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1. Introduction

Since the discovery of L10-type PtFe and PtCo mag-
nets by Graf and Kussmann [1] and Jellinghaus [2], re-
spectively, this fascinating class of hard-magnetic mate-
rials has attracted continuing attention in various areas, 
including high-density magnetic recording [3], [4], [5], 
[6], [7], [8], [9] and [10]. Scientifi c interest has been fu-
eled by the specifi c features of L10 magnets, such as the 
layered crystal structure, the two-sublattice nature of the 
magnetism, and the simultaneous involvement of 3d and 
4d/5d electrons, and continuum [9] and atomistic models 
[11], micromagnetic simulations [12], fi rst-principles cal-
culations [13] and [14], and multiscale approaches [15] 
are now being used or developed to describe the new na-
noscale materials.

Magnetic L10 or CuAu(I) compounds having the nom-
inal structure MT consist of alternating layers of light or 
3d transition-metal atoms (T) and heavy or 4d/5d transi-
tion-metal atoms (M), but the most general L10 composi-
tion is ABC2, where C planes are separated by A–B planes. 
Fig. 1 shows how the A, B and C atoms occupy the 1a, 1c 
and 2e sites, respectively. The site occupancy sites mat-
ters, because 3d and 4d/5d substitutions are useful to tune 
the Curie temperature Tc, magnetization Ms, and magneto-
crystalline anisotropy K1 of magnetic recording materials, 

and because the control of L10 order is a generally quite 
demanding task.

From a theoretical point of view, fi rst-principles calcula-
tions are now able to predict moments [16] and [17], bulk 
and thin-fi lm anisotropies [18], site-resolved exchange in-
teractions [19], exchange stiffnesses [20], and Curie temper-
atures [6] and [14] for ferromagnetic and simple antiferro-
magnetic structures [19] and [21]. However, there is a broad 
and largely unexplored range of competing antiferromag-
netic and noncollinear spin structures. From a macroscop-
ic starting point, continuum or ‘micromagnetic’ approaches 
describe magnetization processes such as the nucleation of 
reverse domains and domain-wall motion [9] and [12], but 
the question arises whether these approaches are able to ac-
count for phenomena such as domain wall pinning at anti-
phase boundaries, nanoparticle surface anisotropy, and fast 
switching dynamics.

In this paper, we discuss zero-temperature and fi nite-
temperature effects in L10 magnets and discuss the involved 
length and energy scales. Section 2 deals with spin structure 
in the absence of spin–orbit coupling, Section 3 investigates 
mechanisms of noncollinearity, and Section 4 deals with fi -
nite-temperature anisotropy. Finally, Section 5 compares the 
applicability of atomistic and continuum approaches.
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2. Atomic-scale spin structure

To large extent, the spin structure of L10 magnets is de-
termined by Heisenberg exchange, J(Ri−Rj)Si · Sj = JijSi · S
j, a relatively strong interaction of electrostatic origin. It is 
magnetically isotropic, meaning that uniform spin rotation 
does not change the magnetic energy. For example, intra- 
and interlayer interactions in L10 magnets exhibit a bond 
anisotropy [22], but the corresponding energy is indepen-
dent of angle between magnetization and c-axis. Depend-
ing on band fi lling and interatomic distance, Heisenberg ex-
change in metals may be ferromagnetic (Jij > 0) or antifer-
romagnetic (Jij < 0). A simple and asymptotically correct 
[23] and [24] model is the Ruderman–Kittel–Kasuya–Yosi-
da or RKKY exchange, Jij = J(Rij) ~ cos(2kFRij)/Rij

3 . Pictori-
ally, a localized spin in an electron gas behaves like a stone 
thrown into water, and the minima and maxima of the re-
sulting wave are analogous to the RKKY oscillations. The 
simultaneous presence of ferro- and antiferromagnetic in-
teractions leads to a competition between various types of 
magnetic order, including ferromagnetism, different types 
of antiferromagnetism, and noncollinear spin structures. In 
a addition, some or all atoms may be Pauli paramagnetic. 
Fig. 2 shows some spin structures that exist or may exist in 
L10 magnets.

