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Nonlinear mixed effects models provide a flexible and powerful platform for the analysis 

of clustered data that arise in numerous fields, such as pharmacology, biology, agriculture, 

forestry, and economics.  This dissertation focuses on fitting parametric nonlinear mixed 

effects models with single- and multi-level random effects.  A new, efficient, and 

accurate method that gives an error of order , fully exponential Laplace 

approximation EM algorithm (FELA-EM), for obtaining restricted maximum likelihood 

(REML) estimates in nonlinear mixed effects models is developed.  Sample codes for 

implementing FELA-EM algorithm in R are given.  Simulation studies have been 

conducted to evaluate the accuracy of the new approach and compare it with the Laplace 

approximation as well as four different linearization methods for fitting nonlinear mixed 

effects models with single-level and two-crossed-level random effects.  Of all 

approximations considered in the thesis, FELA-EM algorithm is the only one that gives 

unbiased or close-to-unbiased (%Bias < 1%) estimates for both the fixed effects and 

variance-covariance parameters.  Finally, FELA-EM algorithm is applied to a real dataset 

to model feeding pigs’ body temperature and a unified strategy for building crossed and 

nested nonlinear mixed effects models with treatments and covariates is provided.   
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CHAPTER 1 

INTRODUCTION 

 

Nonlinear mixed effects models are mixed effects models in which both fixed and 

random effects are allowed to have a nonlinear relationship to the response variable. They 

are natural extensions of the nonlinear regression models for handling data from several 

individuals and the linear mixed effects models to the case of a nonlinear response 

function.  Nonlinear mixed effects models provide a flexible and powerful platform for 

the analysis of clustered data.  Since the first developments of nonlinear mixed effects 

models appear in Sheiner and Beal in 1980, nonlinear mixed effects models have been 

widely used in numerous fields, such as pharmacokinetics, biology, agriculture, 

environment, medicine, and economics. 

 

1.1 Motivation 

The evaluation of the log-likelihood function in nonlinear mixed effects models is a 

rather complex numerical issue because it involves the evaluation of a multiple integral 

that, in most cases, does not have a closed-form expression.  Different approximation 

methods have been proposed to circumvent this problem.  The most popular 

approximation methods used to estimate the parameters in nonlinear mixed effects 

models are linearization methods.  Linearization methods use a first-order Taylor series 

expansion to approximate the nonlinear model function around the current estimates of 

the fixed effects and a choice of expansion locus for the random effects – either around 

zero that is the expected value of the random effects (Sheiner and Beal, 1980; Wolfinger 
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and Lin, 1997, zero-expansion method), or around the current estimates of the random 

effects (Lindstrom and Bates, 1990; Wolfinger and Lin, 1997, EBLUP-expansion 

method), and then maximize the likelihood corresponding to the resulting approximate 

linear mixed effects model.  Linearization methods are computationally simple because 

they avoid complicated numerical integrations; however, they may produce substantial 

bias in parameter estimation with limited number of observations per stratum and large 

variability of random effects (Ge, Bickel and Rice, 2004). 

 

This bias has motivated researchers to seek more accurate methods to improve the 

estimation in nonlinear mixed effects models.  Laplace approximation is a popular 

method, which is based on using a second-order Taylor series expansion to integrate out 

either the random effects (Pinheiro and Bates, 1995; Vonesh, 1996), or both the random 

effects and the fixed effects by assuming a flat prior for the fixed effects (Wolfinger, 

1993) from the marginal likelihood.  While Laplace approximation methods provide 

more accurate estimates than linearization methods and are computationally efficient, 

they can also introduce a bias in parameter estimation when the number of subjects is 

small (Breslow and Lin, 1995; Shun and McCullagh, 1995; Kauermann, Xu, and Vaida, 

2008).  Other methods include Gaussian quadrature approach (Pinheiro and Bates, 1995), 

importance sampling approach (Pinheiro and Bates, 1995), and Markov Chain Monte 

Carlo technique (Wakefield, Smith, Racine-Poon, and Gelfand, 1994).  These numerical 

integration methods are often referred to as “exact” methods in statistical literature, 

“exact” in the sense that they can be made as accurate as desired by taking sufficient 

large number of grid points or simulated samples.  The numerical integration methods 



 3

work extremely well for single-level nonlinear mixed effects models with a small number 

of random effects (i.e., one or two), but can become computationally intensive as the 

number of random effects increases (Vonesh, Wang, Nie, and Majumdar, 2002). 

 

An alternative to the direct approximate to the marginal likelihood of nonlinear mixed 

effects models is the use of the expectation-maximization (EM) algorithm (Dempster, 

Laird, and Rubin, 1977).  Since the traditional EM algorithm has the same difficulty that 

the exact maximum likelihood approach has in fitting nonlinear mixed effects models, 

various simulated EM algorithms for handling nonlinear mixed effects models have 

received increasing interest in the statistical literature.  The Monte Carlo version EM 

algorithms use Monte Carlo integration to approximate conditional expectations in the E-

step and generate simulated samples either from the assumed distribution of the random 

effects (Walker, 1996) or via importance sampling from a mixture distribution that is 

simple in the form, easy to sample from, and efficient (Wang, 2007).  The stochastic 

approximation version EM algorithm (Kuhn and Lavielle, 2005) replaces the E-step by a 

simulation step and a stochastic approximation step to obtain simulation samples from a 

Markov Chain Monte Carlo procedure.  Like the numerical integration methods for direct 

approximation to the marginal likelihood of nonlinear mixed effects models, the 

computation of the simulated EM algorithms can also be challenging as the number of 

random effects increases. 

 

The purpose of this dissertation is to develop a new, efficient, and accurate method, fully 

exponential Laplace approximation EM algorithm (FELA-EM), for obtaining restricted 
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maximum likelihood (REML) estimates in parametric nonlinear mixed effects models 

with single- and multi-level random effects.  The proposed FELA-EM algorithm gives 

more accurate estimates, an error of order , than those from Laplace 

approximation, an error of order , while preserving the numerical simplicity of 

Laplace approximation and thus, the proposed FELA-EM algorithm is computationally 

much simpler than numerical integration methods and simulated EM algorithms. 

)/1( 2nO

)/1( nO

 

1.2 Summary of the remaining chapters 

In Chapter 2, we review the literature of four kinds of nonlinear mixed effects models 

(parametric modeling, nonparametric modeling, semi-parametric modeling, and Bayesian 

modeling) and their corresponding parameter estimation methods.  A review of software 

packages available for fitting mixed effects models is also given. 

 

In Chapter 3, we propose the EM algorithm using the fully exponential Laplace method 

to approximate the conditional expectations of the complete data sufficient statistics in 

the E-step for obtaining restricted maximum likelihood estimates in single-level nonlinear 

mixed effects models.  We compare the FELA-EM algorithm with the Laplace 

approximation and four different linearization methods using simulation results to 

evaluate the accuracy of the new approach.  These comparisons provide a useful 

foundation for the relative potential strengths and weaknesses of the considered 

estimation methods for fitting nonlinear mixed effects models. 
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In Chapter 4, the FELA-EM algorithm for single-level nonlinear mixed effects models is 

generalized to fit multi-level nonlinear mixed effects models with two crossed random 

effects, to which none of the numerical integration methods and simulated EM algorithms 

are currently directly applicable. 

 

Chapter 5 contains an application of the proposed FELA-EM algorithm to a real dataset, 

where a multilevel nonlinear mixed effects model with both crossed and nested random 

effects applied in a replicated Latin square design is developed to model feeding pigs’ 

body temperature in conjunction with three thermal environmental treatments, the 

amount of feed intake, and the duration of the meal.  Random effects associated with 

three classification factors are introduced into a modified first-order compartment model.  

The within-event correlation is described by an AR(1) model. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction 

Mixed effects models are often used to handle correlation that arises in longitudinal or 

other clustered data (Crowder and Hand, 1990; Verbeke and Molenberghs, 2000; Littell, 

Milliken, Stroup, Wolfinger, and Schabenberger, 2006).  Longitudinal data can be loosely 

defined as data in the form of repeated measurements on the same unit over time or over 

another set of conditions, like repeated measurement of physiological effect on the same 

subject in response to different doses of a drug in pharmacodynamic studies.  The unit in 

which the observations are measured repeatedly is also referred to as the individual or 

cluster and may correspond to diverse entities such as humans, animals, plants, 

laboratories, or experiments.  Longitudinal data appear, frequently, both in observational 

studies which are longitudinal in nature, and in experimental studies incorporating 

repeated measures designs and include a broad range of research areas, such as forestry, 

agriculture, animal science, life sciences, pharmacokinetics, medical and public health 

research.  Examples occur in many fields: 

• In forestry, a measure of growth may be taken on the same tree monthly over 

several years and trees are associated with different site preparation treatments or 

soil types. 

• In animal science, a measure of the body temperature may be taken at hourly 

intervals on the same animal and animals are assigned to different thermal 

environments.  
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• In pharmacokinetics, a measure of the drug concentration may be taken at several 

times on the same rat following administration and rats are initially given 

different amounts of oral dose. 

The scientific questions often involve not only how the mean response differs among 

treatments, but also how the mean response changes over time and whether or not that 

change depends on treatment effects. 

 

Observations on the same unit usually cannot be considered independent and mixed 

effects models provide a convenient way for modeling such dependence.  In the mixed 

effects model, the response is assumed to be a function of fixed effects, non-observable 

individual specific random effects, and an error term.  Observations within the same unit 

share common random effects and are therefore statistically dependent. 

 

A mixed effects model contains two types of parameters: fixed effects and variance-

covariance components.  In many practical applications, estimates of the random effects, 

which are associated with individual units randomly drawn from a population, are also of 

interest. 

 

Different estimation methods have been studied for mixed effects models.  While 

methods (maximum likelihood and restricted maximum likelihood) for solving linear 

mixed effects models are available in many software packages and described in many 

references (Harville, 1977; Longford, 1993; Pinheiro and Bates, 2000; SAS Institute, 
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2004), methods for nonlinear mixed effects models are still being explored (Davidian and 

Giltinan, 1995; Vonesh and Chinchilli, 1997; Davidian and Giltinan, 2003). 

 

2.2 Linear mixed effects models 

Linear mixed effects models are mixed effects models in which both the fixed and the 

random effects enter linearly into the model function.  Laird and Ware (1982) have 

presented a general form of such models, 

 

),,(~),,(~

,,...,2,1,

Ψ0D0

ZX

NN

Mi

ii

iiiii
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εbβy =++=
                                                               (2.2.1) 

 

where  is an ( ) vector of responses for the  unit,  is an  vector of fixed 

effects,  is an  vector of random effects distributed as normal with mean 0 and 
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ib
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 vector of within unit errors and is normally distributed with mean 0 and variance-

covariance matrix .  It is further assumed that the random effects  and the within unit 

errors  are independent for different units and independent of each other for the same 
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Several methods have been proposed to estimate parameters in the linear mixed effects 

models and the most common ones are likelihood-based methods: maximum likelihood 
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(ML) and restricted maximum likelihood (REML).  To find (RE)ML estimates, we need 

to maximize the objective function associated with ML or REML over all unknown 

parameters.  The optimization is usually conducted using the Expectation-Maximization 

(EM) algorithm (Dempster, Laird and Rubin, 1977) or Newton-Raphson methods 

(Thisted, 1988).  There are no closed form expressions for the distribution of (RE)ML 

estimates and inference (hypothesis tests and confidence intervals) are generally based on 

asymptotic normality. 

 

2.3 Nonlinear regression models 

Nonlinear regression is a powerful tool for analyzing scientific data.  Many real-life 

phenomena can be described by a nonlinear regression function, such as in pharmacology, 

physiology, biology, and etc.  Usually, the model parameters are easier to interpret 

compared to those from linear models because the parameters in nonlinear models 

generally have a natural physical interpretation. Before the age of computers, nonlinear 

regression was not readily available to most scientists. Instead, scientists transformed 

their data to make a linear relationship, and then analyzed the transformed data with 

linear regression. These methods are outdated and should not be used to analyze data 

since the linear transformation always distorts the experimental error.  Estimation for a 

nonlinear regression model is an iterative process.  The general steps for fitting a 

nonlinear regression model are: (1) Give an initial value for each parameter in the model; 

(2) Generate the curve defined by the initial values and calculate the residual sum of 

squares; (3) Adjust the value for each parameter to make the curve come closer to the 

data points.  There are a number of different algorithms for adjusting the value for each 
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parameter, such as steepest-descent or gradient method, Newton method, Gauss-Newton 

method, Marquardt method, etc.  All these methods use derivatives (or approximations to 

derivatives) of the residual sum of squares with respect to the parameters to search for the 

parameter estimates that produce the smallest residual sum of squares; (4) Use the 

adjusted estimates as new starting values.  Repeat steps (2), (3), and (4) until a 

termination criterion is satisfied.  

 

2.4 Nonlinear mixed effects models 

Nonlinear mixed effects models are mixed effects models in which some of the fixed 

and/or random effects enter nonlinearly to the model function. Nonlinear mixed effects 

models may be regarded as an extension of 1) the nonlinear regression models to fit data 

from several individuals and 2) the linear mixed effects models to the case of a nonlinear 

response function.  Nonlinear mixed effects models are a popular platform for analyzing 

clustered data when interests focuses on individual-specific characteristics.  They first 

received widespread attention in the statistical literature in the late 1980s, and a number 

of new computational methods for these models were developed in the 1990s.  Currently, 

nonlinear mixed effects models have been widely used in numerous fields, such as 

biology, agriculture, environment, medicine, and economics, and several different 

general-purpose software packages are also available. 

 

The general form of nonlinear mixed effects models is as follows: 

 

εbβy += ),(f                                                                                                 (2.4.1) 
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where y is the response vector, f is a general nonlinear function,  is the vector of fixed 

effects, b is the vector of random effects, and ε  is the error vector.  It is further assumed 

that the random effects b have a density and the errors ε  are normally distributed with 

mean 0 and variance-covariance matrix , with b independent of . 

β

εΨ

 

The first developments of nonlinear mixed effects models go back to Sheiner and Beal 

(1980).  Since then, a number of statistical approaches to nonlinear mixed effects 

modeling have been discussed in the literature and applied in data analyses.  Basically, 

they can be classified into four categories: parametric modeling, nonparametric modeling, 

semi-parametric modeling, and Bayesian modeling. 

 

2.5 Four categories of nonlinear mixed effects models 

2.5.1 Parametric nonlinear mixed effects models 

For parametric nonlinear mixed effects models, we have a model similar to (2.4.1) with a 

further assumption that the random effects b have a normal distribution.  A major 

complication of parameter estimation in the parametric nonlinear mixed effects model is 

the likelihood function, which is based on the marginal distribution of y , does not 

usually have a closed form solution.  Different methods have been presented for 

estimating the parameters in the parametric nonlinear mixed effects model and there is an 

ongoing debate in the literature about which is the most adequate method.  Most of the 

estimation methods can be divided into three categories: linearization methods (Sheiner 

and Beal, 1980; Lindstrom and Bates, 1990; Wolfinger and Lin, 1997), integral 
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approximation methods (Wolfinger, 1993; Pinheiro and Bates, 1995; Vonesh, 1996), and 

EM algorithms (Walker, 1996; Kuhn and Lavielle, 2005; Wang, 2007).  The linearization 

methods approximate the nonlinear mixed effects model by a first-order Taylor series 

expansion to arrive at a pseudo-model that is typically of the linear mixed effects model 

form. Integral approximation methods use Laplace approximation, Gaussian quadrature, 

or importance sampling to calculate the marginal distribution of y  and then maximize 

the likelihood directly.  As an alternative to the direct approximate to the marginal 

likelihood, EM algorithms approximate the conditional expectation of the log likelihood 

in the E step and then maximize the expected log likelihood to obtain the estimates in the 

next E step.  The linearization methods are by far the most popular approaches due to 

their numerically simplicity.  More details are discussed in Section 2.6. 

