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UDP-glucose dehydrogenase as a novel field-specific candidate
biomarker of prostate cancer

Dali Huang1, George P. Casale2, Jun Tian2, Subodh M. Lele1, Vladimir M. Pisarev2, Melanie A. Simpson3 and

George P. Hemstreet III2,4

1 Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
2 Urologic Surgery Section, Department of Surgery, University of Nebraska Medical Center, Omaha, NE
3 Department of Biochemistry, University of Nebraska, Lincoln, NE
4 Urologic Surgery Section, Department of Surgery, Veterans Affairs Medical Center, Omaha, NE

Uridine diphosphate (UDP)-glucose dehydrogenase (UGDH) catalyzes the oxidation of UDP-glucose to yield UDP-glucuronic

acid, a precursor for synthesis of glycosaminoglycans and proteoglycans that promote aggressive prostate cancer (PC)

progression. The purpose of our study was to determine if the UGDH expression in normal appearing acini (NAA) from

cancerous glands is a candidate biomarker for PC field disease/effect assayed by quantitative fluorescence imaging analysis

(QFIA). A polyclonal antibody to UGDH was titrated to saturation binding and fluorescent microscopic images acquired from

fixed, paraffin-embedded tissue slices were quantitatively analyzed. Specificity of the assay was confirmed by Western blot

analysis and competitive inhibition of tissue labeling with the recombinant UGDH. Reproducibility of the UGDH measurements

was high within and across analytical runs. Quantification of UGDH by QFIA and Reverse-Phase Protein Array analysis were

strongly correlated (r 5 0.97), validating the QFIA measurements. Analysis of cancerous acini (CA) and NAA from PC patients

vs. normal acini (NA) from noncancerous controls (32 matched pairs) revealed significant (p < 0.01) differences, with CA

(increased) vs. NA, NAA (decreased) vs. NA and CA (increased) vs. NAA. Areas under the Receiver Operating Characteristic

curves were 0.68 (95% CI: 0.59–0.83) for NAA and 0.71 (95% CI: 0.59–0.83) for CA (both vs. NA). These results support the

UGDH content in prostatic acini as a novel candidate biomarker that may complement the development of a multi-biomarker

panel for detecting PC within the tumor adjacent field on a histologically normal biopsy specimen.

One in 3 men aged >50 years has morphologically identified
features of prostate cancer (PC),1 and 1 in 6 men will develop
clinically significant PC during their lifetime.2 Although diag-

nosis of PC still depends on quantification of the serum pros-
tate-specific antigen (PSA), there is no PSA threshold that
establishes the presence of clinically important PC or deter-
mines zero risk for PC. Total PSA measurement, free PSA and
PSA velocity, alone and in combination, have not significantly
improved the sensitivity and specificity compared to a tradi-
tional PSA threshold value of 4 ng/ml, but rather confirmed
the need for lowering the threshold for a biopsy3 and/or
searching for other markers complementary to PSA testing.
Furthermore, prostate biopsy identifies only 26–41% of cancer
depending on the patient’s age. Re-biopsy successfully estab-
lishes the diagnosis in 50, 62 and 68% of cases following 1, 2 or
3 re-biopsies, respectively.4 A solution to a personalized
rebiopsy is the development of a sensitive and specific bio-
marker profile for the premalignant field or cancer-induced
field effects that is informative in the initial biopsy.5–9 We
hypothesize that developing a protein biomarker panel assayed
in the initial specimen will provide optimal sensitivity and
specificity as a guide to rebiopsy. To obtain an optimal sensitiv-
ity and specificity, it is anticipated that functional protein bio-
markers will be quantitatively assayed in a multiplex format in
histologically normal biopsies from cancer-bearing prostates.

In a previous study,10 quantitative fluorescence imaging
analysis (QFIA) was used to quantify b-catenin in prostate
biopsies from 42 pairs of PC cases and age-matched controls.
Reduced expression in the normal-appearing fields of cancer-
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bearing glands identified 42% of the cases with 88% specificity.
In our study, the expression of uridine diphosphate (UDP)-
glucose dehydrogenase (UGDH) was investigated as a poten-
tial field disease/effect biomarker. UGDH catalyzes conversion
of UDP-glucose to UDP-glucuronic acid, an essential precur-
sor for synthesis of proteoglycans and extracellular matrix gly-
cosaminoglycans (hyaluronan, HA and other molecules).
Increased expression of UGDH has been linked to elevated
HA. Profiling HA in PC tissue and noncancerous prostate tis-
sue revealed that presence of HA accumulation correlated with
PC of Gleason sum �5.11,12 HA, synthesized as a high molecu-
lar weight polymer by HA synthases HAS1, HAS2 and HAS3,
is cleaved into smaller fragments by hyaluronidases, e.g.,
HYAL1, a secreted enzyme expressed in epithelial cells but not
in stromal cells of PC tissue.11,12 HA-HYAL1 detection has
significant prognostic value for PC.13,14 HA fragments have
potent angiogenic activity, and may promote invasion and me-
tastasis by altering the motility and cell cycle of carcinoma
cells, as well as modulating cell adhesion to the extracellular
matrix and to endothelial cells.15–17 HA-induced alterations in
the adhesion of malignant cells are mediated via activation of
their CD44 and CD168 receptors.18–20 Interestingly, prostate
stem-like cells and prostate tumor initiating cells involved in
the development of PC21,22 also share CD44 expression.23–25

This provides a hypothetical link between UGDH activity and
early tumor invasion and metastases probably mediated by
cancer stem-like cells. Interestingly, in PC, both HA and can-
cer stem-like cells were associated with the progression of
androgen-independent disease and metastases.26–28

Alternatively, decreased expression of UGDH, specifically in
prostate epithelium, may be linked to increased androgen-de-
pendent cell proliferation and the expression of androgen-sensi-
tive genes, including PSA and vascular endothelial growth factor
(VEGF). Consequently, reduced epithelial UGDH may be linked
to early pro-carcinogenic effects. UDP-glucuronic acid is
required for UDP-glucuronosyltransferase (UGT) catalyzed glu-
curonidation of other substrates, including dihydrotestosterone
(DHT), androstane-3a,17b-diol (3a-diol) and androsterone
(ADT).29 UGT2B15 and UGD2B17, UGT enzymes that conju-
gate glucuronate to DHT and 3a-diol, are localized in prostate
luminal and basal cells, respectively.30–32 Inhibition of
UGT2B15/B17 by siRNA in LNCaP prostate tumor cells resulted
in enhanced proliferation with concomitant increased expression
of 8 androgen-responsive genes including PSA and VEGF.32

In our study, UGDH was quantified in acini/epithelium of
archived biopsies from 32 cancer cases and 32 age-matched
controls by quantitative fluorescence imaging.10 Our study
revealed a differential expression of UGDH in the cancer and
the premalignant field and identified UGDH as a potential
biomarker for PC field/disease effect.