Elemental 4d/5d magnets, such as Pd and Pt, are ex-
changed-enhanced Pauli paramagnets, but in a ferromag-
netic environment they are easily spin-polarized by neigh-
boring 3d atoms. The 4d/5d moment contributes little to the 
magnetization and Curie temperature, but it plays a key role 
in the realization of magnetic anisotropy (Section 4). In an-
tiferromagnets, the 4d/5d moment is zero, because the po-
larization contributions of neighboring 3d atoms cancel 
each other, as illustrated in Fig. 2(b) and (c). For example, 
in ferromagnetic PtCo, the Pt exhibits a 5d spin moment of 

0.446μB and an sp-electron contribution of −0.052μB, but in 
the antiferromagnetic confi guration the Pt moment collaps-
es [22]. By contrast, the Co moment is very stable, changing 
by only 5.6% when going from ferromagnetism (1.786μB) 
to antiferromagnetism (1.688μB).

The spin structures of various L10 alloys with the com-
position MT (M = Rh, Pd, Ir, Pt; T = Mn, Fe, Co, Ni) have 
recently been investigated by self-consistent spin-polarized 
LMTO-ASA calculations [19], using a local force theorem 
and applying a Green-function method [25]. The Jij were 
calculated perturbatively, Fe and Co favors ferromagnetism, 
although antiferromagnetic order may be possible in some 
Fe-containing compounds (Section 3). The Ni compounds 
are paramagnetic, with the exception of the ferromagnetic 
NiPd. The manganese-containing alloys are antiferromag-
netic, refl ecting the well-known general trend towards an-
tiferromagnetism for half-fi lled 3d shells. In addition to the 
antiferromagnetic interlayer coupling, Mn spins exhibit a 
strong antiferromagnetic intraplane interaction, as in Fig. 
2(c). This indicates that the spin-structure of any given Mn 
plane is possibly a checkerboard pattern, but a systematic 
and self-consistent exploration of antiferromagnetic confi g-
urations is a challenge for future research.

Note that Heisenberg interactions require stable atomic 
spin moments. In L10 magnets, this is a good approximation 
for 3d atoms but breaks down completely for the 4d/5d at-
oms, limiting the applicability of pertubative Jij calculations 
based on the force theorem. For example, the Heisenberg 
reversal of an atomic moment may not yield the correct en-
ergy, because the switching of an atomic spin (rather than a 
small-angle perturbation) leads to an adjustment of the one-
electron states, as implied in Fig. 2(b) and (c).

Fig. 1. Structure of L10-type magnets: (a) equiatomic composition 
and (b) general composition (ABC2).

Fig. 2. L10 spin structures (schematic): (a) ferromagnetism; (b) and 
(c) antiferromagnetism; (d) the small atoms (those with the large 
magnetization arrows) are the light transition-metal atoms (3d), as 
compared to the bigger 4d/4f atoms.
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3. Physical origin of noncollinearity

There are three basic phenomena leading to noncollinear 
spin states: (i) competing exchange, (ii) thermal disorder, 
and (iii) spin–orbit coupling. Noncollinearity due to com-
peting exchange is encountered, for example, in some el-
emental rare earths (helimagnetism) [26] and depicted in 
Fig. 1(d). Considering exchange interactions between near-
est (J0) and next-nearest (J′) layers and denoting the magne-
tization angle of the nth transition metal layer by θn leads to 
the total energy

         (1)

Putting θn+1 = θn + θ′ and minimizing the energy, 
∂E/∂θ′ = 0, yields (J0+4J′cosθ′)sinθ′=0. This equation has 
ferromagnetic (θ′ = 0), antiferromagnetic (θ′ = π), and heli-
magnetic (0 < θ′ < π) solutions. The helimagnetic state oc-
curs for certain negative J′ values and is characterized by 
θ′ = arccos(−J0/4J′). Note that the modulation wave vector 
k ~ 1/θ′ is incommensurate with the lattice spacing, in spite 
of the perfect periodicity expressed in Eq. (1).

