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Implementing CS1 With Embedded Instructional
Research Design in Laboratories

Jeff Lang, Gwen C. Nugent, Ashok Samal, and Leen-Kiat Soh, Member, IEEE

Abstract—Closed laboratories are becoming an increasingly
popular approach to teaching introductory computer science
courses. Unlike open laboratories that tend to be an informal
environment provided for students to practice their skills with
attendance optional, closed laboratories are structured meeting
times that support the lecture component of the course, and atten-
dance is required. This paper reports on an integrated approach
to designing, implementing, and assessing laboratories with an
embedded instructional research design. The activities reported
here are parts of a departmentwide effort not only to improve
student learning in computer science and computer engineering
(CE) but also to improve the agility of the Computer Science and
Engineering Department in adapting the curriculum to changing
technologies, incorporate research, and validate the instructional
strategies used. This paper presents the design and implemen-
tation of the laboratories and the results and analysis of student
performance. Also described in this paper is cooperative learning
in the laboratories and its impact on student learning.

Index Terms—Computer science education, cooperative
learning, instructional design, introductory computer science/com-
puter engineering (CS/CE) courses, laboratories.

1. INTRODUCTION

APID and continuous change in the areas of software de-
Rvelopment and information technology pose significant
pressure on educational institutions in terms of educating and
training the next generation of professionals. In particular, main-
taining the curriculum in a computer science degree program
is a challenge that requires constant attention. The Association
for Computing Machinery (ACM) and the IEEE Computer So-
ciety, the two leading professional bodies in the field of com-
puter science, have recently released guidelines outlining core
topics for a computer science degree program [2]. Subsequently,
the Department of Computer Science and Engineering at the
University of Nebraska—Lincoln initiated a review of its own
undergraduate program in computer science with the long-term
goal of redesigning and reorganizing the computer science (CS)
curriculum to improve the quality of instruction and student
learning. After careful consideration, the department approved
an innovative curriculum that has the potential to improve sig-
nificantly the quality of undergraduate computer science educa-
tion [3]. One of the key innovations is the application of a tradi-
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tional, science-based (e.g., physics, chemistry, and biology) ap-
proach to computer science laboratories, supported by research
in educational psychology and instructional design. The scope
of this project included introductory CS courses (CS0, CS1, and
CS2). The innovation will lead to a more rigorous curriculum for
CS majors and a better understanding of fundamental CS topics
for the students.

Closed laboratories are becoming an increasingly popular ap-
proach to teaching introductory computer science [1], per the
recommendations by Denning et al. [4] and ACM’s Computing
Curricula 1991 [5]. Closed laboratories have multiple advan-
tages. Students learn at the beginning of their majors to be ac-
tive learners through goal-oriented problem solving in a labo-
ratory setting [6]. Doran and Langan [7] demonstrated that lab-
oratories promote students’ cognitive activities in comprehen-
sion and application, in terms of Bloom’s taxonomy [8]. One
study, in fact, reported that even though the closed laboratories
did not help improve retention or project completion rates in the
CS1 course, a qualitative improvement in student learning was
evident in the closed laboratory sections [9]. Thweatt reported
a statistical design with an experimental group (closed labora-
tory), and a control group (open laboratories) for a CS1 course
and found that students in closed laboratories consistently per-
formed significantly better on comprehensive CS1 exams than
those in open laboratories [10]. Further, exploration opportu-
nities help first-time programmers overcome common hurdles,
such as misconceptions about the nature of computers and pro-
grams [11]. Parker et al. found that closed laboratories demon-
strate the scientific method of inquiry and teach skills in data
collection and analysis [12]. The laboratory environment also
facilitates cooperative learning among students [13]. Finally,
laboratories tend to provide a more flexible environment that can
cater to students of different backgrounds and learning styles.
With all that is known regarding the benefits of closed labora-
tories, “there is little published evidence assessing their effec-
tiveness” [1]. Indeed, there are many online documents on lab-
oratory designs for CS curriculum without explicit evaluation or
assessment components [14]-[17].

This paper presents a systematic approach to design, imple-
ment, assess, and evaluate closed laboratories. To demonstrate
the effectiveness of the approach, the research team focused
on measuring the impact of cooperative learning in laboratory
settings and analyzing the results pedagogically. Further, other
qualitative measurements were provided to complement the
analysis and discussions. Readers are referred to [18] for an
analysis of the relationships between the laboratories and course
activities in CS1, and [19] for additional results of educational
research in CS1 laboratories. While this study has focused
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on CS courses, the educational research methods and results
may be broadly applicable to other structured engineering
laboratories.

