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GIS AND DISTRIBUTED WATERSHED MODELS.
II: MODULES, INTERFACES, AND MODELS

By Fred L. Ogden,1 Jurgen Garbrecht,2 Paul A. DeBarry,3

and Lynn E. Johnson4

ABSTRACT: This paper presents representative applications and models that can take advantage of spatially
distributed data in a geographic information system (GIS) format for watershed analysis and hydrologic modeling
purposes. The intention is to inform hydrologic engineers about the current capabilities of GIS, hydrologic
analysis modules, and distributed hydrologic models, and to provide an initial guide on implementing GIS for
hydrologic modeling. This paper also discusses key implementation issues for individuals and organizations that
are considering making the transition to the use of GIS in hydrology. Widespread use of GIS modules and
distributed watershed models is inevitable. The controlling factors are data availability, GIS-module development,
fundamental research on the applicability of distributed hydrologic models, and finally, regulatory acceptance of
the new tools and methodologies. GIS modules and distributed hydrologic models will enable the progression
of hydrology from a field dominated by techniques that require spatial averaging and empiricism to a more
spatially descriptive science.

INTRODUCTION

Many agencies and firms have made significant investments
in geographic information system (GIS) technology. Success-
ful implementation of GIS-based tools in hydrologic analysis
and modeling depends to a large extent on realistic expecta-
tions of what this transition will achieve. The primary objec-
tive of this paper is to describe, in a general sense, some of
the GIS-based hydrologic applications that are in use. This
description is valuable to engineers and engineering companies
that are considering increased use of geospatial data and spa-
tially distributed modeling approaches.

The first category of applications discussed consists of GIS
modules, which are used to perform geospatial analysis of wa-
tershed and hydrologic variables for use in some modeling or
predictive context. The second category of applications con-
sists of models that can take advantage of geospatially derived
watershed characteristics to make predictions or forecasts of
hydrologic variables such as the runoff of water, sediment, and
contaminants, or other watershed hydrologic variables such as
soil moisture or flood stage. Models considered for discussion
all have formulations that take advantage of geospatial infor-
mation, are widely cited in the literature, and are used for
practice or research or both. No distinction is made between
physically based and conceptual models. This paper also out-
lines issues related to successful implementation of GIS-based
hydrologic analysis tools. This paper ends with a brief discus-
sion of current trends and future developments in GIS module
and distributed hydrologic models.
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REVIEW OF LITERATURE

GIS utilities have been used for >10 years for the pre- and
postprocessing of spatially distributed hydrologic modeling
data. The influence of spatial aggregation on runoff was ex-
amined by Mancini and Rosso (1989), who investigated the
spatial variability of the Soil Conservation Service (SCS)
curve number using a raster GIS and a distributed hydrologic
model. Johnson (1989) demonstrated the range of application
of GIS functions for hydrologic modeling with the MAPHYD
package. That work showed that compatible data sets on ter-
rain and radar-rainfall data could be fully integrated into a
watershed modeling system. Stuebe and Johnston (1990) com-
pared the performance of GIS-derived results with manually
crafted methods of runoff calculation using the SCS curve
number approach. The GIS method was found to be an ac-
ceptable alternative, greatly simplifying data preparation and
processing.

In a review of water quality and quantity modeling and GIS
applications in water resources, Vieux (1991) used a GIS-
based triangulated irregular network (TIN) to process the ter-
rain data from a small watershed for application of a finite-
element runoff model. Rewerts and Engel (1993) developed a
hydrologic toolbox to prepare spatial data for input in the
Areal Nonpoint Source Watershed Environmental Response
Simulation (ANSWERS) model. The impact of land-use
changes due to off-road vehicle traffic on the hydrologic re-
sponse of watersheds was examined by Doe et al. (1995) using
the Geographic Resource Analysis Support System (GRASS)
GIS for the creation of watershed disturbance scenarios, in
conjunction with the CASCade of planes, 2D (CASC2D) (Ju-
lien et al. 1995; Ogden 1998) physically based, distributed-
parameter hydrologic model.

The U.S. Department of Agriculture (USDA) Water Erosion
Prediction Project (WEPP) model was used in conjunction
with the GRASS GIS (Savibi et al. 1995) to simulate the re-
sponse of a watershed in Indiana. GRASS functions were used
to estimate parameters for the WEPP model. Results show that
GIS greatly simplifies model set up, and that the use of GIS
actually improves model performance. Zollweg et al. (1996)
developed a GRASS GIS integrated physical-conceptual mod-
eling approach for simulating catchment response.

The utility of GIS for hydrologic analysis was examined by
DeVantier and Feldman (1993). These authors concluded that
at that time there was no clear evidence that GIS techniques
are inherently superior to traditional methods. Furthermore
they stated that distributed physically based hydrologic models
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had not been shown to be intrinsically better than lumped-
parameter hydrologic models. However, the authors indicated
that this is largely because of the lack of application experi-
ence, which points to the need for extensive further research
and education in GIS-based hydrological methods.

Maidment (1991) identified four distinct hydrologic appli-
cations of GIS: hydrologic assessment, hydrologic parameter
determination, hydrologic model set up using GIS, and hydro-
logic modeling inside GIS. In the assessment level, hydrologic
factors pertaining to some situation are mapped in GIS. Hy-
drologic parameter determination involves the analysis of ter-
rain, land-cover, and land-use data to assign relevant parameter
values. In his description of hydrologic modeling inside GIS,
Maidment (1991) limited such operations to steady-state pro-
cesses. It was suggested, however, that with developing space-
time data structures in GIS, it would be realistic to begin think-
ing about performing unsteady numerical modeling within
GIS.

