. The set of coordinates em-
ployed is $R,a,u1 ,f1 ,u2 ,f2%, where R5(r 1

21r 2
2)1/2, a

5tan21(r 1 /r 2), and u i , f i are the usual angular coordi-
nates.

The matrix element for a two-photon transition between
an initial stateu i & and a final stateu f & is written as

Ti→ f
(2) ~v!5K fUD 1

Ei1v2Ĥ
DU i L , ~1!

whereD5e•(r11r2) is the length form of the electric di-
pole operator,Ei is the energy of the initial state,e is the
light polarization vector, andv is the photon energy. The
variationally stable form of Eq.~1!, according to Refs.
@20,29–31#, is

Ti→ f
(2) ~v!5^ f uDul&1^l8uDu i &2^l8uEi1v2Ĥul&, ~2!

where ul& and ^l8u represent unknown functions related to
u i & and ^ f u, respectively, by a one-photon transition. The
two-photon transition rate in Eq.~2! is variationally stable in
the sense that it depends only quadratically on errors in the
determination oful& and ^l8u @30#. In Eq. ~2!, the Hamil-
tonian in hyperspherical coordinates is given by~atomic
units are used throughout this paper!

Ĥ52
1

2 S ]2

]R2
1

Û~R,V!11/4

R2 D , ~3!

and the operatorÛ(R,V) is the angular part of the Hamil-
tonian, with a parametric dependence onR,

Û~R,V!5
]2

]a2
2

L̂1
2

sin2a
2

L̂2
2

cos2a
1

2ZR

sina
1

2ZR

cosa

2
2R

A12sin~2a!cosu12

, ~4!

whereL̂1
2 and L̂2

2 are the usual angular-momentum operators
of the individual electrons andu12 is the angle between their
position vectors: cosu125 r̂1• r̂2. An eigenvalue equation for
the operatorÛ(R,V), i.e.,

Û~R,V!Fm~R;V!5Um~R!Fm~R;V!, ~5!

furnishes a set of channel functionsFm(R;V) and a set of
corresponding potential curvesUm(R), where the indexm is
a collective label for all relevant quantum numbers. AtR
50, Eq. ~5! is exactly solvable and the solutions can be
written in terms of Jacobi polynomials with the correspond-
ing eigenvalues given by

Um~0!52~ l 11 l 212ñ12!2, ~6!

wherel 1 and l 2 are the individual angular-momentum quan-
tum numbers of the electrons andñ is the degree of the
Jacobi polynomial of a particular solution. It represents the
number of nodes ina ~at R50) of a given channel.

The initial- and final-state wave functions as well as the
functionsl andl8 are expanded in adiabatic hyperspherical
channel functions@20,38,31#; they all have similar forms:

C~R,V!5~R5/2sina cosa!21(
m

Fm~R!Fm~R;V!, ~7!

l~R,V!5~R5/2sina cosa!21(
n

ln~R!Fn~R;V!, ~8!

l8~R,V!5~R5/2sina cosa!21(
m

lm8 ~R!Fm~R;V!,

~9!

where the expansion coefficientsFm(R) satisfy the coupled
radial equations

S d2

dR2
1

Um~R!11/4

R2
12ED Fm~R!1(

n
F2Pmn~R!

d

dR

1Qmn~R!GFn~R!50, ~10!

andln(R) andlm8 (R) are determined by the variational pro-
cedure described below. The coupling terms in Eq.~10! are
known as nonadiabatic couplings and are defined by

Pmn~R!5 K FmU d

dRUFnL ~11!

and

Qmn~R!5K FmU d2

dR2UFnL , ~12!

where the brackets mean integration over the angular vari-
ablesV. In order to evaluate the radial integrals of Eq.~2!,
we expand the unknown radial functions as

ln~R!5 (
i 51

Bmax

(
j 51

Mi

ai j
n f i j

n ~R! ~13!

and
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lm8 ~R!5 (
i 851

Bmax

(
j 851

Mi 8

bi 8 j 8
m u i 8 j 8

m
~R!, ~14!

wheref i j
n (R) andu i 8 j 8

m (R) are chosen to be modified Slater
orbitals that include powers of lnR, i.e.,

f i j
n ~R!5Ni , j 12(i 21)

n RSi j
n
~ ln R! i 21e2b i

nR ~15!

and

u i 8 j 8
m

~R!5Ni 8, j 812(i 821)
m RS

i 8 j 8
m

~ ln R! i 821e2b
i 8
m

R, ~16!

whereNi , j
m is a normalization constant for thei , j basis func-

tion of each channelm and the exponents ofR are given by
Si j

m5A2Um(0)11/21 j 12(i 21) ~cf. Ref. @35#!. The con-
stantsb i

m are free parameters whose determination is de-
scribed in Sec. III.