In Section II, related work on laboratories for introductory
CS courses and cooperative learning are presented. Subse-
quently, laboratory design and implementation approach is
presented with results and analysis in Section III. Section IV
concludes this paper with current and future work discussed.

II. BACKGROUND
A. Related Work on Laboratories

Since 1990, several laboratory designs for introductory
programming or computer literacy courses have been imple-
mented. For example, a set of CS1 and CS2 laboratories were
designed to introduce students to computing environments,
such as editing, system use, file manipulation, and compila-
tion [20]. Other approaches include laboratories designed for
high-volume computer literacy [21], and declarative laborato-
ries for discrete structures, logic, and computability [22]. Bruce
et al. created a set of XML-based laboratory exercises for CS1,
using templates to create standardized HTML laboratory exer-
cise sets from XML documents [23]. The authors focused on
the development of these XML documents from the viewpoint
of standardization, customization, and simulation. An educa-
tion forum on lecture and laboratory syllabus also provided for
a breadth-first introductory CS course sequence posted in 1993
[24]. However, the paper, being a forum document, did not
elaborate on how the laboratories should be designed in terms
of sequencing, pedagogy, and instructional research. In the de-
sign of the laboratories at the University of Nebraska—Lincoln
(UNL), a comprehensive pedagogical approach that included
educational research design, implementation, and validation
was used.

Geitz reported on a laboratory design that included four parts:
concepts, applications, programming exercises, and write-up,
so that the laboratories focus on programming using the con-
cepts learned in the class [25]. The concepts section discusses
the new material covered in the laboratory, and the students are
expected to have read this section prior to the start of the labo-
ratory. The applications section is a walkthrough of several pro-
grams. The programming exercises section asks the students to
write complete programs or extend existing ones. Finally, the
write-up section asks students questions designed to make them
think about what they have learned in the laboratory. Geitz re-
ported increases in student retention since the introduction of
the new curriculum, which included the laboratories [25]. The
design used in this study was similar to Geitz’s design except
some of the laboratories included new material not covered in
the lectures, such as debugging and testing.

Lischner proposed a set of guidelines for including explo-
rations in CS laboratories [11]. An exploration is a structured
dialog with the student: the student reads a short program, an-
swers questions about that program, makes predictions about the
program’s behavior, and then tests the predictions by running
the program and answering follow-up questions. If a prediction
is wrong, the student is asked to give a plausible explanation.
Guidelines suggested by Lischner include 1) the most effective
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explorations are short and to the point; 2) an exploration should
have a variety of questions, including some that are impossible
to answer correctly; 3) explorations should direct the student
toward effective models—after running the program, the stu-
dent must be able to learn from the incorrect results; 4) explo-
rations encourage students to pay attention to details; and 5) ex-
plorations have measurable results using pre- and post-tests. In
this study’s laboratory design, a similar set of guidelines were
followed, with embedded instructional research in the laborato-
ries. Each laboratory has explorative components that are graded
as part of the activity worksheets, and student understanding is
assessed as part of the laboratory pre- and post-tests.

Roumani outlined a set of design guidelines for an objects-
first CS1 course [26]. The design principles that are similar in-
clude the following: 1) laboratories are not to be thought of as
evaluation tools but seen as educational instruments that com-
plement the coverage in lecture and in the textbook, where stu-
dents should be allowed to discuss the tasks among themselves
and/or seek help from the instructors; 2) the laboratories must
be portable and self-paced; 3) laboratories must be explorative
in nature where students have time to explore the correctness
of a solution by writing tiny test programs; and 4) laborato-
ries on object-based programming must be set in an abstrac-
tion that is credible and consistent. Each laboratory consists of
three sections: explorative tasks, exercises, and checking. Each
explorative task asks the student to look for some feature in a
given specification, write a code fragment that uses (or imple-
ments) the feature, add debugging input/output (I/0O), and then
predict the output and verify it by actually running the code frag-
ment. The checking section requires the student to write a main
method that accomplishes a stated task and generate output with
a specified format.