Hydrologic assessment refers to the use of GIS for the anal-
ysis of various hydrologic factors for the purpose of assessing
risk or susceptibility to pollution. One example of this type of
analysis is the use of GIS for evaluating groundwater contam-
ination potential using the DRASTIC ranking technique de-
veloped by the U.S. EPA (Evans and Myers 1990). Other ex-
amples of the non-point-source assessment techniques are
described by DeBarry (1991) and Hamlett et al. (1992). This
type of spatial modeling is not based upon a rigorous simu-
lation of physical, chemical, or biological processes; rather, it
uses weighted indexing schemes to quantify the relative influ-
ence of various factors in contributing to pollution problems.

Parameter estimation is probably the most active area in the
GIS field related to hydrology. In this case, the objective is to
determine and quantify parameters that can be used as input
to hydrologic models through the manipulation and analysis
of various terrain-related data sets. Reported in the literature
are numerous examples where information on land slope,
channel slope, soil characteristics, and land cover was derived
from digital raster and vector data layers for this purpose [e.g.,
DeBarry and Carrington (1990), Peterson and Hamlett (1998),
Yagow and Shanholtz (1996), and Ross and Tara (1993)]. One
way in which a GIS can be used to derive hydrologic param-
eters is by linkage to a library of georeferenced parameter
values. For example, the Simulator for Water Resources in
Rural Basins–Water Quality version (SWRRBWQ) model has
a library of weather parameters defined for about 100 weather
stations in the United States so that estimates of required cli-
matic variables can be extracted automatically for modeling
purposes (Arnold et al. 1990). Likewise, for soils information,
SWRRBWQ has detailed data on soil properties for hundreds
of soil types as depicted on county-level SCS soil maps. Sim-
ilar default parameterization approaches are also used for the
Soil and Water Assessment Tool (SWAT) model, which is the
successor to the SWRRB serious of models. Descriptions of
how GIS has been used to automate the parameterization pro-
cess for these particular models have been provided by Evans
et al. (1992), Rosenthal et al. (1993), and Bian et al. (1995).

It is also possible to perform varying degrees of hydrologic
modeling directly within a GIS, so long as temporal variability
is not an issue. This is the case when considering annual av-
erages of variables such as annual average flow or pollutant
loadings from a watershed. For example, one could implement
spreadsheet-type models in which flows or loadings are com-
puted as flow or load per unit area, as demonstrated by Evans
et al. (1994) and Nizeyimana et al. (1997). One could also
capture some more complex equations, such as those for pol-
lutant loadings derived by means of regression, where the in-
dependent variables in the regression equations are mapped in
coverages and then the loadings are worked out based on

mathematical combination of coverage data. Another way of
eliminating time as a variable is to take a snapshot at the peak
flow condition and model that by assuming the discharge is at
peak value throughout the system (Chieng and Luo 1993). It
is thus possible to route water through GIS networks using
analogies to traffic flow routing in which each line segment is
assigned an impedance measured by flow time or distance and
flow is accumulated going downstream through the network.

To date, a number of researchers have written unsteady, dis-
tributed-parameter, hydrologic models within GIS. This de-
velopment has tended to focus on the GRASS GIS because of
the availability of source code. Models incorporated into
GRASS to date include the Agricultural Non-Point-Source
Pollution Modeling System (AGNPS) (Young et al. 1989),
ANSWERS, TOPMODEL, WEPP (USDA), r.water.fea (Vieux
and Gaur 1994), and r.hydro.CASC2D (Ogden and Saghafian
1995).

GIS MODULES FOR HYDROLOGIC DATA
PROCESSING

The following modules are discussed in alphabetical order.
Each is briefly discussed to give the reader an idea of current
capabilities. For more in-depth information, see the full Task
Committee report (DeBarry et al. 1999) or other cited refer-
ences.

ARC/INFO Hydrologic Routines

The ARC/INFO GIS from Environmental Systems Research
Institute (ESRI), Redlands, Calif., contains a number of func-
tions that are useful to hydrologists in addition to a large num-
ber of geospatial data processing and coordinate conversion
routines. The majority of these functions are within the GRID
spatial modeling software. GRID is a component of the ARC/
INFO suite of software tools. GRID is a raster- or cell-based
geoprocessing toolbox that is integrated with ARC/INFO. The
FLOWDIRECTION function creates a new grid of flow di-
rections from each cell to the steepest downslope neighbor,
given an elevation grid as input. The FLOW ACCUMULA-
TION function calculates the amount of upstream area or cell
weighted flow that drains into each cell. The WATERSHED
function will delineate the entire upstream area that drains into
a user supplied set of basin outlet cells. The SLOPE, ASPECT,
and CURVATURE functions calculate the slope, azimuth, and
curvature of each cell. The GRID software is capable of find-
ing upstream or downstream flow paths from any cell in a
digital elevation model (DEM) and the length of those flow
paths, delineating stream networks, and ordering the stream
network with both the Strahler and Shreve methods.

The majority of the analysis functionality of GRID also is
available within the ArcView Spatial Analyst, the ESRI’s desk-
top GIS product. The combination of all the individual tools
and functions for hydrologic work plus the framework of pro-
gramming languages in which to embed the analytical tools
provides a powerful GIS environment for the hydrologic com-
munity.

GRASS

GRASS (GRASS 1993) is a public domain raster GIS ini-
tially developed by the Environmental Division of the U.S.
Army Construction Engineering Research Laboratory as a gen-
eral-purpose spatial modeling and analysis package. GRASS
development is now being directed by the Center for Applied
Geographic and Spatial Research at Baylor University (In-
ternet site at ^http://www.baylor.edu/;grass/&). GRASS is
highly interactive and graphically oriented, providing tools for
developing, analyzing, and displaying spatial information.
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GRASS runs through the use of standardized command line
input or under the X Window system under the UNIX/Linux
environment. Though GRASS is raster based, it can also deal
with vector (linear features) or point data. New maps can be
digitized or scanned. Maps also can be transferred from other
GIS systems such as ARC/INFO. Data files can be developed
for large or small geographic regions at any scale desired
within the limits of the source data and the storage capacity
of the hardware.