Thermal excitations create noncollinearity by random-
izing the atomic moments, thereby determining properties 
such as fi nite-temperature anisotropy (Section 4) and criti-
cal temperature Tc. The popular but rough mean-fi eld esti-
mate Tc = 2YJ]/3kB, where YJ] is an averaged exchange, is 
unable to account for the spatial dispersion of the exchange. 
In an improved site-resolved or ‘lattice’ mean-fi eld analysis, 
the Curie temperature is obtained by diagonalizing an N × N 
matrix where N is the number of nonequivalent sites. This 
approach, originally used to describe multisublattice anti-
ferromagnets [27], can also be used to describe disordered 
magnets and magnetic nanostructures [9], [28] and [29]. 
Another aspect of thermal disorder is a reduction of coer-
civity, by thermally activated magnetization reversal and by 
decreasing K1(r) [9] and [29].

Chemical disorder further complicates the picture. Con-
cerning the occupancy of the 1a and 1e sites (Fig. 1) by A 
and B atoms, there are several scenarios, such in-plane or-
der–disorder transitions, segregation into patches of A and 
B atoms, and various types of interlayer correlations, for ex-
ample superlattices [30]. Beyond this, interlayer chemical 
disorder strongly affects the magnetic order [31]. For exam-
ple, there are fi rst-principle calculations on FePt [17] pre-
dicting an antiferromagnetic ground state by a small ener-
gy difference of about 0.6 mRy (less than 100 K). This is in 
contrast to experiment and ascribed to the neglect of real-
structure imperfections. Fig. 3 illustrates that a relatively 
small concentration of strongly ferromagnetic Fe bridges 
may indeed be able to compensate a weak antiferromagnet-
ic bulk interlayer coupling (percolation).

Relativistic effects, such as magnetocrystalline anisot-
ropy, yield noncollinear contributions that are small on an 
atomic scale but important for mesoscopic phenomena, 

such as magnetic domains. Expanding the electron energy
mc2√1 + v2/c2 into powers of v/c yields the rest energy mc2, 
the electrostatic energy mv2/2, and the lowest-order relativ-
istic correction (α/2)2 mv2/2 [9] and [32]. Here we have ex-
ploited that typical electron velocities in solids are of order 
v = αc, where α = 4πε0e2/ħc ≈ 1/137 is Sommerfeld’s fi ne-
structure constant [9] and [32]. In real space, relativistic ef-
fects are important on length scales of a0/α = 7.2 nm, for ex-
ample in the context of domains and domain walls [32].

There are several relativistic effects of important in the 
present context. Anisotropic exchange, Jxx,ij Sx,iSx,j + Jyy,ij 
Sy,i Sy,j + Jzz,ijSz,i Sz,j, means that the coupling depends on 
the spin direction. The corresponding anisotropy is a small 
relativistic correction to the leading isotropic exchange (Jx

,ij ≈ Jy,ij ≈ Jz,ij ≈ Jij) and usually neglected. Magnetocrystal-
line anisotropy and—in a sense—magnetostatic interactions 
are small relativistic corrections, too, but unlike the aniso-
tropic exchange they cannot be considered as a small cor-
rection to a leading nonrelativistic term. Note that exchange 
scales as Ak2, where A is the exchange stiffness, so that 
Ak2 à K1 and Ak2 ≈ K1 on atomic and mesoscopic length 
scales, respectively [9] and [32]. A third type of relativistic 
corrections is the Dzyaloshinskii–Moriya (DM) interaction 
HDM =  − ½∑ijDij · Si × Sj , where nonzero vectors Dij = −Dji 
refl ect the absence of inversion symmetry as a crystalline 
property or due to disorder. DM interactions are encoun-
tered in materials such as α-Fe2O3, in amorphous magnets 
[26], in spin glasses [26], and in magnetic nanostructures 
[9]. They lead to small canting noncollinearities, typical-
ly of the order of 0.1°, but the effect may be enhanced for 
strong disorder and in the vicinity of ferromagnetic–antifer-
romagnetic transitions.