Chavey built a set of structured laboratories for CS1 [27].
Chavey’s approach was similar to the design of this study, in
terms of the overall design of the laboratories to teach aspects of
CS and computer programming under the supervision of a lab-
oratory instructor. However, the design goals differ. First, this
study’s laboratories are problem based or task based. Students
are required to tackle a problem or accomplish a set of tasks
and, through this process, are expected to learn the program-
ming concepts and details. Second, Chavey’s design did not in-
clude pre- and post-tests; the review of the laboratory design
was based on the qualitative surveys of the students. Some con-
clusions included 1) the laboratories require significantly more
time of the students, and 2) the laboratories significantly reduced
the level of frustration in programming experienced by the stu-
dents.

Some researchers have proposed using laboratory exams
to test students [28]-[30] on their programming ability. For
example, Califf and Goodwin proposed that a laboratory final
exam was necessary since written exams in CS1 do not give
instructors the needed perspective on the students’ hands-on
programming ability [29]. They found that the exam has been
beneficial in improving students’ attitudes toward programming
and their proficiency in programming, and it has improved the
instructors’ ability to determine which students are sufficiently
good programmers to continue on to CS2. Instead of a final
exam, Barros et al. proposed a set of laboratory exams [30].
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They found that laboratory exams clearly improved student
motivation, shown by both their stated popularity and also by
students’ belief that assignments based on laboratory exams
helped them achieve a better grade. Essentially, this study’s
laboratory design is similar to the latter example in which
multiple, topic-specific laboratory exams are used. Designing
small laboratory exams is also more modular and easier to
maintain. Further, these exams pinpoint particular topics and
allow for easier instructional research studies and analyses.

To summarize, the approach to incorporating laboratories
in introductory CS courses, as reported in this paper, is based
on embedding instructional research design and assessment
components into each laboratory to guide and motivate the
design and development process in the way the pre- and
post-tests and the activities were developed. For example, the
pre- and post-tests included questions utilizing different levels
of Bloom’s taxonomy. The laboratory activities included ex-
plorations, reinforcement, and problem-based exercises. Each
activity was graded based on a variety of questions—some
required students to test their programs, to analyze their pro-
grams, to evaluate their programs, etc. Conceptual questions
stemming from the laboratory activities and questions that
required students to submit their programs for grading were
necessary. The research team also designed the laboratories to
incorporate cooperative learning.

B. Cooperative Learning

While direct instruction has been shown to be effective in cer-
tain domains, studies have shown cooperative learning to be an
effective pedagogy for computer science, producing significant
gains in student achievement [31]-[33]. Other advantages of co-
operative learning are the development of communication and
problem solving skills [34]. Because most students intend to join
private industry, the goal of higher education is to prepare them.
In private industry, collaboration and teamwork are the norm;
therefore, collaborative learning in college settings better pre-
pares students for what they will most likely encounter [35]. Di-
rect instruction at the college level tends to emphasize individual
skills and is often removed from environments encountered in
industry [36]. Cooperative learning can also help students “be-
come aware of the significance of small group dynamics as a tool
for task achievement and success in a team environment” [31].

Cooperative learning is defined as, “working together to ac-
complish shared goals” [37]. The students are concerned not
only with their own understanding of the material but also with
that of the other group members. The students are working to-
gether for the same goal in cooperative learning; whereas, direct
instruction lends itself to individual, competitive learning. This
study relied primarily on the work of Johnson and Johnson [37]
to model the implementation of cooperative learning in the CS1
laboratories.

For cooperative learning to be superior to individualistic
competitive approaches, five elements are necessary: positive
interdependence, face-to-face promotive interaction, individual
accountability, interpersonal skills, and group processing [37].
Positive interdependence requires that group members “en-
courage and assist each other to do well” [38]. The students
should feel that they would succeed or fail together. Face-to-face

promotive interaction can be defined as individuals’ encour-
aging and facilitating each others’ efforts to achieve, complete
tasks, and produce to reach the group’s goals [38]. Individual
accountability involves each group member providing his or
her “fair share” of work and feedback. An interpersonal and
small group skill is the group members’ ability to interact and
support one another positively. All five essential “elements” are
included in the laboratory design.

A significant difference between cooperative learning and di-
rect instruction is the role of the student. Direct instruction tends
to involve an instructor disseminating information to the stu-
dents while they passively take notes. On the other hand, co-
operative learning allows the student to be an active agent in
the learning process. Students are responsible in constructing
knowledge while working with team members [35], [39]. This
construction of knowledge is consistent with cognitive—devel-
opmental theory that poses that students learn better via collab-
oration and group discussions than by learning in isolation [40].

Another difference between cooperative learning and direct
instruction is the role of the instructor. In a direct instructional
setting, the instructor is responsible for disseminating informa-
tion, while in a cooperative learning environment, the instructor
serves more as a facilitator [41], [42]. In this role, the instructor
helps with questions but only after the group has exhausted its
attempt to answer questions.