GRASS was successfully coupled with a number of hydro-
logical and water quality models, including ANSWERS,
AGNPS, TOPMODEL, SWAT, and SWIM (Rewerts and En-
gel 1991; Srinivasan and Engel 1991; Chairat and Delleur
1993; Srinivasan and Arnold 1994; Krysanova et al. 1996), to
facilitate input of spatially distributed information and enhance
the use and utility of the models.

The raster formulation of GRASS is very attractive for use
in spatially distributed hydrological modeling, because spatial
data can easily be translated from the GIS to the model to
initialize it and the model outputs can go back to GIS again
for visualization purposes. Second, GRASS is a public domain
GIS; it may be downloaded free of charge and all program
source code is freely available. This is different from other
proprietary GIS packages, such as ARC/INFO, and signifi-
cantly facilitates further software development. Third, GRASS
is written in the C programming language, which is also
widely used for modeling. Fourth, GRASS is flexible enough
for a variety of applications, as soon as data layers can be
transported to and from several other GIS, including ARC/
INFO. Last, but not least, GRASS has specific programs for
hydrologic modeling and interpolation, which can be very use-
ful.

The GRASS program r.watershed is the main tool for de-
lineation of basin and subbasin boundaries from a DEM. Other
hydrologically oriented programs exist in GRASS, such as
r.basins.fill, r.cost, and r.drain, as well as the useful interpo-
lation tools. There are a number of transformation programs
between GRASS and various other formats: DLG (v.import),
DLG-3 (v.in.dlg and v.out.dlg), ASCII (v.in.ascii, v.out.ascii,
r.in.ascii. and r.out.ascii), DXF (v.in.dxf and v.out.dxf), ARC/
INFO (v.in.arc and v.out.arc), and MOSS (v.out.moss).

GIS/HEC-1 Interface Module (Prince William County
Model)

The use of mathematical models such as HEC-1, TR-20,
ILLUDAS, SWMM, HSPF, PSRM-QUAL, and VAST has
greatly enhanced the hydrologic engineering field through ef-
ficiency and flexibility. However, these models still require
intensive data development for input such as time of concen-
trations, lags, SCS curve numbers, and channel routing param-
eters. The use of the GIS to aid in developing this input data,
such as overlaying hydrologic soil groups with land use to
develop composite SCS curve numbers, is well documented
(DeBarry and Carrington 1990). A program developed and de-
scribed by DeBarry (1996) aids in hydrologic modeling for
storm-water management analysis, flood prediction, reservoir
and detention basin sizing, and development cause/effect sce-
narios. It aids in placement of regional detention facilities by
reducing the effort required to determine the most efficient
location. The program has a non-point-source pollution pre-
diction component that will aid in best management practice
placement, monitoring station locations, and National Pollut-
ant Discharge Elimination System compliance.

The Prince William County Model uses contoured elevation
data that are converted to 6.1-m2 (20-ft2) grids for use in the
time-of-concentration calculations. Digital hydrologic soil
group coverages are used with a relational look-up table to
link specific soils polygons to the hydrologic soil group clas-

sification and other relative interpretive data associated with
each soil type. Land-use data from a variety of sources are
tailored to reflect the land-use classifications used in TR-55.
ARC/INFO’s coverage polygons are converted to 6.1-m2 (20-
ft2) grids for the computations.

The process to automate data set creation for a watershed
hydrologic model (such as HEC-1, TR-20, or PSRM) involves
first creating GIS coverages for soils, land use, and subwater-
shed boundaries, and assigning attributes to each coverage
such as hydrologic soil groups and TR-55 land-use classifi-
cations. Coverages (hydrologic soil groups and land use) are
overlayed to compute CN for each polygon. Time-of-concen-
tration and SCS lag are computed for user-defined subareas
based upon the SCS TR-55 method. ESRI’s GRID package is
used for this purpose. The interface allows the user to pinpoint
a downstream analysis point. The macro within GRID uses
DEM information to obtain slope steepness, Manning’s n
value, and time of concentration.

The application will compute non-point-source pollutant
loading based on land use and soil type using the National
Urban Runoff Program data and is able to compute the loading
by parcels, subarea, and watershed. The National Urban Run-
off Program data are supplied in a look-up table, with source
values modifiable if actual field data from local stations are
available. The results meet the requirements of the U.S. EPA’s
National Pollutant Discharge Elimination System program.
The program computes daily, monthly, and annual loads. Wa-
ter quality parameters incorporated include total suspended
solids, pH, total dissolved solids, total Kjeldahl nitrogen,
COD, nitrate plus nitrite, biochemical oxygen demand, dis-
solved phosphorus, oil and grease, total ammonia plus organic
nitrogen, fecal coliform, total phosphorus, and fecal strepto-
coccus.

The Prince William County Model realizes the economics
and efficiency of using a GIS in the process of fully automat-
ing watershed hydrologic model input data development and,
at the same time, produces high quality graphics for reports
and public meetings. The GIS software used in this study is a
combination of workstation ARC/INFO, with GRID, and PC
ARC/INFO (ESRI). The macros have been tested and verified
on three different watersheds.

HEC-GeoHMS

HEC-GeoHMS [Hydrologic Engineering Center (HEC)
2000] is a geospatial hydrologic modeling extension software
package that uses a graphical user interface and is linked to
the ArcView and Spatial Analyst GIS. HEC-GeoHMS uses
DEM data to determine drainage paths and watershed bound-
aries and transforms them into hydrologic data structures rep-
resenting the watershed response to rainfall events. The current
version of HEC-GeoHMS creates a background map file,
lumped basin model, grid-cell parameter file for use in running
the HEC-HMS hydrologic model discussed in the next section
of this paper.