Material and Methods
Study design

The retrospective analysis of archived tissue blocks was per-
formed using 32 cancerous and 32 noncancerous core biop-

sies fixed in 10% neutral buffered formalin and embedded in
paraffin. All blocks were retrieved from the pathology ar-
chives of the Veterans Affairs Hospital at Omaha (VAHO).
Noncancerous biopsies were obtained from patients who
underwent initial biopsy because of suspect cancer and were
biopsy negative. Patients without clinical PC (controls) had
no evidence (stable PSA or negative repeat biopsy) of clinical
PC for at least 5 years (5–14years) following the initial bi-
opsy. Only patients that were negative for malignancy on a
rebiopsy or had a stable PSA level remained in the control
cohort. Control prostate core biopsies were random with
respect to noncancerous prostate conditions, i.e., no effort
was made to select a particular noncancerous condition, e.g.,
prostatitis or benign prostatic hyperplasia (BPH). Control
patients were retrospectively matched one-to-one with cancer
patients on the basis of age (65 years) and year of biopsy
(mainly the same year but not more than 3 years), yielding
32 matched biopsy pairs. All procedures were in compliance
with human studies protocols approved by the Institutional
Review Boards (IRB) of the VAHO and the University of
Nebraska Medical Center (UNMC).

Slides were prepared with 4-micron sections of each paraf-
fin block containing 3–6 cores and then 1 slide per block was
stained with hematoxylin and eosin (H&E). Two pathologists
(S.L. and D.H.) evaluated the H&E-stained slide specimens to
determine suitability of each specimen for the study.10 Clini-
cal and demographic data, excluding patient identifiers, were
obtained from patient records and associated with each anon-
ymous specimen (Table 1).

Prostatectomy specimens of consented subjects. In compli-
ance with IRB-approved protocols, tissue slices (200–300 mg)
were collected from surgically removed prostate glands of
consented patients, at UNMC and the VAHO. Specimens
collected from 2 benign hyperplastic (BH) glands character-
ized by glandular hyperplasia and 3 cancerous (CA) glands
were processed according to standard procedures established
by the research laboratory.10 Specimens were fixed with 4%

Table 1. Summary of clinical data for prostate cancer cases and
controls

Control cases1 Cancer cases

Number of cases/controls 32 32

Mean age at biopsy (years) 66.5 66

Age range at biopsy (years) 55–77 57–77

Year of biopsy (range) 1992–1998 1991–1997

PSA (ng/ml) at time of
biopsy (range)

0.8–13.7 1.3–70.5

Gleason Score (range) — 2–9

2–4 (number) — 4

5–7 (number) — 22

8–10 (number) — 6

1Glandular hyperplasia or no noted pathology defined on a biopsy.
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EM grade formaldehyde (Polysciences, Warrington, PA) or
methacarn fixative, embedded in paraffin, sectioned at 4
microns, and mounted to glass slides. Formaldehyde is con-
ventionally used as a fixative for archiving clinical samples.
However, methacarn fixative introduces fewer cross-links in
tissue protein, allowing for better extraction and less altera-
tion of protein from tissue specimens,3,24 so it is more com-
patible with reverse-phase protein array analysis (RPPA). As
our validation of UGDH quantification required use of
RPPA, we compared QFIA data from the same tissue fixed
with each fixative. A tissue microarray (TMA) prepared with
1 mm cores from formaldehyde-fixed and methacarn-fixed
tissue slices included triplicate cores from glandular areas of
the 2 BH glands and normal appearing areas and cancerous
areas of the 3 CA glands. Slide specimens of a formaldehyde-
fixed slice from 1 BH gland were used to validate QFIA
measurements of UGDH in slide specimens, by parallel
RPPA analyses of proteins extracted from adjacent tissue
sections.

PC3 cells. PC3 cells (American Type Culture Collection,
Manassas, VA) cultured in RPMI 1640 medium supple-
mented with 10% heat-inactivated fetal bovine serum were
harvested at laboratory passage 10–15, fixed in 0.5% EM
grade formaldehyde in phosphate-buffered saline (Polyscien-
ces), and imprinted to glass slides, as previously described.10

Development and specificity of the rabbit anti-UGDH

antibodies

Antibodies against human UGDH were developed as previ-
ously described.33 Briefly, recombinant UGDH expressed in
Escherichia coli was purified from soluble lysates by nickel-
NTA chromatography and used to raise polyclonal antibodies
in New Zealand white rabbits (performed by Covance
Research). Sera were ammonium sulfate fractionated before
use in experiments. The optimal dilution of the resultant
anti-UGDH antibody was determined by titration using
standard prostate tissue section slides from a noncancerous
prostate and an established QFIA standard procedure. The
dilution (1:500) at which fluorescence yielded a saturation
plateau was considered optimal.

Western blot analysis. Cultured 22Rv1 human prostate carci-
noma cells (ATCC), cultured in RPMI containing 10% FBS,
as recommended by the vendor, were washed with PBS and
treated for 30 min on ice, with lysis buffer [50 mM Tris, 150
mM NaCl and 1% (v/v) Nonidet P-40; pH 8.0].

The lysate was centrifuged to remove insoluble material.
Ten microliters of lysate (10 lg protein) and 6-histidine
tagged recombinant UGDH antigen (rUGDH; 10 ng) were
loaded onto the stacking gel. Proteins were fractionated on a
12% SDS-polyacrylamide gel and blotted to a PVDF mem-
brane (ImmobilonTM-P; Sigma-Aldrich). The blot was treated
for 1 hr at room temperature with blocking buffer [20 mM
Tris, 137 mM NaCl, 5% (wt/vol) dried milk, 0.05% (v/v)
Tween 20 and 0.05% (v/v) Nonidet P-40; pH 8.0] and then

incubated overnight at 4�C with anti-UGDH antiserum (1/
5,000 dilution). Rabbit Ab were incubated with peroxidase-
conjugated goat anti-rabbit IgG (Amersham Pharamacia Bio-
tech) for 1 hr and a chemiluminescence signal was generated
with the SuperSignal Ultra detection system (Pierce
Chemical).