III. DESIGNS AND IMPLEMENTATION OF LABORATORIES

The process of redesigning the CS curriculum was preceded
by extensive interactions between researchers from four aca-
demic departments: Computer Science and Engineering, Edu-
cational Psychology, Curriculum and Instruction, and Instruc-
tional Design. Much of the design was formalized through a
joint seminar course organized in Spring 2003. The goals and
objectives of this effort were spelled out, and a detailed plan
was developed. The emphasis was not only on the development
of novel approaches to deliver and assess course materials that
promote “deep” learning, but also on developing a framework
in which a systematic evaluation of the approaches and their
short- and long-term effectiveness could be conducted. There-
fore, cognitive and experimental psychologists and instructional
designers were an integral part of this effort from the beginning.
Because of the vast scope of this project, the research team de-
cided to focus first on the CS1 course. In addition to lectures,
students in the CS1 course attended a programming laboratory
that met for two hours each week. Approximately 25-30 stu-
dents attended each laboratory section. The laboratories pro-
vided students with structured, hands-on activities intended to
reinforce and supplement the material covered in the course lec-
tures. Although brief instruction was often provided, the ma-
jority of the laboratory period was allocated to student activities.

The laboratories were designed by first selecting a set of core
topics that could be covered during a semester (16 weeks). The
laboratory topics were chosen based on lecture topics, modern
software engineering practices, and Computing Curricula 2001
recommendations [2]. The focus of the laboratories was to pro-
mote problem-solving skills in students, while simultaneously
providing them with hands-on experience in programming. The
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laboratory activities, for example, were designed to encourage
individual investigation of problems and exploration of solu-
tions.

A. Laboratory Design

The first step in developing the laboratories was to create a
base document for each laboratory that included the following:

1) the laboratory’s objectives;

2) prerequisite knowledge;

3) tools required;

4) instruction topics;

5) activities and exercises;

6) supplemental resources;

7) follow-on assignments;

8) relevance to course goals;

9) addressing Curriculum 2001 core topics;

10) ideas for pre- and post-test questions.

After a review of the base documents individually and col-
lectively by the computer science faculty, each laboratory was
developed by creating a series of five documents in parallel, in-
cluding the following:

1) a student handout;

2) alaboratory worksheet;

3) an instructional script;

4) a pretest;

5) a post-test.

The student handout served several purposes. It was both the
preparation guide and the laboratory script. Each handout in-
cluded the laboratory objectives, a description of the activities
that would be performed during the laboratory (including the
source code where appropriate), a list of references to supple-
mental materials that should be studied prior to the laboratory,
and a list of supplemental references that could be reviewed after
the student completed the laboratory. The student handout also
provided optional activities that could be completed during or
following the laboratory to give students an opportunity for extra
practice.

During each laboratory, students were expected to answer a
series of questions for each activity and record their answers on
a worksheet (paper). Worksheets contain questions specifically
related to the laboratory activities and are intended to provide
the students with an opportunity to find the answers through
programming-based exploration. These worksheets also serve
as an assessment tool to gauge the students’ comprehension of
topics learned and practiced in the laboratory.

In addition to the student handout, the laboratory instructor
received an instructional script that provided supplemental ma-
terial that may not have been covered during lecture, special in-
structions for the laboratory activities, hints, resource links, and
useful insights. Additional space was provided at the end of the
instructions for each activity to allow the instructor to record his
or her comments regarding the activity and suggestions for im-
proving the laboratory.

The laboratory pretests were online, and students were re-
quired to pass them prior to coming to laboratory; however, stu-
dents were allowed to take each pretest as many times as neces-
sary to achieve a passing score (80%). The pretest is open book
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and open note, and it included multiple-choice, short answer,
and true/false questions. The goals of the laboratory pretest were
to encourage students to prepare for the laboratory and to allow
them to test their understanding of the laboratory objectives
and concepts prior to attending the laboratory. Questions for
the pretest were taken from a variety of sources, including the
course textbook, other textbooks, and questions found on the
Web. Questions were categorized according to Bloom’s tax-
onomy [8].