HECPREPRO and CRWR-PrePro

HECPREPRO (Hellweger and Maidment 1999) and
CRWR-PrePro (Olivera and Maidment 2000) were developed
at the Center for Research in Water Resources (CRWR) of the
University of Texas at Austin to support HMS. These programs
are used to establish the topology of hydrologic elements and
prepare a basin-input file for HEC-HMS modeling.

TOPographic PArameteriZation (TOPAZ)

TOPAZ is a software package for automated digital land-
scape analysis (Garbrecht and Martz 1997). Automated land-
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scape analysis is a very challenging problem (Hayes 2000).
The TOPAZ program uses a raster DEM to identify and mea-
sure topographic features, define surface drainage, subdivide
watersheds along drainage divides, quantify the drainage net-
work, and parameterize subcatchments. TOPAZ is designed
primarily to assist with topographic evaluation and watershed
parameterization in support of hydrologic modeling and anal-
ysis. It can also be used to address a variety of geomorpho-
logical, environmental, and remote sensing applications.

The overall objective of TOPAZ is to provide a compre-
hensive evaluation of DEMs, with particular emphasis on
maintaining consistency between all derived data, the initial
input topography, and the physics underlying energy and water
flux processes at the landscape surface. A number of the lim-
itations of existing DEM processing methods with respect to
drainage identification in depressions and over flat surfaces
have been overcome in TOPAZ, and a number of new features
have been added to address specific hydrologic and hydraulic
needs (Garbrecht and Martz 1995). TOPAZ is not a GIS in the
traditional sense. It is a system of software modules that per-
forms the numerical processing of raster DEMs and produces
numerous data layers and attribute tables. For data layer al-
gebra and monitor display capabilities, TOPAZ relies on a
user-selected GIS. The interface to a GIS is provided through
generated raster files. The analytical operations performed by
TOPAZ achieve three broad functions: (1) elevation data pre-
processing (treatment of depressions and flat areas); (2) hy-
drographic segmentation (definition of surface drainage, chan-
nel network, and subcatchments); and (3) topographic
parameterization, which includes quantification of network and
subwatershed properties and parameters.

The output from TOPAZ consists of report files, evaluation
files, tables, and raster data. Report files provide a summary
of the program execution for each module and include a listing
of the input and user options, tasks performed by the modules
as they are completed, and warning and error messages. Eval-
uation files print the results of specific evaluations such as the
statistics of the channel links or subcatchments. Tables provide
lists of attributes for channel links and subcatchments. They
contain data that are often needed in hydrologic applications
and distributed models of land-surface processes. Rasters rep-
resent data layers of spatial topographic, network, and sub-
catchment attributes. These rasters can be imported into a GIS
for display, overlay analysis, and further processing.

Watershed Modeling System (WMS)

The Watershed Modeling System (WMS) was developed
specifically for engineers and its sole purpose is to set up
mathematical watershed hydrologic models (Nelson et al.
1994). The WMS is a graphically based, comprehensive hy-
drologic modeling environment that is designed to take ad-
vantage of watershed data developed or stored in GIS. Al-
though it is neither a complete GIS itself nor an extension
created with GIS macros or programming languages, it is ca-
pable of creating, reading, and writing GIS data layers using
the shape file format.

Although there have been many advances in the develop-
ment of mathematical computer models that simulate the rain-
fall-runoff process in a spatially distributed manner, lumped
parameter models such as HEC-1, TR-20, SWMM, and others
continue to be the accepted standard by most regulatory agen-
cies. WMS was developed to derive inputs for traditional mod-
els such as HEC-1 and TR-20 from GIS data. At the same
time, WMS provides interfaces to some of the emerging spa-
tially distributed models being developed by the U.S. Army
Corps of Engineers, Engineer Research and Development Cen-
ter. One such model is CASC2D (Julien et al. 1995; Ogden
1998).

WMS can be used in a stand-alone mode without GIS.
However, WMS is compatible with different GIS data struc-
tures, including vector coverages, grids, and TINs. Data at
different stages of development can be transferred between
WMS and a GIS. Complete interfaces for several different
models, both lumped parameter and spatially distributed, are
available.

WMS was originally developed to automatically delineate
watershed and subbasin boundaries with TINs (Nelson et al.
1994); the latest release includes the capability to delineate
watersheds with gridded DEMs or use vector coverages of
previously delineated basin boundaries and stream networks
stored in a GIS format. WMS can also process both grid (ras-
ter) and vector data for land use, soil type, rainfall zone, and
flow path networks in order to develop important modeling
parameters such as curve numbers, infiltration parameters,
rainfall intensities, and water course travel times (lag time and
time of concentration).

WMS is a comprehensive hydrologic modeling environment
developed system designed by and for hydrologic engineers.
WMS operates both as stand alone and in combination with
GIS data, making it versatile enough to accommodate all hy-
drologic modeling applications. The strength of WMS is that
it includes all options for each supported hydrologic model,
reducing uncertainties associated with model set up and de-
creasing model set-up time. The progression of steps required
for setting up each hydrologic model is highlighted by intel-
ligent ordering of menu options within the interface.

DISTRIBUTED WATERSHED MODELS

The following distributed watershed models are discussed
in alphabetical order. Each model discussed is widely used for
practice or research or both. Models are briefly discussed to
give the reader an idea of current capabilities. These models
use geospatial information and have varied formulations that
are applicable over a wide range of watershed sizes and for
different purposes. For more in-depth information, see the full
Task Committee report (DeBarry et al. 1999) or other cited
references.