Competitive inhibition of tissue labeling with recombinant

UGDH. Increasing concentrations (0, 10�9, 10�8, 10�7 and
10�6 M) of recombinant UGDH were incubated for 2 hr
with an optimum dilution (1/500) of anti-UGDH or preim-
mune rabbit serum in an antibody diluent (Invitrogen Corp.,
Carlsbad, CA). Subsequently, the mixtures were applied to
duplicate slide specimens of a BH gland and the slides were
incubated overnight at 4�C, washed and treated with Alexa
FluorV

R

conjugated goat anti-rabbit IgG, mounted in ProLong
GoldV

R

antifade medium and sealed with lacquer. Ab-depend-
ent signal in prostate epithelium, corrected for the corre-
sponding Ab-independent signal produced by treatment with
preimmune serum, was quantified by QFIA (later).

Reverse-phase protein array analysis

Slide specimens to be extracted were stained with Mayer’s he-
matoxylin and reviewed by light microscopy for structural in-
tegrity. The entire section was shaved off the glass slide, with
a single-edge razor blade and deposited into 200 lL of
extraction buffer consisting of a 1:1 mixture of 2� Tris-Gly-
cine SDS sample buffer and Tissue Protein Extraction Rea-
gent (TPER; Pierce Biotechnology, Rockford, IL) plus 2.5%
b-mercaptoethanol. The sample was heated for 2 hr at 70�C,
sonicated for 10 min and heated at 95�C for 8 min. The sam-
ple was centrifuged for 5 min at maximum speed and the su-
pernatant was stored at 5�C for a maximum of 48 hr, prior
to spotting onto nitrocellulose slides.

Analysis of specimen extracts was implemented as previ-
ously described. Serial 2-fold dilutions of each extract and
human recombinant UGDH starting from (10 ng/100 lL)
were transferred to a 384-well polypropylene plate. Samples
were arrayed to nitrocellulose glass slides (LI-COR Bioscien-
ces, Lincoln, NE) with an 8-pin arrayer (VP478) according to
the instructions of the manufacturer (V&P Scientific, San
Diego, CA). Arrayed nitrocellulose slides were placed in a
light-tight box that contained desiccant and stored at �20�C
for no more than 5 days prior to protein quantification.

For protein labeling, arrays were treated with Re-BlotTM

antibody stripping solution (Chemicon, Temecula, CA) for
15 min at room temperature, washed in PBS and then incu-
bated overnight in blocking solution (1.2 g I-BlockTM [Tro-
pix, Bedford, MA] and 600 lL TweenV

R

20 [Sigma, St. Louis,
MO] dissolved in 600 mL Dulbecco’s PBS) at 4�C. Duplicate
arrays were treated with anti-UGDH or preimmune control
serum (both at 1:500) for 2 hr at room temperature and then
washed twice for 10 min with TBS-T solution. Subsequently,
the slides were treated for 30 min (in the dark, at room tem-
perature) with IRDyeTM 800 CW-conjugated goat anti-rabbit
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IgG (LI-COR Biosciences, Lincoln, NE) at a dilution of
1:2,500 and then washed with TBS-T and air-dried.

Slides were scanned with the Odyssey infrared imaging
system (LI-COR) at a resolution of 84 lm, a sensitivity of 7.0
and a background setting of ‘‘medium.’’ The images were an-
alyzed with the Odyssey software. Integral fluorescence inten-
sity, corrected for background, was determined for each spot
and the mean of each set of triplicate spots was determined.

Quantitative fluorescence imaging analysis

Fluorescence labeling of slide-mounted tissues and imprinted

PC3 cells. Slide specimens of paraffin-embedded tissue slices
and core biopsies were deparaffinized with EZ-AR Com-
monTM (BioGenex Laboratories, San Ramon, CA) and treated
with EZ-AR1TM (BioGenex Laboratories) for epitope recov-
ery, according to manufacturer specifications. Fluorescence
labeling was implemented with a computer-controlled autos-
tainer (BioGenex i6000TM) as previously described.10 Briefly,
moist slides were soaked in Super Sensitive Wash BufferTM

(BioGenex, San Ramon, CA) for 15 min, blocked with 10%
goat serum (Zymed Laboratories, San Francisco, CA) for 20
min, treated overnight at 4�C with an epitope-saturating dilu-
tion of anti-UGDH (1:500) and then labeled at room temper-
ature for 1 hr with Alexa FluorV

R

568 conjugated goat anti-
rabbit IgG (200 lg/mL; Molecular Probes, Eugene, OR). Con-
trols were treated with preimmune serum. Labeled specimens
were mounted with ProLong GoldV

R

anti-fade medium (Mo-
lecular Probes/Invitrogen, Eugene, OR), sealed with clear lac-
quer and stored at �20�C. PC3 cells were labeled with the
same procedures, except that epitope recovery was not
required.

As it was not possible to label all core biopsy specimens
of the 32 matched pairs of cases and controls in 1 run, we
implemented a design to minimize run-to-run variations and
their effects on measurement of UGDH expression.10 The
first run included duplicate slides of 7 cases and matched
controls, 6 slide specimens each of the tissue standard and
PC3 cells. One slide of each duplicate was treated with anti-
UGDH serum and the second with preimmune serum. The
second run was a replicate of the first, yielding 2 slides each
of antibody-treated and control slides for each cell and tissue
specimen. This cycle was repeated with some variation in the
number of matched cases and controls, until all core biopsies
were labeled.

Fluorescence imaging and image capture. Fluorescence
images were captured with a Leica epifluorescence micro-
scope as previously described.10 The Leica microscope
(DMRXA2; North Central Instruments, Plymouth, MN) was
equipped with a mercury/xenon excitation lamp (Model
E7536; Hamamatsu Corp., Bridgewater, NJ) and digital b/w
CCD camera (Model ORCA-C4742-95-12ER; Hamamatsu
Corp.). We captured twelve-bit grayscale images with Image-
ProVR Plus software (MediaCybernetics, Bethesda, MD), using
a 10� objective and a Texas Red filter set (Chroma 41004).