During the last ten minutes of each laboratory, students com-
pleted an online post-test as another measure of their compre-
hension of laboratory topics. The test was open book and open
note; however no collaboration was permitted. Like the pretest,
questions were taken from a variety of sources and also cate-
gorized according to Bloom’s taxonomy [8]. Notably, the goal
of the pretest was to ensure that the students had read about and
grasped the basic concepts for the laboratory, while the post-test
was designed to assess how well they learned the concepts after
they had performed the activities specifically designed to rein-
force the concepts.

Table I shows the list of CS1 laboratories and their corre-
sponding objectives. The first laboratory was designed to intro-
duce the students to the overall computing environment in the
CSE Department and the Integrated Development Environment
(IDE) that they would be using. There were two event-driven
programming laboratories; the first laboratory introduced the
differences between event-driven programming and traditional
sequential programming to students; the second laboratory ad-
dressed the capabilities and features of event-driven program-
ming. There were three testing and debugging laboratories. The
first laboratory introduced the idea of debugging to students
and demonstrated how to debug using simple print statements
and built-in features of the IDE and how to identify the dif-
ferent bugs. The second laboratory described a more systematic,
holistic approach to debugging, with different strategies, such
as a debug flag. The third laboratory introduced testing com-
ponents from the viewpoint of software engineering, such as
test cases and drivers. Overall, the three laboratories progressed
from simple reactive debugging, to more goal-directed debug-
ging, to standardized testing. The design emphasized testing and
debugging, not only because the topic is of great importance to
students, but also because it is a useful tool to help students learn
other programming concepts and topics. For example, students
learned about sorting and searching by finding and fixing the
bugs within a program.

B. Instructional Research Design: Cooperative Learning

As mentioned in the previous sections, the approach to im-
plementing CS1 laboratories included embedded instructional
research design to study systematically the effect of the de-
sign on student learning. The design model is based on the
work of Johnson and Johnson [37]. All five essential elements
(positive interdependence, face-to-face promotive interaction,
individual accountability, interpersonal skills, and group pro-
cessing) were included in the laboratory design. The investi-
gation focused studying two types of cooperative learning in
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TABLE 1

LIST OF LABORATORIES AND THEIR OBJECTIVES

Laboratories

Objectives: Students should be able to 0...

Introduction to
Integrated
Development
Environment
(IDE)

Log into the network using a UNIX machine and a CSE account.

Create a directory on UNIX, and traverse a UNIX directory structure.
Create and save a file on UNIX.

List the lab rules and hours of operation.

Understand the academic integrity policy in the Department of Computer
Science and Engineering.

Know where to find help regarding CSE accounts and lab facilities.

Use an Integrated Development Environment (IDE) to create and update
source code and compile and execute a sample program.

Use the on-line, hand in procedure to submit programming assignments
and laboratory work.

Simple Class

Define and explain basic object terminology including class, object, etc.
Identify the basic components of a Java program including private data
member, public data member, public methods, private methods,
constructor, etc.

Compile and execute a simple class.

Design and write a simple class.

Documentation

Write clear, concise documentation describing a class and its members
and methods.

Write Javadoc comments.

Use Javadoc to generate program documentation.

Determine when to use the three types of Java comments: single-line,
block and Javadoc.

Testing and
Debugging |

Describe the difference between testing and debugging.

Describe the differences between syntax, semantic (logic) and runtime
errors.

Debug a simple program using print statements.

Debug a simple program using the debugger functionality in BlueJ.

File

Write Java programs that perform primitive file operations including open,

Input/Output

close, read, write, and check properties.

Write Java programs that verify a file exists, a file is readable and/or
writable, and a file is a directory.

Write Java programs that perform file 1/O using the FileOutputStream,
FilelnputStream, FileWriter, and FileReader classes.

Explain the principles of stream 1/0O and distinguish between byte-oriented
and character-oriented streams.

Applets and
Applications

Distinguish between an application and an Applet.

Create an Applet with multiple methods.

Execute Applets using three methods (i.e., Applet viewer, browser, and
application).

Explain when to use Applets to solve a problem.

List the advantages and disadvantages of Applets.

Event Driven
Programming |

Describe the difference between an event-driven model and a traditional
sequential programming model.

Understand why event-driven programming is necessary and why it is
used.

Understand the underlying principles and the meaning of event listening.

Exceptions

Define what an exception is and why exceptions occur.

Explain the advantages of using Java exception handling over traditional
error management techniques.

Distinguish between checked and unchecked exceptions.

Write a simple exception-handling routine for a single exception using tryn-
catch and trynfinally blocks.

Write methods that use the throws statement for exception handling.

Graphical User
Interface (GUI)
and Swing

Apply basic design principles to GUI design.