 

2.5.2 Nonparametric nonlinear mixed effects models 

For nonparametric nonlinear mixed effects models, a maximum likelihood method was 

proposed by Mallet, Mentre, Steimer and Lokiek (1988).  The difference between their 

model and a parametric model is that they make no assumptions about the distribution of 

the random effects, except that it is a probability measure.  The conditional distribution of 

the response y given the random effects is assumed to be known.  The objective of the 

estimation procedure is to get the probability distribution of the cluster-specific effects, b, 

that maximizes the likelihood of the data.  Mallet (1986) proved that the maximum 

likelihood solution is a discrete distribution with the number of discontinuity points less 

or equal to the number of clusters in the sample. 
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2.5.3 Semi-parametric nonlinear mixed effects models 

For semi-parametric nonlinear mixed effects models, a maximum likelihood estimation 

method was proposed by Davidian and Gallant (1992).  The difference between their 

model and a parametric model is that they allow the distribution of the random effects to 

be free to vary within a class of smooth densities, H, defined in Gallant and Nychka 

(1987).  Densities in H may be skewed, multi-modal, and fat-tailed or thin-tailed relative 

to the k-variate normal density.  Class H also contains the normal density.  However, 

densities in H may not exhibit unusual behavior such as kinks, jumps, or oscillation.  A 

density from H can be expressed as an infinite linear combination of normal densities.  In 

the likelihood calculations the summation is truncated to a finite number of terms and 

numerical integration is carried out using Gauss-Hermite quadrature.  This semi-

parametric approach is implemented in the Nlmix software, available through StatLib 

(Davidian and Gallant, 1992). 

 

2.5.4 Bayesian approach to nonlinear mixed effects models 

A Bayesian approach to nonlinear mixed effects models is proposed by Bennett and 

Wakefield (1993), Wakefield (1993), and Wakefield, Smith, Racine-Poon, and Gelfand 

(1994).  They use a three-stage model and Markov Chain Monte Carlo (MCMC).  In the 

first stage, they specify the conditional density of the observation y given the random 

effects b and the fixed effects β.  In the second stage, they specify the density of the 

random effects b given β, and in the third stage,  a prior density for β.  The posterior 

density of the random effects can be obtained using Markov chain Monte Carlo methods 

and then any desired feature of the posterior density, such as the mode, moments, 
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probabilities and credible intervals can be approximated.  MCMC techniques have been 

implemented in WinBUGS (Spiegelhalter, Thomas, Best and Lunn 2003), which is an 

all-purpose software package for Bayesian analysis.  The most popular MCMC method is 

the Gibbs Sampler.  For a detailed account of the Gibbs Sampler and general MCMC, see 

Gilks, Richardson and Spiegelhalter (1996).  MCMC has a great potential in its ability to 

handle mixed effects models with high dimensional random effects given currently 

available computing resources.  However, because of difficulties of assessing 

convergence to stationarity and the error in estimates, Evans and Swartz (1995) comment 

that Markov chain methods are recommended only when there are no other adequate 

alternatives. 

 

2.6 Estimation methods for parametric nonlinear mixed effects models 

There are different formulations of nonlinear mixed effects models available in the 

literature.  In this dissertation, we focus on the parametric nonlinear mixed effects model 

with normally distributed random-effects and error terms, which is given by 

 

,,...,1    ,,...,1    ,),( iijiij njMify ==+= εbβ                                                  (2.6.1) 

 

where  is the  observation on the  subject,  is a nonlinear function,  is a p-

dimensional vector of fixed effects,  is a q-dimensional random effects vector 

associated with the  subject (not varying with 

ijy thj

i

thi

ib

f β

th j ) and assumed i.i.d. normal with mean 

0 and variance-covariance matrix D, ijε  is the error and assumed i.i.d. N , )2σ,0( M  is 
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the number of subjects, and  is the number observations on the  subject.  It is further 

assumed that  and 

in thi

ib ijε  are independent.  As mentioned in Section 2.5.1, there are three 

main approaches for parametric nonlinear mixed effects models: linearization methods, 

integral approximation methods, and EM algorithms, and all of them are approximation 

methods since the likelihood function of the parametric nonlinear mixed effects model 

does not generally have a closed form solution. 

 

2.6.1 Linearization methods 

The basic idea of linearization is as follows: 1) Take a first-order Taylor series expansion 

of the model around some values of the random effects b and the current estimates of the 

fixed effects β, which yields a pseudo-model that is of the linear mixed effects model 

form; 2) Fit this pseudo-model; 3) Update the values of the random effects and the 

estimates of the fixed effects; 4) Repeat the process until a convergence criterion is met.  

The first-order Taylor series of the model function  in the model (2.6.1) around 

 and  is 
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Substituting for  in (2.6.1) with (2.6.2), we obtain (βf
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Rearranging terms in (2.6.3) produces the following approximate model that is of the 

linear mixed effects model form 
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     (2.6.4) 

 

Linearization methods are natural extensions of the linearization algorithms for classical 

nonlinear regression.  The advantages of linearization methods are: 1) it is 

computationally simple; 2) multiple levels of nested or crossed random effects can be 

accommodated; 3) it is implemented in popular software packages such as NLINMIX 

macro in SAS and NLME in both S-PLUS and R.  However, despite its popularity, the 

drawbacks of linearization methods are: 1) it may produce substantial bias in parameter 

estimation with limited number of observations per unit and large variability of random 

effects (Ge, Bickel and Rice, 2004); 2) it maximizes the likelihood of some pseudo-data, 

not the original data. 

 

Linearization methods differ in the expansion locus of the random effects.  Beal and 

Sheiner (1982) propose a first-order method, which approximates the likelihood by taking 

a first-order Taylor series expansion of the model function around the mean of the 

random effects (Notice: the mean of any random effects is simply 0).  They have 
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implemented their method in the software package NONMEM (Beal and Sheiner, 1992), 

which is widely used in pharmacokinetics.  It is also available in SAS proc nlmixed (SAS 

Institute, 2004) via the method=firo option.  Lindstrom and Bates (1990) suggest a more 

accurate approximation compared to the first-order method, which takes a first-order 

Taylor series expansion of the model function around the current estimated best linear 

unbiased predictor (BLUP) of the random effects.  Their method is implemented in 

another popular software package, called NLME (Pinheiro and Bates 2000), available in 

both S-PLUS (Insightful Corporation 2007) and R (R development core team 2009).  The 

function NLME can only be used to solve nonlinear mixed effects model with nested 

random effects.  Wolfinger and Lin (1997) use a different algorithm to implement both 

Beal and Sheiner’s and Lindstrom and Bates’ linearization methods in the SAS macro 

NLINMIX.  NLINMIX can be used to solve nonlinear mixed effects model with both 

crossed and nested random effects. 

 

2.6.2 Integral approximation methods 

The basic idea of integral approximation is as follows: 1) Approximate the marginal 

likelihood of the response y using a technologically available numerical integration 

routine; 2) Maximize the approximated likelihood numerically.  Integral approximations 

are generally computationally more demanding than linearization methods.  However, 

integral approximations usually maximize the likelihood of the original data and they can 

generate more consistent and accurate estimates in parameter estimation compared to 

linearization methods (Schabenberger and Pierce 2001).  Therefore, it is usually a good 

idea to use linearization methods to provide starting values for the more accurate integral 
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approximation methods.  Different methods based on integral approximation have been 

proposed to fit nonlinear mixed effects models.  They include Laplace approximation, 

Importance Sampling, and Gaussian quadrature methods. 

 

The Laplace approximation is a method for approximating integrals using local 

information about the integrand at its maximum.  Therefore, it is most useful when the 

integrand is highly concentrated about its maximizing value.  The Laplace approximation 

has been widely used in Bayesian analyses to compute posterior means and variances of 

parametric functions and it is also useful for approximating the likelihood in nonlinear 

mixed effects models when the integrals in the likelihood do not have closed form 

solutions (Naylor and Smith, 1982; Tierney and Kadane, 1986; Leonard, Hsu and Tsui, 

1989; Tierney, Kass and Kadane, 1989).  In both cases, the Laplace approximation 

converges to the correct value of the integral as the sample size goes to infinity.  Given a 

one-dimensional integral of a positive function p(b) and denoted the log of the positive 

function p(b)  as l(b), the Laplace approximation in its simplest form is 

 

,))ˆ())(ˆ(exp(2)( 2
1

−
′′−≈∫ blbldbbp π                                                                (2.6.5) 

 

where  maximizes l(b).  Note that this form of the approximation only applies to 

positive integrands.  The idea for this approximation comes from a second order Taylor 

series expansion of l(b) about b = .  That is, for b near b , 

b̂

b̂ ˆ
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Given q-dimensional integrals of a positive function p(b) and the log of the integrand l(b), 

the Laplace approximation with similar results is 

 

,)ˆ())ˆ(exp()2()( 2
1

2
−

′′−≈∫ blbldbbp
q

π                                                               (2.6.6) 



 22

 

where  maximizes l(b) and b̂ )ˆ(bl ′′−  denotes the determinant of the matrix .  

quati (2.6.6) differs from the univariate case (2.6.5) in that the second derivativ

l(b) has been replaced by the determinant of the matrix of second-order derivatives, and 

f

))ˆ(( bl ′′−

e of E on 

the power o  π2  is multiplied by the dimension q to give a power of q/2.  Laplace 

approximation to nonlinear mixed effects models has different variations.  The ML 

version proposed by Pinheiro and Bates (1995) treats the marginal likelihood of the 

nonlinear mixed effects model as an integral with respect to the random effects only 

while the REML version presented by Wolfinger (1993) integrates out both the random 

effects and the fixed effects by assuming a flat prior for the fixed effects from the 

marginal likelihood of nonlinear mixed effects models.  While Laplace approximation 

provides more accurate estimates than linearization methods and is computationally 

efficient, the ML version Laplace approximation procedure can introduce a bias for 

mixed effects models when the number of subjects is small (Breslow and Lin, 1995; Shun 

and McCullagh, 1995; Kauermann, Xu, and Vaida, 2008).  The performance of the 

REML version Laplace approximation still needs further investigated.  The ML version 

Laplace approximation is implemented in the nlmixed procedure of SAS (SAS Institute, 

2004) for fitting single-level nonlinear mixed effects models.  Bates, Maechler, and Dai 

(2008) extend the ML version of Laplace approximation for single-level nonlinear mixed 

effects models to multilevel nonlinear mixed effects models with both crossed and nested 

random effects and implement their approach in the new R function NLMER.   

 



 23

Importance sampling is a common method to approximate an integral numerically.  It 

takes advantage of the fact that any integral can be thought of as an expectation function.  

or an arbitrary multiple integral, we can always represent it by F
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Gaussian quadrature method makes use of the Gauss-Hermite quadrature rule to 
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where is the weight function,  are weights,  are abscissas, 

and ature poi s.  If h vals a  se

conditional mode of the random effects, the resulting quadrature approximation is called 

adaptive Gaussian quadrature approximation.  For more details about Gaussian 

quadrature approximation, see Abramowitz and Stegun (1964), Golub and Welsch (1969), 

dom effects (e.g., one or two).  However, they 

ecome computationally intensive as the number of random effects increases (Vonesh, 

erforming an expectation step (E-step) and a 

aximization step (M-step).   Its simplicity and stability have made it a popular approach 

ihood estimates of parameters in statistical models that depend 

with respect to the conditional distribution of the missing 

ates of the parameters 

 )()()( xwxfxh =

GQ  is the numb

, )(xw  

er of the quadr

iw

e int

ix

leN nt  t er re cted around the 

Golub (1973), Pinheiro and Bates (1995). 

 

Numerical integration methods including Gaussian quadrature, importance sampling, and 

other Monte Carlo (MC) integration methods work extremely well for nonlinear mixed 

effects models with a small number of ran

b

Wang, Nie, and Majumdar, 2002).    

 

2.6.3 EM algorithms 

The EM algorithm introduced by Dempster, Laird, and Rubin (1977) is an iterative 

method that alternates between p

m

for finding maximum likel

on missing data or unobserved variables.  Let y , y , and θ  represent the observed 

data, missing data, and the vector of parameters to be estimated, respectively.  On the 

th)1( +k  iteration, the E-step generally computes the expectation of the complete data 

obs

 under the current estim

mis

log-likelihood );,( θyy misobsl  

given the observed data data misy obsy
)(kθ , 
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The M-step is then to find )1( +kθ  t aximize 

Q

o m )( )(kQ θθ  for all θ  in the parameter space 

.  The two steps are repeated until convergence. 

 

or nonlinear mixed effects models, similar to the evaluation of the log-likelihood 

 the 

Ω

F

)( )(kfunction, the assessment of expectation Q lso involves the evaluation of a 

multiple integral that, in most cases, does not hav

θθ  a

e a closed-form expression.  Various 

mulated EM algorithms for nonlinear mixed models have been presented to 

 also sho

tractable.  The simulated samples used in Walker (1996) are from the assumed 

distribution of the random effects.  Wang (2007) presents a Monte Carlo EM (MCEM) 

algorithm that uses samples obtained from an easy-to-simulate and efficient importance 

distribution so that the computational intensity and complexity can be somewhat reduced.  

The stochastic approximation version EM (SAEM) algorithm proposed by Kuhn and 

Lavielle (2005) decomposes the E-step into a simulation step and a stochastic 

approximation step and samples of missing data are either simulated under the 

si

approximate the E-step.  Walker (1996) suggests using Monte Carlo integration to handle 

conditional expectations in the E-step and he ws that the M-step is analytically 

conditional distribution );( obsmisp θyy  or obtained from Markov Chain Monte Carlo 

(MCMC) procedure.  The SAEM algorithm requires the simulation of only one 

realization of the missing data for each iteration and, thus, substantially reduces the 

)(k
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computation time compared to MCEM.  Like that of the numerical integration methods 

for direct approximation l likelihood of nonlinear mixed effects models, 

the computation of the simulated EM algorithms can also be intensive as the number of 

random effects increases. 

 

Research on parameter estimation methods for the nonlinear mixed model is still in 

progress.  There are questions on how to implement the methods, how well the methods 

work, what are the asym

to the margina

ptotic and finite-sample properties.  For example, Vaida, 

itzgerald, and DeGruttola (2007) discuss a hybrid Monte Carlo and numerical F

integration EM algorithm for computing the maximum likelihood estimates for linear and 

nonlinear mixed models with censored data.  Noh and Lee (2008) propose the use of Lee 

and Nelder (1996) hierarchical-likelihood approach for the analysis of nonlinear mixed 

effects model and show that it gives statistically and computationally efficient estimates.  