Each image capture session was initiated with a protocol to
confirm consistent system performance across analytical
runs.10 Briefly, 3 slides were prepared with suspensions of
InSpeckTM fluorescent microspheres. Grayscale images of
200–400 microspheres per slide were captured and the mean
pixel intensity (MPI) of each was determined with Image-
ProVR Plus software. Mean and standard deviation of the
MPIs for spheres from each suspension were computed and
compared to the values of previous image capture sessions.

Digital images of labeled tissue specimens and the corre-
sponding isotype controls were captured no more than 3
days after the slides were processed with the BioGenex autos-
tainer. Camera frames were selected to maximize the number
of events (single cells, acini or epithelial strips) captured. In
addition, frames of cancerous cores were selected to capture
both cancerous acini/epithelium (CA) and normal appearing
acini (NAA). Categories of acini/epithelium included CA,
NAA and noncancerous acini (NA) of control cores and the
tissue standard. Typically, 30–300 acini per slide were cap-
tured in each category and 200–400 single cells were captured
from each slide preparation of the PC3 cells. Images were
stored as 12-bit grayscale files. Labeled specimens matched to
those specimens analyzed by RPPA were treated differently.
Contiguous, nonoverlapping images of antibody- labeled
specimens and isotype controls were captured with the 4�
objective to encompass the entire tissue section.

Quantification of fluorescence signal in captured images.

Images were partitioned into relevant events (e.g.; prostatic
acini or single cells) and fluorescence signal was quantified
with the Image-ProV

R

Plus software.10 Partitioning of prostate
epithelium was achieved by setting a lower threshold just
above background emission, typically ca. 230–250 grayscale
units (gsu), and an upper threshold at the upper limit of the
12-bit grayscale, i.e., 4,095 gsu. Image-ProV

R

Plus generated an
array of measurements that included event number, area,
mean pixel intensity (MPI), sum of pixel intensities and max-
imum and minimum pixel intensity. The algorithm for event
MPI excluded the background pixels of each partitioned
event.

Quantification of the UGDH signal in slide specimens
matched to those analyzed by RPPA did not entail partition-
ing individual acini. The sum of pixel intensities corrected
for background was determined for the entire tissue section
for comparison to total UGDH content of the paired tissue
section as determined by RPPA.

Data analysis

UGDH expression under different analytical conditions.

Concordance of UGDH expression in methacarn-fixed tissues
analyzed by RPPA and QFIA, and in methacarn-fixed and
formaldehyde-fixed tissues analyzed by QFIA was evaluated
by linear regression analysis. The correlation coefficient (r
value) was calculated as an indicator of the strength of the
linear relationship.
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UGDH expression in archived core biopsies and PC3

cells. MPIs of labeled acini/epithelium and single cells were
corrected for nonspecific immunoglobulin labeling and back-
ground emission by subtracting the average MPI (AMPI) of
the corresponding isotype control (typically 250–300 gsu).
Arithmetic average, standard deviation and standard error
were computed for each type of event (single cell, acinus or
epithelial strip). Differences between the AMPIs of acinar cat-
egories (NA, NAA, CA) were evaluated by a paired t-test
(PlotITVR software, Scientific Programming Enterprises, Has-
lett, MI) for matched pairs and unpaired t-test (GraphPadIn-
stat, GraphPad Software, San Diego, CA) for unmatched
cohorts.

Receiver operating characteristic (ROC) curves were gen-
erated by GraphPad Prism, version 4 (GraphPad Software)
for case-associated AMPIs of CA or NAA in relation to con-
trol-associated AMPIs of NA, plotted as a function of
increasing threshold AMPI. Fractional area-under-curve
(AUC) along with 95% confidence intervals were determined
for each plot. An AUC � 0.67 indicated significant discrimi-
nation of cases (NAA or CA) and controls (NA). Sensitivities
and specificities and their 95% confidence intervals were
determined at selected threshold values. Bootstrapping was
used to estimate confidence intervals for the AUC and for
the sensitivity and specificity at selected threshold values, tak-
ing into consideration the repeated measures design of the
tests (2 slides per person). Two-hundred bootstrapped sam-

ples were used to estimate the confidence intervals, re-sam-
pling at the person level within a group (NA, NAA and CA)
to preserve the correlation structure from 2 slides within a
person.

Results
Specificity and reproducibility of the analysis of UGDH in

single cells and in prostate tissue sections, by QFIA

The specificity of the fluorescence signal produced by the
rabbit antibody (Ab) against UGDH was determined by both
Western analysis of a cell lysate and competitive blockade of
the Ab- dependent signal produced in tissue sections. The Ab
recognized a single band in whole-cell lysate prepared from a

Figure 1. Specificity of rabbit antiserum prepared against UGDH.

(a) A Western Blot of whole cell lysate of 22Rv1 prostate cancer

cells and purified recombinant UGDH (rUGDH) was probed with

rabbit anti-UGDH serum, yielding a single band. (b) Slide

specimens of a benign hyperplastic prostate gland were probed

with anti-UGDH serum alone or in combination with the indicated

concentrations of rUGDH. After secondary labeling with Alexa Fluor-

conjugated goat anti-rabbit IgG antibodies, fluorescence images

were captured and prostate acini were partitioned. Background-

corrected MPI was determined for each acinus and average MPI

was calculated for 50 to 70 acini per slide specimen.

Figure 2. Stability of the imaging system and reproducibility of

UGDH quantification across analytical runs. System stability was

determined by quantifying the fluorescence emission of standard

microspheres in a set of 3 slides; prior to each imaging/image

capture session. Fluorescence was corrected for background and

expressed as AMPI of 200–300 microspheres. AMPI are given in

grayscale units (gsu) on a 12-bit scale (0–4,095 units). The data of

4 representative analytical runs are presented. Six slide specimens

of standard PC3 cells and 2 slide specimens of a benign prostate

gland were incorporated into each analytical run. Both standards

were probed with rabbit anti-UGDH anti-serum and labeled with

Alexa Fluor 568-conjugated goat anti-rabbit IgG. Background

corrected fluorescence emission was expressed as AMPI of 400–

700 single cells and 100–200 prostatic acini, per slide. Each bar

represents the mean of the AMPI of 3 slides (microspheres), 6

slides (PC3 cells) or 2 slides (prostate tissue). Data of 4

representative analytical runs are presented. The standard errors

for each set of 3 microsphere slides are 1, 10, 2 and 12 gsu; each

set of 6 PC3 slides are 13, 19, 29 and 32 gsu; and each set of 2

prostate tissue slides are 15, 25, 18 and 24 gsu, for analytical run

1, 2, 3 and 4, respectively. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]
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human prostate adenocarcinoma cell line (22Rv1) (Fig. 1a).
The molecular mass was the same as that of purified
recombinant UGDH (rUGDH) adjusted for its epitope tag.
In cancerous prostate tissue sections, the Ab produced a
bright signal that was progressively inhibited with increasing
concentrations of rUGDH (Fig. 1b). Inhibition was nearly
complete by the addition of 10�7 M rUGDH to the Ab
solution.