Use the Java Swing interface to create simple GUIs containing panes,
buttons, labels, combo boxes, and radio buttons.

Write GUI applications that handle events.

Event Driven
Programming
1]

Write a program with a single listener that handles multiple event types
from a single event source.

Write a program with multiple listeners for a single event source.

Write a program with one listener for multiple event sources.

Testing and
Debugging 2

Use a variety of debugging strategies to identify bugs in programs.
Distinguish between a syntax error and a semantic error.
Use a debug flag to enable/disable debugging information.

Inheritance

Explain what inheritance is, why it is used, and when it is used.

Identify the superclass and subclasses in a given program.

Understand the meaning of the keywords: abstract, protected, extends,
and super, and know when and how to use them.

Write abstract classes and abstract methods.

Explain the override property of inheritance.

Define a reusable class based on inheritance.

Derive new subclasses from a superclass to extend a solution to new
problems.

Design and give an inheritance solution for a problem.

Testing and
Debugging 3

Write a driver module to test a Java program.

Use Java assertions to check program logic.

Write and execute a set of test cases to test an application.

Determine what types of tests are necessary for each type of problem
(e.g., invalid input data, boundary tests, branch testing, loop testing, etc.)

Recursion

Identify a recursive method.

Identify the three basic elements of a recursive method.

Determine when a problem should be solved using recursion.

Given a recursive mathematical definition for a problem, write a recursive
Java method to solve the problem.

161
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the laboratories (structured cooperative learning utilizing the
Johnson and Johnson model and unstructured cooperative
learning similar to group work).

Note that a significant number of students enrolling in the
CS1 course had not declared a major of study. Therefore, in the
following studies, there is no breakdown analysis for CS majors
and nonmajors.

1) Study: Effective Pedagogy for CSI1 Laboratories: The
purpose of the study was to determine the most effective peda-
gogy for CS1 laboratory achievement. According to the social
constructivist view, the cooperative groups should perform
higher than the direct instruction group. Previous research has
shown significant differences between direct instruction and
cooperative learning. The goal of this study was not only to
compare direct instruction to cooperative learning but to com-
pare it with different types of cooperative learning (structured
versus unstructured).

Farticipants: The participants were 184 traditional under-
graduate students from the University of Nebraska—Lincoln,
many of whom have not declared their major of study. The study
was conducted during Fall 2003, Spring 2004, and Fall 2004.

Procedures: The three laboratory structures used were:
cooperative group with structure (n. = 55), cooperative group
without structure (n. = 65), and direct instruction (n = 64),
where n is the number of students in the group. The difference
between the two cooperative groups was whether the structure
of the group was formal or informal. Both cooperative groups
consisted of three or four members. The cooperative structure
group (formal) had defined roles, which alternated each week.
The laboratory instructor was responsible for monitoring which
student “drives” and which students review. The goal of this
format was to develop interdependence among the group mem-
bers based on the environment (shared computer) and breaking
the tasks into smaller parts with each member responsible for a
part. The group only functioned if each individual contributed
his or her part for the whole group to complete their goal.

The cooperative unstructured group was similar to the co-
operative structured group in that interdependence was created
among the group members. The difference was that for this
group format, the roles of the group members was not con-
trolled. The members were responsible for assigning roles and
completing tasks. In both cooperative groups, the laboratory in-
structor served as a facilitator giving both groups the freedom
to solve problems themselves.

The last group format used in the study was direct instruction.
This is the classical format in which students worked individu-
ally and competitively against other class members. This group
served as the control group. The role of the instructor was to
answer individual questions and discourage cooperation while
students completed laboratory exercises.

The pedagogy assignment of each laboratory section (coop-
erative structured, cooperative unstructured, or direct instruc-
tion) was random. For the students enrolled in a section em-
ploying the cooperative approach, stratified random assignment
was used to assign students to their cooperative groups. To ac-
complish this ranking, the placement test scores were used for
this course. The scores were grouped into three categories: high,
middle, and low. From each group, students were selected at
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random and placed in the cooperative group that they would be
part of for the entire semester. This placement was to ensure
heterogeneous grouping, which has been shown to be the most
effective [37], [43].

The instructor’s script for the laboratories was identical for
all three groups to control for differences between groups. An
important factor was that the laboratory instructor was the same
for each group. The goal was to control as many variables as
possible to allow the research team to make an informed deci-
sion as to which laboratory format was the most effective.