Panhard and Samson (2009) use an extension of the stochastic approximation version of 

EM (SAEM) algorithm for obtaining maximum likelihood estimates of multilevel 

nonlinear mixed effects models with two nested random effects and show that their 

approach can achieve gains in accuracy over the linearization methods. 
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2.7 Software review 

Software packages offering the capacity to fit nonlinear mixed effects models are 

available from a few sources such as NONMEM, SAS, S-PLUS/R, and random effects 

modeling in AD Model Builder (ADMB-RE).  The first software package developed to 

fit nonlinear mixed effects models is NONMEM (Beal and Sheiner, 1992), which 

approximates maximum likelihood estimation based on the first-order and conditional 

first-order methods.  NONMEM has been widely used in the area of pharmacokinetic and 

pharmacodynamic analysis and it currently does not handle crossed random effects.  

 

With Release 8.0 and the later version, the NLMIXED procedure in SAS is available to 

fit nonlinear mixed effects models with Gaussian errors (The MIXED/NLMIXED 

Procedure, 1999).  The NLMIXED procedure approximates the integral for a nonlinear 

mixed effects model using Laplace approximation, importance sampling, and adaptive 

Gauss quadrature methods together with Beal and Sheiner’s first-order method.  So far, 

the NLMIXED procedure allows only one random statement, which limits nonlinear 

models to data with a single classification factor, that is, the NLMIXED procedure can 

only handle nonlinear mixed models without nested and crossed random effects. 

 

A SAS macro NLINMIX fits nonlinear mixed effects models with Gaussian outcomes 

based on linearization methods (Wolfinger and Lin, 1997).  The NLINMIX macro can 

handle nonlinear mixed models with both crossed and nested random effects. 
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The package NLME, written by Pinheiro and Bates, is very powerful for fitting nonlinear 

mixed effects models with nested random effects based on Lindstrom and Bates’ 

linearization method.  NLME is available in both S-PLUS and R.  A general description 

of the capabilities of NLME is given by Pinheiro and Bates (2000). 

 

A latest developed R function NLMER fits nonlinear mixed effects models by the ML 

version Laplace approximation (Bates, Maechler, and Dai, 2008).  NLMER can handle 

nonlinear mixed effects models with both crossed and nested random effects. 

 

The software package ADMB-RE (Skaug and Fournier, 2006) can handle nonlinear 

mixed models with both crossed and nested random effects.  ADMB-RE evaluates the 

marginal likelihood by either the Laplace approximation or importance sampling and 

calculates exact derivatives using Automatic Differentiation (AD).  Sampling from the 

Bayesian posterior in ADMB-RE uses MCMC (Metropolis-Hastings algorithm).  

Automatic Differentiation refers to a collection of techniques that exploit the chain rule 

of calculus to automatically evaluate derivatives of functions defined in computer 

programs.  To use ADMB-RE, users need to formulate the likelihood function in a 

template file using a C++ like language and then turn the template file into an executable 

program using a C++ compiler.  As noted by the authors, the program runs very slowly 

when handling random effects models.  The reason is that integration of the likelihood, 

the way ADMB-RE deals with random effects, is more computationally intensive than 

optimization. 
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There are many other popular software packages which can only handle linear mixed 

and/or generalized linear models, but not nonlinear mixed ones.  A major statistical 

software package, SPSS (Statistical Package for the Social Sciences) is among the most 

widely known and used programs for statistical analysis in social science (Landau and 

Everitt, 2004).  However, multilevel modeling in SPSS has definite limitations.  First, it 

cannot fit nonlinear mixed models.  Second, for fitting linear mixed models, it can not 

specify the covariance matrix at the lowest level.  In addition, the restriction to normal 

response models means that it cannot handle multilevel logistic regression and multilevel 

Poisson regression models.   

 

STATA is an integrated statistical package for Windows and other platforms such as 

UNIX, Macintosh and LINUX (Rabe-Hesketh and Everitt, 2004).  This package is 

becoming more widely used in the statistical community.  STATA Corporation has 

developed a set of commands for longitudinal data under the xt prefix.  However, as the 

commands were not developed to handle hierarchical data, only variance component 

models were available in the STATA 7.0 core package.  One user-defined command, 

gllamm, extends STATA capacity to fit hierarchical models, including generalized linear 

latent and mixed models. 

 

SYSTAT is one of the products from SYSTAT Software Inc. (Hedeker, Marcantonio and 

Pechnyo, 2000).  It is a statistics and graphics package for technical professionals in the 

areas of Data Analysis and Modeling.  In the past twenty years, it has been used in the 

fields of Life Sciences, Bio-medical, Environmental Sciences, Automobile, 
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Pharmaceuticals and etc.  With Release 10 of SYSTAT the mixed regression tool has 

become available for random effects analysis of hierarchical data.  However, SYSTAT 

cannot handle nonlinear and nonlinear mixed models. 

 

The Mixed-Up Suite is a family of standalone programs that fits 2-level mixed effects 

models (Hedeker and Gibbons, 1996a and b).  The first family member MIXOR that fits 

random-effects probit and logistic model for ordinal outcomes came out in 1993, 

followed by MIXREG, MIXNO, MIXPREG and MIXGSUR.  The Mixed-Up Suite can 

be used to fit mixed-effects linear regression, mixed-effects logistic regression for 

nominal or ordinal outcomes, mixed-effects probit regression for ordinal outcomes, 

mixed-effects Poisson regression, and mixed-effects grouped-time survival analysis.  

Thus, it cannot handle nonlinear mixed models.  As a free package with friendly interface 

and good documentation to cover standard two-level random effect models for Normal, 

categorical and count outcomes, the Mixed-Up Suite is a very good tool for researchers 

and newcomers to multilevel modeling.   

 

HLM (Hierarchical Linear Models) is a stand-alone software package handling mixed 

effects models and has been a popular program used by professional researchers and 

research students worldwide in areas of education and social science research as well as 

public health research (Raudenbush, Bryk, Cheong and Congdon, 2001).  With the 

version 5.04 for Windows, HLM allows for the analysis of linear and generalized linear 

mixed models with two or three levels of NESTING. 
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MLwiN has been created by the Centre for Multilevel Modeling team based at the 

Institute of Education together with various colleagues in other centers (Browne, 2003; 

Rasbash, Steele and Browne, 2003; Yang and Goldstein, 2003). The package can be used 

to fit linear and generalized linear mixed models with both nested and crossed random 

effects but it does not handle either nonlinear or nonlinear mixed models.  

 

GenStat was first developed in the 1960s at Rothamsted Experimental Station for use in 

design and analysis of agricultural experiments and has been in continuous development 

since (VSN International Ltd., 2006).  The major user group of GenStat is statisticians 

and scientists working in biological research.  Although most areas of statistical 

application are covered, GenStat’s particular strengths are in its ANOVA algorithm, 

which analyses balanced multi-level data, and the efficient REML algorithm which 

analyses multi-level data, allowing for correlated errors at any level of the data.  

Currently, GenStat supports the analysis of linear and generalized linear mixed models. 

 

EGRET was originally developed at the School of Public Health of University of 

Washington USA (Mauritsen, R.H., 1984) and it is widely used by Epidemiologists and 

Biostatisticians (Cytel Software Corporation, 2000).  Being dedicated to binomial and 

count data as well as survival data, EGRET is unable to fit Normal response models.  

EGRET concentrates on models for categorical data collected from Epidemiology and 

Biomedical studies and can be used to fit generalized linear models with and without 

random effects and survival models. 
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CHAPTER 3 

REML ESTIMATION IN NONLINEAR MIXED EFFECTS MODELS VIA THE 

FULLY EXPONENTIAL LAPLACE APPROXIMATION EM ALGORITHM 

 

3.0 Abstract 

A new EM algorithm using the fully exponential Laplace method to approximate the 

conditional expectations of the complete data sufficient statistics in the E-step for 

obtaining restricted maximum likelihood estimates in nonlinear mixed effects models is 

developed.  The main advantages of this approach are its combination of computational 

efficiency (preserving the numerically simplicity of Laplace approximation) and great 

estimation accuracy (giving an error of order )/1( 2nO ating variance-covariance 

components).  Four simulation studies have been conducted to evaluate the accuracy of 

the new approach and compare it with the Laplace approximation as well as four different 

linearization methods.  Of all approximations considered in the paper, our proposed EM 

algorithm is the only one that gives unbiased or close-to-unbiased (%Bias < 1%, 

Ratkowsky 1983) estimates for all the fixed effects and variance-covariance components 

with 95% confidence interval coverages similar to the nominal values for all the fixed 

effects. 

 for estim

 

Keywords: Nonlinear mixed effects model; EM; Laplace; Restricted maximum likelihood 
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3.1 Introduction 

Nonlinear mixed effects models have been used in numerous fields, such as 

pharmacokinetics, biology, medicine, and economics for analyzing repeated measure data.  

Estimation in nonlinear mixed effects models, typically, cannot be performed directly 

because the likelihood of these models has no closed-form expression due to the random 

effects entering nonlinearly in the models.  Different approximation methods have been 

proposed to circumvent this problem.  The most popular approximation methods used to 

estimate the parameters in nonlinear mixed effects models are linearization methods, 

which are based on using a first-order Taylor series expansion to approximate the 

nonlinear model function around zero that is the expected value of the random effects 

(Sheiner and Beal, 1980; Wolfinger and Lin, 1997, zero-expansion method), or around 

the current estimates of the random effects (Lindstrom and Bates, 1990; Wolfinger and 

Lin, 1997, EBLUP-expansion method), and then maximize the likelihood corresponding 

to the resulting approximate model.  Linearization methods are computationally simple 

and have been implemented in a number of software packages such as NONMEM (Beal 

and Sheiner, 1992), the %nlinmix macro and the nlmixed procedure in SAS (SAS 

Institute, 2004), and the nlme function (Pinheiro and Bates, 2000) in both S-PLUS 

(Insightful Corporation, 2007) and R (R development core team, 2009). 

 

Although linearization methods are popular and numerically simple, they can produce 

substantial bias in parameter estimation when the number of observations for each subject 

is small or the variability of the random effects is large (Ge, Bickel and Rice, 2004).  This 

has motivated the researchers to use more accurate methods like Laplace approximation, 
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numerical integration methods such as Gaussian quadrature (Pinheiro and Bates, 1995), 

and Monte Carlo methods such as importance sampling (Pinheiro and Bates, 1995) and 

Markov Chain Monte Carlo technique (Wakefield, Smith, Racine-Poon, and Gelfand, 

1994) to improve the estimation in nonlinear mixed effects models.  Laplace 

approximation methods are based on using a second-order Taylor series expansion to 

integrate out either the random effects (Pinheiro and Bates, 1995; Vonesh, 1996), or both 

the random effects and the fixed effects by assuming a flat prior for the fixed effects 

(Wolfinger, 1993) from the marginal likelihood of nonlinear mixed models.  While 

Laplace approximation methods provide more accurate estimates than linearization 

methods and are computationally efficient, the maximum likelihood (ML) Laplace 

approximation procedure, the one that integrates out the random effects only, can 

introduce a bias for mixed effects models when the number of subjects is small (Breslow 

and Lin, 1995; Shun and McCullagh, 1995; Kauermann, Xu, and Vaida, 2008).  The 

performance of the restricted maximum likelihood (REML) Laplace approximation, the 

one that integrates out both the random and fixed effects, still needs further investigation.  

Numerical integration methods and Monte Carlo methods are often referred as “exact” 

methods in statistical literature in the sense that they can be made as accurate as desired 

by taking sufficient large number of grid points (numerical integration methods) or 

simulated samples (Monte Carlo methods).  The “exact” approach works extremely well 

only for single-level nonlinear mixed models with small number of random effects (e.g., 

one or two), but can become computationally great intensive as the number of random 

effects increases (Vonesh, Wang, Nie, and Majumdar, 2002). 
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As an alternative to the direct approximate to the marginal likelihood of nonlinear mixed 

effects models, various simulated EM algorithms for nonlinear mixed models have 

received increased interest in the statistical literature.  The Monte Carlo version EM 

algorithms approximate conditional expectations in the E-step by Monte Carlo integration 

and simulated samples are either from the distribution of the random effects (Walker, 

1996) or via importance sampling from a mixture distribution that is simple in the form, 

easy to sample from, and efficient (Wang, 2007).  The stochastic approximation version 

EM algorithm (Kuhn and Lavielle, 2005) replaces the E-step by a simulation step and a 

stochastic approximation step and then simulation samples are obtained from a Markov 

Chain Monte Carlo procedure.  Like the Monte Carlo methods for direct approximation 

to the marginal likelihood of nonlinear mixed effects models, the computation of the 

simulated EM algorithms can also be challenging as the number of random effects 

increases. 

 

The problems of the current estimation methods for nonlinear mixed effects models 

(either producing biased estimates or numerically intensive) form the motivation of this 

study.  In this paper, we developed a new, efficient, and accurate EM algorithm, fully 

exponential Laplace approximation EM algorithm (FELA-EM), for obtaining restricted 

maximum likelihood (REML) estimates in parametric nonlinear mixed effects models.  In 

the E-step of the FELA-EM algorithm, the fully exponential Laplace method (Tierney 

and Kadane 1986; Tierney, Kass, and Kadane 1989) is used to approximate the 

conditional expectations of the complete data sufficient statistics.  The resulting 

approximations are generally as accurate as those based on third-order expansions and 
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requiring the evaluation of third derivatives.  We prefer REML estimation for variance 

parameters because it reduces bias by taking account of the degrees of freedom lost in 

estimating the fixed effects.  The bias of the maximum likelihood (ML) estimators can be 

substantial when the number of subjects is small in the nonlinear mixed effects model.  

Similar to Wolfinger (1993) and Noh and Lee (2008), we obtain REML estimates for 

variance parameters by integrating out the fixed effects from the conditional likelihood of 

nonlinear mixed models assuming a flat prior for the fixed effects.  We show that the 

FELA-EM algorithm gives more accurate estimates, an error of order , than 

those from Laplace approximation, an error of order , while preserving the 

numerically simplicity of Laplace approximation.  Thus, the FELA-EM algorithm is 

computationally much simpler than numerical integration and Monte Carlo methods. 

)/1( 2nO

)/1( nO

 

This paper is organized as follows.  In Section 3.2, we present the nonlinear mixed model 

and the likelihood of the model.  The FELA-EM algorithm is introduced in Section 3.3.  

In Section 3.4, we compare the proposed EM algorithm with the ML version of Laplace 

approximation as well as four linearization methods based on simulation data.  We give 

our overall conclusions in Section 3.5 and summarize the paper in Section 3.6. 

 

3.2 Model and likelihood 

We consider the following nonlinear mixed effects model: 

 

,,...,1    ,,...,1    ,),( iijiij njMify ==+= εbβ                                                  (3.2.1) 
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where  is the  observation on the  subject,  is a nonlinear function,  is a p-

dimensional vector of fixed effects,  is a q-dimensional random effects vector 

associated with the  subject (not varying with 

ijy thj

i

thi

ib

f β

th j ) and assumed i.i.d. normal with mean 

0 and variance-covariance matrix D, ijε  is the error and assumed i.i.d. N , )2σ,0( M  is 

the number of subjects, and  is the number observations on the  subject.  It is further 

assumed that  and 

in thi

ib ijε  are independent. 