As a requirement for reproducible analysis, performance
of the imaging system was evaluated at the start of each
image acquisition session with standard fluorescent micro-
spheres. The AMPI of 200–400 microspheres per slide was
determined with 3 slide preparations of microspheres. Fluo-
rescence emission of the standard microspheres varied less
than 5% among the image capture sessions required for our
study, as exemplified by the results of 4 of these system eval-
uation routines (Fig. 2).

Reproducibility of the UGDH measurements within and
across analytical runs was determined with PC3 cells (6 slides
per run) and prostate tissue standards (2 slides per run)
incorporated into each analytical run. Negative controls were
included for background correction. Representative data from
4 analytical runs are presented in Figure 2. Within each run,
the AMPIs of individual slides differed from the means of
replicate slides by an average of 7% for PC3 cells and 8% for
prostatic acini. Across runs, the means of replicate slides dif-
fered from the mean of the AMPIs of all slides by an average
of 5% for PC3 cells and 8% for acini.

Validation of QFIA of UGDH in prostate specimens by RPPA

Correlation of UGDH content in slide specimens of metha-

carn-fixed, paraffin-embedded prostate tissues, determined

by both QFIA and RPPA. The study design required parallel
analyses of adjacent serial sections, minimizing differences in
protein expression between the slide specimens to be ana-
lyzed. RPPA was selected for validation of QFIA because it is
an established method for quantification of proteins in laser-
dissected slide specimens and can be applied to individual
slide specimens.34,35 As our goal was to analyze UGDH in
paraffin-embedded, archived specimens, we implemented this
stage of validation with methacarn-fixed, paraffin-embedded
prostate specimens. Proteins may be extracted, by standard
extraction procedures, with high efficiency from tissues fixed
with methacarn, unlike tissues fixed with the crosslinking fix-
ative formaldehyde.36,37 Most of the UGDH signal was seen
in the prostate epithelium; consequently, we determined total
UGDH signal in paired slide specimens of each tissue
sample.

Concordance of the UGDH measurements determined by
RPPA and QFIA of slide-mounted sections was evaluated
with specimens from 2 BH glands and 3 cancerous glands,
previously screened by QFIA and selected to provide a wide
range of UGDH expression. Consistency of the protein array-
ing procedure is apparent in the infrared scans of the UGDH
standard and extracts of the slide specimens (Fig. 3a), which
show similar fluorescence intensity and spot size among trip-
licate spots. For all specimens, integrated fluorescence was a

Figure 3. Reverse-Phase Protein Array analysis of UGDH in slide specimens of prostate tissue. Slices of 2 benign hyperplastic (BHG;

specimens ED and AJ) and 3 cancerous (CAG; specimens EE, CX and EG) glands were fixed in methacarn, embedded in paraffin and

sectioned at 4 microns. One slide specimen of each gland was shaved from its slide and deposited in extraction buffer. (a) Serial 2-fold

dilutions of the extracts and human rUGDH standard (10 lg/100 lL) were spotted (40–50 nL/spot) in triplicate to nitrocellulose slides that

were probed with anti-UGDH anti-serum (Ab) and labeled with IRDye 800 CW conjugated goat anti-rabbit IgG. Slides were scanned with an

infrared imaging system. Each specimen (EE, ED, CX, EG, AJ) and recombinant UGDH is represented by 2 rows of spots. Top row, dilutions

of 1/1, 1/4, 1/16 and 1/64; bottom row, dilutions of 1/2, 1/8, 1/32 and 1/128. A control slide (ISO), probed with preimmune rabbit

serum and labeled with IRDye 800 CW conjugated secondary Ab, served as a background control. (b) The background-corrected

fluorescence of each spot was expressed as integrated fluorescence intensity and plotted against sample dilution.
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linear function of extract dilution (Fig. 3b), permitting quan-
titative comparisons of UGDH measurements obtained by
the 2 analytical methods. Integrated fluorescence intensity of
each tissue section, determined by QFIA, was plotted as a
function of integrated intensity of the paired tissue section,
determined by RPPA (Fig. 4a). The data exhibited a linear
relationship with a correlation coefficient of 0.97, indicating
that the QFIA measurements were directly proportional to
the UGDH content of the tissue specimens.

Correlation of QFIA measurements of UGDH in acini/

epithelium of prostate specimens fixed in methacarn or

formaldehyde. Concordance of QFIA and RPPA data was
evaluated with methacarn-fixed slide specimens, because pro-
teins may be extracted by standard extraction methods, with
high yield.36 More complex procedures are required for
lower-yield extractions of proteins from tissues fixed with the
cross-linking fixative formaldehyde without additional specific
procedures.38 As we were interested in applying QFIA to
archived tissues routinely fixed with formaldehyde, it was
necessary to evaluate the concordance of QFIA measure-
ments of UGDH in methacarn-fixed and formaldehyde-fixed
tissues. We used a tissue microarray (TMA) that incorpo-
rated both methacarn- and formaldehyde-fixed specimens
from the same surgically removed cancerous and noncancer-
ous prostate glands. The TMA permitted a direct comparison
of expression in the NA of 3 BH glands, the NAA of 2 can-
cer-bearing glands and the CA of 1 cancer-bearing gland.
Prostate acinar epithelium was analyzed for our study. The
AMPIs of acinar epithelium in tissues fixed with formalde-
hyde were plotted as a function of the AMPIs of acinar epi-
thelium in tissues fixed with methacarn, and the correlation
coefficient was calculated (Fig. 4b). AMPIs of formaldehyde-
fixed and methacarn-fixed tissues exhibited a linear relation-
ship with a correlation coefficient of 0.98. We concluded that
QFIA of UGDH in slide specimens produced measurements
that were directly proportional to UGDH expression, as
determined by RPPA validation and that QFIA may be
applied to quantification of the protein in archived prostate
specimens fixed in a formaldehyde-based fixative, as deter-
mined by parallel QFIA of methacarn- and formaldehyde-
fixed tissues.

