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A mixed-model moving-average approach to geostatistical modeling
in stream networks
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Abstract. Spatial autocorrelation is an intrinsic characteristic in freshwater stream
environments where nested watersheds and flow connectivity may produce patterns that are
not captured by Euclidean distance. Yet, many common autocovariance functions used in
geostatistical models are statistically invalid when Euclidean distance is replaced with
hydrologic distance. We use simple worked examples to illustrate a recently developed
moving-average approach used to construct two types of valid autocovariance models that are
based on hydrologic distances. These models were designed to represent the spatial
configuration, longitudinal connectivity, discharge, and flow direction in a stream network.
They also exhibit a different covariance structure than Euclidean models and represent a true
difference in the way that spatial relationships are represented. Nevertheless, the multi-scale
complexities of stream environments may not be fully captured using a model based on one
covariance structure. We advocate using a variance component approach, which allows a
mixture of autocovariance models (Euclidean and stream models) to be incorporated into a
single geostatistical model. As an example, we fit and compare ‘‘mixed models,’’ based on
multiple covariance structures, for a biological indicator. The mixed model proves to be a
flexible approach because many sources of information can be incorporated into a single
model.

Key words: geostatistics; hydrologic distance; moving average; scale; spatial autocorrelation; streams.

INTRODUCTION

Tobler’s first law of geography states that ‘‘Everything

is related to everything else, but near things are more

related than distant things’’ (Tobler 1970). In the field of

geostatistics, this phenomenon is referred to as spatial

autocorrelation or spatial autocovariance, which quan-

titatively represents the degree of statistical dependency

between random variables using spatial relationships

(Cressie 1993). Geostatistical models are somewhat

similar to the conventional linear statistical model; they

have a deterministic mean function, but the assumption

of independence is relaxed and spatial autocorrelation is

permitted in the random errors. For example, in a

universal kriging model the deterministic mean is

assumed to vary spatially and is modeled as a linear

function of known explanatory variables (in contrast to

ordinary kriging where the mean is unknown, but

constant). Local deviations from the mean are then

modeled using the spatial autocorrelation between

nearby sites. Thus, geostatistical models are typically

able to model additional variability in the response

variable and make more accurate predictions when the

data are spatially autocorrelated. For detailed informa-

tion about geostatistical methods, please see Cressie

(1993) or Chiles and Delfiner (1999).

Spatial autocorrelation is particularly relevant in

freshwater stream environments where nested water-

sheds and flow connectivity may produce patterns that

are not captured by Euclidean distance (Dent and

Grimm 1999, Torgersen and Close 2004, Ganio et al.

2005, Monestiez et al. 2005, Peterson et al. 2006, Ver

Hoef et al. 2006; Ver Hoef and Peterson, in press). Thus,

aquatic ecologists may have been hesitant to use

traditional geostatistical methods, which depend on

Euclidean distance, because they did not make sense

from an ecological standpoint. Covariance matrices

based on Euclidean distance do not represent the spatial

configuration, longitudinal connectivity, discharge, or

flow direction in a stream network. In addition to being

ecologically deficient, many common autocovariance

functions are not generally valid when Euclidean

distance is simply replaced with a hydrologic distance

measure (Ver Hoef et al. 2006). A generally valid

autocovariance function is guaranteed to produce a

covariance matrix that is symmetric and positive-

definite, with all nonnegative diagonal elements, regard-

less of the configuration of the stream segments or

sample sites. If these conditions are not met, it may

result in negative prediction variances, which violates

the assumptions of geostatistical modeling. These issues
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made it necessary to develop new geostatistical meth-

odologies for stream networks, which permit valid

covariances to be generated based on a variety of

hydrologic relationships (Cressie et al. 2006, Ver Hoef et

al. 2006; Ver Hoef and Peterson, in press). Our goal is to

introduce these new autocovariance models to ecolo-

gists.

There are currently two types of distance measures

that can be used to produce valid covariance matrices

for geostatistical modeling in stream networks (when

used with the appropriate autocovariance function):

Euclidean distance and hydrologic distance. Euclidean

distance is the straight-line distance between two

locations and all locations within a study area have

the potential to be spatially correlated when it is used

(Fig. 1A). A hydrologic distance is simply the distance

between two locations when measurement is restricted to

the stream network. In contrast to Euclidean distance,

locations within a study area do not automatically have

the potential to be spatially correlated when a hydro-

logic distance is used. Instead, rules based on network

connectivity and flow direction can be used to prevent

spatial autocorrelation between locations and thus

represent different hydrologic relationships. For exam-

ple, a ‘‘flow-connected’’ relationship requires that water

flow from one location to another for two sites to be

correlated (Fig. 1C). When this condition is not met,

sites have a ‘‘flow-unconnected’’ relationship (Fig. 1B)

and these two sites can be made spatially independent.

Likewise, whole networks (i.e., stream segments that

share a common stream outlet anywhere downstream)

can be made dependent.

Freshwater stream environments are typically consid-

ered open systems (Townsend 1996) with complex

processes and interactions occurring between and within

multiple aquatic and terrestrial scales. As a result,

multiple patterns of spatial autocorrelation may be

present in freshwater ecosystems (Peterson et al. 2006;

Ver Hoef and Peterson, in press). The strength of each

pattern may also vary at different spatial scales since the

influence of environmental characteristics has been

shown to vary with scale (Sandin and Johnson 2004).

Consequently, we believe that a geostatistical model

based on a mixture of covariances (i.e., multiple spatial

relationships) may better fit the data than a model based

on a single covariance structure.

Geostatistical models for stream network data are

relatively new and may be unfamiliar to aquatic

scientists. Here we review the current state of geo-

statistical modeling techniques for stream networks. A

model-based biological indicator collected by the

Ecosystem Health Monitoring Program (Bunn et al.,

in press) is used as a case study to demonstrate the

approach. Simple worked examples and more details are

given in the on-line appendices.

Stream network models

The stream network models of Ver Hoef et al. (2006)

and Cressie et al. (2006) are based on moving-average

(MA) constructions. MA constructions are flexible and

can be used to create a large number of autocovariance

functions (Barry and Ver Hoef 1996). They are

developed by creating random variables as the integra-

tion of a MA function over a white noise random

process. For our purposes, the key point is that spatial

autocorrelation occurs when there is overlap between

the MA function of one random variable and that of

another, which we explain in greater detail for two

classes of models.

Tail-up models

Models that are based on hydrologic distance and

only allow autocorrelation for flow-connected relation-

ships are referred to as ‘‘tail-up’’ (TU) models (Ver Hoef

et al. 2006; Ver Hoef and Peterson, in press) because the

tail of the MA function points in the upstream direction.

There are a large number of TU MA functions that one

could use such as the exponential, spherical, linear-with-

sill, or mariah models (Ver Hoef et al. 2006), and each

has a unique shape, which determines a unique

autocorrelation function. Autocorrelation occurs when

MA functions overlap among sites, with greater

autocorrelation resulting from greater overlap. For

example, in Fig. 2A, B, the shape of the TU MA

FIG. 1. The distance, h or h¼ aþ b, between locations (black circles) is represented by a dashed line. (A) Euclidean distance is
used to represent Euclidean relationships. Hydrologic distance can be used to represent both (B) flow-unconnected and (C) flow-
connected relationships in a stream network. Water must flow from one site to another in order for the pair to be considered flow
connected (C). In contrast, flow-unconnected sites do not share flow but do reside on the same stream network (B).
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function (shown in gray) dictates the relative influence of

upstream values when the random variable for a specific

location is generated. Values at short upstream hydro-

logic distances have a larger influence because there is a

greater amount of overlap in the MA functions and this

influence tends to decrease with distance upstream.