 

Because the random effects b  are unobserved quantities, ML estimation in (3.2.1) is 

based on the marginal density of y , which is calculated as 

 

∫∫ == .)|(),,|(),,|,(),,|( 222 bDbβbybDβbyDβy dppdpp σσσ             (3.2.2) 

 

Similarly, by assuming a flat prior for the fixed effects β , REML estimation for 

variance-covariance components D  and  in (3.2.1) can be obtained by integrating out 

both the fixed effects and the random effects from the joint density of 

2σ

y , , and b , 

which is given by 

β

 

∫∫ == .)|(),,|(),|,(),|( 222 bβDbβbybβDbβ,yDy ddppddpp σσσ         (3.2.3) 

 

Since the model function f can be nonlinear in the fixed and random effects, both 

integrals (3.2.2) and (3.2.3) generally do not have a closed-form expression. 
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3.3 FELA-EM algorithm for REML estimates of variance-covariance 

components 

The EM algorithm introduced by Dempster, Laird, and Rubin (1977) has become a 

popular approach for finding maximum likelihood estimates in incomplete data problems 

due to its simplicity and stability.  It is an iterative method that alternates between an 

expectation step (E-step) and a maximization step (M-step).  Let  and  represent 

the observed and missing data, respectively.  Let  represent the complete data 

and θ  be the vector of parameters to be estimated.  On the 

obsy

th)

misy

),( misobsc yy

( 1+k  iteration, the E-step 

generally computes the expectation of the complete data log-likelihood  

conditional on the observed data  at the current estimates of the parameters  (or 

the initial values for the first iteration), 

);, θymis

)(kθ

( yobsl

obsy

 

].;);,([)( )()( k
obsmisobs

k EQ θyθyyθθ l=  

 

The M-step is then to find  to maximize )1( +kθ )( )(kQ θθ , 

 

),()( )()()1( kkk QQ θθθθ ≥+  

 

for all θ  in the parameter space .  The two steps are repeated until convergence.  When 

the complete data density belongs to the exponential family, the E-step is simplified to 

compute the expected sufficient statistics of the complete data.  The EM algorithm moves 

Ω
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to a better point at each iteration and the log-likelihood of the observed data does not 

decrease after an EM iteration. 

 

For the nonlinear mixed effects model (3.2.1), assume a flat prior for the fixed effects  

and consider  and  as the complete data and the missing data, 

respectively.  Let  represent the parameters for which REML estimates are 

required.  The E-step and M-step of the FELA-EM algorithm are described in sections 

3.3.1 and 3.3.2 respectively. 

β

),,( bβyc

(θ c=

),( bβc

),2 Dσ

 

3.3.1 E-step 

The E-step gives the conditional expectation of the complete data log-likelihood 

, );,,( θbβyl
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and  is the total number of observations.  The density of the missing data 

 conditional on the observed data 

∑=
=

M

i inN
1

),b(βc y  at , )(kθ );,( )(kp θybβ , can be further written 

as 
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It can be seen from (3.3.2) that the density of the complete data  is from the 

exponential family and the sufficient statistics of the complete data for  and 

),,( bβyc

2σ D  are 
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respectively.  Thus, the E-step is simplified to compute the expectations of R  and  

conditional on 

nm,S

y  at  that are given by )(kθ
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nd the common terms that appear in both the numerator and denominator in (3.3.4) and 

11 MM

a

(3.3.5) and do not contain either β  or b  are cancelled.  The integrals in both the 

numerator and the denominator of (3.3.4) and (3.3.5) generally cannot be computed 

analytically because both R  and );,,( )(kθbβyh  can be nonlinear in the fixed and random 

effects.  In this paper, we .3.4) and (3.3.5) by the fully exponential 

Laplace method that will be presented in Section 3.3.3. 

 

 approximate both (3

.3.2 M-step 

ind  by solving the equation 

3
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ing differentiation under the integral sign, the unique solution to (3.3.5) is given 
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See Walker (1996) and Wang (2007) for a more detailed derivation.  Therefore, once the 

onditional expectations of the sufficient statistics 

1
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3.3.3 Fully

he fully exponential Laplace approximation to the ratio of two related integrals 

 

qnm ,...,1, =  are obtained, the process of the M-step is straightforward. 

 

 exponential Laplace approximation 

T

introduced by Tierney and Kadane (1986) is given by
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where )  is a positive scalar function, , and  and 

aximi  and , respectively.  Altho rox ations to 

∫

(φg
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ugh the errors in the Laplace app

r) in (3.3.8) are of order 1(O

φ̂

im

e

*φ̂  

 in

m *l

the two integrals (numerator and denominato )/ n , th  error  

the ratio (3.3.8) is of order )/1( 2nO  due to the cancellation of the similar error terms in 

the approximation to the two integrals.  The limitation of the Laplace approximation in 

(3.3.8) is that it only applies to positive functions.  Thus, it is not suitable for our problem 
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because the covariance parameters can be negative and even the variance components are 

not necessarily strictly positive and they can take values close to zero or zero.  Tierney, 

Kass and Kadane (1989) generalize the Laplace approximation in (3.3.8) so that )(φg  

can take on negative values.  Their approach is to first approximate the moment 

generating function of )(φg  so that it is strictly positive, and then approximate the  

in (3.3.8) by evaluating the first derivative of the approximation to the moment 

generating function at 0.  They showed that the accuracy of the moment generating 

function approach is also of order )/1( 2nO . 

 

We now show how to apply the 

ratio

te the moment generating function approach to estima

onditional expectatio );( )(
,

k
nmS))(k  and ;θy(RE θy  for E qnm ,...,1, =  c ns given in (3.3.4) 

ion 

and (3.3.5), respectively. 

 

The moment generating funct of );( )(kRE θy  is given by 
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w as in (3.3.5).  Applying the fully exponential Laplace approxim

o (3.3.9) yields 
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where  maximizes )ˆ,ˆ(ˆ bβφ c=  )ˆ,ˆ(ˆ *** bβφ c= );,,(),( )(2 kft θbβybβy h+−  and 

maximi .  Then zes );,,( (θbβyh )k );( )(kRE θy  can be approximated by ttM R ∂∂ /)(~  

evaluated at 0.  Since the analytic differentiation of )(~ tM R  with respect to 

third de

t  requires the 

rivatives of 2),( bβy −

substantial work, we apply the num

f  and ith respect to 

e differentiation approach to approxim  

))(k  w;,,( θbβyh

rical 

φ and that is 

ate

);( )(kRE θy , 

 

,
2

)(~)(~)0(~
);(

δ
≈

∂
= RRR

t
RE θy  

 

for some small 

)( δδ −−∂k MMM

δ .  We choose . 

 

imilarly, one can show that the fully exponential Laplace approximation to the moment 

810−=δ

S

);( ,nmSE y r )(kθ  fo qnm ,...,1, =  is given by generating function of 

 



 54

)},;ˆ,ˆ,();ˆ,ˆ,(exp{               

]/)};ˆ,ˆ,({det[
]/);ˆ,ˆ,(det[)(~

)()(

2/1

)(2

)(2

,

kk
nm

k
nm

k

S

t

t
tM

nm

θbβyθbβybb

φφθbβybb
φφθbβy

****

****

hh

h

h

−+′×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

′∂∂+′−∂
′∂∂−∂

=

                        (3.3.11) 

 

here  maximizes  and  maximizes 

 

s pointed out by Tierney and Kadane (1986), once  the maximum of , 
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res ber of find *φ̂  and **φ̂  from φ̂  is 

quite small.  Replacing *φ̂  and **φ̂  by two Newton steps from φ̂  is usua suffici t.  

Thus, the computational r uirem ts of the fully exponential Laplace approximation are 

comparatively minimal. 
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 iterations needed to

in (3.3.10) and (3.3.11), 
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 summary, the FELA-EM algorithm takes the following steps: 

 to maximize
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1) Initialize 0θDDθ === ),(),( 22 σσ cc . 

2) E-step: 

 )ˆ,ˆ(ˆ bβφ c=  );,,( )(kθbβyh  a) Find
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b) Maximize );,,(),( )(2 kft θbβybβy h+−  and );  by 

replacing )ˆ,ˆ(  and )ˆ,ˆ  with two Newton steps from φ̂ , 

respectively. 

,,( )(k
nmt θbβybb h+′

ˆ *** bβφ c= (ˆ ****** bβφ c=

c) Approximate the conditional expectations );( )(kRE θy  and );( )(
,

k
nmSE θy  for 

q  with the numerical differentiation approach. nm ,...,1, =

3) M-step: Obtain ),  according to (3.3.6) and (3.3.7). }({ )1(2)1()1( +++ = kkk c Dθ σ

4) Repeat steps 2 and 3 until convergence. 

 

We stop the algorithm when either the difference between two successive log-likelihood 

of model (3.2.1) or the absolute/relative changes in θ  are less than 10-6.  The 

convergence rate of the standard EM algorithm is slow (McLachlan and Krishnan, 2008).  

When the absolute/relative changes in θ  are less than 10-3, we switch to the accelerated 

version of the EM algorithm, algorithm QN1, proposed by Jamshidian and Jennrich 

(1997).  The QN1 algorithm is based on a quasi-Newton method, Broyden’s method, for 

solving nonlinear equations and minimizing functions.  Algorithm QN1 is easy to 

implement and its speed of convergence can be 19-87 times faster than that of the 

standard EM algorithm.  The idea of Algorithm QN1 is as follows.  For solving the 

system of equations G(x) = 0, Broyden’s method uses search directions of the form –

AiG(xi).  In Newton’s method Ai is the inverse of the Jacobian of G(x), while in 

Broyden’s method an approximation to the Jacobian of G(x) is used.  The updates to Ai in 

Broyden’s method are chosen to satisfy a secant condition and the inverse Jacobian 

updating formula is given by 
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Ai+1 = Ai + (s’Aih)-1(s - Aih)(s’Ai)                                                                  (3.3.12) 

where s =  xi+1 – xi and h = G(xi+1) – G(xi).  Let M(θ0) be the value of θ given by one 

standard EM update from the current value θ0; that is, the value maximizing Q(θ|θ0).  The 

objective of the EM algorithm can be expressed as finding a solution to g(θ) = M(θ) - θ = 

0, so here g(θ) takes the role of G(x) in the above discussion.  In Jamshidian and 

Jennrich’s approach, the Broyden update step is applied to the g(θ) function, as follows.  

First initialize by setting θ = θ0, g0 = g(θ0), and A = -I (the negative of an identity matrix).  

Then 

1. Compute s = -Ag0 and h = g(θ + s) – g0; 

2. Update A using (3.3.12) and s and h from step 1; 

3. Replace θ by θ + s and g0 by g0 + h, and return to step 1, repeating until 

convergence. 

 

3.3.4 Calculating the information matrix 

The EM algorithm does not automatically provide the information matrix from which the 

standard errors of the estimates can be obtained.  Let θ  be the estimates of  

at convergence.  The observed information matrix of θ  can be obtained by: 1) directly 

approximating the REML version observed data log-likelihood  by the 

standard Laplace method, where  is the observed data density given in 

(3.2.3), and 2) maximizing the approximated log-likelihood by one quasi-Newton step 

from θ . 
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3.3.5 Estimating the fixed and random effects 

The FELA-EM algorithm proposed above is a REML method for estimating variance and 

covariance parameters  in the nonlinear mixed model (3.2.1) and it does not 

provide estimates for both the fixed effects  and the random effects b .  To estimate  

and  in (3.2.1), we first apply the standard Laplace approximation to the ML version 

observed data log-likelihood , where  is the observed 

data density given in (3.2.2).  We then maximize the approximated log-likelihood with 

respect to both β  and  by holding  at , the estimates  at convergence 

from the FELA-EM algorithm, to obtain the “REML estimates” of  and . 

),( 2 Dθ σc=

(log{p

b

β

,σ

( 2σ

β

b

)},| 2Dβy

,Dθ c=

)2σ,,|( Dβyp

β

) θ̂

b
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3.4 Comparing the approximations 

In this section, we present a comparison of our proposed EM algorithm (FELA-EM-

REML), the ML version Laplace approximation (Laplace-ML), and four linearization 

methods described in Section 3.1 via simulation studies.  We restrict ourselves to two ML 

linearization methods, Sheiner and Beal (1980) and Lindstrom and Bates (1990), denoted 

as S-B-ML and L-B-ML, respectively, and two REML linearization methods proposed by 

Wolfinger and Lin (1997), denoted as ZERO-REML and EBLUP-REML.  Two models 

are used in the simulation studies: a logistic model and a first-order compartment model.  

Both models are widely used in statistical literature to illustrate the fitting of nonlinear 

mixed models (Lindstrom and Bates, 1990; Pinheiro and Bates, 1995; Wolfinger and Lin, 

1997; Kuhn and Lavielle, 2005; Wang, 2007).  Each model is simulated under two 

conditions: small and large variances-covariances.  For each setting of the model, 4,000 

simulated data sets from four random number seeds (1,000 data sets/seed) are generated 

to avoid simulation bias and ML/REML estimates using the different approximation 

methods are obtained.  The FELA-EM algorithm presented here is performed using the 

code written in R by the authors.  The Laplace-ML approximation and L-B-ML method 

are implemented using the nlmer and nlme functions in R, respectively.  The S-B-ML 

method is done using the nlmixed procedure in SAS while the two REML linearization 

methods (ZERO-REML and EBLUP-REML) use the %nlinmix macro in SAS. 
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3.4.1 Logistic model 

A 3-parameter logistic model with two random effects used by Pinheiro and Bates (1995) 

was used to generate the data.  The values of fixed-effects parameters and covariate were 

also similar to those used by Pinheiro and Bates (1995).  The nonlinear mixed model is 

given by 
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Figure 3.1: Example of simulated logistic curves for small and large variance and 

covariance parameters 
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Tables 3.1 and 3.2 list the simulation results for the fixed-effects estimates in the logistic 

model for small and large variance-covariance components D  and , respectively.   

Assuming  stands for a parameter estimate at the rth simulation and 

2σ

rθ̂ Tθ  for the true 

value of the parameter, the summary statistics for the parameters are defined as follows: 

Mean denotes the average of the estimates  across the 4000 simulations, i.e., rθ̂

∑ =

4000

1
4000ˆ

r rθ ; %Bias denotes the relative bias in estimating the parameter, i.e., 

TT θθ )Mean(100 −× ; RMSE denotes the square root of mean square error of the 

estimator, i.e., ∑ =
−

4000

1
2 4000)ˆ(

r Tr θθ , which is a measure of accuracy that takes into 

account both bias and variability; 95% CI denotes a 95% confidence interval, i.e., 

4000ZMean 2
θ̂± α s , where  is the normal critical value corresponding to 95% αZ
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confidence level and ∑ =
−−=

4000

1
22

ˆ )14000()ˆ(
r Trs θθθ .  When a 95% CI does not cover 

the true value of the parameter, we conclude that the estimate is significantly biased at 

5% level; and finally, %CVR denotes the observed coverage of the t-distribution based 

95% confidence intervals computed using the model-based standard errors.  Only those 

values for the fixed effects were presented in the paper because the standard errors for the 

variance-covariance parameters were not provided by either the nlmer function in R or 

the %nlinmix macro in SAS.  The 95% coverage values marked with an asterisk are 

outside the interval (93.97, 96.03).  The half-width of this interval is three times the 

binomial standard error, which is [(95)(5)/4000]1/2 = 0.3446.  When the variance-

covariance components D  and  are small, all six approximations considered provide 

good results for the fixed-effects parameters.  Although the 95% confidence intervals 

show that the four linearization methods produce significantly biased estimates for some 

fixed effects, the %Bias are relatively small with a maximum absolute value 0.20% for L-

B-ML approximation for estimating β3.  The two approximations which give unbiased 

estimates for all three fixed effects are FELA-EM-REML and Laplace-ML.  For the 

observed 95% confidence interval coverages, all six approximations attain their nominal 

coverages for both β1 and β2, which are fixed effects associated with the random effects.  