The frequency-dependent polarizability is calculated us-
ing the second-order transition matrix element as follows:

a~v!52@Ti→ i
(2) ~1v!1Ti→ i

(2) ~2v!#, ~17!

where the final stateu f & is replaced by the initial stateu i & in
Eq. ~2!. In the static limit, i.e., the photon frequencyv
→0, the expression for the polarizability reduces to a sim-
pler form: a(0)522Ti→ i

(2) (0).

III. CALCULATIONAL ASPECTS

In this section, we discuss the numerical aspects of our
calculations. It should be stressed here that these are numeri-
cally intensive calculations, particularly because our codes
useREAL*16 ~quadruple! precision in order to minimize nu-
merical error propagation and to deal accurately with a mix
of both small and large numbers.

In Eqs.~7!–~12!, the channel indicesm andn run from 1
to a maximum numberNc of coupled channels that are con-
sidered in the adiabatic expansions. The positive constants
b i

m , introduced through the Slater basis functions in Eqs.
~15! and ~16!, can be heuristically chosen: the starting trial

values for theb i
m are chosen to be close to the value

A22E0, where2E050.903 724 a.u. is the electron binding
energy for the helium atom. Then, a spread of values around
the initial trial values are investigated and their convergence
properties and stability are examined with the aim of mini-
mizing error propagation. In this work, we have also devel-
oped an optimization procedure for searching for the best set
of b i

m parameters. This procedure is based on the minimiza-
tion of the transition matrix element@Eq. ~2!# with respect to
b i

m . Note that for photon frequencies above the ionization
threshold,b i

m should be chosen to be complex in order to
correctly describe the oscillatory character of the
intermediate-state continuum wave functions.

The hyperspherical method focuses on the determination
of potential curves and the corresponding channel functions
@see Eq.~5!#. Due to the nature of the angular operator@Eq.
~4!#, the solution of Eq.~5! is the most difficult step of the

method. Nevertheless, the angular operatorÛ(R,V) is not
dependent on the system’s energies, which means that the set
of potential curves and nonadiabatic couplings are calculated
a single time for the system under consideration. Due to the
symmetry breaking caused by the electron-electron repul-
sion, the angular operator is not separable and Eq.~5! be-
comes an angular coupled channel equation@38#. In solving
this eigenvalue equation, we have used an expansion in the
individual angular momenta of the electrons@35#. The
coupled-channel expansions have been truncated at the maxi-
mum valuel 1

max5l2
max59 for the 1Se and 1Po channels with

the exception of the lowest potential curves of each symme-
try. These potential curves are the most important ones since
they support the bound states. For the first1Se potential
curve, 40 components of angular momentum have been in-
cluded, i.e.,l 1

max5l2
max539 and for the first1Po potential

curve, 60 components have been used, i.e.,l 1
max5l2

max530.
Bound and scattered states are obtained using proper bound-
ary conditions in solving the radial equations. In the calcu-
lation of static and dynamic polarizabilities~taking the initial
state as the ground state!, potential curves for both1Se and
1Po states are required.

FIG. 1. Set of potential curves2Um(R) for 1Se states of the
helium atom.

FIG. 2. Same as Fig. 1 for1Po states.
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IV. RESULTS

The potential curves used in our calculations are shown in
Figs. 1 and 2, where theR50 degeneracy is evident and
exact, according to Eq.~6!. The degenerate curves suggest a
natural grouping of channels, which will prove relevant for

analyzing the convergence of our results as a function of the
number of channels included in our calculations. Note the
apparent crossings between contiguous curves, especially for
the higher ones. In fact, those are avoided-crossing regions,
where the corresponding channel functions suddenly ex-

TABLE I. Ground-state energy convergence as a function of the numberNc of coupled radial equations.
The error is relative to the variational value of Frankowski and Pekeris@4#. The first row, withNc51,
corresponds to the calculation in which all couplings are neglected, giving a lower-energy bound; the second
row, also withNc51, corresponds to the one in which only the diagonal coupling matrix element is taken
into account, giving an upper-energy bound. Horizontal lines delimit groups of channels~see text!.