Fig. 3. Coupling scenarios in PtFe: (a) perfect L10 ordering and (b) 
imperfect structure where some Fe atoms (black) occupy Pt sites 
and form FM interlayer bridges.
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4. Finite-temperature anisotropy

The leading source of magnetic anisotropy in L10 mag-
nets, of the order of 5 MJ/m3, is magnetocrystalline anisot-
ropy, where the magnetization (spin) talks to the structural-
ly anisotropic environment by spin–orbit coupling. By com-
parison, the magnetostatic contribution is relatively small, 
typically of the order of −0.3 MJ/m3. Magnetocrystalline 
anisotropy is, essentially, a single-ion property, that is, mag-
netic anisotropy is realized by embedding the atom in a me-
tallic or nonmetallic crystalline environment [6] and [33]. 
This must be compared to the popular Néel model [34], 
where anisotropy is realized by pair interactions. Fig. 4 il-
lustrates the difference. The Néel model requires two in-
teracting magnetic atoms (black), whereas the single-ion 
or crystal-fi eld model amounts to hopping or crystal-fi eld 
interactions with atoms that are not necessarily magnetic 
(white). The principal failure of the Néel model is seen by 
comparing Sm2Fe17 and Sm2Fe17N3, where the electronega-
tive nitrogen is nonmagnetic but strongly affects the crys-
tal fi eld and changes the room-temperature anisotropy from 
−0.8 MJ/m3 to 8.6 MJ/m3 [6].

The temperature dependence of the anisotropy refl ects 
means that thermal activation affects the crystal-fi eld in-
teraction of the ‘black’ atom in Fig. 4(b) [6]. In ferromag-
netic L10 magnets, thermal activation yields some admix-
ture of antiferromagnetic character, thereby reducing the 
4d/5d moment and the leading 4d/5d anisotropy contribu-
tion. Consider the two-sublattice mean-fi eld Hamiltonian 
H = H3d + H4d/5d + H*. Here H3d = −J3dS · YS] is the 3d sub-
lattice exchange,

  
            (2)

describes the 4d/5d atoms, and H* = −J*m · YSz] is the in-
tersublattice interaction. In these equations, J3d and J* are 
exchange constants, and S and m are the 3d and 4d/5d mo-
ments, respectively. K0 is a spin–orbit coupling and crystal-
fi eld dependent anisotropy parameter (about 20 MJ/m3 for 
PtCo), and the respective hopping and Stoner parameters W 
and I determine the 4d/5d spin polarization. The calculation 
of the free energy is straightforward [22] and yields

                (3)

where K1(0) = 3K0m2/2 and m = J*S/(W−I). Taking into 
account that Ms ≈ M3d, Eq. (3) amounts to K1 ~ Ms

m where 
m = 2 [22]. By comparison, uniaxial 3d magnets, such as 
Co and YCo5, exhibit m = 3 [35], for cubic and noncubic 
actinide magnets m = 1 [36], and cubic 3d magnets, such as 
Fe and Ni, exhibit m = 10 [35]. Finally, in rare-earth tran-
sition-metal intermetallics the 4f sublattice anisotropy is 
largely independent of the 3d magnetization [6], so that 

m ≈ 0. The exponents m = 2 and m = 3 are not very dis-
similar [37], but the different physics—the crucial involve-
ment of two sublattices—speaks in favor of m = 2. Refi ned 
calculations by Mryasov et al. [11] have yielded m = 2.08, 
amounting to a single-sublattice contribution of the order of 
8%. As also pointed out in [11], the reduction of the number 
of 3d neighbors in magnetic nanoparticles has a very similar 
surface-anisotropy reduction effect.