The laboratory groups that were manipulated were the coop-
erative groups. Both groups involved three to four classmates
working together on their in-class laboratory exercises. The
groups shared one computer with one student selected as the
“driver,” responsible for keying in the information on the com-
puter, and the others as reviewers. The hypothesis was that the
shared knowledge would promote higher-level thinking with
improved problem solution.

Dependent Measures: The research team used laboratory
final grades and individual laboratory post-test grades as the out-
come measures. The combined outcome measures provided ev-
idence of the effectiveness of laboratory pedagogy and achieve-
ment.

Total laboratory grades were measured by combining
post-test and worksheet scores from each laboratory. Although
some students worked in cooperative groups, all students were
required to complete individually the post-test related to the
topic covered in the laboratory. Details of the post-tests were
described earlier in Section III-A. These tests were completed
at the end of each laboratory.

Results: The first research question examined was student
achievement in the laboratory. Analysis of variance (ANOVA)
was used to determine significant differences between the
sample means of cooperative groups with structure, coop-
erative groups without structure, and direct instruction. An
ANOVA takes the variance (differences) among the three
sample means and normalizes them using the variance (dif-
ferences) within the groups accounting for sampling error.
A significant result, probability (p-value) less than .05, in-
dicates that the differences between the group means were
something other than chance. Results from the ANOVA anal-
ysis were significant (F(2,181) = 4.681,p < .05), with
follow-up tests showing a significant achievement difference
(as measured by final laboratory grade) between the direct
instruction and cooperative unstructured groups (see Table II).
The Games—Howell follow-up test provides more specific detail
as to which groups differed in the analysis (Fig. 1). Similar
to the ANOVA, a significant result is determined by a p-value
less than .05. The mean score difference between the coopera-
tive structured group and cooperative unstructured group was
not significant.

Discussion: Research has shown the importance of lab-
oratories in computer science and the present study built on
this premise. By manipulating the pedagogy used, cooperative
learning proves to be the most effective learning approach. Sur-
prising was that no significant difference existed between the
structured and unstructured cooperative groups. The instructor
did not control how the unstructured groups chose to define
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ANOVA STATISTICS COMPARING LABORATORY GRADES FOR EACH LABORATORY GROUP (COOPERATIVE WITH STRUCTURE, COOPERATIVE WITHOUT STRUCTURE,

AND DIRECT INSTRUCTION) ‘WITH THE GAMES—HOWELL POST HOC TABLE EXPLAINING THE SIGNIFICANT DIFFERENCES BETWEEN THE GROUPS
ANOVA -Total Lab

Sum of Df Mean F p
Squares Square
Between 39905.04 2 19952.52 4.68 .01
Groups
Within 771470.50 181 4262.27
Groups
Total 811375.50 183
Games-Howell
@ (0)] Mean Std. P 95% Confidence 95% Confidence
group | group | Difference | Error Interval ii Lower Interval it Upper
I-J9 Bound Bound
1 2 -10.58 10.97 |.60 -36.70 15.55
3 23.87 1332 | .18 -7.75 55.49
2 1 10.58 10.97 | .60 -15.55 36.70
3 34.45 11.29 | .01 7.60 61.29
3 1 -23.87 1332 | .18 -55.49 7.75
2 -34.45 1129 | .01 -61.29 -7.60

*. The mean difference is significant at the .05 level

. Group 1 = cooperative structured; group 2 = cooperative

unstructured; group 3 = direct instruction.

Mean of total_lab

520

510

500

490

480

470

460

450

cooperative with structure

cooperative without

direct instruction

structure

Group

Fig. 1. Total laboratory scores (means) for the three types of groups: cooperative group with structure, cooperative group without structure, and direct instruction.

roles (driver versus reviewer), which may have led to the sim-
ilar results between the cooperative groups. The significant dif-
ferences between the cooperative unstructured groups and di-
rect-instruction support cognitive—developmental theory indi-
cated that work in groups is better than in isolation. The re-
sults provide enough evidence and reason to continue cooper-
ative grouping in the CS1 laboratories.