Nc ( l 1 ,l 2 ,ñ;n) Ei ~a.u.! (Evar2Ei)/Evar ~ppm!

1 (0,0,0;1) 22.930 032 616 29 060.171
1 (0,0,0;1) 22.895 554 014 2 813.753
2 (1,1,0;2) 22.898 646 614 1 748.707

3 (0,0,2;2) 22.903 611 486 38.878
4 (2,2,0;3) 22.903 632 473 31.650
5 (1,1,2;3) 22.903 636 415 30.293
6 (3,3,0;3) 22.903 658 492 22.690

7 (0,0,4;4) 22.903 717 088 2.510
8 (2,2,2;4) 22.903 717 136 2.494
9 (4,4,0;4) 22.903 717 238 2.459

10 (1,1,4;4) 22.903 717 274 2.446
11 (3,3,2;5) 22.903 717 376 2.411
12 (5,5,0;5) 22.903 717 997 2.197

13 (0,0,6;5) 22.903 722 980 0.481
14 (2,2,4;5) 22.903 723 027 0.465

Variational value@4# 22.903 724 377

TABLE II. Same as Table I, for the 1s2p 1Po state, where the error is relative to the variational value of
Schiff et al. @43#. Horizontal lines delimit groups of channels~see text!.

Nc ( l 1 ,l 2 ,ñ;n) Ei ~a.u.! (Evar2Ei)/Evar ~ppm!

1 (0,1,0;1) 22.145 599 305 210 243.798
1 (0,1,0;1) 22.121 696 638 1 010.643

2 (0,1,1;2) 22.123 010 231 392.145
3 (1,2,0;2) 22.123 219 358 293.679

4 (0,1,2;2) 22.123 611 967 108.821
5 (1,2,1;3) 22.123 621 908 104.141
6 (2,3,0;3) 22.123 645 237 93.156

7 (0,1,3;3) 22.123 734 421 51.165
8 (1,2,2;3) 22.123 738 246 49.363
9 (2,3,1;3) 22.123 750 987 43.365

10 (3,4,0;4) 22.123 755 209 41.377

11 (0,1,4;4) 22.123 790 757 24.639
12 (1,2,3;4) 22.123 792 018 24.045
13 (2,3,2;4) 22.123 794 936 22.671
14 (3,4,1;4) 22.123 797 519 21.455
15 (4,5,0;4) 22.123 798 539 20.975

16 (0,1,5;4) 22.123 811 116 15.053
Variational value@43# 22.123 843 086
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change their behaviors, resulting in sharp peaks in the nona-
diabatic couplings due to the first and second derivatives
present in their definitions, as seen in Eqs.~11! and ~12!.

For reasons of consistency, the ground-state energyEi
used in Eq.~1! is the calculated hyperspherical value for the
number of channels included in our calculations, as shown in
Table I. In this table, as the number of coupled channels
increases, the corresponding calculated energy approaches
the variational value of Ref.@4#. The first row withNc51
corresponds to the calculation in which all couplings are ne-
glected, giving a lower bound for the energy@39,40#. The
second row withNc51 corresponds to the calculation in
which only the diagonal coupling is taken into account. This
value, and all subsequent ones, are upper-energy bounds
@39,40#. The second column lists theR50 angular quantum
numbers@see Eq.~6!# as well as the asymptotic hydrogenic
thresholdn; this set of numbers labels each potential curve
~and the corresponding angular channel!. For second-order
processes such as the dipole polarizability of the ground
state, the intermediate states possess symmetry1Po. For this
reason, Table II is included in order to analyze the conver-
gence of the 1s2p energy. One sees in Table I that as addi-
tional adiabatic hyperspherical channels are included in our
calculations, the deviations from the variational value of Ref.
@4# decrease monotonically. Large decreases occur when the
hyperspherical channels that converge ton52 (Nc52, 3!,
n53 (Nc54, 5, 6!, and the first channel converging ton
54 (Nc57) are included. The largest decreases occur when
the last channel included has an angular function containing
s waves~i.e., electron orbital angular momental 15 l 250) at
R50; this occurs forNc53, 7, and 13. A similar pattern can
be found in Table II for the 1s2p state. In both Tables I and