Application of QFIA to an evaluation of UGDH expression in

archived prostate biopsies

The preceding work provided the foundation for the applica-
tion of QFIA to expression profiling of UGDH in acinar epi-
thelium of archived prostate biopsies. UGDH was analyzed
in a cross-sectional case-control study that included 32 can-
cer cases and 32 controls matched on the basis of age (65
years) and year of biopsy (63 years). Clinical and demo-
graphic data are summarized in Table 1. AMPIs corrected
for background fluorescence are presented in Table 2. Expres-
sion in CA compared to NA was significantly higher (p <

0.01) in 22 of the 32 matched pairs of cases and controls.

The mean 6 standard error of the AMPIs of CA for the 32
cases was 665 6 32 compared to 544 6 18 (p < 0.003),
respectively, for NA of the matched controls. Surprisingly,
UGDH expression in NAA relative to NA was significantly

Figure 4. Validation of QFIA for expression profiling of UGDH in

archived prostate specimens. (a) Tissue slices from 2 cancerous

(CA) and 3 benign hyperplastic (BPH) prostate glands were fixed in

methacarn, embedded in paraffin and sectioned at 4 microns.

UGDH expression in adjacent serial sections was determined, in

parallel, by QFIA and RPPA and expressed as integrated

fluorescence intensity. Measurements by these 2 methods

exhibited a linear correlation with an R-value of 0.97. (b) Tissue

slices from cancerous and noncancerous glands were fixed in 4%

formaldehyde or in methacarn, embedded in paraffin and

incorporated into a tissue microarray that was sectioned at 4

microns. UGDH in normal prostatic acini of 2 BH glands, normal-

appearing acini of 1 cancer bearing gland and cancerous acini of 3

cancerous glands was quantified by QFIA and expressed as AMPI.

Measurements of AMPI in the acini of methacarn-fixed and

formaldehyde-fixed tissue slices exhibited a linear correlation with

an R-value of 0.98.
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lower. The mean 6 standard error of the AMPIs of NAA for
all cases was 464 6 16 (p < 0.003 vs. NA of matched con-
trols). ‘‘Grayscale images acquired from a representative pair
of patients depict these differences in AMPIs of NA, NAA
and CA (CA > NA > NAA) and identify acinar epithelial
cells as the main site of UGDH expression (Fig. 5a). Discrim-

ination of cancer cases and noncancer controls, on the basis
of UGDH expression in prostatic acini, was visualized with
cumulative frequency plots of AMPIs of the NA of each con-
trol and the CA and NAA of each case. The percent of indi-
viduals at or below designated AMPI values was plotted as a
function of AMPI (Fig. 5b). The frequency plots were well

Table 2. UGDH expression in the acini/epithelial cells of biopsy specimens

Patient prostate
core biopsies in
matched pairs

Average of corrected MPI 6 STDEV1

p values2
Non prostate
cancer control cases
normal acini (NA)

Prostate cancer cases

Cancerous
acini (CA)