To better understand how the TU MA function is

applied to the unique conditions of a stream network,

imagine applying the function to a small network,

moving upstream segment by segment. When two

locations are flow-unconnected the tails of the MA

functions do not overlap (Fig. 2B) and the locations do

not have the potential to be spatially correlated. When

two locations are flow-connected, the MA functions

may overlap and one location has the potential to be

spatially correlated with another location (Fig. 2A).

When the MA function reaches a confluence in the

network, segment weights (called segment PIs in

Appendix A) are used to proportionally (i.e., they must

sum to 1) allocate, or split, the function between

upstream segments (Fig. 2A). The MA function could

simply be split evenly between the two (or more)

upstream branches, but this would not accurately

represent differences in influence related to factors such

as discharge. Instead, segment weights can be used to

ensure that locations residing on segments that have the

strongest influence on conditions at a downstream

location are given greater weight in the model (Ver

Hoef et al. 2006). Thus, autocorrelation in the TU

models depends on flow-connected hydrologic distance.

However, it also depends on the number of confluences

found in the path between flow-connected sites and the

weightings assigned to each of the tributaries. This

feature in particular makes stream network models

different than classical geostatistical models based on

Euclidean distance. It also makes TU models particu-

larly useful for modeling organisms or materials that

move passively downstream, such as waterborne chem-

icals.

The segment weights can be based on any ecologically

relevant feature, such as discharge, which is thought to

represent relative influence in a stream network.

However, discharge data are rarely available for every

stream segment throughout a region. As an alternative,

watershed area is sometimes used as a surrogate for

discharge (Peterson et al. 2007). It is intuitive to think

about a site’s influence on downstream conditions in

terms of discharge or watershed area; stream segments

that contribute the most discharge or area to a

downstream location are likely to have a strong

influence on the conditions found there. However,

spatial weights can be based on any measure as long

as some simple rules are followed during their construc-

tion (see Appendix A for details on how to construct

valid segment weights). The segment weights may also

be based on measures that represent the sum of the

upstream measures (i.e., a segment does not contribute

anything to itself ), such as Shreve’s stream order (Shreve

1966), as used by Cressie et al. (2006). Using segment

weights that are normalized so that they sum to one

ensures that all random variables have a constant

variance (Ver Hoef et al. 2006) if desired, which is

typical in geostatistics. As an aside, the MA construction

could also allow for non-stationary variances, but those

models will not be explored here.

The construction of a TU covariance matrix is based

on the hydrologic distance and a spatial weights matrix

(developed from the segment weights, as illustrated in

Appendix A) between flow-connected locations. Fur-

thermore, all flow-unconnected locations are uncorre-

lated. Additional details and a simple worked example

are provided in Appendix A to more clearly illustrate the

construction of a TU covariance matrix.

Tail-down models

Tail-down (TD) models allow autocorrelation be-

tween both flow-connected and flow-unconnected pairs

of sites in a stream network (Ver Hoef and Peterson, in

press). The MA function for a TD model is defined so

that it is only non-zero downstream of a location. In

other words, the tail of the MA function points in the

downstream direction (Fig. 2C, D). Spatial autocorrela-

tion is modeled somewhat differently in a flow-

connected vs. flow-unconnected situation due to the

way the overlap occurs in the MA functions (Fig.

2C, D). Notice also that the input data requirements are

unique for each case. The total hydrologic distance, h

(Fig. 1C), is used for flow-connected pairs, but the

FIG. 2. The moving-average functions for the (A,B) tail-up
and (C,D) tail-down models in both (A,C) flow-connected and
(B,D) flow-unconnected cases. The moving-average functions
are shown in gray with the width representing the strength of
the influence for each potential neighboring location. Spatial
autocorrelation occurs between locations when the moving-
average functions overlap (A, C, and D).
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hydrologic distances, a and b, from each site to a

common confluence are used for flow-unconnected pairs

(Fig. 1B). As before, more overlap in the MA function

implies more autocorrelation. Also, segment weights are

not used to model flow-connected relationships since the

MA function points downstream (Fig. 2C) and there is

no need to split the function to maintain constant

variances. Additional details and a simple worked

example showing the TD construction of a covariance

matrix are provided in Appendix A.

Although the TD model allows spatial autocorrela-

tion between both flow-connected and flow-unconnected

pairs, the relative strength of spatial autocorrelation for

each type is restricted (Ver Hoef and Peterson, in press).

For example, consider the situation where there are two

pairs of locations, one pair is flow-connected and the

other flow-unconnected, and the distance between the

two pairs is equal, aþ b¼ h. In this case, the strength of

spatial autocorrelation is generally equal or greater for

flow-unconnected pairs (Ver Hoef and Peterson, in

press) in the TD models. In fact, none of the current

models are able to generate a TD model with

significantly stronger spatial autocorrelation between

flow-connected pairs (Ver Hoef and Peterson, in press)

than flow-unconnected pairs for an equal hydrologic

distance. These restrictions on spatial autocorrelation in

the TD model may make sense for fish populations that

have the tendency to invade upstream reaches, such as

nonnative brook trout (Salvelinus fontinalis; Peterson

and Fausch 2003). Yet, there are other situations where

it would be useful to generate a model with stronger

spatial autocorrelation between flow-connected pairs

than flow-unconnected pairs. Peterson and Fausch

(2003) also studied the movement characteristics of

native cutthroat trout (Oncorhynchus clarki ) and found

that they moved downstream much more often than

upstream. Here, a model with stronger spatial autocor-

relation between flow-connected locations, which also

allows for some spatial autocorrelation between flow-

unconnected locations, might best fit the data. Yet,

neither the TU or TD model can be used to represent

this particular covariance structure. Therefore, another

modeling solution is required. Here we turn to the mixed

model, which is a very general approach, to address

these issues.

Mixed models

The mixed model is closely related to the basic linear

model:

y ¼ Xbþ e ð1Þ

where the matrix X contains measured explanatory

variables and the parameter vector b establishes the

relationship of the explanatory variables to the response

variable, contained in the vector y. The random errors

are contained in the vector e, and the general

formulation is var(e) ¼ R where R is a matrix. The

mixed-model is simply a variance component approach,

which allows the error term to be expanded into several

random effects (z.):

y ¼ Xbþ rEUCzEUC þ rTDzTD þ rTUzTU þ rNUGzNUG

ð2Þ

where cor(zEUC) ¼ REUC, cor(zTD) ¼ RTD, cor(zTU) ¼
RTU are matrices of autocorrelation values for the

Euclidean (EUC), TD, and TU models, cor(zNUG) ¼ I

where NUG is the nugget effect, I is the identity matrix,

and r2
EUC, r2

TD, r2
TU, and r2

NUG are the respective

variance components. The mixed-model construction

implies that covariance matrices based on different types

of models, such as the EUC, TU, and TD are combined

to form a valid covariance mixture:

R ¼ r2
EUCREUC þ r2

TDRTD þ r2
TUCTU �WTU þ r2

NUGI

ð3Þ

where we have further decomposed RTU¼ CTU � WTU

into the Hadamard product of the flow-connected

autocorrelations CTU (unweighted) and the spatial

weights matrix WTU.

The variance component model is attractive for

several reasons. First, it solves the problem mentioned

in the previous section; namely that the combination of

the TU covariance matrix and TD covariance matrix

allows for the possibility of more autocorrelation among

flow-connected pairs of sites, with somewhat less

autocorrelation among flow-unconnected pairs of sites.

Secondly, the multiple range parameters can capture

patterns at multiple scales. Generally, large scale

patterns are the most obvious and explanatory variables

are incorporated to help explain them. Spatial patterns

of intermediate scale, which have not been measured

with explanatory variables, are captured by the range

parameters for the EUC, TU, and TD models and the

relative strength of each model is given by its variance

component. The spatial weights are used to capture the

influence of branching in the network, flow direction,

and discharge. Finally, some spatial variation occurs at

a scale finer than the closest measurements; these are

modeled as independent error, which is represented by

the nugget effect. We now turn to an example to make

these concepts clearer.