II, horizontal lines delimit groups of channels. Inside each
group the convergence is steady but slow. One could also try
grouping of channels using the asymptotic thresholdn as a
parameter. We believe that grouping of channels using their
R50 characters is the most appropriate method since the
corresponding potential wells@see Eq.~3!# are in the small-
and mid-R regions and, consequently, in this region the chan-
nel functions are better characterized by theirR50 behav-
iors than by theirR→` behaviors. As noted from Tables I
and II, a new group of channels starts when an angular chan-
nel with an l 150 component is included. Note how every
time a new channel havingl 150 is included, the error drops
dramatically. This behavior~and its associated channel
grouping! will prove useful for analyzing the convergence of
the static polarizability, for which both1Se and 1Po symme-
tries are involved.

A. Static polarizability

In our calculation of the static polarizability without the
optimization of the exponential parametersb i

m , our expan-
sions of the radial functions in Eqs.~15! and ~16! include

factors such asRSi0
m

1 j (ln R)i21, where 1< i<Bmax and
1< j <Mi so thatBmax21 is the highest power of lnR and
Mi1Si0

m is the highest power ofR for a given power (i
21) of lnR. We have used in the expansions of Eqs.~13!
and ~14!, Bmax55 with b1

m50.3, b2
m50.5, b3

m50.8, b4
m

51.2, andb5
m51.7. For each value ofb i

m , Mi5M512,
althoughM58 or evenM56 suffices to obtain reasonable
precision. Although for H2 we have found thatBmax51 suf-
fices@32#, which implies the absence of logarithmic terms in

TABLE III. Static polarizability of the helium atom using five-b Slater basis functions without and with logarithmic terms~for Nc

5Nc8), whereNc is the number of coupled channels. The difference between the two rows withNc51 is explained in the caption of Table
I. The results fora(0) in columns 4 and 5 do not involve optimized values of theb i

m parameters; those in columns 6 and 7 do.

a(0)

S state P state Neglecting Including Optimized Optimized
Nc ( l 1 ,l 2 ,ñ;n) ( l 1 ,l 2 ,ñ;n) log termsa log termsa without log termsb with log termsc

1 (0,0,0;1) (0,1,0;1) 1.386 392 1.386 392
1 (0,0,0;1) (0,1,0;1) 1.394 070 1.394 070 1.394 068 70 1.394 068 70
2 (1,1,0;2) (0,1,1;2) 1.381 100 1.395 580 1.395 576 02 1.395 576 03
3 (0,0,2;2) (1,2,0;2) 1.356 458 1.380 733 1.380 730 90 1.380 731 32
4 (2,2,0;3) (0,1,2;2) 1.387 758 1.383 117 1.383 116 07 1.383 116 44
5 (1,1,2;3) (1,2,1;3) 1.387 457 1.382 986 1.382 973 07 1.382 973 12
6 (3,3,0;3) (2,3,0;3) 1.387 635 1.383 227 1.383 225 32 1.383 225 55
7 (0,0,4;4) (0,1,3;3) 1.392 171 1.383 045 1.383 066 40 1.383 067 30
8 (2,2,2;4) (1,2,2;3) 1.393 330 1.383 086 1.383 068 82 1.383 069 73
9 (4,4,0;4) (2,3,1;3) 1.392 195 1.383 067 1.383 069 74 1.383 070 43

10 (1,1,4;4) (3,4,0;4) 1.392 073 1.383 094 1.383 074 42 1.383 074 30
11 (3,3,2;5) (0,1,4;4) 1.397 085 1.383 163 1.383 152 43 1.383 152 73
12 (5,5,0;5) (1,2,3;4) 1.391 545 1.383 193 1.383 162 64 1.383 162 94

aFive nonoptimizedb i
m parameters.

bOneb i
m parameter. Results from Table IV.