The observed coverages are slightly different for β3, which is the only one not associated 

with the random effects and enters the model nonlinearly.  While both L-B-ML and 

FELA-EM-REML methods give values similar to their nominal ones, the coverages tend 

to increase from the nominal value for the other four methods (S-B-ML, Laplace-ML, 

ZERO-REML, and EBLUP-REML).  When  and  increase, the results for the fixed-

effects parameters are different.  For β1, which enters the nonlinear mixed model linearly 

2σ

D 2σ
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and is associated with the random effects, the two eblup-expansion linearization methods 

(L-B-ML and EBLUP-REML) underestimate the estimator by 1.90% and 1.83%, 

respectively while the other four approximations provide more accurate estimates – either 

unbiased (Laplace-ML) or close-to-unbiased (FELA-EM-REML, S-B-ML, and ZERO-

REML) with a maximum absolute value of %Bias 0.32%.  The results for β2, which 

enters the model nonlinearly and is associated with the random effects, are similar to 

those for β1.  The two eblup-expansion linearization methods (L-B-ML and EBLUP-

REML) again underestimate the estimator by 2.48% and 2.42%, respectively while the 

other four approximations give more accurate estimates – all close-to-unbiased with a 

maximum absolute value of %Bias 0.56% for Laplace-ML approximation.  For β3, which 

enters the model nonlinearly and is the only one not associated with the random effects, 

the estimates obtained from FELA-EM-REML and Laplace-ML approximations are more 

accurate than those from the four linearization methods.  The two zero-expansion 

linearization methods (S-B-ML and ZERO-REML) significantly overestimate β3 by 3% 

while the two eblup-expansion linearization methods (L-B-ML and EBLUP-REML) 

underestimate the estimator by more than 4%.  Although FELA-EM-REML and Laplace-

ML approximations give significantly positive biased estimates for β3, the %Bias is 

0.56% and 0.90%, respectively.  That is more than three times smaller than those from 

the four linearization methods.    For the 95% confidence interval coverages, the two 

eblup-expansion linearization methods (L-B-ML and EBLUP-REML) give considerable 

lower coverages for all three fixed effects.  While Laplace-ML and the two zero-

expansion linearization methods (S-B-ML and ZERO-REML) attain their nominal 

coverages for β1 and β2, their coverages for β3 are significantly higher than the nominal 
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ones.  The only approximation method which gives coverages similar to the nominal 

value for all three fixed effects is FELA-EM-REML.  For each of the three fixed effects, 

the square root of mean square errors (RMSE) are relatively similar for all six 

approximations considered no matter the size of the variance-covariance components  

and . 

D

2σ

 



 64

Table 3.1: Simulation results for the fixed effects in the logistic model for small variance 

and covariance parameters 

Approximation  Mean %Bias RMSE 95% CI %CVR 
   

2001 =β    
    S-B-ML  200.00     0.00 2.89 [199.91, 200.09]    94.49 
    L-B-ML  199.80†    -0.10 2.90 [199.71, 199.89]    94.36 
    Laplace-ML  199.99 -0.01 2.89 [199.90, 200.08]    94.37 
    ZERO-REML  200.00 0.00 2.89 [199.91, 200.09]    95.19 
    EBLUP-REML  199.81† -0.10 2.90 [199.72, 199.90]    95.23 
    FELA-EM-REML  200.00 0.00 2.89 [199.91, 200.09]    94.50 
    

7002 =β     
    S-B-ML  699.78 -0.03 8.97 [699.50, 700.05]    95.52 
    L-B-ML  699.14† -0.12 8.98 [698.87, 699.42]    95.39 
    Laplace-ML  700.06 0.01 8.97 [699.78, 700.34]    95.40 
    ZERO-REML  699.77 -0.03 8.98 [699.50, 700.05]    95.93 
    EBLUP-REML  699.16† -0.12 8.97 [698.89, 699.44]    95.85 
    FELA-EM-REML  700.01 0.00 8.97 [699.73, 700.28]    95.43 
    

3503 =β     
    S-B-ML  350.42† 0.12 4.70 [350.27, 350.56]    96.52* 
    L-B-ML  349.31† -0.20 4.70 [349.17, 349.46]    95.92 
    Laplace-ML  350.12 0.04 4.68 [349.98, 350.27]    96.62* 
    ZERO-REML  350.41† 0.12 4.71 [350.27, 350.56]    96.64* 
    EBLUP-REML  349.33† -0.19 4.70 [349.18, 349.47]    96.05* 
    FELA-EM-REML  350.08 0.02 4.68 [349.93, 350.22]    95.98 
† The 95% CI does not cover the true value of the parameter and the estimate is 

significantly biased at 5% level. 

* The %CVR is outside the interval (93.97, 96.03). 
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Table 3.2: Simulation results for the fixed effects in the logistic model for large variance 

and covariance parameters 

Approximation  Mean %Bias RMSE 95% CI %CVR 
   

2001 =β    
    S-B-ML  200.60† 0.30 14.59 [200.15, 201.06]    94.48 
    L-B-ML  196.20† -1.90 14.77 [195.75, 196.64]    93.57* 
    Laplace-ML  200.36 0.18 14.53 [199.91, 200.81]    94.43 
    ZERO-REML  200.64† 0.32 14.63 [200.19, 201.09]    95.53 
    EBLUP-REML  196.34† -1.83 14.75 [195.90, 196.78]    93.66* 
    FELA-EM-REML  200.65† 0.32 14.57 [200.20, 201.10]    94.63 
    

7002 =β     
    S-B-ML  696.46† -0.51 47.64 [694.99, 697.93]    94.91 
    L-B-ML  682.62† -2.48 46.43 [681.29, 683.95]    92.27* 
    Laplace-ML  703.92† 0.56 47.18 [702.46, 705.37]    95.40 
    ZERO-REML  697.18† -0.40 47.24 [695.72, 698.64]    95.66 
    EBLUP-REML  683.06† -2.42 46.44 [681.72, 684.40]    92.20* 
    FELA-EM-REML  702.75† 0.39 47.23 [701.29, 704.21]    95.25 
    

3503 =β     
    S-B-ML  360.48† 3.00 26.61 [359.72, 361.23]    96.49* 
    L-B-ML  335.12† -4.25 25.85 [334.47, 335.78]    90.25* 
    Laplace-ML  353.14† 0.90 24.02 [352.40, 353.88]    96.50* 
    ZERO-REML  360.51† 3.00 27.39 [359.72, 361.29]    96.78* 
    EBLUP-REML  335.47† -4.15 25.82 [334.81, 336.13]    89.60* 
    FELA-EM-REML  351.96† 0.56 23.97 [351.22, 352.70]    96.02 
† The 95% CI does not cover the true value of the parameter and the estimate is 

significantly biased at 5% level. 

* The %CVR is outside the interval (93.97, 96.03). 
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Tables 3.3 and 3.4 contain the simulation results for the random-effects, the variance-

covariance components in the logistic model for small and large  and , respectively.  

When  and  are small, the three REML approximations (FELA-EM-REML, ZERO-

REML, and EBLUP-REML) all give unbiased estimates while the three ML 

approximations (Laplace-ML, S-B-ML, and L-B-ML) can significantly underestimate the 

estimators by up to 9.27%, i.e., L-B-ML for estimating D22.  For the variance component 

associated with the random effects that enter the nonlinear mixed model linearly D11, the 

three ML approximations significantly underestimate the estimator by more than 6% 

while the three REML approximations give unbiased estimates with a maximum value 

of %Bias 0.79% for ZERO-REML.  The results for D22, which is the variance component 

associated with the random effects that enter the model nonlinearly, are similar to those 

for D11.  The three ML approximations again significantly underestimate the estimator 

and the %Bias increases to about 9%.  The three REML approximations give unbiased 

estimates with a maximum absolute value of %Bias 0.44% for EBLUP-REML.  For the 

covariance component D21 all six approximations give unbiased estimates.  The relatively 

large %Bias (greater than 1%) indicates that the covariance component D21 is estimated 

with less accuracy than the variance components of the random effects D11 and D22.  The 

subject specific variance  is estimated with more relative accuracy than the elements 

of the variance-covariance components of the random effects (D11, D21, and D22).  This 

can be seen from the small %Bias for all six approximations (less than 1%). The possible 

reason is that the estimate of  is determined by the total number of observations, while 

the estimates of D are determined by the number of subjects.  Although the 95% 

confidence intervals show that the three ML approximations provide significantly 

D 2σ

D 2σ

2σ

2σ
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negative biased estimates for , the %Bias are small with a maximum value 0.82% for 

Laplace-ML approximation.  The three REML approximations again give unbiased 

estimates.  When D  and  increase, the only approximation method which gives 

unbiased estimates for all variance-covariance components is FELA-EM-REML.  For D11, 

the three ML approximations significantly underestimate the parameter by more than 5%.  

The two REML version linearization methods behave differently.  The ZERO-REML 

significantly overestimates D11 by 1.98% while the EBLUP-REML gives a significantly 

negative biased estimate with %Bias equal to 1.33%.  For D22, both FELA-EM-REML 

and S-B-ML approximations give unbiased estimates with %Bias less than 1%.  The 

ZERO-REML approximation again significantly overestimates D22 by up to 8.57% while 

the other three approximations (Laplace-ML, L-B-ML, and EBLUP-REML) significantly 

underestimate the estimator with a maximum value of %Bias up to 15.4% for L-B-ML.  

The %Bias for EBLUP-REML (6.26%) is similar to that for Laplace-ML (6.23%), which 

indicates that the REML eblup-expansion approximation cannot correct the bias for D22 

in this case.  For covariance component D21, the three ML approximations and the two 

REML linearization methods all give significantly positive biased estimates with a 

maximum value of %Bias up to 18.64% for S-B-ML.  Although the FELA-EM-REML 

approximation gives an unbiased estimate for D21, the large %Bias (4.48%) again 

indicates that the covariance component is estimated with less accuracy than the variance 

components.  The subject specific variance  is estimated with more relative accuracy 

than the variance-covariance components D.  The %Bias is significant for all but the 

FELA-EM-REML approximation although the absolute value is small for all six 

approximations with a maximum absolute value 0.81 for Laplace-ML.  The RMSE’s for 

2σ

2σ

2σ
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each of the variance-covariance components  and again are relatively similar for all 

six approximations considered no matter the size of  and . 

D 2σ

D 2σ
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Table 3.3: Simulation results for the random-effects variation in the logistic model for 

small variance and covariance parameters 

Approximation  Mean %Bias RMSE 95% CI 
  

10011 =D   
    S-B-ML    93.67† -6.33 38.42 [ 92.50,   94.85]
    L-B-ML    93.56† -6.44 38.36 [ 92.39,   94.73]
    Laplace-ML    93.69† -6.31 38.41 [ 92.51,   94.86]
    ZERO-REML  100.79 0.79 40.60 [ 99.53, 102.05]
    EBLUP-REML  100.65 0.65 40.54 [ 99.40, 101.91]
    FELA-EM-REML  100.76 0.76 40.60 [ 99.51, 102.02]
  

5021 −=D   
    S-B-ML   -47.74 4.51 76.45 [ -50.11, -45.37]
    L-B-ML   -47.77 4.45 76.26 [ -50.14, -45.41]
    Laplace-ML   -47.80 4.40 76.48 [ -50.17, -45.43]
    ZERO-REML   -49.08 1.83 81.88 [ -51.62, -46.55]
    EBLUP-REML   -49.31 1.37 81.86 [ -51.85, -46.78]
    FELA-EM-REML   -49.39 1.21 81.95 [ -51.93, -46.85]
  

62522 =D   
    S-B-ML  569.60† -8.86 318.86 [ 559.87, 579.33]
    L-B-ML  567.06† -9.27 315.14 [ 557.46, 576.67]
    Laplace-ML  569.41† -8.89 316.28 [ 559.76, 579.06]
    ZERO-REML  625.91 0.15 335.36 [ 615.51, 636.30]
    EBLUP-REML  622.24 -0.44 333.20 [ 611.91, 632.56]
    FELA-EM-REML  624.87 -0.02 333.97 [ 614.52, 635.22]
  

102 =σ   
    S-B-ML      9.92† -0.76 1.28 [ 9.88,   9.96]
    L-B-ML      9.92† -0.81 1.27 [ 9.88,   9.96]
    Laplace-ML      9.92† -0.82 1.28 [ 9.88,   9.96]
    ZERO-REML    10.01 0.08 1.28 [ 9.97, 10.05]
    EBLUP-REML    10.01 0.08 1.29 [ 9.97, 10.05]
    FELA-EM-REML    10.00 0.02 1.28 [ 9.96, 10.04]
† The 95% CI does not cover the true value of the parameter and the estimate is 

significantly biased at 5% level. 
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Table 3.4: Simulation results for the random-effects variation in the logistic model for 

large variance and covariance parameters 

Approximation Mean %Bias RMSE 95% CI 
  

250011 =D   
    S-B-ML   2370.64† -5.17 981.84 [2340.48, 2400.81]
    L-B-ML   2290.59† -8.38 957.44 [2261.63, 2319.55]
    Laplace-ML   2360.48† -5.58 981.46 [2330.37, 2390.59]
    ZERO-REML   2549.58† 1.98 1043.38 [2517.28, 2581.89]
    EBLUP-REML   2466.79† -1.33 1003.57 [2435.70, 2497.87]
    FELA-EM-REML   2513.21 0.53 1039.63 [2480.99, 2545.43]
  

125021 −=D   
    S-B-ML -1017.00† 18.64 2011.49 [-1078.93,   -955.08]
    L-B-ML -1136.47† 9.08 2011.24 [-1198.71, -1074.23]
    Laplace-ML -1176.23† 5.90 2151.18 [-1242.86, -1109.60]
    ZERO-REML -1046.67† 16.27 2134.69 [-1112.53,   -980.81]
    EBLUP-REML -1168.19† 6.54 2165.45 [-1235.26, -1101.12]
    FELA-EM-REML -1305.98 -4.48 2315.28 [-1377.72, -1234.24]
  

1562522 =D   
    S-B-ML 15608.36 -0.11 9824.41 [15303.87, 15912.86]
    L-B-ML 13219.50† -15.40 8091.66 [12980.05, 13458.95]
    Laplace-ML 14652.17† -6.23 8835.86 [14379.98, 14924.36]
    ZERO-REML 16964.57† 8.57 10448.52 [16643.41, 17285.74]
    EBLUP-REML 14646.60† -6.26 8450.22 [14386.46, 14906.74]
    FELA-EM-REML 15695.81 0.45 9363.32 [15405.61, 15986.00]
  

2502 =σ   
    S-B-ML     248.44† -0.62 32.00 [247.45, 249.43]
    L-B-ML     248.95† -0.42 32.05 [247.96, 249.94]
    Laplace-ML     247.98† -0.81 32.00 [246.99, 248.97]
    ZERO-REML     251.02† 0.41 32.24 [250.03, 252.02]
    EBLUP-REML     251.04† 0.42 32.40 [250.04, 252.05]
    FELA-EM-REML     249.81 -0.07 32.40 [248.81, 250.82]
† The 95% CI does not cover the true value of the parameter and the estimate is 

significantly biased at 5% level. 