Example

The Ecosystem Health Monitoring Program (EHMP)

has been collecting indicators of biotic structure and

ecosystem function throughout South East Queensland

(SEQ), Australia (Fig. 3A) since 2002 (Bunn et al., in

press). The program aims are to evaluate the condition

and trend in ecological health of freshwater environ-

ments and to guide investments in catchment protection

and rehabilitation. Metrics based on freshwater fish

assemblages are commonly used as indicators of

ecological health because they are thought to provide a

holistic approach to assessment across broad spatial and

temporal scales (Harris 1995). In this example, we used a

March 2010 647SPATIAL MODELS FOR STREAM NETWORK DATA
R

ep
orts



model-based biological indicator, the proportion of

native fish species expected (PONSE), which is simply

the ratio of observed to expected native freshwater fish

species richness (Kennard et al. 2006). The expected

species composition data were generated using a

referential model and represent the native species that

are expected to be present in a physically similar, but

undisturbed stream (Kennard et al. 2006). The observed

species composition data were collected at 86 survey

sites (Fig. 3B) in the spring of 2005. Hereafter, we will

refer to these as the ‘‘observed sites.’’ PONSE scores at

the observed sites ranged from 0.09 to 1, with a mean of

0.76 and a median of 0.83. We also nonrandomly

selected 137 ‘‘prediction sites’’ where PONSE was not

generated. Additional information about the study area,

the sampling methods, and the predictive model used to

generate the PONSE scores is provided in Appendix B.

We generated the spatial data necessary for geo-

statistical modeling in a geographic information system

(GIS). These included seven explanatory variables

representing watershed-scale land use, land cover, and

topographic characteristics for each observed and

prediction site, as well as the hydrologic distances and

spatial weights, which were based on watershed area.

The EHMP classified streams based on elevation, mean

annual rainfall, stream order, and stream gradient to

create four EHMP regions (Bunn et al., in press), which

we also included as a site-scale explanatory variable.

Additional information about the GIS methodology and

explanatory variables can be found in Appendix B.

We used a two-step model selection procedure to

compare models. First we fixed the covariance structure

and focused on selecting the explanatory variables using

the Akaike information criterion (AIC; Akaike 1974).

During the second phase of model selection we focused

on selecting the most appropriate covariance structure.

We fixed the selected explanatory variables, and then

compared every linear combination of TU, TD, and

EUC covariance structures, where four different auto-

covariance functions were tested for each model type.

This resulted in a total of 124 models, each with a

different covariance structure. In addition, we fit a

classical linear model assuming independence to com-

pare to models that use spatial autocorrelation. Once the

final model was identified, universal kriging (Cressie

1993) was used to make predictions at the 137 prediction

sites. Please see Appendix B for details on the model

selection procedure.

Our results show that a model based on a mixture of

covariances produced more precise PONSE predictions

than models based on a single covariance structure

(Table 1). When more than one covariance structure was

incorporated, mixture models that included the TD

model appeared to outperform other mixture types. In

addition, all of the geostatistical models outperformed

the classical linear model. The lowest RMSPE value was

produced by the exponential TU/linear-with-sill TD

mixture model. Hereafter this will be referred to as the

‘‘final model.’’ The final model only contained one

explanatory variable, mean slope in the watershed,

which was positively correlated with PONSE. This

statistical relationship may represent a physical rela-

tionship between PONSE and an anthropogenic distur-

bance gradient such as land use, water quality, channel

or riparian condition, or in-stream habitat (Kennard et

al. 2006), which is correlated to slope. For example,

watersheds with steeper slopes might be expected to

have less cleared or cropped land and, as a result higher

PONSE scores. More details on the fitted explanatory

variables and diagnostics are given in Appendix B.

We examined the percent of the variance explained by

each of the covariance components to provide more

information about the covariance structure of the

models. In the final model, the TU, TD, and NUG

components explained 22.43%, 64.32%, and 13.25% of

the variance, respectively. Although the full covariance

mixture (TU/TD/EUC) was not the best model in this

example based on the RMSPE (Table 1), the loss in

predictive ability was only 0.34% when it was used

instead of the final model. One of the advantages of a

mixed model is its flexibility; a covariance mixture can

be used to represent the whole range of covariance

structures used in the mixture (i.e., single EUC, TU, or

TD or any combination of the three). Therefore, we

recommend fitting a full covariance mixture; this allows

the data to determine which variance components have

the strongest influence, rather than making an implicit

assumption about the spatial structure in the data by

using a single covariance structure.

The predictions and prediction standard errors

produced by the final model (Fig. 3C–F) exhibit some

of the common characteristics of kriging predictions.

Predictions and their standard errors vary depending on

the estimated regression coefficients and distances to

observed data sites. If the explanatory variables at the

prediction site are not well represented in the observed

data set a large standard error will be assigned to the

prediction. The predictions change gradually along

stream segments (Fig. 3C–F) and the prediction

standard errors tend to be smaller near observed data

and increase as a function of distance (Fig. 3C).

The predictions and prediction standard errors shown

in Fig. 3 also demonstrate some characteristics that are

unique to geostatistical models for stream networks. For

example, the TU model allows discontinuities in

predictions at confluences, which enables flow-uncon-

nected tributaries to receive markedly disparate PONSE

predictions (Fig. 3D). The effect of the spatial weights

on prediction uncertainty is apparent if upstream

segments have not been sampled (Fig. 3E). In this

situation, uncertainty is relatively high upstream of a

confluence because various combinations of the two

PONSE scores could be contributing to the downstream

observed score. Two sites located on the main stem are

strongly correlated (based on a combination of the tail-

up and tail-down models) and uncertainty in the
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TABLE 1. A comparison of mixture models.

Mixture Model 1 Model 2 Model 3 RMSPE

Nonspatial 0.2573
TU linear-sill 0.2428
TD linear-sill 0.2112
EUC spherical 0.2283
TU/TD exponential linear-sill 0.2088
TU/EUC linear-sill Gaussian 0.2190
TD/EUC linear-sill spherical 0.2103
TU/TD/EUC mariah linear-sill exponential 0.2094

Notes: Models shown represent the best model fit for each mixture type based on the root mean square prediction error
(RMSPE). Models are tail-up (TU), tail-down (TD), and Euclidean (EUC).

FIG. 3. (A, B) The Ecosystem Health Monitoring Program collects a suite of ecological indicators at survey sites located
throughout South East Queensland, Australia. Predictions and prediction variances for the proportion of native fish species
expected (PONSE) were produced using the exponential tail-up/linear-with-sill tail-down model (C–F). Observed sites are
represented by larger squares, and prediction sites are represented by smaller diamonds. Prediction variances are shown in gray and
are sized in proportion to their value (0.124–0.215). Thus, predictions with a large shaded gray area have less precision. Blue line
segments symbolize stream segments, and the width of the line is proportional to the watershed area.
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downstream predictions is low (Fig. 3E). However,

when the spatial weights are based on watershed area,

and one upstream segment dominates a side branch,

uncertainty in the upstream direction may also be low

(Fig. 3C). In contrast, prediction uncertainty in small

upstream tributaries is relatively large (based on the tail-

up model) since the spatial correlation between the

observed and prediction site is weak (Fig. 3F).