Normal appearing
acini (NAA) NA vs. CA3 CA vs. NAA4 NA vs. NAA5

1 458.2 6 33.5 445.5 6 137.6 606.0 6 358.6 >0.05 <0.01 <0.01

2 479.5 6 67.2 352.4 6 13.3 446.1 6 24.1 <0.01 <0.01 >0.05

3 470.7 6 86.2 744.2 6 26.6 487.2 6 52.2 <0.01 <0.01 >0.05

4 453.0 6 142.3 880.8 6 43.8 424.15 6 75.0 <0.01 <0.01 <0.01

5 605.3 6 0.7 684.4 6 61.2 449.0 6 37.2 <0.01 <0.01 <0.01

6 451.0 6 5.3 845.1 6 179.7 588.6 6 35.7 <0.01 <0.01 <0.01

7 737.2 6 49.4 414.0 6 25.2 618.4 6 79.3 <0.01 <0.01 <0.01

8 779.3 6 10.8 705.6 6 163.3 348.3 6 75.1 >0.05 <0.01 <0.01

9 574.1 6 4.0 876.1 6 43.4 660.2 6 155.0 <0.01 <0.01 0.02

10 633.1 6 50.2 653.2 6 7.5 435.8 6 17.0 >0.05 <0.01 <0.01

11 430.7 6 114.7 843 6 43.4 488.9 6 79.3 <0.01 <0.01 <0.01

12 451.2 6 10.1 552.6 6 6.1 293.5 6 14.9 <0.01 <0.01 <0.01

13 548.6 6 61.4 611.1 6 55.0 490.3 6 46.9 <0.01 <0.01 >0.05

14 568.5 6 4.3 1113.0 6 30.9 563.7 6 89.8 <0.01 <0.01 >0.05

15 498.3 6 71.6 735.5 6 150.7 436.3 6 121.9 <0.01 <0.01 <0.01

16 512.1 6 9.0 452.1 6 2.0 292.5 6 0.4 <0.01 <0.01 <0.01

17 605.4 6 35.3 909.3 6 15.2 571.0 6 11.4 <0.01 <0.01 >0.05

18 591.5 6 104.4 718.1 6 99.6 392.3 6 5.3 <0.01 <0.01 <0.01

19 636.5 6 105.6 536.15 6 60.5 409.4 6 74.0 <0.01 <0.01 <0.01

20 392.2 6 23.3 503.7 6 88.9 485.0 6 113.4 <0.01 >0.05 <0.01

21 469.6 6 8.1 742.2 6 42.1 565.8 6 22.9 <0.01 <0.01 <0.01

22 762.5 6 92.7 961.0 6 22.1 447.0 6 93.6 <0.01 <0.01 <0.01

23 424.9 6 12.8 813.5 6 29.3 474.5 6 76.5 <0.01 <0.01 <0.01

24 676.1 6 19.8 407.7 6 47.2 470.2 6 40.1 <0.01 <0.01 <0.01

25 598.4 6 75.6 561.0 6 86.3 407.4 6 34.6 >0.05 <0.01 <0.01

26 571.6 6 89.4 475.8 6 28.1 272.5 6 35.0 <0.01 <0.01 <0.01

27 422.4 6 42.8 661.3 6 4.9 392.6 6 4.6 <0.01 <0.01 >0.05

28 557.8 6 60.7 647.4 6 14.2 447.6 6 61.7 <0.01 <0.01 <0.01

29 447.7 6 43.6 633.2 6 15.4 501.7 6 1.8 <0.01 <0.01 <0.01

30 578.3 6 15.3 448.5 6 42.4 475.4 6 37.1 <0.01 <0.01 <0.01

31 552.9 6 82.9 792.5 6 45.4 463.3 6 58.2 <0.01 <0.01 <0.01

32 478.6 6 41.8 570.9 6 281.3 439.3 6 1.0 <0.01 <0.01 <0.01

1Average of the background corrected Mean pixel intensity (MPI) of UGDH labeling in individual acini. 2Significance of differences was determined
by a two-tailed Student’s t-test between two samples with unequal variance. 3Cancerous acini (CA) compared to non-cancerous acini (NA) of the
matched controls. 4Normal appearing acini (NAA) in cancerous glands compared to cancerous acini (CA) of the same gland. 5NAA in cancerous
glands compared to non-cancerous acini (NA) of the matched controls.
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separated and illustrated quantitative differences in UGDH
expression. To quantify the observed discrimination of cases
and controls, we analyzed ROC plots of the UGDH expres-
sion data. First, we compared cases and controls on the basis
of UGDH expression in CA and NA of the matched pairs
(Fig. 6a). At a cut point of 700 gsu, UGDH expression classi-
fied 42% (95% CI, 23–61%) of cancer cases and only 9%
(95% CI, 0–19%) of controls as cancer positive. Then, we
compared cases and controls on the basis of UGDH expres-
sion in the NAA and NA of the matched pairs (Fig. 6b). At a
cut point of 410 gsu, UGDH classified 35% (95% CI, 17–
52%) of cancer cases and only 9% (95% CI, 0–20%) of con-
trols as cancer positive. These data support the application of
QFIA to archived biopsies for protein expression profiling
and identification of candidate biomarkers of disease.

The range of PSA values of the cancer patients was higher
(1.3–70.5 ng/mL) than that (0.8–13.7 ng/mL) of control
patients. To further evaluate the ability of UGDH expression
to differentiate CA or NAA from NA, we compared the
group means of UGDH fluorescence intensity (AMPI) for PC
(N ¼ 21) and control (N ¼ 32) patients with similar range

of PSA values (<14.0 ng/mL). Mean values for CA and NAA
were significantly different (p < 0.003) from the mean for
NA (Fig. 7). Interestingly, the means 6 standard errors for
NAA and CA (445.1 6 17.9 and 651.8 6 42.8 gsu, respec-
tively) in PC patients from these groups were similar to val-
ues obtained for all PC patients (463.8 6 16.3 and 665.3 6
32.5 gsu for NAA and CA, respectively, N ¼ 32), possessing
similar differences (p < 0.003) from the mean for NA. We
conclude that the ability of UGDH expression to differentiate
CA or NAA from NA was independent of the PSA values.
Differences between CA and NA in UGDH expression also
remained similar when cancer cases were subdivided to low
grade (Gleason score 3–6) and high grade (Gleason score 7–
9) cases demonstrating independence from the grade of alter-
ation in UGDH expression in CA vs. NAA (data not shown).
Taken collectively, the data demonstrate (i) increased UGDH
expression in the CA and decreased expression in the NAA
of the same prostate relative to the NA of noncancerous
prostates and (ii) the ability of QFIA to quantify UGDH
within acini of the nonmalignant field in a biopsy specimen
with a potential to improve diagnosis of PC.

Figure 5. UGDH expression determined by QFIA of archived prostate biopsies is significantly different among 3 classes of prostatic acini;

normal acini (NA) of noncancerous glands and normal appearing acini (NAA) and cancerous acini/epithelium (CA) of cancerous glands. (a)

Grayscale images of prostatic acini labeled with anti-UGDH anti-serum and Alexa Fluor 568 conjugated goat anti-rabbit IgG were captured

with a 10� objective. Normal acini (image 1) exhibited fluorescence intensity intermediate between cancerous acini (image 2) and normal

appearing acini (image 3). Both cancerous and normal appearing acini were captured in image 4. (b) UGDH was quantified in the CA and

NAA of biopsies from 32 prostate cancer patients and in the NA of biopsies from 32 age-matched controls without clinical cancer. The

average of the background-corrected mean pixel intensity (AMPI) for acini/epithelium within each class was determined for each case and

control. The percentage of cases or controls at or below the selected threshold AMPIs was plotted for each class of acinus/epithelium.
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Discussion
Quantification of heterogeneous proteins in prostate tissues
in the context of a tumor has significant application to stud-
ies of human pathogenesis and molecular epidemiology. In a
previous study, b-catenin was quantified by QFIA within
compartments of prostate tissue biopsy specimens.10 In the
premalignant field, b-catenin was a strong biomarker for PC.
The objective of the current study was to quantify UGDH as
a second potential biomarker for detecting individuals at risk.
The advantage of QFIA is the ability to precisely quantify
protein profiles in small human biopsy specimens using fluo-
rescently labeled antibodies without laser microdissection.10

Although antibodies have been widely used in flow cytometry
and conventional immunohistochemistry for decades, recent
engineering advances clearly demonstrated the power of
imaging technology in combination with quantitative immu-
nohistochemistry.10 Rao and coworkers39–41 and Rimm and
co- workers42,43 have confirmed the development of a quanti-
tative fluorescence method (AQUA) for detecting biomarkers
in tissue microarrays. Additional instrumentation has been
developed to promote the rapid development of similar

methodological approaches.44,45 This report exemplifies some
of the technical aspects of QFIA validation and focuses on
UGDH as a field disease/effect marker in PC biopsies.

Our study results indicate a UGDH expression differential
between the malignant and the premalignant fields that may
be a component of both the early and late stages of prostate
carcinogenesis. In malignant acini, overexpression of UGDH
may drive overproduction of HA and other proteoglycans,
which are synthesized from the UDP-glucuronic acid product
of UGDH. Excess HA in conjunction with elevation of its
processing enzyme promotes prostate tumor growth12,46

through increased tumor cell cycling and intrinsic tumor cell
motility. HA ligation of CD44 receptors activates various q-
family GTPases, PI3-kinase/Akt,47,48 and tyrosine phospho-
rylation of c-Met, the receptor for hepatocyte growth factor/
scattering factor that controls prostate tumor cell prolifera-
tion, motility and invasion.49 In addition to the direct stimu-
lation of tumor cells through cell surface receptors, HA may
also promote cancer progression via activation of cancer
stem-like cells. Recent studies in breast and ovarian tumor
cell lines demonstrated a link between HA-CD44 interaction
and activation of signaling via both Nanog (embryonic tran-
scription factor expressed in stem cells) and ankyrin (cytos-
keletal protein).47 As PC stem-like cells express CD4427,49

and Nanog,26 HA may thereby stimulate stem cell migration
from the tumor site. The androgen-induced stimulation of
UGDH expression in the LNCaP prostate tumor cell line did
not result in overproduction of HA.33 This does not preclude
a link between UGDH and HA within malignant compart-
ments in clinical PC.