 71

3.4.2 First-order compartment model 

A 3-parameter first-order compartment model with two random effects used by Pinheiro 

and Bates (1995) was used to generate the data.  The values of the fixed-effects 

parameters, the covariate, and the dose were also similar to those used by Pinheiro and 

Bates (1995).  The nonlinear mixed model is given by 
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Figure 3.2: Example of simulated first-order compartment curves for small and large 

variance and covariance parameters 
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Tables 3.5 and 3.6 summarize the simulation results for the fixed-effects estimates in the 

first-order compartment model for small and large variance-covariance components D  

and , respectively.  When D  and  are small, FELA-EM-REML, Laplace-ML, and 

the two eblup-expansion linearization methods (L-B-ML and EBLUP-REML) provide 

more accurate estimates for the fixed-effects parameters than the two zero-expansion 

approximations (S-B-ML and ZERO-REML).  For β1, the two zero-expansion 

approximations significantly underestimate the estimator with %Bias by about 1.5% 

while the other four approximations show very little bias with a maximum absolute value 

of %Bias 0.11% for Laplace-ML and FELA-EM-REML.  For β2, the two zero-expansion 

approximations significantly overestimate the estimator by 2.85% and 7.08%, 

respectively, while the other four approximations all give unbiased estimates with a 

maximum absolute value of %Bias 0.61% for L-B-ML method.  For β3, which is the only 

non-random coefficient, the results are similar to those for β1.  Both S-B-ML and ZERO-

2σ 2σ
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REML approximations again significantly underestimate the estimator with %Bias by 

about 1.65% while the other four approximations show very little bias with a maximum 

absolute value of %Bias 0.07% for the two eblup-expansion approximations (L-B-ML 

and EBLUP-REML).  When D  and  increase, only FELA-EM-REML and Laplace-

ML approximations give unbiased or close-to-unbiased (%Bias < 1%) estimates for all 

three fixed effects.  For β1, the two zero-expansion approximations significantly 

underestimate the estimator with %Bias by 5.7% and 6.35%, respectively, while the other 

four approximations show very little negative bias with a maximum absolute value 

of %Bias 0.31% for L-B-ML.  For β2, the two zero-expansion approximations greatly 

overestimate the estimator by 12.78% and 32.82%, respectively, while the two eblup-

expansion approximations significantly underestimate the estimator by about 7%.  The 

two approximations which give unbiased estimates for β2 are FELA-EM-REML and 

Laplace-ML.  For the non-random coefficient β3, the results again are similar to those for 

β1.  Both S-B-ML and ZERO-REML approximations significantly underestimate the 

estimator with %Bias by about 6% while the other four approximations provide very 

slight bias with a maximum absolute value of %Bias 0.28% for EBLUP-REML.  The 

observed 95% confidence interval coverages are similar for both small and large variance 

situations.  For β1, the two zero-expansion linearization methods (S-B-ML and ZERO-

REML) give considerable lower coverages while the other four approximations (L-B-ML, 

Laplace-ML, EBLUP-REML, and FELA-EM-REML) attain their nominal values.  For β2, 

both EBLUP-REML and FELA-EM-REML approximations give coverages similar to 

their nominal values while the coverage rates decrease significantly from the nominal 

ones for the other four methods (S-B-ML, L-B-ML, Laplace-ML, and ZERO-REML), 

2σ
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with the lowest coverage of 52.61% for S-B-ML for large  and .  For β3, the only 

nor-random coefficient and entering the model nonlinearly, the coverage rates obtained 

from all six approximations are significantly different from the nominal value.  While the 

two zero-expansion linearization methods (S-B-ML and ZERO-REML) provide lower 

coverages compared with the nominal value, the coverages tend to increase from the 

nominal one for the other four approximations (L-B-ML, Laplace-ML, EBLUP-REML, 

and FELA-EM-REML).  As in the logistic model analysis, we observe that the RMSE’s 

for each of the three fixed effects are relatively similar for all six approximations 

considered no matter the size of the variance-covariance components  and . 

D 2σ

D 2σ
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Table 3.5: Simulation results for the fixed effects in the first-order compartment model 

for small variance and covariance parameters 

Approximation  Mean %Bias RMSE 95% CI %CVR 
   

31 −=β    
    S-B-ML  -3.0437† -1.46 0.0818 [-3.0459, -3.0416]   89.92* 
    L-B-ML  -3.0026† -0.09 0.0671 [-3.0047, -3.0006]   94.28 
    Laplace-ML  -3.0034† -0.11 0.0670 [-3.0054, -3.0013]   94.35 
    ZERO-REML  -3.0449† -1.50 0.0818 [-3.0470, -3.0428]   92.23* 
    EBLUP-REML  -3.0026† -0.09 0.0671 [-3.0046, -3.0005]   95.17 
    FELA-EM-REML  -3.0033† -0.11 0.0671 [-3.0054, -3.0012]   95.10 
    

5.02 =β     
    S-B-ML   0.5143† 2.85 0.1479 [0.5097, 0.5188]   66.75* 
    L-B-ML   0.4969 -0.61 0.1360 [0.4927, 0.5012]   93.08* 
    Laplace-ML   0.5006 0.12 0.1362 [0.4964, 0.5048]   93.23* 
    ZERO-REML   0.5354† 7.08 0.1401 [0.5312, 0.5396]   93.40* 
    EBLUP-REML   0.4972 -0.57 0.1360 [0.4929, 0.5014]   94.10 
    FELA-EM-REML   0.5007 0.15 0.1363 [0.4965, 0.5050]   94.07 
    

5.23 −=β     
    S-B-ML  -2.5414† -1.65 0.0522 [-2.5423, -2.5404]   76.73* 
    L-B-ML  -2.4982† 0.07 0.0267 [-2.4991, -2.4974]   97.05* 
    Laplace-ML  -2.5011† -0.04 0.0267 [-2.5019, -2.5003]   97.13* 
    ZERO-REML  -2.5421† -1.68 0.0532 [-2.5431, -2.5411]   76.98* 
    EBLUP-REML  -2.4982† 0.07 0.0267 [-2.4991, -2.4974]   97.25* 
    FELA-EM-REML  -2.5012† -0.05 0.0267 [-2.5020, -2.5003]   97.22* 
† The 95% CI does not cover the true value of the parameter and the estimate is 

significantly biased at 5% level. 

* The %CVR is outside the interval (93.97, 96.03). 
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Table 3.6: Simulation results for the fixed effects in the first-order compartment model 

for large variance and covariance parameters 

Approximation  Mean %Bias RMSE 95% CI %CVR 
   

31 −=β    
    S-B-ML  -3.1711† -5.70 0.2384 [-3.1762, -3.1660]   79.57* 
    L-B-ML  -3.0092† -0.31 0.1492 [-3.0138, -3.0046]   94.37 
    Laplace-ML  -3.0087† -0.29 0.1490 [-3.0133, -3.0041]   94.43 
    ZERO-REML  -3.1905† -6.35 0.2492 [-3.1955, -3.1855]   82.96* 
    EBLUP-REML  -3.0086† -0.29 0.1493 [-3.0132, -3.0040]   95.07 
    FELA-EM-REML  -3.0086† -0.29 0.1492 [-3.0132, -3.0039]   95.44 
    

5.02 =β     
    S-B-ML   0.5639† 12.78 0.3074 [0.5546, 0.5732]   52.61* 
    L-B-ML   0.4636† -7.27 0.2989 [0.4544, 0.4728]   93.29* 
    Laplace-ML   0.4984 -0.33 0.3093 [0.4888, 0.5080]   93.43* 
    ZERO-REML   0.6641† 32.82 0.3408 [0.6549, 0.6734]   88.68* 
    EBLUP-REML   0.4652† -6.95 0.2998 [0.4560, 0.4745]   94.12 
    FELA-EM-REML   0.5038 0.76 0.3127 [0.4941, 0.5135]   94.09 
    

5.23 −=β     
    S-B-ML  -2.6486† -5.94 0.1748 [-2.6515, -2.6458]   47.01* 
    L-B-ML  -2.4932† 0.27 0.0541 [-2.4949, -2.4916]   97.05* 
    Laplace-ML  -2.5048† -0.19 0.0531 [-2.5064, -2.5031]   97.13* 
    ZERO-REML  -2.6698† -6.79 0.1938 [-2.6727, -2.6669]   46.45* 
    EBLUP-REML  -2.4931† 0.28 0.0533 [-2.4947, -2.4914]   97.06* 
    FELA-EM-REML  -2.5049† -0.20 0.0613 [-2.5068, -2.5030]   97.12* 
† The 95% CI does not cover the true value of the parameter and the estimate is 

significantly biased at 5% level. 

* The %CVR is outside the interval (93.97, 96.03). 
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Tables 3.7 and 3.8 show the simulation results for the variance-covariance components in 

the first-order compartment model for small and large D  and , respectively.  When 

 and  are small, both FELA-EM-REML and EBLUP-REML approximations give 

unbiased estimates for all the variance-covariance parameters.  For D11, the three ML 

approximations (S-B-ML, L-B-ML, and Laplace-ML) significantly underestimate the 

estimator by more than 6% while the ZERO-REML approximation gives a significant 

positive biased estimate (1.91%).  For D22, the three ML approximations and the ZERO-

REML approximation all provide significant negative biased estimates with a maximum 

value of %Bias 11.08% for S-B-ML.  For the covariance component D21, the %Bias 

cannot be obtained since the true value of D21 equals 0.  However, by investigating the 

95% confidence intervals of the covariance parameters, we found that the two zero-

expansion approximations (S-B-ML and ZERO-REML) significantly underestimate the 

estimator, while L-B-ML and Laplace-ML approximations also give unbiased estimates.  

For the subject specific variance , the two zero-expansion approximations greatly 

overestimate the estimator by 13.79% and 17.32%, respectively, while L-B-ML and 

Laplace-ML both give close-to-unbiased estimates with a maximum value of %Bias 

0.94% for Laplace-ML.  When both  and  are large, the only approximation method 

which gives unbiased or little biased estimates for all variance-covariance components is 

FELA-EM-REML.  For D11, both L-B-ML and Laplace-ML approximations significantly 

underestimate the parameter by more than 7%, while the two zero-expansion 

approximations significantly overestimate the parameter by 2.72% and 9.29%, 

respectively.  Both FELA-EM-REML and EBLUP-REML give unbiased estimates for 

D11.  For D22, the only approximation method which gives an unbiased estimate is FELA-
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EM-REML, while the other five approximations all give significantly negative biased 

estimates.  The two zero-expansion and L-B-ML approximations greatly underestimate 

D22 by 25.83%, 24.94%, and 14.85%, respectively, while Laplace-ML and EBLUP-

REML give moderately biased estimates with %Bias 8.2% and 6.24%, respectively.  For 

the covariance component D21, the two zero-expansion approximations significantly 

underestimate the estimator while FELA-EM-REML shows very little positive bias.  The 

other three approximations all give unbiased estimates for D21.  For the subject specific 

variance , the two zero-expansion approximations greatly overestimate the estimator 

by 39.06% and 48%, respectively, while the other four approximations provide more 

accurate estimates – either unbiased (L-B-ML and FELA-EM-REML) or slightly biased 

(Laplace-ML and EBLUP-REML) with a maximum absolute value of %Bias 1.28% for 

Laplace-ML.  The RMSE’s for each of the variance-covariance components D  and  

are relatively similar for all six approximations considered no matter the size of D  and 

. 
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Table 3.7: Simulation results for the random-effects variation in the first-order 

compartment model for small variance and covariance parameters 

Approximation  Mean %Bias RMSE 95% CI 
  

05.011 =D   
    S-B-ML   0.0469† -6.13 0.0227 [0.0462, 0.0476]
    L-B-ML   0.0457† -8.51 0.0206 [0.0451, 0.0464]
    Laplace-ML   0.0459† -8.14 0.0207 [0.0453, 0.0466]
    ZERO-REML   0.0510† 1.91 0.0242 [0.0502, 0.0517]
    EBLUP-REML   0.0500 -0.07 0.0220 [0.0493, 0.0506]
    FELA-EM-REML   0.0502 0.34 0.0221 [0.0495, 0.0509]
  

021 =D   
    S-B-ML  -0.0022† N/A 0.0311 [-0.0031, -0.0012]
    L-B-ML   0.0004 N/A 0.0281 [-0.0005,   0.0013]
    Laplace-ML   0.0005 N/A 0.0282 [-0.0004,   0.0014]
    ZERO-REML  -0.0015† N/A 0.0325 [-0.0025, -0.0005]
    EBLUP-REML   0.0005 N/A 0.0307 [-0.0004,   0.0015]
    FELA-EM-REML   0.0007 N/A 0.0309 [-0.0002,   0.0017]
  

2.022 =D   
    S-B-ML   0.1778† -11.08 0.0832 [0.1754, 0.1803]
    L-B-ML   0.1822† -8.89 0.0850 [0.1796, 0.1848]
    Laplace-ML   0.1831† -8.47 0.0855 [0.1805, 0.1857]
    ZERO-REML   0.1853† -7.35 0.0836 [0.1828, 0.1879]
    EBLUP-REML   0.1995 -0.26 0.0908 [0.1967, 0.2023]
    FELA-EM-REML   0.2007 0.36 0.0917 [0.1979, 0.2036]
  

1.02 =σ   
    S-B-ML   0.1138† 13.79 0.0243 [0.1132, 0.1144]
    L-B-ML   0.0991† -0.87 0.0135 [0.0987, 0.0995]
    Laplace-ML   0.0991† -0.94 0.0135 [0.0986, 0.0995]
    ZERO-REML   0.1173† 17.32 0.0278 [0.1166, 0.1180]
    EBLUP-REML   0.1001 0.05 0.0136 [0.0996, 0.1005]
    FELA-EM-REML   0.1000 -0.04 0.0135 [0.0995, 0.1004]
† The 95% CI does not cover the true value of the parameter and the estimate is 

significantly biased at 5% level. 
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Table 3.8: Simulation results for the random-effects variation in the first-order 

compartment model for large variance and covariance parameters 

Approximation  Mean %Bias RMSE 95% CI 
  

25.011 =D   
    S-B-ML   0.2568† 2.72 0.1635 [0.2517, 0.2619]
    L-B-ML   0.2252† -9.93 0.1042 [0.2220, 0.2283]
    Laplace-ML   0.2310† -7.59 0.1063 [0.2278, 0.2343]
    ZERO-REML   0.2732† 9.29 0.1622 [0.2682, 0.2782]
    EBLUP-REML   0.2473 -1.09 0.1277 [0.2433, 0.2512]
    FELA-EM-REML   0.2516 0.65 0.1136 [0.2481, 0.2551]
  

021 =D   
    S-B-ML  -0.0480† N/A 0.2007 [-0.0541, -0.0420]
    L-B-ML  -0.0026 N/A 0.1432 [-0.0070,   0.0018]
    Laplace-ML   0.0037 N/A 0.1535 [-0.0011,   0.0084]
    ZERO-REML  -0.0314† N/A 0.1996 [-0.0375, -0.0252]
    EBLUP-REML  -0.0007 N/A 0.1694 [-0.0060,   0.0046]
    FELA-EM-REML   0.0074† N/A 0.1667 [0.0022,   0.0126]
  

122 =D   
    S-B-ML   0.7417† -25.83 0.4533 [0.7301, 0.7532]
    L-B-ML   0.8515† -14.85 0.4234 [0.8392, 0.8638]
    Laplace-ML   0.9180† -8.20 0.4754 [0.9035, 0.9325]
    ZERO-REML   0.7506† -24.94 0.4448 [0.7392, 0.7620]
    EBLUP-REML   0.9376† -6.24 0.4440 [0.9240, 0.9512]
    FELA-EM-REML   1.0085 0.85 0.4952 [0.9932, 1.0239]
  

5.02 =σ   
    S-B-ML   0.6953† 39.06 0.2625 [0.6899, 0.7008]
    L-B-ML   0.4982 -0.36 0.0716 [0.4960, 0.5004]
    Laplace-ML   0.4936† -1.28 0.0672 [0.4915, 0.4957]
    ZERO-REML   0.7400† 48.00 0.3196 [0.7335, 0.7465]
    EBLUP-REML   0.5031† 0.62 0.0855 [0.5004, 0.5057]
    FELA-EM-REML   0.4984 -0.31 0.0705 [0.4963, 0.5006]
† The 95% CI does not cover the true value of the parameter and the estimate is 

significantly biased at 5% level. 
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3.5 Discussion 

We have developed a new EM algorithm, a fully exponential Laplace approximation EM 

algorithm (FELA-EM), for REML estimation in parametric nonlinear mixed effects 

models, where we assume that both random effects and error are normally distributed.  