Discussion and Conclusions

Spatial autocorrelation is clearly a natural phenom-

enon given the open nature of stream ecosystems

(Townsend 1996) and the complexity of process

interactions occurring within and between the stream

and the terrestrial environment. Observable patterns of

spatial autocorrelation are likely caused by multiple

spatially dependent factors (Wiens 2002). As a result,

conceptualization and modeling in stream ecosystems

requires tools that are able to account for dynamic

multi-scale patterns ranging from the reach to the

network scale (Townsend 1996). Yet many models do

not account for these natural interdependencies. Ignor-

ing spatial autocorrelation makes it possible to use

traditional statistical methods, which rest on the

assumption of independent random errors. Although

convenient, our opinion is that it is better to develop

new statistical methods that represent the unique

ecological conditions found in the environment.

Traditional geostatistical methods account for spatial

correlation in the error term, but they may not fully

capture spatial autocorrelation structures in stream

environments. Euclidean covariance functions, such as

the spherical, cubic, exponential, and Gaussian, are all

strikingly similar (Chiles and Delfiner 1999). As a result,

two sites that are spatially correlated using one function

are likely to be spatially correlated using another

function. In contrast, the stream models have a

markedly different autocovariance structure than the

Euclidean models and represent a true difference in the

way that spatial relationships are represented. The

splitting of the covariance function along a branching

network is also unique to stream models. Previously,

autocorrelation has been restricted to a linear feature or

to two-dimensional space, which cannot be used to

capture hydrologic patterns of spatial autocorrelation in

a branching network. The stream models given here

provide an innovative statistical alternative because they

were specifically developed to represent the spatial

configuration, longitudinal connectivity, discharge, and

flow direction in a stream network.

The mixed model is an extremely flexible approach

because many sources of information can be incorpo-

rated into a single model. The explanatory variables are

used to account for influential factors that can be

measured. However, it is common for other influential

variables to be left unmeasured due to a lack of

resources or an incomplete understanding about the

stream process. In a mixed model, autocorrelated errors

can be modeled at multiple scales using a variety of

distance measures. This produces a rich and complex

covariance structure, that when combined with the

explanatory variables, can be used to account for the

effects of both measured and unmeasured variables at

multiple scales. Given the multi-scale complexities of

stream ecosystems, we expect these models to better

represent the spatial complexity and interdependencies

in a streams data sets.

The flexibility of the mixture model makes the method

suitable for modeling a variety of variables collected

within or near a stream network. Although we used a

Gaussian response in the example, the autocovariance

functions described here can also be used to produce

covariance matrices for kriging Poisson or binomial

variables, such as fish counts or the presence or absence

of species. It may also be possible to model variables

that are present in riparian areas rather than streams,

but are expected to exhibit both Euclidean and

hydrologic patterns of spatial autocorrelation. This

might include riparian plant species that employ

waterborne dispersal strategies or animal species that

migrate along stream corridors. Finally, we chose to use

watershed area to calculate the spatial weights because it

made sense given the response variable, but any

measurement, such as water velocity, stream width, or

discharge, could be used as long as it meets the statistical

requirements set out in Appendix A. In principle,

multiple weighting schemes could be compared as part

of the model selection criteria.

The mixed model is also useful from a management

perspective since predictions with estimates of uncer-

tainty may be generated throughout a stream network

(Fig. 3). This ability provides a way to move from

disjunct stream management, which is traditionally

based on site or reach-scale samples, to a more

continuous approach that yields location specific pre-

dictions and accounts for the network as a whole

(Fausch et al. 2002). For example, the predicted PONSE

values in two small tributaries were relatively high

compared to those found in the main stem (Fig. 3F),

which may indicate that those locations have the

potential to act as natural refugia for native fish residing

in marginally suitable habitats. The potential impor-

tance of these tributaries could go unnoticed without the

ability to evaluate the network as a whole. This quality is

particularly useful because it helps to ensure that

management actions are targeted or scaled appropriately

(Lake et al. 2007). Including estimates of uncertainty

also enables users to gauge the reliability of the

predictions and to target future sampling efforts in

areas with large amounts of uncertainty or a greater

potential for ecological impairment.

Geostatistical modeling in stream networks has the

potential to be a powerful statistical tool for freshwater

stream research and management. It can be used to

capture and quantify spatial patterns at multiple scales,

which may provide additional information about
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ecosystem structure and function (Levin 1992); a key
step in developing new ecological theories. Our goal has

been to make this methodology accessible to ecologists
so that the models can be implemented, modified, and
improved to derive additional information from streams

data sets. We believe that when geostatistical models for
stream networks are used in conjunction with sound
ecological knowledge the result will be a more ecolog-

ically representative model that may be used to broaden
our understanding of stream ecosystems.
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APPENDIX A

Formulas and examples for the construction of tail-up and tail-down covariance matrices (Ecological Archives E091-048-A1).

APPENDIX B

Additional details about the collection and analysis of the EHMP PONSE data set (Ecological Archives E091-048-A2).
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Ecological Archives E091-048-A1  

Erin E. Peterson and Jay M. Ver Hoef. 2010. A mixed-model moving-average approach to geostatistical modeling in 
stream networks. Ecology 91:644–651. 
 

Appendix A: Calculating covariance matrices using the tail-up and tail-down models. 

 

Computing Hydrologic Distances  

A distance matrix that contains the hydrologic distance between any two sites in a study area is needed to fit a geostatistical 

model using the tail-up and tail-down autocovariance functions. However, the hydrologic distance information needed to model the 

covariance between flow-connected and flow-unconnected locations differs in most cases. The total hydrologic distance is a 

directionless measure; it represents the hydrologic distance between two sites, ignoring flow direction. The hydrologic distance from 

each site to a common confluence is generally used when creating models for flow-unconnected pairs (Fig. A1.A), which we term 

“downstream hydrologic distance”. In contrast, the total hydrologic distance is used for modeling flow-connected pairs (Fig. A1.B), 

which we term “total hydrologic distance”. 

A downstream hydrologic distance matrix provides enough information to meet the data requirements for both the tail-up and 

tail-down models. When two locations are flow-connected, the downstream hydrologic distance from the upstream location to the 

downstream location is greater than zero, but it is zero in the other direction. Using the data contained in Fig. A1 as an example, the 
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downstream hydrologic distance from 2 3to 3 5 8s s     (Fig. A1.A). In contrast, the downstream hydrologic distance 

from 3 2 to 0 0 0s s    . When two locations are flow-unconnected the downstream hydrologic distance will be greater than zero in 

both directions. For example, the downstream hydrologic distance from 1 2to 7s s  , while the downstream hydrologic distance from 

2 1 to 3s s   (Fig. A1.A). Notice that a site’s downstream hydrologic distance to itself is equal to zero. When two sites do not reside on 

the same stream network (do not share a common stream outlet anywhere downstream) there is no hydrologic path between the pair 

and as such, a hydrologic distance cannot be calculated. To address this issue, an extremely large downstream hydrologic distance is 

recorded in both directions, essentially equal to infinity. This ensures that the downstream hydrologic distance is greater than the range 

parameter and no spatial correlation will be permitted between sites. The format of the downstream hydrologic distance matrix is 

efficient because only one distance matrix is needed to fit both the tail-up and tail-down models. For example, a matrix containing the 

total hydrologic distance between sites is easily calculated by adding the downstream distance matrix to its transpose (Fig. A1.B). 

 

Tail-up models 

Tail-up models represent flow-connected relationships and so water must flow from one location to another for two sites to be 

spatially correlated. The total hydrologic distance (Fig. A1.B) does not represent flow direction; instead, the spatial weights are used 

to restrict the symmetric correlation to include only flow-connected sites. A variety of weighting schemes may be used in the tail-up 
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moving-average function, but there are rules about the way that weights may be constructed in order to maintain stationary variances. 

The construction of the spatial weights will be explained in greater detail in subsequent sections.  