5. Micromagnetic description

On a continuum level, the unit-cell averaged local mag-
netization M(r)—and derived properties, such as Hc and 
Mr—are obtained by considering micromagnetic energy 
functionals such as [6], [9] and [38]

  
 (4)

Depending on the considered system, additional terms 
must be added. In lowest order, DM interactions amount 
to a random fi eld ∑j(Dij,yex−Dij,xey)/2 where the summation 
(or integration) over j includes all atomic neighbors; the re-
sulting structure may be called a “spin colloid”. Going be-
yond the bond-isotropic local expression ∫A(“(M/Ms))2 dV, 
Heisenberg exchange is described by

  
  (5)

Fourier transformation diagonalizes this equation for 
J(|r−r′|) and yields terms of the type J(k), as compared to 
Ak2. Noncollinear or incommensurate spin states then cor-
respond to a minimum of J(k).

For isotropic RKKY systems, the integration in Eq. (5) 
can be performed analytically and yields a Fourier-trans-
formed interaction Jk that is proportional to the Lindhard 
screening function F(k). This function [39] reproduces the 

Fig. 4. Models of magnetic anisotropy: (a) Néel model and (b) 
crystal-fi eld model. Both models reproduce the correct symmetry, 
but (b) is physically more adequate for most systems.
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long-wavelength exchange-stiffness approximation Ak2 but 
breaks down for k ~ kF. In noncubic materials, A must be re-
placed by a 3 × 3 exchange-stiffness tensor Aμν, and the en-
ergy is ∑μν∫Aμν∂M/∂xμ · ∂M/∂xν dV. Here μ and ν denote the 
real-space coordinates x, y, and z, as contrasted to the rela-
tivistic anisotropic exchange ∑αβ∫Aαβ“Mα · “Mβ dV, where 
α and β describe magnetization components.

6. Discussion and conclusions

An issue of key importance for the understanding of L10 
magnetism is the applicability of atomistic and continuum 
descriptions. Continuum approaches are able to describe 
domain-wall motion and magnetization reversal on lengths 
scales of more than 10 nm [9] and [12], whereas atomistic 
fi rst-principle calculations yield increasingly powerful pre-
dictions of atomic-scale properties. Similarly, the quantum 
nature of magnetism is important for very fast processes 
(above about 10 GHz), whereas slower magnetization pro-
cesses can often be treated on a quasi-classical level. So-
phisticated equilibrium fi rst-principles calculations can 
now be used to treat a few hundred nonequivalent atomic 
sites, and for less sophisticated tight-binding calculations, 
this number reaches many thousands of atoms. This is suf-
fi cient to investigate nanoscale effects at grain boundaries 
but insuffi cient to provide a full-scale treatment of phenom-
ena such as the motion and pinning of macroscopic domain 
walls in particulate thin-fi lm magnets, where about 108 at-
oms must be considered [40].

Micromagnetic model calculations may break down 
at very small length scales [41], but the effect is relative-
ly small. To investigate the spin structure at sharp atom-
ic grain boundaries [9] and [42], continuum calculations 
were compared with the corresponding atomistic (layer-
resolved) Jij summation. Both approximations yield the 
same behavior, an exponential magnetization decay in the 
bulk, except for a correction of about 1% to the penetra-
tion depth δ0 = (A/K1)1/2. Physically, exchange smoothes 
magnetization inhomogenities and improves the applica-
bility of continuum theory. However, this does not ques-
tion the usefulness of atomistic calculations to derive, for 
example, micromagnetic parameters for atomic structures 
as those in Fig. 1 and Fig. 3.

In conclusion, we have investigated the magnetism of 
L10 magnets on length scales ranging from atomic to mac-
roscopic. In a strict sense, continuum calculations break 
down on an atomic scale, but noncollinearities due to rel-
ativistic interactions (domains and domain walls) are rela-
tively small and smoothed by interatomic exchange. Basi-
cally, there is a broad range of phenomena where both ap-
proaches can be used. Atomic-scale L10 magnetism refl ects 
the two-sublattice nature of the structure. The 3d atoms de-
termine the basic spin structure, that is, ferro- or paramag-
netic for late 3d elements and antiferromagnetic in the mid-

dle of the 3d series, with a possibility of noncollinear struc-
tures, too. The fi nite-temperature anisotropy of L10 magnets 
refl ect the thermal randomization of the crystal fi eld acting 
on the 4d/5d atoms, accompanied by a collapse of the 4d/5d 
moment.
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