The new algorithm is generally as accurate as the direct approximations of marginal 

likelihood estimation for nonlinear mixed models based on third-order expansions while 

preserving the computational simplicity of those methods based on second-order 

expansions (i.e., Laplace approximation).  The proposed algorithm gives an error of 

second order  compared with the first-order error  from the standard 

Laplace method for estimating variance-covariance components.  The computing time of 

the FELA-EM algorithm is about 4-5 times longer than that of the Laplace approximation 

and 20-25 times than that of the linearization methods (i.e., L-B-ML) while the 

computing time of numerical integration and Monte Carlo methods can be more than 

1000 times longer than that of the linearization methods.  Thus, the FELA-EM algorithm 

is computationally much more efficient than numerical integration and Monte Carlo 

methods.  Simulation studies for both the logistic model and the compartment model 

considered in this paper are performed for two situations-either small or large variability 

in both random effects and residual error.  This is a generalization of conditions used by 

Pinheiro and Bates (1995) and Wolfinger and Lin (1997).   Pinheiro and Bates (1995) 

consider the small variability in both random effects and residual error, while Wolfinger 

and Lin (1997) use both small and large variability for random effects but consider only 

small variability in residual error.   

)/1( 2nO )/1( nO
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The results of Section 3.4 indicate that the proposed FELA-EM-REML algorithm for 

nonlinear mixed effects models gives accurate and reliable REML estimate for both fixed 

effects and variance-covariance components.  It produces either unbiased or close-to-

unbiased (%Bias < 1%) estimates for both the fixed effects and the variance-covariance 

components and gives 95% confidence interval coverages similar to the nominal value 

for all the fixed effects.  For the fixed-effects estimation, the estimates obtained from 

FELA-EM-REML approximation are similar to those from the Laplace-ML 

approximation, but are more accurate than those from the four linearization methods.  

Both FELA-EM-REML and Laplace-ML approximations give unbiased or close-to-

unbiased estimates with 95% confidence interval coverages similar to the nominal value 

for all fixed effects no matter the size of D  and  while the four linearization methods 

frequently generate significantly biased estimates for large D  and .  The coverage 

rates obtained from the four linearization methods can be much lower than the nominal 

95% level with the lowest coverage of about 47% for the two zero-expansion 

approximations for estimating β3 in the compartment model when both of  and  are 

large.  We also observe that the two eblup-expansion approximations generally give 

smaller bias than the two zero-expansion approximations and the two zero-expansion 

approximations can give estimates with %Bias as high as 33%.  The RMSE’s for each of 

the fixed effects are relatively similar for all approximations considered no matter the 

size of  and . 
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For the variance-covariance estimation, our proposed FELA-EM-REML algorithm is the 

only approximation method that always gives unbiased estimates for variance and 
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covariance parameters.  Although the EBLUP-REML approximation also generates 

unbiased estimates for variance-covariance components for small  and , it generally 

gives significantly biased estimates for large D  and .  The three ML approximations 

(Laplace-ML, S-B-ML, and L-B-ML) generally underestimate the variance parameters 

no matter the size of D  and .  For covariance parameters, the performance of the ML 

approximations does have a consistent pattern.  They can generate either unbiased or 

significantly biased estimates.  The ZERO-REML approximation generally gives more 

accurate estimates than the three ML approximations for small D  and .  However, it 

can generate very poor estimates with %Bias up to 48% when both D  and  are large.  

The RMSE’s for each of the variance-covariance components are relatively similar for all 

approximations considered no matter the size of  and . 

D 2σ

2σ

σ

2σ

σ

2σ

2
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3.6 Conclusions 

The proposed FELA-EM algorithm for nonlinear mixed effects models gives accurate 

and reliable REML estimations (either unbiased or close-to-unbiased) for both fixed 

effects and variance-covariance components.  For the fixed-effects estimation, both the 

FELA-EM algorithm and the Laplace approximation gives either unbiased or close-to-

unbiased estimates with 95% confidence interval coverages similar to the nominal value 

for all fixed effects no matter the size of D  and  while the four linearization methods 

can frequently generate significantly biased estimates for large D  and .  For the 

variance-covariance estimation, the EBLUP-REML approximation gives unbiased 

estimates for small D  and  but generates significantly biased estimates for large D  

and .  The three ML approximations frequently underestimate the variance parameters 

2σ

2σ

2σ

2σ
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for both small and large D  and , and their performance for covariance is uncertain 

(either unbiased or significantly biased).  The ZERO-REML approximation is more 

accurate than the three ML approximations for small D  and  but it can produce 

generate very poor estimates when both  and  are large. 

2σ

2σ

D 2σ
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3.7 Summary 

In this paper we have developed a new EM algorithm to obtain REML estimates of 

variance-covariance components as well as both the fixed and random effects parameters 

in nonlinear mixed effects models.  This new approach, called fully exponential Laplace 

approximation EM algorithm ( FELA-EM-REML), can be considered as an improvement 

of the Laplace approximation which preserves the computational efficiency and improves 

the accuracy of the parameter estimation of Laplace approximation.  This new approach 

first applies the standard EM algorithm to nonlinear mixed effects models and then uses 

the fully exponential Laplace method to approximate the conditional expectations of the 

complete data sufficient statistics in the E-step.  Four simulation studies (two models 

each with small and large variance-covariance parameters) were conducted to evaluate 

the accuracy of the new approach and compare it with the ML Laplace approximation 

and four linearization methods.  Of all approximations considered in the paper, the 

proposed FELA-EM-REML algorithm is the only one that gives unbiased or close-to-

unbiased (%Bias < 1%) estimates for all the fixed effects and variance-covariance 

components with 95% confidence interval coverages similar to the nominal value for all 

the fixed effects. 
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CHAPTER 4 

EXTENSION OF THE FULLY EXPONENTIAL LAPLACE APPROXIMATION 

EM ALGORITHM FOR NONLINEAR MIXED MODELS WITH TWO LEVELS 

OF CROSSED RANDOM EFFECTS  

 

4.0 Abstract 

Multilevel nonlinear mixed effects models have received much interest in the statistical 

literature in recent years.  These models are useful for analyzing data presenting multiple 

levels of grouping.  Examples include pharmaceutical studies in which concentration 

measurements are taken over time for patients from different clinical centers after given a 

drug or field experiments where measurements are obtained weekly from plants that grow 

in different fields.  The most successful methods used to estimate the parameters in 

multilevel nonlinear mixed models are called linearization methods, which are based on 

using a first-order Taylor series expansion to approximate the nonlinear model function 

and maximizing the likelihood corresponding to the resulting approximate model.  

Although linearization methods are popular and computationally simple, they can 

produce substantial bias in parameter estimation with limited number of observations per 

stratum and large variability of random effects.   Recently, several more accurate 

estimation methods for single-level nonlinear mixed models have been extended for 

parameter estimation in multilevel nonlinear mixed models including the maximum 

likelihood (ML) version of Laplace approximation and the stochastic approximation 

version of EM algorithm.  This paper focuses on parameter estimation of nonlinear mixed 

effects models with two levels of crossed grouping.  The restricted maximum likelihood 
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estimates are obtained via the extension of the FELA-EM algorithm.  Two simulation 

studies have been conducted to evaluate the accuracy of the approach and compare it with 

the ML version of Laplace approximation and different linearization methods.  Of all 

approximations considered in the paper, FELA-EM algorithm is the only one that gives 

unbiased or close-to-unbiased (%Bias < 1%, Ratkowsky 1983) estimates for both the 

fixed effects and variance-covariance parameters with 95% confidence interval coverages 

similar to the nominal value for all the fixed effects. 

 

Key Words: Nonlinear mixed models; linearization methods; Laplace approximation; 

EM algorithm; Fully exponential Laplace approximation; Crossed random effects; ML 

estimation; REML estimation. 
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4.1 Introduction 

Nonlinear mixed effects models with single-lever grouping factors have been widely used 

in numerous fields, such as biology, agriculture, environment, medicine, and economics 

for analyzing repeated measure data.  In recent years, multilevel nonlinear mixed effects 

models, including nonlinear mixed models with nested random effects, nonlinear mixed 

models with crossed random effects, and nonlinear mixed models with both nested and 

crossed random effects, have begun to receive much interest in the statistical literature 

(Pinheiro and Bates 2000; Davidian and Giltinan 2003; Millar 2004; Panhard and Samson 

2009).  These models are useful for analyzing data presenting multiple levels of grouping 

such as in pharmaceutical studies where concentration measurements are taken over time 

for patients from different clinical centers after given a drug and in field experiments 

where measurements are obtained weekly from plants that grow in different fields.   

 

The most popular methods used to estimate the parameters in multilevel nonlinear mixed 

models are called linearization methods, which are based on using a first-order Taylor 

series expansion to approximate the nonlinear model function and maximize the 

likelihood corresponding to the resulting approximate model.  Linearization methods for 

multilevel nonlinear mixed models are computationally simple and have been 

implemented in a number of software packages such as NONMEM (Beal and Sheiner 

1992), the %nlinmix macro (Wolfinger and Lin 1997) in SAS (SAS Institute 2004), and 

the nlme function (Pinheiro and Bates 2000) in both S-PLUS (Insightful Corporation 

2007) and R (R development core team 2009).  The only popular program that can solve 

multilevel nonlinear mixed models with both crossed and nested random effects is 
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the %nlinmix macro in SAS and the other programs generally only deal with multilevel 

nonlinear mixed models with nested random effects.  The SAS macro solves the 

nonlinear mixed model based on the following idea: 1) Take a first-order Taylor series of 

the model around the current estimates of the fixed effects β  and some values of the 

random effects b.  This yields an approximate model of the linear mixed model form.  2) 

Fit this model with a linear mixed model procedure (i.e., the Mixed Procedure in SAS).  3) 

Update the expansion loci.  4) Repeat the process until a convergence criterion is met.  

There are different ways to choose the expansion locus of the random effects and we 

focus on two of them: expansion around zero that is the expected value of the random 

effects, denoted as ZERO and expansion around the estimated best linear unbiased 

predictor, denoted as EBLUP.  Several different methods for estimating parameters in 

linear mixed-effects models have also been proposed and we concentrate on two of them: 

maximum likelihood, ML (Hartley and Rao 1967) and restricted maximum likelihood, 

REML (Harville 1977).  Although linearization methods are popular and computationally 

simple, they can produce substantial bias in parameter estimation with limited number of 

observations per subject and large variability in random effects (Vonesh 1996; Ge, Bickel, 

and Rice 2004).   

 

This bias has motivated researchers to search for more accurate methods for single-level 

nonlinear mixed models to improve the estimation in multilevel nonlinear mixed models.  

The ML version of Laplace approximation for single-level nonlinear mixed models 

proposed by Pinheiro and Bates (1995) has been extended to nonlinear mixed models 

with both crossed and nested random effects by Bates, Maechler, and Dai (2008).  It is 
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also possible to implement the adaptive Gaussian quadrature (AGQ) method for single-

level nonlinear mixed models proposed by Pinheiro and Bates (1995) in the SAS 

procedure NLMIXED for nonlinear mixed models with two nested groupings.  However, 

due to the large number of quadrature points, the AGQ method often requires very high 

computer resources and time.  Moreover, in practice, the AGQ method frequently fails to 

converge (Jaffrezic, Meza, Lavielle, and Foulley 2006). 

 

As an alternative to the direct approximate to the marginal likelihood of nonlinear mixed 

effects models, various versions of EM algorithms (Dempster, Laird, and Rubin 1977) 

have been proposed for the parameter estimation in single-level nonlinear mixed models 

including Monte Carlo EM-based algorithms (Walker 1996; Wang 2007) and stochastic 

approximation EM algorithm (Kuhn and Lavielle 2005).  The stochastic approximation 

version of EM algorithm for single-level nonlinear mixed models has been successfully 

extended to nonlinear mixed models with two nested grouping factors by Panhard and 

Samson (2009) while none of the Monte Carlo EM-based algorithms are directly 

applicable to the case of multilevel nonlinear mixed models. 

 

The objective of this paper is to extend the FELA-EM algorithm (proposed in chapter 3) 

to nonlinear mixed effects models with two levels of crossed grouping for obtaining 

REML estimates.  In Section 4.2, we present a general formulation for nonlinear mixed 

models with two levels of crossed grouping.  In section 4.3, we give both ML and REML 

versions of Laplace approximation to the two-level crossed nonlinear mixed models.  The 

extension of the FELA-EM algorithm for single-level nonlinear mixed models to 
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multilevel nonlinear mixed models with two crossed groupings is introduced in Section 

4.4.  In Section 4.5, we evaluate the accuracy of the extended approach and compare it 

with the ML version of Laplace approximation and four different linearization methods 

given in Wolfinger and Lin (1997).  We give our overall conclusions in Section 4.6 and 

summarize the paper in Section 4.7. 

 

4.2 Model and likelihood 

For a multilevel nonlinear mixed effects model with two crossed grouping factors, the 

model can be written as 
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The joint density of y , )1(b , and of model (4.2.1) is )2(b  ),,,|,,( )2()1(2)2()1( DDβbby σp , 

where y  is observed, u e rand coefficients )1(b  and  

the random effects are unobserved quantities, ML estimation for model (4.2.1) is based 

on the marginal density of the responses, 

 b t th om )2(b  are unobserved.  Because

y , which is calculated as 
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here  is the marginal density of  ),,,|( )2()1(2 DDβy σp yw  for ML estimation, 

),,, )2()1(2 bbσ  is the co|( βyp nditional density of y  given the random effects )1(b  and 

al distributions of )1(b  and 2(b are )|( )1()1( Dbp  and )( )2()2(bp , 

ectively. 