 A valid tail-up autocovariance between flow-connected locations on the stream network can be constructed as  

 

,

1

0 if  and  are flow-unconnected
( , | ) ( | ) if  and  are flow-connected    

s si j

i j

TU i j k i j
k B

s s
C s s w C h s s




 

θ θ  (A.1)

 

where 1( | )C h θ  is the unweighted autocovariance function constructed using a tail-up moving-average function which depends on 

parametersθ , h is the total hydrologic distance, and 
,s si j

k
k B

w

 represents the spatial weights; we describe four such models derived by 

Ver Hoef et al. (2006) next.  

 Although Eq. A.1 may appear unfamiliar, the practical construction is relatively straight-forward. For example, 1( | )C h θ  could 

be  

 

2
1( | ) 1 1TU

h hC h I
 

        
   

θ  (A.2)
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where h is the total hydrologic distance,θ  is the parameter vector containing 2 0TU   (the partial sill or variance component in the 

mixed model) and 0  (the spatial range parameter), and )(I  is the indicator function. Eq. A.2 combined with Eq. A.1 is the tail-up 

linear-with-sill model. When 1( | )C h θ is  

 

2
1( | ) exp( / )TUC h h  θ  (A.3)

 

 
and combined with Eq. A.1, it is the tail-up exponential model. When 1( | )C h θ  is  
 
 

3
2

1 3

3 1( | ) 1 1
2 2TU

h h hC h I
  

         
  

θ  (A.4)

 

 
and combined with Eq. A.1, it is the tail-up spherical model. Finally, when 1( | )C h θ  is  
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2

1
2

log( / 1) if 0
( | ) /

if 0

TU

TU

h h
C h h

h






  
 

θ  (A.5)

 

and combined with Eq. A.1 it is the tail-up mariah model.  

 

  Note that creating a covariance matrix, C1, based on 1( | )C h θ  alone, is not guaranteed to be a valid covariance matrix until it 

has been weighted appropriately using the spatial weights matrix, W, where the i,jth element is 



jsisBk

kwji
,

],[W  (Eq. A.1). The 

Hadamard (element-wise) product is applied to the two matrices, 1TU Σ W C , and the product is a covariance matrix, TUΣ ,  that 

meets the statistical assumptions necessary for geostatistical modeling (Cressie et al. 2006; Ver Hoef et al. 2006).  

 

Weighting for the Tail-up Model 

 The tail-up moving-average function is named as such because the tail of the function points in the upstream direction. Since 

stream networks are dendritic, a weighting scheme must be used to proportionally allocate (i.e., they must sum to 1), or split, the tail-

up moving-average function between upstream segments. The function could simply be split evenly between the two (or more) 

upstream branches, but this would not accurately represent differences in influence related to factors such as discharge or watershed 

area. Instead, segment weights are used to ensure that locations residing on segments that contribute the strongest influence (i.e., 
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discharge, area, or stream order) to a downstream location are allocated a stronger influence, or weighting, in the model (Cressie et al. 

2006, Ver Hoef et al. 2006). It is intuitive to think about a site’s influence on downstream conditions in terms of discharge or 

watershed area; stream segments that contribute the most discharge to a downstream location are likely to have a strong influence on 

the conditions found there. However, spatial weights can be based on any measure as long as some simple rules are followed during 

their construction.  

 In a previous publication, we described a process that can be used to calculate the spatial weights in a geographic information 

system (GIS) (Peterson et al. 2007). However, that process can be computationally intensive because the topological relationships of 

the stream segments are used to identify the features that make up the hydrologic path between every pair of sites (both observed and 

predicted). Consequently, it becomes challenging to calculate the spatial weights as the number of segments in the stream network or 

the number of observed or predicted sites increases. Here we present an alternative method for calculating the spatial weights, which is 

based on an additive function. It is less computationally intensive and produces spatial weights that are identical to those produced 

using the methods described in Peterson et al. (2007).   

 Calculating the spatial weights is a three step process: 1) calculating the segment proportional influence (PI), 2) calculating the 

additive function value for each stream segment, and 3) calculating the spatial weights (Peterson et al. 2007). The segment PI is 

defined as the relative influence that a stream segment has on the segment(s) directly downstream (Fig. A2.A). In this example, the 

segment PI is based on watershed area, but other measures could also be used. To begin, watershed area is calculated for the 

downstream node of each stream segment in the network. The cumulative watershed area at each confluence is calculated by summing 
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the watershed area for the stream segments that flow into it. The segment PI for each of the segments that flow into the confluence is 

then equal to the proportion of the cumulative watershed area that it contributes (Fig. A2.A). The segment PIs directly upstream from 

a confluence always sum to 1 because they are proportions. This is particularly important because it ensures that stationarity in the 

variances is maintained (Ver Hoef et al. 2006).   

 The second step is to calculate the additive function value (AFV) for each stream segment (Fig. A2.A). First, the stream segment 

directly upstream from the stream outlet is identified and assigned a segment AFV equal to 1. The outlet segment is the most 

downstream segment in the network and represents features that drain to the ocean or out of a predefined study area. Working 

upstream from the outlet segment by segment, the product of the segment PIs is taken and assigned to the individual segments; this 

value represents the segment AFV, which is constant within a segment. Although the segment AFV is a product, it is also considered 

an additive function because the segment PIs always sum to 1 at the stream confluences (Fig. A2.A). Using the data in Fig. A2.A as an 

example, the segment AFV of R5 = 1 because it is the most downstream segment in the network. It follows that the segment AFV of 

R3=1*0.85=0.85 and the segment AFV of R2=1*0.85*0.41=0.35. This process continues until each segment in the stream network is 

assigned a stream AFV. If there is more than one stream network in the study area (multiple stream outlets) then the segment AFV is 

calculated for each network separately. 

 The third and final step is to assign the site AFV values and to calculate the spatial weights. The site AFV value (Ωi) is derived 

simply; it is equal to the segment AFV value on which it resides (Fig. A2.B). This also holds true when multiple sites reside on a 

single stream segment. The spatial weight for a pair of flow-connected sites is /i j  , where Ωi is the upstream site AFV and Ωj is 
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the downstream site AFV (Fig. A2.C). If two sites are not flow-connected their spatial weight is equal to 0. A sites spatial weight on 

itself, or any other site located on the same segment, is equal to 1.  

 The spatial weights are stored as a symmetric matrix, meaning that there is a symmetric correlation between upstream and 

downstream locations (Fig. A2.C). For example, the spatial weight from 2s to 4s  is equal to the spatial weight from 4s to 2s . This may at 

first seem confusing since flow-connected relationships are meant to represent flow direction in a stream network. Nevertheless, there 

is a symmetric correlation between flow-connected sites. Even though a downstream site does not directly influence an upstream site, 

it does provide information about the conditions found upstream. In addition, attempting to enforce an asymmetric correlation would 

violate one of the assumptions of geostatistical modeling; namely, that the covariance matrix is symmetric positive-definite (Chiles 

and Delfiner 1999). Instead, flow direction is preserved by restricting the symmetric correlation to include only flow-connected sites 

(Fig. A2.C) and the strength of the spatial autocorrelation is represented using the spatial weights and the hydrologic distances. Since 

the spatial weights are based on the product of proportions, the influence decreases as the distance between two locations increases for 

flow-connected locations.  However, note that in Fig. A2, 2s  is physically closer to 4s  than 1s  is to 4s , yet the weight between 1s  and 

4s  is higher in A2.C, so weights carry information other than simple distance. 

 

Constructing a Valid Tail-up Covariance Matrix 
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 The example data provided in Figs. A1 and A2 can be used to further illustrate the construction of a valid covariance matrix 

using a tail-up model. Rather than estimating covariance parameters, we set them to 2
TU = 4 and  = 15.  Of course, for a real data 

set, the autocovariance parameters are not specified; they are left as free parameters and estimated from the data. This can be 

accomplished using a variety of methods, such as weighted least squares (Cressie et al. 2006), maximum likelihood (Peterson et al. 