cTwo b i
m parameters.
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TABLE IV. Convergence for the calculated static dipole polarizability of the helium atom as a function of the number of coupled channels for the initial ground state (Nc) and for the
intermediate states (Nc8). Calculations employ one optimizedb i

m parameter. Horizontal and vertical lines delimit groups of channels~see text!.
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the intermediate-state functions, for the helium atom we dis-
covered that not only shouldBmax be greater than unity but
also that it needs to be at least greater than or equal to three
in order to obtain convergence to the correct value of the
static polarizability. In the adiabatic approximation, where
Nc51, the three matrix elements in Eq.~2! are equal to each
other ~to ten digits of accuracy!. For the nonadiabatic
coupled-channel calculation, i.e.,Nc>2, they are typically
converged to within five or six digits of accuracy. We regard
the accuracies of these equalities as indicators of the level of
accuracy of our results. Note also that for these calculations
we have not altered the parameters as the number of channels
is increased; doing so may be necessary for larger numbers
of channels, as these correspond to higher-energy levels of
He1.

Table III lists the calculated values of the static polariz-
ability according to Eq.~17!, with v50, as the number of
coupled channels increases. The quantum numbers that label
the potential curves, listed in Tables I and II, are also in-
cluded to help identify the groups of channels. This table
lists the values obtained by neglecting the logarithmic terms
in Eqs. ~15! and ~16! alongside the results obtained by in-
cluding the logarithmic terms. Other than the inclusion or
exclusion of the logarithmic terms, both calculations were
otherwise the same. That is, they used the same parameters

~such as the number ofb i
m constants! and the same number

of basis functions. Comparison of the two variational calcu-
lations clearly indicates the importance of the use of the
logarithmic expansion. They are important not only for ac-
celerating the convergence but also for obtaining the correct
value. Note that in calculating the polarizability there are two
sets of coupled channels: the1Se channels, which couple to
the ground state, and the1Po channels which constitute the
intermediate states. One sees from Table III that the conver-
gence is not a monotonically decreasing function of the num-
ber Nc of coupled channels. An interesting question is
whether the convergence would become smoother if different
numbers of channels were coupled in ground and intermedi-
ate states. For example, one might include all hyperspherical
channels that converge to a particular leveln of the He1 ion
in both ground and intermediate states. Alternatively, one
might group the various adiabatic hyperspherical channels in
some other way, such as according to their character atR
50. We have carried out this study coupling all available
channels in ground and intermediate states. In Table IV, we
study the convergence of the static polarizability as a func-
tion of Nc andNc8 , which are the numbers of coupled chan-
nels in both ground and intermediate states, respectively,
where we have used for this purpose a singleb i

m , which

TABLE V. Comparison of the present variationally stable results for the ground-state static dipole polarizability of the He atom with
theoretical results of other authors and available experimental values. The result in the first line was calculated usingNc5Nc8512, whereas
the two subsequent lines show results usingNc512 andNc8515.

Reference a(0)

Theoretical results
This work ~coupled-channel result including log termsa! 1.383 193
This work ~optimized coupled-channel result without log termsb! 1.383 173 59
This work ~optimized coupled-channel result including log termsc! 1.383 173 94
K. Pachucki and J. Sapirstein~2000! ~Ref. @27#! 1.383 192 174
Z.-C. Yanet al. ~1996! ~Ref. @25#! 1.383 192 5
M. J. Jamieson, G. W. F. Drake, and A. Dalgarno~1995! ~Ref. @24#! 1.383 192
A. K. Bhatia and R. J. Drachman~1994! ~Ref. @23#! 1.383 192 179
D. M. Bishop and J. Pipin~1993! ~Ref. @22#! 1.383 192
D. M. Bishop and B. Lam~1988! ~Ref. @19#! 1.383 192
R. M. Glover and F. Weinhold’slower bound~1976! ~Ref. @17#! 1.382 59
R. M. Glover and F. Weinhold’supperbound~1976! ~Ref. @17#! 1.384 11
S. J. A. van Gisbergenet al. ~1998! ~Ref. @26#! 1.382 4
H. P. Saha and C. D. Caldwell~1991! ~Ref. @21#! 1.374
B. Gaoet al. ~1990! ~Ref. @20#! 1.355 9
E.-A. Reinsch~1985! MC-SCF result~Ref. @18#! 1.383
K. T. Chung~1968! ~Ref. @16#! 1.384 1

Experimental results
C. R. Mansfield and E. R. Peck~1969! ~Ref. @44#! 1.386 1
P. W. Langhoff and M. Karplus~1969! ~Ref. @45#! 1.383 8
D. Gugan and G. W. Michel~1980! ~Ref. @46#! 1.383 77~7!