AGNPS 98

The AGNPS 98 pollutant loading modeling environment
was developed jointly by the USDA Agricultural Research
Service and Natural Resources Conservation Service (Binger
and Theurer 2001). AGNPS 98 comprises several modules that
enable users to develop appropriate input parameters for eval-
uations of best management practices using simulations for
their watershed systems. AnnAGNPS is the pollutant loading
module designed for risk and cost/benefit analyses. The model
was developed to simulate long-term sediment and nutrient
transport from agricultural watersheds using a daily time step.
The basic modeling components are hydrology, sediment, nu-
trient, and pesticide transport. Homogeneous land area (cell)
geometric representations of a watershed are used to provide
landscape spatial variability. The physical or chemical con-
stituents are routed from their origin within a cell and are
either deposited within the stream channel system or trans-
ported out of the watershed. Pollutants can then be identified
at their source and tracked as they move through the watershed
system. Runoff of water is calculated using the runoff curve
number, and sediment runoff is estimated using the revised
universal soil loss equation. Special components are included
to handle concentrated sources of nutrients (feedlots and point
sources), concentrated sediment sources (gullies), and added
water (irrigation). Output is expressed on an event basis for
selected stream reaches and as source accounting (contribution
to outlet) from land or reach components over the simulation
period.
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Channel evolution is modeled with AGNPS 98 using the
USDA Agricultural Research Service Conservational Channel
Evolution and Pollutant Transport System (CONCEPTS)
model, which simulates unsteady, 1D flow, graded-sediment
transport, bank erosion processes, and pollutant transport in
watershed channels, incorporating in-stream hydraulic struc-
tures and nonstructural remediation measures. Stage-discharge
relationships are computed using the diffusion wave method.
CONCEPTS simulates transport of suspended- and bed-load
sediments selectively by size classes. Channel boundary
roughness and bank stability affected by riparian vegetation
are included in CONCEPTS.

CASC2D

The hydrologic model CASC2D uses a square-grid, infiltra-
tion-excess formulation that solves the equations of transport
of mass, energy, and momentum between model grid cells us-
ing finite differences (Julien et al. 1995; Ogden and Julien
2001). The model is fully unsteady and spatially varied. The
purpose of CASC2D is to perform detailed scientific and en-
gineering analyses of watersheds where the spatial variability
of watershed characteristics and rainfall are important. Use of
CASC2D is also prescribed when the user is interested in mod-
eling processes at the subcatchment scale or when small-scale
output is desired at internal catchment locations, such as street
flooding, in urbanized watersheds.

The CASC2D formulation is continuous and includes eva-
potranspiration, rainfall input, rainfall interception (Gray
1973); Green and Ampt (1911) or Green and Ampt with re-
distribution infiltration (Ogden and Saghafian 1997), 2D dif-
fusive-wave overland flow routing (Julien et al. 1995), 1D dif-
fusive-wave channel flow routing in natural cross sections
(Ogden 1994), empirical overland erosion (Kilinc and Rich-
ardson 1973), overland sediment transport and deposition
(Johnson et al. 2000), and bed- and suspended-load sediment
routing in channels (Ogden and Heilig 2001).

CASC2D development originated at Colorado State Uni-
versity through funding by the U.S. Army Research Office.
Recent enhancements to the model at the University of Con-
necticut and the U.S. Army Corps of Engineers, Engineer Re-
search and Development Center, have improved model gen-
erality. The model has been applied to simulate watersheds
from 0.016 to 2,300 km2 in area with considerable success.
CASC2D models have been developed with grid sizes ranging
from 10 to 1,000 m. The model is typically applied at grid
sizes ranging from 30 to 125 m. CASC2D can be run in a
single-event mode or in a continuous (multievent) mode. Con-
tinuous simulations can be run for an indefinite period of time.

Input data requirements for the model include DEM topog-
raphy; rainfall rates from gauges, weather radar, or meteoro-
logical model; meteorological variables for continuous simu-
lations (air temperature, relative humidity, wind speed, and
solar radiation); channel cross sections; overland and channel
flow roughness coefficients; soil hydraulic properties; and in-
itial soil moisture content. Default output from CASC2D in-
cludes an outflow hydrograph at the watershed outlet and a
summary file containing details of the simulation mass bal-
ance. Optional output includes sediment (suspended- and bed-
load) hydrographs at the catchment outlet; flow and sediment
hydrographs at internal catchment locations; and time series
of spatially varied output maps of overland flow depth; chan-
nel flow depth, overland erosion/deposition, and land-surface
soil moisture.

A rigorous calibration and verification of CASC2D on a 21-
km2 research watershed was demonstrated by Senarath et al.
(2000). This study revealed that CASC2D is capable of mak-
ing reasonably accurate runoff predictions at internal locations
once calibrated at the watershed outlet. This conclusion re-

quires that sufficient data are available for model calibration.
The sensitivity of CASC2D to uncertainties in land-surface
characteristics and rainfall was evaluated by Ogden et al.
(2000) using data from the catastrophic flash flood that im-
pacted Fort Collins, Colo., in July 1997. Results showed that
CASC2D provides accurate runoff predictions in an urbanized
watershed under the action of extreme rainfall. Uncertainties
in land-surface parameters have a small effect compared to
errors in rainfall input. For this reason, the use of WSR-88D
radar-rainfall estimates with a model such as CASC2D should
be done in conjunction with rain gauge verification.

The CASC2D model uses SI units and the Universal Trans-
verse Mercator (UTM) map projection system. The model is
supported by the U.S. Department of Defense WMS hydro-
logic model interface developed at Brigham Young University,
Provo, Utah. WMS has import/export capabilities with both
ARC/INFO and GRASS GISs. The WMS contains specific
functionality for creating CASC2D input data sets including
topographic analysis using TOPAZ (Garbrecht and Martz
1997), stream cross-section preprocessor, stream profile
smoothing tools, and map creation/manipulation capabilities.
WMS and GIS are not required for using CASC2D but are
helpful for data set creation. The WMS can also be used to
visualize CASC2D output using an output map viewer and
film loop feature.