2006), restricted maximum likelihood (REML) (Ver Hoef et al. 2006), or Markov Chain Monte Carlo (MCMC) in a Bayesian 

framework (Handcock and Stein 1993). We obtain matrix C1 by applying the linear-with-sill autocovariance function (Eqs. A.1 and 

A.2) to the hydrologic distances given in Fig. A1.B. Then we take the Hadamard product of C1 and W to obtain TUΣ  for the example 

data provided in Figs. A1 and A2.  

 

4.00 1.33 0.80 0 1 0 0.77 0.71
1.33 4.00 1.87 0.27 0 1 0.64 0.59
0.80 1.87 4.00 2.40 0.77 0.64 1 0.92

0 0.27 2.40 4.00 0.71 0.59 0.92 1

TU

   
   
     
   
   
   

 

4.00 0 0.62 0
0 4.00 1.20 0.16

0.62 1.20 4.00 2.21
0 0.16 2.21 4.00

 
 
 
 
 
 

 

(A.6)
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Note that matrix W is the spatial weights matrix (Fig. A2.C). Also, notice that sites 1 2 and s s are uncorrelated because they are flow-

unconnected, while 1 4 and s s  are uncorrelated because they are beyond the range of the autocovariance function.  

Tail-down Models 

A tail-down model allows spatial correlation between both flow-connected and flow-unconnected pairs of sites in a stream network. 

However, the autocovariance functions used to model these two relationships differ (Ver Hoef and Peterson in press). Thus, the spatial 

data inputs needed to construct a tail-down model are different than the tail-up model. The total hydrologic distance, h (Fig. A1.B), is 

used for flow-connected pairs, in the same way that it was used in the tail-up model (Eq. A.1). However, for flow-unconnected pairs 

the downstream hydrologic distance is used (Fig. A1.A). As we mentioned previously, only one distance matrix is necessary to 

calculate these two distances since a+b=h, (Figs. A1.A and A1.B). Also, the total hydrologic distance between flow-connected sites is 

not weighted in a tail-down model. This is because the tails of the moving-average function point downstream. It is generally not 

necessary to split the function since a dendritic network tends to converge to a single outlet. In the case of a braided channel we do not 

split the function in the downstream direction and thus data must be restricted to a single channel; however the moving-average theory 

could accommodate splitting downstream as well.  

Examples of the tail-down models include the tail-down linear-with-sill model, 
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the tail-down spherical model,  
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and the tail-down mariah model. 
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Notice that some form of the downstream hydrologic distances (a and b) are used in Equations A.7, A.8, and A.9 rather than the total 

hydrologic distance (a+b=h).  This modification is necessary because the covariance matrix is not guaranteed to be positive definite 

when Euclidean distance is simply replaced with total hydrologic distance (a+b = h). The only known exception to this rule is the tail-

down exponential model (Ver Hoef et al. 2006) 

 

2

2

exp( ( ) / ) if  and  are flow-unconnected,
( , | )

exp( / ) if  and  are flow-connected.    
TD i j

TD i j
TD i j

a b s s
C s s

h s s
 
 
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Here, the exponential model (Eq. A.10) is a pure hydrologic-distance model (a+b=h) since the autocovariance is calculated in the 

same way for both flow-connected and flow-unconnected pairs. Please see Ver Hoef et al. (2006) for an example that demonstrates 
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how invalid covariance matrices are generated when total hydrologic distance is used in autocovariance models that were developed 

for Euclidean distance.  

 Using the linear-with-sill autocovariance function (Eq. A.7), the example hydrologic distances (Fig. A1.A and Fig. A1.B), and 

set covariance parameters ( 2
TD = 4 and  = 15) we obtain the tail-down covariance matrix for the example data provided in Fig. A1 

 

4.00 2.13 0.80 0
2.13 4.00 1.87 0.27
0.80 1.87 4.00 2.40

0 0.27 2.40 4.00

 
 
 
 
 
 

 (A.11)

 

 Although the tail-down model can account for spatial autocorrelation between both flow-connected and flow-unconnected pairs, 

the relative strength of spatial autocorrelation for each type is restricted (Ver Hoef and Peterson in press). For example, consider the 

situation where there are two pairs of locations, one pair is flow-connected and the other flow-unconnected, and the distance between 

the two pairs is equal, a + b = h. In this case, the strength of spatial autocorrelation is generally equal or greater for flow-unconnected 

pairs (Ver Hoef and Peterson in press). This characteristic can be seen in the tail-down covariances that were derived from the 

example data in Fig. A1 (Eq. A.11). Notice that the covariance between flow-unconnected sites 1 2and s s  was 2.13, which is stronger 

than a neighboring flow-connected pair, 2 3and s s  (1.87), even though the flow-connected pair has a shorter hydrologic distance (Figs. 



 14

A1.A and A1.B). However, if we use a mixture model approach and add the tail-up covariance matrix to the tail-down covariance 

matrix, then the flow-connected pair ( 2 3and s s ) may have greater autocovariance than the flow-unconnected pair ( 1 2and s s ). 
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FIG. A1. The downstream hydrologic distance for each pair of sites, a and b, is needed to fit the tail-down model (A). The tail-up 

model requires the total hydrologic distance, h, between each pair (B). The total hydrologic distance between sites (B) can be derived 

from the downstream distance matrix (A) since a b h  . 
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FIG. A2. The spatial weights matrix is constructed using the segment proportional influences (PI), which represent the proportion of 

the watershed area that each segment (R1, R2, R3, R4, R5) contributes to a confluence (A). The segment PIs are used to calculate the 

segment additive function value (AFV). First, the stream segment directly upstream from the stream outlet is identified (R5) and 

assigned a segment AFV equal to one. Working upstream from the outlet segment by segment, the product of the segment PIs is taken 

and assigned to the individual segments (A). The site AFV is equal to the segment AFV on which it resides (B). The spatial weights 

represent a symmetric correlation between flow-connected sites. They are calculated by taking the square root of the upstream site 

AFV divided by the downstream site AFV (C). If two sites are not flow-connected their spatial weight is equal to zero and a sites 

spatial weight on itself, or any other site located on the same segment, is equal to one. 
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Appendix B: Additional details for the analysis of the PONSE data set. 

South East Queensland (SEQ) is located on the eastern coast of Australia and is 

approximately 22,999 square km in size. It is a subtropical region with mean annual maximum 

temperatures ranging between 21 and 29 °C (EHMP, 2001) and total annual rainfall ranges 

between 900 and 1800 mm (Pusey et al. 1993).  Elevation ranges between 0 meters in coastal 

areas to 1360 meters in the west along the Great Dividing Range. Regional discharge is 

seasonally variable and is related to elevation, slope, and rainfall (EHMP, 2001). The 

predominant land uses in the region are natural bushland (37%) and grazing (35%).  

The Ecosystem Health Monitoring Program (EHMP) has been collecting indicators of 

biotic structure and ecosystem function throughout SEQ since 2002 (Bunn et al. in press). The 

program aims are to evaluate the condition and trend in ecological health of freshwater 

environments and to guide investments in watershed protection and rehabilitation. Metrics based 

on fish assemblage structure and function are commonly used as indicators of ecological health 

because they are thought to provide a holistic approach to assessment across broad spatial and 

temporal scales (Harris 1995). The EHMP uses ecosystem health indicators based on freshwater 

fish species richness (Kennard et al. 2006a), fish assemblage composition (Kennard et al. 2006b) 

and the relative abundance of alien species (Kennard et al. 2005). In this example, we used a 

model-based fish indicator, the proportion of native fish species expected (PONSE), which is the 

ratio of observed to expected native fish species richness (Bunn et al. in press, Kennard et al. 