D. Gugan~1991! ~Ref. @47#! 1.383 79~4!

K. Grohmann and H. Luther~1992! ~Ref. @48#! 1.383 746~7!

aFive nonoptimizedb i
m parameters,Nc5Nc8512 channels~cf. Table III!.

bOne optimizedb i
m parameter,Nc512, Nc8515 channels~cf. Table IV!.

cTwo optimizedb i
m parameters,Nc512, Nc8515 channels.
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means that the basis functions do not include logarithmic
terms. The horizontal and vertical lines correspond to the
horizontal lines of Tables I and II, i.e., they show the begin-
ning of each group of channels, where each group begins
with a channel havingl 150 at R50 @see Eq.~6!#. In our
calculations fora(0), we have introduced an optimization
procedure for the parametersb i

m . The optimal set ofb i
m

parameters is found by minimizing the transition matrix ele-
ment @Eq. ~2!# with respect to eachb i

m . Table III lists the
results using optimizedb i

m in the intermediate functions. A
side-by-side comparison shows that only a single optimized
value for theb i

m parameter is sufficient to achieve results
very close to the ones obtained with five nonoptimizedb i

m

parameters and logarithmic terms. On the other hand, addi-
tional CPU time is required for the optimization procedure.
Anticipating that readers will wish to know what would hap-
pen if one combines the inclusion of logarithmic terms to-
gether with the optimization of theb i

m , a sample for the first

few coupled channels have been computed and displayed in
the last column of Table III. One sees that the improvement
is beyond the sixth or seventh decimal digit, with a high cost
in terms of computer resources.

Some information about the convergence of the calculated
a(0) value with the number of channels can be extracted
from Table IV. For each column, the same convergence pat-
tern of 1Po states, shown in Table II, is found asNc8 in-
creases. Within each group of channels the polarizability in-
creases slowly and monotonically whereas larger increments
occur when a new group is included. A different pattern is
noted when looking at the rows, which show the conver-
gence as the numberNc of channels included in the ground-
state wave function is increased. Within each group the con-
vergence oscillates with increasingNc . However, the
important feature is that considering only the values obtained
with a complete groupof Nc channels included, the results
are monotonically decreasing. These results are represented

TABLE VI. Selected values of our best calculated (Nc5Nc856) dynamic polarizability of helium compared with results from other
authors and with experimental values.

v This work Ref.@16# Ref. @17# Ref. @18# Ref. @19# Expt.a

0.050 1.387 094 1.386 8 1.387 22 1.387 066
0.100 1.398 857 1.399 0 1.398 98 1.398 1.398 820 1.399
0.150 1.418 998 1.419 2 1.419 12 1.418 957
0.200 1.448 388 1.448 3 1.448 51 1.448 1.448 341 1.449
0.250 1.488 389 1.488 7 1.488 53 1.488 335
0.300 1.541 045 1.540 7 1.541 19 1.540 1.540 981 1.542
0.350 1.609 399 1.609 5 1.609 56 1.609 325
0.400 1.698 070 1.698 0 1.698 3 1.696 1.697 985 1.700
0.450 1.814 308 1.814 7 1.814 5 1.814 214
0.500 1.970 129 1.970 6 1.970 5 1.966 1.970 037 1.973
0.550 2.187 047 2.187 2 2.187 5 2.182 2.186 990
0.600 2.508 200 2.509 1 2.509 1 2.501 2.508 292 2.502
0.650 3.036 655 3.038 0 3.039 1 3.022 3.037 345
0.700 4.107 153 4.110 3 4.118 4 4.079 4.111 021 3.884
0.750 7.967 789 7.968 4 8.164 0 7.967 8.014 127
0.770 17.070 652 16.866 8
0.780 1 765.866 727 56.096 9 21 073.68
0.782 290.326 704 116.456 0
0.784 242.857 302 2968.839 5
0.785 233.466 465 231.46
0.790 214.990 171 230.746 1 214.56
0.795 28.852 173 28.71
0.800 25.722 310 210.329 0 25.66
0.805 23.768 979 23.75
0.810 22.380 470 22.38
0.815 21.286 429 21.30
0.820 20.336 927 20.37
0.825 0.578 338 0.52
0.830 1.581 768 1.47
0.835 2.894 517 2.65
0.840 5.173 656 4.52
0.845 12.633 684 9.75