HEC-RAS and HEC-HMS

The HEC of the U.S. Army Corps of Engineers is the de-
veloper of a number of widely used hydraulic and hydrologic
computer models, including the widely used HEC-1 runoff
model and HEC-2 river hydraulics model. Numerous compa-
nies, universities, and public institutions have developed GIS
linkages for these models. Most of these efforts have taken
the form of preprocessors that prepare input files for the mod-
els or postprocessors that read model output files. HEC is in
the process of a major software modernization effort, called
NexGen (HEC 1993) directed at replacing batch-style pro-
grams such as HEC-1 and HEC-2 with interactive programs.
HEC-1 has been superceded by a new program called HEC-
HMS, and HEC-2 has been superceded by HEC’s river anal-
ysis system (HEC-RAS). Although the old programs will be
supported for the foreseeable future, there will be no new ver-
sions of HEC-1 or HEC-2 and improvements and new features
will be added only to the new programs. HEC’s model devel-
opment philosophy with respect to GIS is that new programs
should take advantage of geospatial data from GIS/computer-
aided design and drafting programs but should not depend on
those programs for execution. HEC models can exchange data
with many GIS programs but do not depend on proprietary
data formats.

HEC-RAS can import HEC-2 input files, so preprocessors
designed to work with HEC-2 could also be used with HEC-
RAS. However, HEC-RAS version 2 has an expanded set of
import and export functions to preserve location data (HEC
1997). Geospatial outputs from HEC-RAS include cross sec-
tions—2D cut lines, with water surface elevations for one or
several profiles, and water surface bounds for each reach. Out-
put cross-section data can be read into a GIS layer together
with water surface elevations between the cross sections. In-
undated areas can be mapped by comparing the interpolated
water surface with the ground surface.

A GIS can be used to prepare input parameters for the mod-
ified Clark unit hydrograph conceptual routing method used in
HEC-HMS. HEC-HMS is designed to work with gridded pre-
cipitation data, such as National Weather Service WSR-88D
radar-rainfall estimates. The model requires a small number of
parameters for each watershed grid cell.
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Modular Modeling System–Precipitation Runoff
Modeling System (MMS/PRMS)

The interdisciplinary nature and increasing complexity of
environmental and water resource problems require modeling
approaches that can incorporate knowledge from a broad range
of scientific disciplines. Selection of a model to address these
problems is difficult given the large number of available mod-
els and the potentially wide range of study objectives, data
constraints, and spatial and temporal scales of application.
Coupled with this are the problems of characterizing and pa-
rameterizing the study area once the model is selected. Guide-
lines for estimating parameters are few and the user commonly
has to make decisions based on an incomplete understanding
of the model developer’s intent. To address the problems of
model selection, application, and analysis, a set of modular
modeling tools, the MMS (Leavesly et al. 1996), was devel-
oped by the U.S. Geological Survey using modules originally
developed for the PRMS (Leavesley et al. 1996). The PRMS
has been applied to a variety of watersheds since its devel-
opment in the mid-1980s. MMS uses a master library that
contains compatible modules for simulating a variety of water,
energy, and bio-geochemical processes. A model is created by
selectively coupling the most appropriate process algorithms
from the library to create an integrated model for the desired
application. Where existing algorithms are not appropriate,
new algorithms can be integrated by the user. A GIS interface
is used to characterize topographic, hydrologic, and ecosystem
parameters; visualize spatially and temporally distributed
model parameters and variables; and validate model results.

MMS provides a flexible framework in which to develop a
variety of physical process models that can be coupled with
resource-management models for use in addressing a wide
range of management issues. The conceptual framework for
MMS has three major components: preprocess, model, and
postprocess. The preprocess component includes the tools used
to prepare, analyze, and input spatial and time-series data for
use in model applications. The model component includes the
tools to build a model by selectively linking process modules
from the module library. The library can contain several mod-
ules for a given process, each representing an alternate ap-
proach to simulating that process. The postprocess component
includes tools to display and analyze model results and to pass
results to management models or other types of software. Spa-
tial data analysis is accomplished using GIS tools that have
been developed and tested in both ARC/INFO and GRASS.

Postprocessing of MMS output is done using statistical and
graphical analysis procedures that provide a basis for compar-
ing module performance, to aid in making decisions regarding
the most appropriate modeling approach for a given set of
study objectives, data constraints, and temporal and spatial
scales of application. A GIS interface provides tools to display
spatially distributed model results and to analyze results within
and among different simulation runs.

Systéme Hydrologique Européen (SHE)

SHE (Abbott et al. 1986) was initially developed in several
research institutes across Europe as part of a joint initiative.
In its original form, the model structure closely matched that
proposed by Freeze and Harlan (1969), the only discernible
difference being that, in SHE, water was assumed to only flow
vertically in partially saturated soils. Subsequent developments
of SHE conducted at two European research institutes have
resulted in two versions of the model: SHETRAN, developed
at the University of Newcastle upon Tyne, U.K., and MIKE-
SHE, developed at the Danish Hydraulics Institute. These later
versions of SHE not only model the hydrology of watersheds
but also model solute and sediment transport. The main dif-

ference between the two versions is in their treatment of flow
in the subsurface; SHETRAN is capable of modeling 3D flow
in variably saturated soils (Parkin 1996), whereas MIKE-SHE
simulates only vertical flow in partially saturated soils. Both
versions have sophisticated, graphical user interfaces that al-
low the user to input, manipulate, and output spatially distrib-
uted data and to visualize the temporal evolution of 3D model
predictions.