2006a). Here, species richness is simply the number of native fish species observed or predicted 
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at a location. Native species richness is a commonly used summary indicator of ecosystem health 

that may reflect a variety of disturbances functioning at a range of spatial and temporal scales. 

Environmental degradation is expected to alter naturally diverse fish communities to simple 

assemblages dominated by only a few tolerant species. Therefore, species richness is expected to 

decline with increasing environmental stress. For example, Kennard and others (2006a) showed 

that native species richness was lower than expected at test sites in SEQ affected by intensive 

watershed land use (clearing, grazing, cropping and urbanization), degraded water quality (high 

diel temperature range, low pH, high conductivity, high turbidity) and riparian and aquatic 

habitat degradation. 

The observed species richness values used to calculate the PONSE scores were based on 

fish assemblage data collected at 86 survey sites during the spring of 2005; hereafter referred to 

as the “observed sites”. Fish assemblages were sampled using a combination of backpack 

electrofishing and seine-netting where possible (Kennard et al. 2006c). Electrofishing was 

conducted using a Smith-Root model 12B Backpack Electroshocker, while seine-netting was 

conducted using a 10m long (1.5m drop) pocket seine of 10mm (stretched) mesh. An attempt 

was made to intensively sample all habitat unit types (pool, riffle, and run) at each site (Kennard 

et al. 2006c). When only one habitat unit type was present, at least two units were fished. The 

average length of fished stream was 75m and data from the entire length were combined to 

obtain an observed species richness value.  

The expected species richness values used to calculate each PONSE score were generated 

using a referential model and represent the number of native species that are expected to be 

present in a physically similar, but undisturbed stream (Kennard et al. 2006a). A regression tree 

was used to partition a large set of minimally-disturbed reference sites into homogenous groups 



 3

based on environmental characteristics including elevation, distance to the stream outlet, distance 

from the stream source, and the mean wetted stream width (Kennard et al. 2006a). The mean 

species richness for each reference site group was then calculated. The 86 observed sites were 

assigned to reference site groups based on the same environmental characteristics mentioned 

previously. Finally, each observed site was assigned an expected species richness value, which 

was equal to the mean species richness for the reference site group. For additional details about 

the calculation of the expected species richness values, please see Kennard and others (2006a) 

and EHMP (2001).  

We generated the spatial data necessary for geostatistical modeling in a geographic 

information system (GIS) using ArcGIS version 9.2 software (ESRI 2006). The Functional 

Linkage of Waterbasins and Streams (FLoWS) toolset (Theobald et al. 2006) was used to 

construct a landscape network, which is a spatial data structure designed to store topological 

relationships between nodes, directed edges, and polygons (Theobald et al. 2005). Here, we used 

the landscape network to represent stream segments (directed edges) and confluences (nodes). 

The location of additional features, such as survey sites, can also be associated with the data 

structure. We incorporated the 86 observed sites and 137 non-randomly selected “prediction 

sites” (where PONSE scores were not measured) into the landscape network. Scripts written in 

Python version 2.4.1 (Van Rossum and Drake 2003) were used to generate the hydrologic 

distances and spatial weights between all observed and prediction sites based on the topological 

relationships stored in the landscape network. The spatial weights were based on watershed area, 

which was used as a surrogate for discharge. This seemed like a viable alternative since mean 

annual discharge has been shown to be correlated with watershed area in other regions (Vogel et 

al. 1999).  
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Watershed-scale explanatory variables for each observed and prediction site were 

calculated using a combination of FLoWS tools (Theobald et al. 2006) and customized scripts 

written in Python version 2.4.1 (Van Rossum and Drake 2003). The streams data were provided 

by the Moreton Bay Waterways and Catchments Partnership (2005); here we considered a single 

GIS polyline feature as a stream segment. A digital elevation model (Queensland Natural 

Resources and Water 2000) and the Queensland Land Use Mapping Program data set (Bureau of 

Rural Sciences 2002) were used to generate seven watershed explanatory variables (Table B1). 

The EHMP classified streams based on elevation, mean annual rainfall, stream order, and stream 

gradient (EHMP 2001) to create four EHMP regions: Tannin-stained, Coastal, Lowland, and 

Upland, which we also included as a site-scale explanatory variable (Table B1). We checked the 

explanatory variables for collinearity using the variance inflation factor statistic (Helsel and 

Hirsch 1992), which indicated that it was unnecessary to remove explanatory variables. Note that 

all of the statistical analyses described here were performed in R version 2.6.1 (R Development 

Core Team 2008). 

We used a two-step model selection procedure to compare models. First we fixed the 

covariance structure and focused on the explanatory variables. All of the mixed models were fit 

using the exponential tail-up (TU), linear-with-sill tail-down (TD), and Gaussian Euclidean 

(EUC) as component models (formulas for component models are given in Appendix A). The 

choice of autocovariance function for the tail-up and Euclidean components was somewhat 

arbitrary because only one type of spatial relationship is represented by each of the functions 

(flow-connected or Euclidean). Differences in the strength of spatial autocorrelation between 

locations when different autocovariance functions are fit to the data result from the shape of the 

autocovariance function and are likely to be minimal. In the case of the tail-down model the 
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difference in performance between autocovariance functions is attributed to both the shape of the 

function and the way in which flow-connected and flow-unconnected relationships are 

represented. More specifically, the relative strength of spatial autocorrelation for each 

relationship differs depending on the autocovariance function that is used. For example, consider 

a case where there are two pairs of locations. One pair is flow-unconnected and the other is flow-

connected and the distance between pairs is equal (a+b=h).  If the tail-down exponential model 

is fit to the data the strength of spatial autocorrelation between the two pairs is equal. However, 

if the linear-with-sill function is fit to the data the strength of spatial autocorrelation between the 

flow-unconnected pair may be up to 1.5 times that of the flow-connected pair. We chose the 

linear-with-sill tail-down autocovariance function because we wanted to model maximum 

autocorrelation among flow-unconnected sites relative to flow-connected sites. All tail-up 

models have zero autocorrelation among flow-unconnected sites, so any function allows us to 

model minimum autocorrelation among flow-unconnected sites relative to flow-connected sites. 

The combination of linear-with-sill tail-down plus any tail-up model in a mixed model allows the 

most flexible modeling of autocorrelation.  More details may be found in Ver Hoef and Peterson 

(in press).  

We estimated all of the parameters in the first phase of model selection using maximum 

likelihood. Outliers can be overly influential when likelihoods are calculated (Martin 1980) and 

when the covariance function is fit to the data (Cressie 1993). Therefore, a backwards stepwise 

model selection strategy was implemented so that the model diagnostics could be examined for 

every model. Nevertheless, no outliers were identified or removed during the analysis. We 

selected explanatory variables based on the smallest Akaike Information Criterion (AIC) (Akaike 

1974) for the fitted models to determine which had the most support in the data.  
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During the second phase of model selection we focused on selecting the most appropriate 

covariance structure. We used the selected explanatory variable set as described above to 

compare every linear combination of TU, TD, and EUC covariance structure, where four 

different autocovariance functions were tested for each model type. For the TU and TD models, 

these included the spherical, exponential, mariah, and linear-with-sill functions (formulas are 

given in Appendix A). The EUC model included the spherical, exponential, Gaussian, and 

Cauchy functions (Chiles and Delfiner 1999). This resulted in a total of 124 models, each with a 

different covariance structure. In addition, we fit a classical linear model assuming independence 

to compare to models that use spatial autocorrelation. Maximum likelihood may produce biased 

estimates of the covariance parameters and so we used restricted maximum likelihood (REML) 

for parameter estimation (Cressie 1993). Note that REML was not used for parameter estimation 

in the first phase of model selection because a side effect of REML is that information criteria, 

such as AIC, can only be used if the explanatory variable set remains fixed (Verbeke and 

Molenberghs 2000). Once the fitted covariance matrix had been generated using REML, it was 

then used to estimate the fixed effects. This is referred to as “empirical” best linear unbiased 

estimation and is often used in software such as SAS (Littell et al. 1996). 