aReference@18#.
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by the values to the immediate left of the vertical lines. The
numbers inside the boxes are the results after complete
groups of channels in both ground and intermediate states are
included. Thus, this analysis relates the convergence pattern
of the polarizability with the behavior of the1Se and 1Po

energy convergence, shown in Tables I and II. The conver-
gence withNc should be examined for entire groups of chan-
nels and the convergence withNc8 is monotonic and conse-
quently one does not need to group channels, although one
should expect jumps at the beginning of a new group. To
further investigate the convergence and reliability of our re-
sults, an extrapolation procedure can be used. If one takes
into account solely the results inside boxes from Table IV,
each row and column can be fitted to a function of the type

a~x!5a1
b

xc
, ~18!

whence one can extrapolate to an infinite number of groups
in both directions. This extrapolation procedure may be done
in two ways: starting by rows or by columns. Within six
digits of accuracy, the resulting values areaext51.383 18
and aext51.383 10, respectively. Comparing these two ex-

trapolated values with our result ofa51.383 174 (Nc512
and Nc8515), we can assure a convergence of at least five
digits. It is remarkable how our method is capable of provid-
ing results for polarizabilities that possess almost the same
level of accuracy as for the ground-state energy~cf. Table I,
Nc512), which is usually not true.

In Table V, a comparison of our coupled channel values
with the results of calculations of other authors and with
experimental values is given. Our result using one optimized
b i

m without logarithmic terms (Nc512 andNc8515) and five
nonoptimized b i

m including logarithmic terms (Nc5Nc8
512) are presented. We also show the result of two opti-
mized b i

m plus inclusion of logarithmic terms (Nc512 and
Nc8515). As noted before, the improvement in the latter is
beyond the sixth decimal digit. Not all of the results of others
lie between the rigorous bounds from Glover and Weinhold
@17#. Our results fall between these limits. Indeed, our pre-
cise results are comparable to the most accurate ones from
the literature, such as that of Ref.@27#. Among the various
theoretical calculations, the works by Bishop and co-workers
@19,22#, Bhatia and Drachman@23#, Jamiesonet al. @24#, and
Pachucki and Sapirstein@27# appear to be the most accurate

FIG. 3. Convergence of the dynamic polarizability of helium for
photon frequencies below the first ionization threshold.~a! Below
the first excitation frequency.~b! Resonance region.

FIG. 4. Comparison of our best result for the dynamic polariz-
ability of helium with other theoretical calculations and with experi-
mental values.~a! Below the first excitation frequency.~b! Reso-
nance region.
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ones. Those are all based upon techniques that use varia-
tional wave functions for both the ground state and the inter-
mediate states that involve large basis sets, ranging from 100
basis functions@22# to 900@27#. Their wave functions do not
include the logarithmic contributions, which can explain the
large number of basis functions needed to achieve good con-
vergence. Three of them@22,23,27# used extended~or qua-
druple! numerical precision to avoid round-off error propa-
gation. Nevertheless, our calculation using basis functions
that include logarithmic terms needs fewer basis functions:
namely, 60 terms in the expansions given by Eqs.~13! and
~14!, whereas in the calculation using only one optimizedb i

m

parameter, 16 terms (Mi516) have been used in these ex-
pansions. We reiterate that we have not pushed our variation-
ally stable approach using a coupled adiabatic hyperspherical
basis to obtain the seven or more digits of accuracy neces-
sary to achieve benchmark predictions for the static polariz-
abilities. To do that we would have to couple more than the
12–15 channels of each symmetry that we currently include
and, in particular, we would have to include one or more of
the next complete groups of channels of each symmetry.
What we have shown is that for a given number of channels
the inclusion of logarithmic terms allows one to obtain com-
parable accuracy to calculations that optimize theb param-
eters but do not use logarithmic terms. A key additional point
is that the five digits of accuracy we have achieved at the
level of approximation permitted by our computational con-
straints is sufficient to obtain competitive predictions for the
dynamical polarizabilties, which we discuss next.