SWAT

The SWAT model has a conceptual formulation and is used
to assess water supplies and non-point-source pollution on
small watersheds and large river basins. A detailed description
of the model is given in Arnold et al. (1998). The SWAT for-
mulation includes land management, water quality loadings,
flexibility in basin discretization, and continuous simulations.
SWAT was designed to simulate the major components of the
hydrologic cycle and their interactions as simply and realisti-
cally as possible (Arnold and Allen 1996) and to use inputs
that are readily available over large areas so that the model
can be used in routine planning and decision making.

Model components include hydrology, weather, sedimenta-
tion, soil temperature, crop growth, nutrients, pesticides, and
agricultural management. Simulated hydrologic processes in-
clude surface runoff using the SCS curve number of Green
and Ampt (1911) infiltration equation, percolation modeled
with a layered storage routing technique combined with a
crack flow model, lateral subsurface flow, groundwater flow
to streams from shallow aquifers, potential evapotranspiration,
snowmelt, transmission losses from streams, and water storage
and losses from ponds. Weather variables can be provided as
inputs or artificially generated based on monthly climate sta-
tistics.

Sediment yield is computed for each subbasin with the mod-
ified universal soil loss equation. Soil temperature is modeled
in layers, and crop growth is simulated. Nitrate losses in run-
off, percolation, and lateral subsurface flow, as well as nitrogen
fate and transport, are simulated. The nitrogen transformation
model includes residue mineralization, humus mineralization,
nitrification, denitrification, volatilization, fertilization, and
plant uptake. Pesticide transformations are simulated with a
simplification of the GLEAMS model approach.

Stream processes considered in SWAT include channel flow
routing, sediment routing, and nutrient and pesticide routing
and transformation modified from the QUAL2E model. The
ponds and reservoirs component contains water balance, rout-
ing, sediment settling, and simplified nutrient and pesticide
transformation routines. Water diversions into, out of, or
within the basin can be simulated to represent irrigation and
other withdrawals from the system.

A GRASS GIS interface was developed for SWAT (Srini-
vasan and Arnold 1994). The input interface automatically
subdivides a basin (grids or subwatersheds) and then extracts
model input data from map layers and associated relational
databases for each subbasin. The output interface allows the
user to display output maps by selecting a subbasin from a
GIS map. An ArcView GIS interface for SWAT consists of
three key components: (1) preprocessor generating subbasin
topographic parameters and model input parameters; (2) edit-
ing input data and execute simulation; and (3) postprocessor
viewing graphical and tabular results.

The U.S. EPA is incorporating SWAT into the BASINS in-
terface for assessment of impaired water bodies. BASINS is
an interface developed in ArcView to allow state regulatory
agencies the ability to quickly analyze water quality problems.

TOPMODEL

TOPMODEL (Beven and Kirkby 1979), developed at the
University of Lancaster, U.K., has a physical/conceptual for-
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mulation that uses a semidistributed approach. The watershed
is partitioned, on the basis of a topographic index, into regions
that are deemed to behave in a hydrologically similar manner.
The model was originally developed for rainfall-runoff mod-
eling in upland temperate catchments with coarse soils or low
intensity rainfall, where the saturation–excess runoff produc-
tion mechanism is dominant. One of the appealing features of
the model is that it uses a small number of parameters, is
computationally efficient, and can be used to give an indica-
tion of the spatial distribution of soil moisture in a watershed.
The simple structure of this model allowed Stuart and Stocks
(1993) to encode it into a GIS.

The formulation of TOPMODEL is based on a factor known
as the topographic index (Beven and Kirkby 1979). Regions
within the catchment with similar topographic indices are as-
sumed to behave as hydrologically similar land units. The to-
pographic index is developed from a DEM, and a histogram
of the topographic index is used within TOPMODEL to predict
saturated regions within the watershed for a given soil mois-
ture state. Spatially varied topographic features are used to
develop the topographic index. However, the spatial structure
of watershed features and rainfall is not preserved in the
model. TOPMODEL has been applied to a large number of
catchments, with varying degrees of success. The topographic
index is a static quantity that includes no information regard-
ing prior wetting history of the catchment, including hysteresis
effects.

GIS IMPLEMENTATION AND MANAGEMENT

The most highly integrated and centrally managed GIS im-
plementation occurs when an organization plans to incorporate
GIS technology throughout the entire operation. This is usually
a formally planned system, designed to reduce duplication in
the organization and allow access to all potential users. When
an organization does not depend on GIS for its core business
functions, a GIS service center is often developed. In this strat-
egy, a specific GIS group manages the use of the technology
throughout the organization. Finally, in specialized applica-
tions, management may introduce GIS to an organization in a
behind-the-scenes manner. For special applications, a GIS tool
may be imbedded in another application familiar to the user.

In recognition of the three implementation approaches out-
lined above, an organization may determine the need for a
hybrid approach to the system. Depending upon such things
as finances and skills of the users, management could decide
they need to develop a customized implementation where GIS
personnel develop some features of the GIS internally and pur-
chase others.

No matter which style of implementation an organization
chooses, no approach guarantees a successful transition to
GIS. However, it has been observed that successful installa-
tions generally share the following characteristics:

• Champion to promote GIS development within the orga-
nization

• Planning
• High-level management support
• Completion of a user-needs assessment
• Completion of a prototype pilot project
• Shared project ownership among the users
• Accurate time and cost estimates for associated costs, in-

cluding products
• Clear goals and objectives defined for the GIS department
• GIS education and training for affected employees and

management
• Coordination of GIS development and staff continuity
• Defined funding plan
• Solid written contracts with vendors and clients
• Publicized successes

Information on GIS implementation and management ap-
proaches was obtained by Johnson and Dyke (1997) through
a review of a variety of organizations, both public and private,
large and small. Results of this review as well as other GIS
implementation issues are discussed in considerably more de-
tail in the Task Committee report (DeBarry et al. 1999).