Leave-one-out cross-validation predictions were generated at the observed sites for each 

of the 124 models using universal kriging (Cressie 1993) and then used to calculate the root-

mean-squared-prediction error (RMSPE),  

2

1

ˆRMSPE ( ) /
n

i i
i

z z n


   (B.1) 

where iẑ  is the prediction of the ith datum after removing it from the observed data set. The 

RMSPE can be thought of as proportional to the prediction interval and its interpretation is fairly 
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straight-forward. For example, if the RMPSE for the best model is one third that of a competing 

model the gain in using the best model is 66%. The RMSPE was used to compare the models 

based on different covariance structures. Other model selection criteria, such as information 

theoretic measures (Burnham and Anderson 1998), could also have been used. The method that 

we chose met our purpose, which was to identify the covariance mixture that provided the best 

predictions and it is not our intention to debate the merits of various approaches here. Once the 

model with the smallest RMSPE was identified, universal kriging was used to make predictions 

at the 137 prediction sites.  

 An empirical semivariogram of the model residuals, divided into flow-connected and flow-

unconnected relationships (Fig. B1), was generated using the classical estimator as given in 

Cressie (1993). We also used the covariance parameter estimates to calculate the percent of the 

variance explained by each of the covariance components (%VC)  

 
2

2 2 2
% *100,TU

TU
TD TU NUG

VC 
  


 

 (B.2) 

 

where 2 2 and TU TD   are the partial sill parameters for the TU and TD models and 2
NUG  is the 

nugget effect. Eq. B.2 demonstrates how to calculate the %VC for the TU model, which in this 

example is part of a two-component mixture model. However, the %VC can be calculated for 

any number of model components and the nugget effect. Since it is a percentage, the %VC for all 

of the components should always sum to 100.  

 The lowest RMSPE value was produced by the exponential TU/linear-with-sill TD 

mixture model, which we will hereafter refer to as the final model. The fixed effects for the final 

model are provided in Table B2. Note that the parameter estimates in Table B2 were generated 

using REML during the second phase of model selection, but the specific fixed effects were 

chosen in the first phase of model selection. The final model only contained one explanatory 

variable, mean slope in the watershed, which was positively correlated with PONSE. This 
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statistical relationship may represent a physical relationship between PONSE and an 

anthropogenic disturbance gradient related to land use, water quality, channel or riparian 

condition, or in-stream habitat (Kennard et al. 2006a), rather than slope itself. For example, 

watersheds with steeper slopes might be expected to have less cleared or cropped land and, as a 

result higher PONSE scores. In addition, steep slopes are more likely to be found in headwater 

streams, which may be inaccessible to alien species if they are upstream of barriers to fish 

movement (Kennard et al. 2005). However, we did not have access to extensive information 

about anthropogenic disturbances at EHMP sites and were unable to specifically account for 

these effects in our model.  

An empirical semivariogram of the final model residuals, divided into flow-unconnected 

and flow-connected relationships is shown in Fig. B1. The partial sill and range parameters for 

the TU component were 0.0162 and 1160.56 km, respectively. In contrast, the TD model had a 

larger partial sill (0.0464) and a smaller range parameter (110.67 km) than the TU model. The 

nugget effect was 0.0096. The TU range parameter was substantially larger than the largest flow-

connected separation distance (262.19 km). The magnitude of the TU range parameter simply 

indicates that flow-connected sites are spatially correlated regardless of their location in the 

stream network. Covariance parameters are sometimes visually estimated from the 

semivariogram, but it would not be appropriate in this case since there is no weighting for the 

flow-connected locations. The weights affect the autocorrelation between sites and so there is no 

guarantee that sites close in space have a strong influence on one another if there is a confluence 

between them. Calculating the percent of the covariance explained by each of the components 

provides additional information about the covariance structure of the models. In the final model 

the TU, TD, and NUG components explained 22.43%, 64.32%, and 13.25% of the variance, 

respectively. 

 Our results show that a model based on a mixture of covariances produced the most precise 

PONSE predictions (Fig. B2). Models based on a covariance mixture tended to produce smaller 

RMSPE values than models based on a single covariance type. When more than one covariance 



 9

type was incorporated, mixture models that included the TD model outperformed other mixture 

types. There appeared to be more within model type variation in the TD model compared to the 

TU and EUC model types (Fig. B2). As we discussed previously, this reflects differences in 

model fit related to both the shape of the autocovariance function and the way that spatial 

autocorrelation is represented between flow-connected and flow-unconnected pairs. All of the 

spatial models out performed the classical linear model, with the final model demonstrating an 

18.86% gain based on the RMSPE. 

 Given that the final model only demonstrated a 1.17% gain in predictive ability on the TD 

model, some might question the usefulness of using a mixture model. Nevertheless, it is unclear 

which covariance type or mixture will provide the best model fit in advance. A geostatistical 

methodology is used to model the spatial structure in the residual error and so the observable 

patterns may not reflect the pattern or scale that would be expected. For example, the 

unexplained variability in fish distribution may be related to a strongly influential explanatory 

variable, such as elevation, that was not proposed during model selection. In that case, Euclidean 

patterns of spatial autocorrelation in fish distribution (resulting from elevation) might be 

observed at broad spatial scales even though fish movement is generally restricted to the stream 

network and some species may not migrate large distances. This is a simple example of how 

environmental factors can produce patterns of spatial autocorrelation; in a freshwater 

environment, extremely complex process interactions occurring within and between the stream 

and the terrestrial environment would be expected. Therefore, we recommend using a full 

covariance mixture (TU/TD/EUC) rather than attempting to make an a priori assumption about 

the covariance structure of the data. Although the full covariance mixture was not the best model 

in this example, the loss in predictive ability was only 0.34% when it was used. These results 

demonstrate an important feature of the covariance mixture approach; namely, that it is flexible 

enough to represent the entire range of covariance structures (i.e., single EUC, TU, or TD or any 

combination of the three). This flexibility also makes the approach suitable for a wide variety of 

data sets collected within a stream network. 
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TABLE B1. Watershed and site-scale explanatory variables considered in the model selection 

procedure.  

 
Explanatory Variable Scale Units Source 
Mean slope Watershed % QNRW 2000 
% Conservation Watershed % BRS 2002 
% Urban Watershed %  BRS 2002 
% Mining Watershed % BRS 2002 
% Water Watershed % BRS 2002 
% Timber production Watershed % BRS 2002 
% Agriculture Watershed % BRS 2002 
EHMP region Site NA EHMP 2001 
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TABLE B2. Fixed-effects estimates for the final mixture model (exponential TU/linear-with-sill 

TD). Parameters were estimated using restricted maximum likelihood (REML). 

 
Effect Estimate Std.Error df t-value p-value 
Intercept 0.6669 0.0792 84 8.4209 0 
Mean slope 0.0094 0.0061 84 1.5391 0.1275 
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FIG. B1. Semivariogram of the final proportion of native species expected (PONSE) model 

(exponential TU/linear-with-sill TD) residuals, which includes the hydrologic distance (km) 

between pairs of sites based on flow-connected (black circles) and flow-unconnected (white 

circles) relationships. Only lags with > 10 pairs are shown and the size of the circles is 

proportional to the number of data pairs that are averaged for each value. 
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FIG. B2. Root mean square prediction error (RMSPE) values, by mixture type, which were used 

to select the covariance mixture during the second phase of model selection. 
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