2) Cooperative Learning: General Discussion: The studies
provided the research team important information regarding the
appropriate pedagogy for laboratories and the students’ beliefs
toward their CS skills. Qualitative responses from students in
focus group interviews (five volunteer participants representing
each laboratory format) provided insight into the student ex-
perience in CS1 laboratories. Themes found with the students
representing each of the three laboratory pedagogies showed
that the majority of the students preferred working in groups.
The participants reported a “sense of community* and group

problem solving: “Grouping us made us get to know other stu-
dents which was nice.” They also noted that the time required to
complete assignments was decreased because the group worked
together: “We had two hours to complete the laboratory activ-
ities and some times the two hours was not enough. It helped
working in groups; otherwise we would never get it done.” To
be fair, not all students enjoyed working in groups. The major
complaints were a sense of frustration working with others and
the perceived effort of the group members. Some students felt
that they were “smarter” students so that they were responsible
for “carrying the load.” Also reported was the perceived lack
of self determination. One student in a cooperative group labo-
ratory stated that “he preferred to work alone so that he could
reap the rewards of his hard work.” He wanted to be account-
able only to himself. Participants in the direct instruction group
complained of the “unfairness” of not being allowed to work
with others. The laboratory instructor corroborated this conclu-
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sion and added that a sense of community was developed via
grouping.

The interview also focused on self-efficacy and motivation.
These comments were not concerned with pedagogy but the be-
liefs and experiences of each student. Emerging themes were
that the students had very little idea of what would be expected
of them. Computer science also proved to be much more diffi-
cult than they thought. Students stated that they had success in
high school computer classes but that those classes were very
different from what was encountered in CS1. This finding is
consistent with anecdotal evidence from past semesters. Future
goals of the reinventing CS Curriculum project are to integrate
ACM2001 curriculum guidelines with high schools, to include
further qualitative inquiry, and to improve the validity of the
pretest measures. Sharing findings with high schools is impor-
tant because the skills and expectations students bring with them
to the university are greatly varied, and success in high school
does not necessarily translate into success at the college level.

Implications: Note that although laboratories have been
used in computer science courses in the past, their effectiveness
has not generally been measured, nor has the way in which coop-
erative learning was used been reported. The goal of this study
was not only to build on previous studies showing benefits of
cooperative learning but also to determine the most effective ap-
proach of cooperative learning. The findings of this study have
implications for CS laboratory pedagogy. The most significant
is the result that shows cooperative groups attain higher achieve-
ment than the individual, direct instruction approach. These re-
sults show that the ACM2001 curriculum paired with the co-
operative learning pedagogy not only produces higher achieve-
ment but also maintains consistency with the environment most
students will find in private industry.

Finding quantitative differences between groups was a major
goal of the research, but not the final one. In addition to mea-
suring quantitative differences among the group formats, qual-
itative experiences were reported by interviewing selected stu-
dents. The method used to obtain the qualitative data was focus
groups in which themes were identified. This qualitative com-
ponent provided additional depth and understanding to the re-
search, allowing the research team to make the best decision on
which laboratory format to use in future courses.

IV. CONCLUSION

This report has described an integrated approach using em-
bedded instructional research design to design and implement
closed laboratories for CS1, the first course in a typical com-
puter science curriculum. Based on the vision of a more flex-
ible and adaptive CS curriculum for students of different back-
grounds and rapid changes in technology, this approach incorpo-
rated design, implementation, assessment, and evaluation. The
Computer Science Department now has in place a process that
guides laboratory design and implementation, collects data for
studies based on both quantitative measurements and qualita-
tive surveys, and allows for refinement of the laboratories as a
result of the analysis. This paper shows how the research team
has embedded cooperative learning into the laboratory design
with positive results. Also revealed is how qualitative surveys
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are used to support the validation of the design and provide clues
to subsequent laboratory revisions. The results of this study can
be generalized to other structured engineering laboratories.

Based on the above results, changes have been made to the
laboratories for CS1. Similar changes are also being designed
and implemented into the CS2 laboratories using the same ap-
proach. The research team will continue to conduct studies to
improve the validity and confidence of the results for CS2.

The research team will continue to “reinvent” computer
science at the University of Nebraska—Lincoln based on evi-
dence from these studies and other adjacent work. Cooperative
learning pedagogy will be continued in CS1 laboratories based
on the findings. Of interest is that the assignment of roles
has not been a significant variable in the cooperative learning
groups. Did the unstructured cooperative groups engage in
formal assignment of roles? Are defined roles important? A
mixed method approach is planned to answer these questions
and build on the results obtained during the Fall 2003 and
Spring 2004 semesters. Additional qualitative inquiry may help
to identify and understand additional variables important to
students. How do students perceive the quality of the laborato-
ries in relation to what they need to learn in the course? Will
changes to the curriculum or student beliefs improve overall
course satisfaction? These are questions that need further
investigation to add to the “reinvention” of computer science
curriculum.
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