In the premalignant field concept, genetic and epigenetic
changes sequentially drive prostate epithelial cells toward the

Figure 6. Receiver operating characteristic plots of UGDH

expression determined as AMPI of the CA and NAA of cancer

patients, in relation to UGDH expression in the NA of the matched

controls. The fraction of controls with NA values at or below

selected AMPIs and that of cases with NAA values at or below the

same AMPIs were plotted as 1-specificity and sensitivity,

respectively (a). The fraction of controls with NA values at or above

selected AMPIs and that of cases with CA at or above the same

AMPIs were plotted as 1-specificity and sensitivity, respectively (b).

Figure 7. Comparative analysis of UGDH expression in normal acini

(NA), cancerous acini (CA) and normal appearing acini (NAA) of

specimens grouped by patient PSA level. Averages (AMPI) and

standard errors were compared to evaluate correlation between

UGDH expression in NA, CA and NAA obtained from 28 control

patients (NA) and a cohort of patients (n ¼ 21) with PC selected

for a similar range of PSA (<14 ng/ml). *p < 0.003 vs. NA.Fa
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metastatic phenotype. Precancerous lesions express molecular
markers proximal to the tumor prior to discernable morpho-
logical patterns of malignancy. Field cancerization has been
confirmed for several cancers since Slaughter suggested this
concept in 1953.8 Recent studies reported alterations in the
mitochondrial genome, physical DNA conformation changes,
methylation of GSTP1 and RARb2, expression of b-catenin
in normal appearing cells adjacent to prostate tumor as com-
pared to cancer cells or noncancerous cells, supporting
Slaughter’s hypothesis.5-7,9,10,50 This concept has resulted in
the identification of field disease/effect markers which have
significantly improved diagnosis and risk assessment among
individuals in a prospective longitudinal study who had been
occupationally exposed to carcinogens.50 Such a profile for
PC would assist in determining who is at risk for PC and
who requires rebiopsy, but only longitudinal studies can dis-
tinguish field effect from field disease. This is feasible in blad-
der cancer screening because the entire organ can be viewed
cystoscopically and sampled by bladder wash or biopsy at the
initiation of the study to assure there is no occult tumor
causing a field effect change.51

Besides regulating HA production, the activity of UGDH
controls the level of intracellular androgen by supplying
UGT2B15 and UGT2B17 isozymes with the requisite UDP-glu-
curonate precursor for glucuronidation and inactivation of
androgen.29–32 Ligation of the androgen receptor (AR) within
tumor cells by intracellular androgen results in enhanced cell
growth, proliferation, stress responses and apoptosis.52

Decreased expression of UGDH in NAA in cancer patients
would restrict glucuronate availability, thus increasing active
androgen levels and potential for increased AR signaling.
Genetic polymorphisms that reduce or eliminate UGT2B15 or
UGT2B17 activity have been associated with higher risk of
PC.53 Similarly, accumulation of active androgens and increased
proliferation was observed in LNCaP cells after decreasing the
level of glucuronidation by these enzymes with specific
siRNA.32 Altogether, these data support a role for decreased
hormone glucuronidation in early development of PC.

Low expression of UGDH in the premalignant field may
influence additional pathways of carcinogenesis by a similar
mechanism. For example, lipoxygenase-1 (15-LOX-1) is over-
expressed in prostate carcinomas54,55 and enhances malignant
potential by upregulating IGF-1 receptor and activating the
Akt pathway.56,57 The active product of lipoxygenation by
15-LOX-1,13-(S)hydroxyoctadecadienoic acid (13-HODE)58 is
also a substrate for UGT2B-mediated glucuronidation in the

prostate. Therefore, decreased UGDH expression in the pre-
malignant field may promote accumulation of 13-HODE,
contributing to carcinogenesis. As UGDH expression has the
potential to drive UGT2B equilibria in the direction of hor-
mone and xenobiotic inactivation,33 its loss may have broad
consequences for increasing the response to androgens and
xenobiotics that contribute to tumorigenesis.

The causes of UGDH downregulation are unknown and
may include multiple mechanisms: (i) hypermethylation or
other epigenetic modification of the UGDH gene; (ii) activa-
tion of UGDH promoter-specific transcriptional repressor
proteins, which bind a putative peroxisome proliferators-acti-
vated receptor-a, PPARa, response element and/or PPARa
agonists59,60; (iii) loss of Sp1 activated transcription of
UGDH during metabolic stress.61–63 Although precise mecha-
nisms are not known, this does not detract from the utility
of UGDH as a candidate component of a biomarker panel to
detect individuals at risk for PC.64 UGDH is a weaker marker
than a b-catenin, and the ROC plot for UGDH is similar to
those for PSA. However, the strength of the multiplexing
approach, which measures biomarker proteins as continuous
variables, resides in the ability to optimize the ROC plots for
multiple biomarkers quantified in the same tissue section.

The data presented here indicate that UGDH may poten-
tially add at least 14% to a biomarker profile, setting the ROC
at 98% specificity. Combination of tissue biomarkers such as
UGDH with serum biomarkers such as PSA in a nomogram
approach may improve individual risk assessment. Whether
the quantitative profiling of UGDH expression on a biopsy,
alone or in combination with other potential biomarkers of a
nonmalignant field, may supplement use of PSA blood testing
to diagnose prostate malignancy remains to be determined.
Although UGDH alone is not a highly sensitive biomarker,
the results indicate that it may be useful as a component of a
biomarker panel to detect the premalignant field.64,65 Our
studies warrant an independent validation of UGDH alone,
and in concert with other biomarkers such as b-catenin10

using prostate biopsy specimens to assess the value of prema-
lignant field characterization in PC risk assessment.
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