FUTURE DIRECTIONS AND NEEDS FOR USE OF
GEO-SPATIAL INFORMATION IN ENGINEERING
HYDROLOGY

Distributed hydrologic models that fully use spatial data
from GIS are reaching maturity, although questions regarding
their appropriate application remain in the research arena.
There is a growing body of evidence that no hydrologic model
is universally applicable. The variety of runoff production
mechanisms and the wide range of space scales and timescales
studied has necessitated creation of a number of different spa-
tially distributed model formulations. Nonetheless, state and
local regulators often insist that traditional modeling ap-
proaches be used, perhaps in situations where they are un-
suitable. Demonstrated benefits through the application of
geospatial technology in the study of hydrology will help rem-
edy this situation.

The increasing availability of spatially distributed topo-
graphic, soils, land-use, land-cover, and precipitation data pro-
vides the prime motivation for the development, verification,
and eventual acceptance of GIS modules and distributed hy-
drologic models capable of taking full advantage of these new
data. New developments must acknowledge the uncertainties
inherent in the data and subsequent model parameter assign-
ments. Lumped parameters at the basin scale made sense when
data were largely read from paper maps. However, the increas-
ing use of GIS to store watershed characteristics data is forcing
hydrologic modelers to spatially aggregate data to the lumped
subcatchment scale because the application of lumped models
on very small subcatchments is not feasible. This is not to say
that all hydrologic predictions require a distributed model.
Lumped models will remain valuable tools with many appli-
cations. The development of distributed models will allow de-
tailed studies that include the impacts of spatial variability of
watershed characteristics and precipitation where necessary, as
well as provide spatially distributed output of hydrologic var-
iables.

The recent availability of rainfall rate estimates from the
WSR-88D weather radar network is an exciting development
in engineering hydrology. In the pre-NEXRAD era, a hydro-
logic modeler could be quite confident that little or no rainfall
data were available for a particular catchment under study. The
national network of WSR-88D radars provides near continuous
coverage of the entire contiguous United States. The availa-
bility of radar-rainfall estimates provides the opportunity to
calibrate and verify hydrologic models on catchments that
have stream gauges. This fact will spur development and use
of models that can take advantage of WSR-88D radar-rainfall
estimates.

In the United States, streamflow gauging stations are di-
minishing in number at a time when most other sources of
other types of land-surface and hydrologic data are increasing.
With the ever-present importance of the calibration and veri-
fication of hydrologic models afforded by availability of rain-
fall estimates from the WSR-88D system, the decline in
streamflow gauging stations is alarming. Gauging stations on
smaller watersheds are being deactivated at a disproportionate
rate because there are fewer stakeholders at the small basin
scale. However, runoff data from smaller watersheds are re-
quired for hydrologic model calibration/verification and re-
gionalization of model inputs. The decline in the number of
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streamflow gauging stations must be halted or the future of
hydrologic modeling advancements will be placed in jeopardy.

Perhaps the most pressing reason for developing hydrologic
modeling techniques that fully exploit the data-handling ca-
pabilities of GIS is to advance beyond the time-tested, but
limited, lumped and empirical approaches that permeate the
practice of engineering hydrology. Historically, engineering
hydrologists have become somewhat comfortable with the un-
certainty that comes with the inability to strictly calibrate and
verify hydrologic models. The tremendous data-handling ca-
pabilities of GIS and improved processing offered by GIS
modules allow creation of hydrologic models that can better
simulate spatially varied hydrology. GIS technology provides
the gateway for the advancement of engineering hydrology
from a field dominated by empiricism to a more exact science.

An important GIS hydrology-related area of research is in
developing appropriate scaling relationships for spatially dis-
tributed hydrologic variables. This research may lead to im-
proved performance of lumped modeling approaches by taking
full advantage of fine-scale data in assigning optimal lumped
model parameter values.

CONCLUSIONS

The benefits most often associated with the use of GIS in
watershed and hydrologic analysis include improved accuracy,
less duplication, easier map storage, more flexibility, ease of
data sharing, timeliness, greater efficiency, and higher product
complexity. In general, GIS systems have been praised for
enabling rapid input, storage, and manipulation of geospatial
information. However, current GIS technology does not facil-
itate input, storage, and manipulation of time-varying data in
a straightforward way. For this reason, modules and interfaces
that exchange data with GIS and allow pre- and postprocessing
of time-varying hydrologic model inputs and outputs are pop-
ular. GIS-based hydrologic analysis techniques are in various
stages of development and are beginning to enter mainstream
hydrologic engineering practice. At present, the most widely
used techniques are GIS interfaces for traditional models such
as HEC-1 and TR-20.

Although spatially distributed models have not yet received
widespread acceptance, specialized interfaces linked with GIS
have increased model usability. GIS modules and model in-
terfaces will undoubtedly lead to greater use and ultimate ac-
ceptance of distributed hydrologic models over the next sev-
eral years. There is no doubt that in the future hydrologic
modeling techniques will increasingly depend upon GIS and
geospatial modules and model interfaces.

Comprehensive physically based distributed models such as
CASC2D and SHE were at one time thought to be prohibi-
tively cumbersome for anything other than research projects
because of their computational expense and input data require-
ments (Abbott and Refsgaard 1996). This is no longer the case.
The widespread availability of spatial data through GIS, high-
performance computers, and development of sophisticated user
interfaces (e.g., WMS) have made such models far more us-
able.

Many government agencies and private firms have made
large investments in GIS capabilities and in data conversion.
The results of organizational adoption of GIS are often mixed
because of implementation issues. Successful transition to the
use of GIS-based technologies in hydrologic engineering re-
quire correspondence between user expectations and actual ca-
pabilities.
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