B. Dynamic polarizability

Our results for the static polarizability have determined
the set of optimized parameters which provide results com-
parable to the use of logarithm terms in the initial- and
intermediate-state expansions. We use this information to se-
lect the parameters for our calculations of the frequency-
dependent~or dynamic! polarizability of He. For the dy-
namic case, the determined optimal values ofb i

m for each
coupled channel in the static limit have been used. We have
used an equal number of coupled channels for both ground
and intermediate states, that is,Nc5Nc856 since this number
of coupled channels constitutes a closed group of channels
for both ground and intermediate states, according to
Table IV. In Table VI, our results for the dynamic polariz-
ability of helium are compared with previous calculations in

the literature@16–19# and also with experimental values~as
listed in Ref.@18#!. Most calculations are unable to achieve
results over the photon energy range 0.75,v,0.9 ~in a.u.!
owing to the approach of the resonance region. Our calcula-
tion for the dynamic polarizability is presented in Figs. 3 and
4. In Fig. 3 one sees the rate of convergence as the number of
coupled channels~with Nc5Nc8) increases. Figure 4 shows a
comparison of our best result (Nc5Nc856) with the theoret-
ical results of Chung@16#, Glover and Weinhold@17#, and
Bishop and Lam@19# as well as with experimental values
from Ref. @18#. For photon frequenciesv,0.7 a.u. @Fig.
4~a!# our results compare very well with the results of other
authors. However, in the resonance region@Fig. 4~b!# our
calculation compares best with the results from Glover and
Weinhold @17#.

The resonances~sharp antisymmetric peaks! in the dy-
namic polarizability correspond to one-photon transitions to
intermediate1Po excited states of He. Whenv approaches
this region (v*0.7 a.u.), conventional methods start to fail
due to the approximation of the poles present in Eq.~1!,
making the calculation increasingly difficult. As our formal-
ism transforms Eq.~1! into Eq. ~2!, in which the poles have
been removed, there is no difficulty in the calculation in the
regionv.0.7 a.u. From the calculation of the dynamic po-
larizability in the resonance region, one can extract the fre-
quencies for the one-photon transitions by simply inspecting
the calculated data and, in the vicinity of an abrupt change of
sign, extrapolate the values of the resonant frequencies. The
first few one-photon transition energies obtained are listed in
Table VII. In this table, a comparison with results of a varia-
tional calculation@41# is given. Also listed are the hyper-
spherical results from Ref.@42#. Unlike the usual methods
for obtaining polarizabilities, one notes that the present
variationally stable approach provides very accurate values
for the one-photon transition energies.

V. CONCLUSIONS

In summary, we have presented a calculation for the static
dipole polarizability of the helium ground state that includes
logarithmic terms in both ground and intermediate states
within a variationally stable, coupled-channel adiabatic hy-
perspherical approach. Within this basis set, the inclusion of
logarithmic terms appears to be necessary to obtain conver-
gence to the correct value of the static polarizability when
nonoptimized parameters in the intermediate basis functions
are used. We have shown that for any fixed number of
coupled channels this approach is capable of obtaining a
value for the static polarizability that is comparable to the
results obtained with optimized parameters. The two meth-
ods appear comparable in their use of computer resources.
Use of logarithmic terms requires more basis functions, but
one does the calculation only once; use of optimized
parameters—without logarithmic terms—implies fewer basis
functions, but the calculations must be repeated as often as
necessary to obtain the optimum values of the parameters.

Results for the dynamic polarizability have also been
presented whose accuracy is comparable to that of the best
results of other authors, especially in the photon frequency

TABLE VII. Comparison of the one-photon transition reso-
nances extrapolated from Fig. 4~b! with results in the literature.

This worka Variationalb Hypersphericalc

0.780 100 0.779 881 0.779 920
0.848 527 0.848 578 0.848 618
0.872 964 0.872 655 0.872 677
0.883 820 0.883 818 0.883 830

aNc5Nc856.
bReference@41#.
cReference@42#.
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range corresponding to the one-photon transitions. In fact,
one of the advantages of the present approach is the ability to
furnish reliable and converged results even in the resonance
region due to the nonexistence of poles in the transition ma-
trix element. These accurate predictions for the dynamical
polarizability imply that our approach is capable of predict-
ing highly accurate values for multiphoton cross sections of
helium ~as well as other two-electron systems!. Calculations
for the helium two-photon ionization cross section are in
progress.
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