 

)2(b , and the margin )  | D

resp

imilarly, by assuming a flat prior for the fixed effects , REML estimation for S β

variance-covariance components )1(D , )2(D , and 2σ  in model (4.2.1) can be obtained by 

integrating out both fixed effects and ran  effec from the joint density of dom ts y , β , )1(b , 

and )2(b , which is given by 
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where  is the marginal density of ),,|( )2()1(2 DDy σp y  for REML estimation, 

 is the conditional density of ),,, )2()1(2 bbσ|( βyp y  given both fixed effects β  and 

random effects  and , and the marginal distributions of  and  are 

 and , respectively.  Because the model function f can be 

nonlinear in the random effects, the integrals in both (4.2.2) and (4.2.3) generally do not 

have a closed-form expression. 
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4.3 Laplace approximation to the likelihood 

The Laplace approximation is a method for approximating integrals using local 

information about the integrand at its maximum.  Therefore, it is most useful when the 

integrand is highly concentrated about its maximizing value.  The Laplace approximation 

has been widely used in Bayesian inference to compute marginal posterior densities 

(Tierney and Kadane 1986; Leonard, Hsu, and Tsui 1989) and it converges to the correct 

value as the sample size goes to infinity.  We first apply Laplace approximation to the 

marginal density of y  for ML estimation given in (4.2.2).  The details are as follows. 
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The integral (4.2.2) that we want to estimate can be further written as 
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where  minimizes the function  and  is the second 

derivative of  with respect to the random effects  evaluated at . 
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Similarly, the Laplace approximation to the marginal density of y  for REML estimation 

given in (4.2.3) can be obtained by 
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where pN  is the number of fixed effects  in model (4.2.1),  and  jointly minimize 

the function  and  is the second derivative of 

 with respect to the fixed effects  and the random effects b  evaluated 

at  and , respectively. 
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4.4 FELA-EM algorithm 

EM algorithm (Dempster, Laird, and Rubin 1977) has been widely used for finding 

ML/REML estimates in incomplete data problems due to its simplicity and stability.  It 

alternates between two steps, an expectation step (E-step) and a maximization step (M-

step).  Let  be the complete data where  and  represent the observed 

and missing data, respectively, and θ  be the vector of parameters to be estimated.  On the 

 iteration, the E-step generally computes the expectation of the complete data 

log-likelihood  conditional on the observed data  at the current 

estimates of the parameters  (or the initial values for the first iteration), 

),( misobsc yy

,( yyobsl

obsy misy

th)1( +K

);θmis

(θ

obsy

)K

 

].;);,([)( )()( K
obsmisobs

K EQ θyθyyθθ l=  

 

The M-step is then to find  to maximize )1( +Kθ )( )(KQ θθ  for all  in the parameter space, θ

 

).()( )()()1( KKK QQ θθθθ ≥+  

 

The two steps are repeated until convergence is reached.  When the complete data density 

belongs to the exponential family the E-step can be further simplified to compute the 

expected sufficient statistics of the complete data.  After each iteration, the EM algorithm 

moves to a better point and the log-likelihood of the observed data increases. 
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For the multilevel nonlinear mixed effects model (4.2.1), assume a flat prior for the fixed 

effects  and consider  as the complete data where β ),,,( )2()1( bbβyc y  and 

 are the observed and missing data, respectively.  Let  

represent the parameters for which REML estimates are required.  The E-step and M-step 

of the FELA-EM algorithm are described as follows. 

),( )21(bβc , () b ),( )2(2 DDθ σc= ,)1(

 

4.4.1 E-step 

The E-step computes the conditional expectation of the complete data log-likelihood 
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and  is the total number of observations.  The density of the missing data 

 conditional on the observed data 
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It can be seen from (4.4.2) that the density of the complete data  is from 

the exponential family and the sufficient statistics of the complete data for 
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The common terms that appear in both the numerator and denominator in (4.4.4), (4.4.5), 

and (4.4.6) and do not contain , , and  are cancelled.  The integrals in both the 

numerator and the denominator of (4.4.4), (4.4.5), and (4.4.6) generally cannot be 

computed analytically because both the sufficient statistics of the complete data for  

(

β )1(b )2(b

2σ

R ) and  can be nonlinear in the fixed and random effects.  We );,,,( )()2()1( Kθbbβyh
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approximate (4.4.4), (4.4.5), and (4.4.6) by the fully exponential Laplace method that will 

be presented in Section 4.4.3. 

 

4.4.2 M-step 

The M-step is to find the estimates of the parameters for the next iteration, , by 

solving the equation 

)1( +Kθ
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=
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∫ bbβθybbβθbbβy
θ

θθ
θ

dddpQ KK l              (4.4.8) 

 

By allowing differentiation under the integral sign (Walker 1996; Wang 2007), the 

unique solution to (4.4.8) is given by 
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Therefore, once the conditional expectations of the sufficient statistics );( )(KRE θy , 

);( )()1(
, 11

K
nmSE θy  for , and 111 ,...,1, qnm = );( )()2(

, 22

K
nmSE θy  for  are obtained, 

the process of the M-step is straightforward. 

222 ,...,1, qnm =
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4.4.3 Fully exponential Laplace approximation 

The fully exponential Laplace approximation proposed by Tierney and Kadane (1986) is 

useful for approximating the expectation and variance of a strictly positive function.  It 

has the advantage of requiring only second derivatives of the log-likelihood function to 

achieve a second-order accuracy.  The fully exponential Laplace approximation to the 

ratio of two related integrals is given by 
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where  is a positive scalar function, , and φ  and  

maximize  and , respectively.  Note that the errors in the Laplace approximations to 

both the numerator and the denominator in (4.12) are of order  while the error in 

the ratio (4.4.12) is of order  due to the cancellation of the similar error terms in 

the approximation to the numerator and the denominator.  The limitation of the Laplace 

approximation in (4.4.12) is that it only applies to positive functions.  Thus, it generally 

does not work for our problem because the covariance parameters can be negative and 

even the variance components are not necessarily strictly positive. They can take values 

close to zero or zero.  Tierney, Kass and Kadane (1989) generalize the Laplace 

approximation in (4.4.12) so that  can take on negative values.  Their approach is to 

first approximate the moment generating function of  (Note that the moment 

)(φg

l

)(/)}(log{)(* φφφ ll += ng

)/1( nO
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ˆ *φ̂
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generating function of any scalar function is always strictly positive), and then 

approximate the ratio in (4.4.12) by evaluating the first derivative of the approximation to 

the moment generating function at 0.  They showed that the accuracy of the moment 

generating function approach is also of order . )/1( 2nO

 

We now apply the moment generating function approach to estimate the conditional 

expectations );( )( KRE θy , );( )()1(
, 11

K
nmSE θy  for 1,...,1 q11,nm = , and );( )()2(

, 22

K
nmSE θy  for 

 given in (4.4.4), (4.4.5), and (4.4.6), respectively. 222 ,...,1, qnm =
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where  maximizes  ),ˆ,ˆ(ˆ *)2(*)1(** bbβφ c= );,()( )(2 Kft θφyφy h+−  and 

), )2()1( b  maximizes (hˆ,ˆ bβ(φ̂ c= ); )(Kθ .  Then,φy  );( )(kRE θy  can be approximated by 

ttM R ∂∂ /)(~  evaluated at 0.  Since the analytic differ f )(entiation o ~ tM  with respect to t  

 third derivatives of 

R

requires the 2)(φy f−  and );,( )( Kθφyh  with respect to φ  that can 

be substantial work we apply t al differentiation approach to approximate he numeric

);( )(KRE θy , 
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imilarly, one can show that the fully exponential Laplace approximations to the moment 
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.  As noted by Tierney and Kadane

, )ˆ,ˆ,ˆ(ˆ **)2(**)1(**** bbβφ c=

)ˆ,ˆ,ˆ( ***)2(***)2(*** bbβ

 (1986), the com

1()1( ′

ace approximation is relatively minimal since 1) once φ̂ , the 

maximum of );,( )(Kθφyh , has been determined, it can be used as starting values to find 

*φ̂ , **φ̂ , and aximum of 

1 nmt bb

()2(
2 nmt bb ′

fully e

c

);,()( )(2 Kft θφyφy h+− , );,( )()1()1( Kt θφybb h+
′ , 

);, )()2()2 K′  in (4.4.14), (4.4.15  

the n eeded to find *φ̂ , **φ̂ , and ***φ̂  from φ̂  is quite small and 

replacing *φ̂ , **φ̂ , and ***φ̂  by two Newton steps from φ̂ usually sufficient. 

 

11 nm

, and (4.4.16), respectively; 2) generally,

 are 

and tb

u
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22 nm θφyb h+

mber of iterations
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 n

In summary, the FELA-EM algorithm for multilevel nonlinear mixed models with two 

 to maximize

crossed groupings takes the following steps: 

1) Initialize 0θDDθ == ),,( )2()1(2σc . 

2) E-step: 

a) Find )ˆ,ˆ,ˆ(ˆ )2()1( bbβφ c=  );,( )(Kθφyh  
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b) Maximize );,()( (2 Kf θφyφy h+− , )1 );,( )()1((
11

K
nmt θφybb h+

′)t , and 

);,( )(
22

K
nm θφyh)2()2(t bb +

′  by replacing )ˆ,ˆ *)2(*)1( , 

) , and ˆ,ˆ(ˆ 1(****** bβφ c= on 

ely. 

c) Approximate the conditional expectations 

,ˆ(ˆ ** bbβφ c=

)ˆ, ***)2(***) b  with two Newtˆ,ˆ,ˆ(ˆ **)2(**)1(**** bbβφ c=

steps from φ̂ , respectiv

);( )(KRE θy , );( )()1(
, 11

K
nmSE θy  for 

,,...,1, 111 qnm =  and );( )()2(
, 22

K
nmSE θy  for 22 ,...,1m 2, qn =  with the numerical 

M-step: Obtain 

differentiation approach. 

3) ( ))1()2()1()1()1(2)1( }{,}{, ++++ KKKK DD}{= c σθ  according to (4.4.9), 

1), respectively. 

ce. 

e conclude convergence when either the difference between two successive log-

-6

-3

(4.4.10), and (4.4.1

4) Repeat steps 2 and 3 until convergen

 

W

likelihood of model (4.2.1) or the absolute/relative changes in θ  are less than 10 .  The 

convergence rate of the standard EM algorithm is slow (McLachlan and Krishnan, 2008).  

When the absolute/relative changes in θ  are less than 10 , we switch to the accelerated 

version of the EM algorithm, algorithm QN1, proposed by Jamshidian and Jennrich 

(1997).  The QN1 algorithm is based on a quasi-Newton method, Broyden’s method, for 

solving nonlinear equations and minimizing functions.  Algorithm QN1 is easy to 

implement and its speed of convergence can be 19-87 times faster than that of the 

standard EM algorithm. 
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4.4.4 Calculating the information matrix 

One of the drawbacks of EM algorithm is that it does not provide a natural estimator for 

the inform atrix and thus the standard errors of the estimates cannot be readily 

obtained.  Le be the estimates of at convergence.  The observed 

information m trix of  ximizing the logarithm of the 

Laplace approximated REML versio

 by one quasi-New

 

4.4.5 Estimating the fixed and random effects 

The proposed FELA-EM algorithm is a REML method for estimating variance and 

covariance parameters in the nonlinear mixed model (4.2.1) and it 

and the random effects  and 

.  We can directly m m of the Laplace approxima  

of observed data likelihood given in (4.3.2) with respect to b , 

, and  while , the estimates at convergence from 

tes” of , and 

(4.2.1). 

 

ation m

t θ̂  

a

given in (4.3.3) with respect to 
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4.5 Comparing the approximations 

In this section, we present a comparison of our proposed EM algorithm (FELA-EM-

REML), the ML version Laplace approximation (Laplace-ML), and four variations of 

linearization m thods described in Section 4.1 via simulation studies.  We restrict 

ourselves to the linearization methods proposed by Wolfinger and Lin (1997).  Both ML 

and REML estimates are obtained for the linearization methods, denoted as ZERO-ML, 

e

ZERO-REML, EBLUP-ML and EBLUP-REML, respectively.  Two models are used in 

the simulation studies, a logistic model and a first-order compartment model.  Both 

istical literatures to illustrate the fitting of nonlinear mixed 

olfinger and Lin, 1997; 

algo

lmer function in R package lm

Dai, 2008) and the four linearization methods (ZERO-ML, ZERO-REML, EBLUP-ML 

and EBLUP-REML) are done using the %nlinmix macro in SAS.  The sample code for 

.5.1 Logistic model 

A 3-parameter logistic model used by Wolfinger and Lin (1997), but with two crossed 

grouping factors and two random effects associated with each of the grouping factor was 

used to generate the data.  The values of fixed-effects parameters, covariate, and 

models are widely used in stat

models (Lindstrom and Bates, 1990; Pinheiro and Bates, 1995; W

Kuhn and Lavielle, 2005; Wang, 2007).  For both models 2,000 simulated data sets from 

two random number seeds (1,000 data sets/seed) are generated to avoid simulation bias 

and ML/REML estimates using different approximations are obtained.  The FELA-EM 

rithm presented here is done using the code written in R by the authors.  The Laplace 

approximation is done using the n e4 (Bates, Maechler, and 

fitting the logistic model using the FELA-EM algorithm is given in the appendix. 

 

4
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variance-covariance parameters for random effects were also similar to those used by 

Wolfinger and Lin (1997).  The error σ2 was increased from 25, used in Wolfinger and 

Lin (1997), to 625 to distinguish the performance of different approximation procedures.  

The nonlinear mixed model is given by 
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Tables 4.1 lists the simulation results for the fixed-effects estimates in the logistic model.   

Assuming rθ̂  stands for a parameter estimate at the rth simulation and Tθ  for the true 

value of the parameter, the summary statistics for the parameters are defined as follows: 

Mean denotes the average of the estimates  across the 2000 sim lations, i.e., rθ̂ u

∑ =

2000

1
2000ˆ

r rθ ; %Bias denotes the relative b  in estimating th meter, i.e., ias e para

TT θθ )Mean(100 −

ator, i.e., 

× ; RMSE denotes the square root of mean square error of the 

estim ∑ =
−

2000

1
2 2000)ˆ(

r Tr θθ , which is a measure of accuracy that takes into 

ccount b  bias and variability; 95% CI denotes 95% confidence intervals, i.e., a oth

2000Z 2
θ̂α s ,  is the norm l critical value corresponding to 95% 

confidence level and 

Mean ± where Zα a

∑ =
−1−=ˆ )2000()

r Ts
θ

.  When 95% CI does not cover the 

true value of the parameter, we conclude that the estimate is significantly biased at 5% 

level; and finally, %CVR denotes the observed coverage of the standard normal base

odel-based standard errors.  Only those 

alues for the fixed effects were presented in the paper because the standard errors for the 

variance-covariance parameters were not provided by both the nlmer function in R and 

the %nlinmix macro in SAS.  The 95% coverage values marked with an asterisk are 

utside the interval (93.54, 96.46).  The half-width of this interval is three times the 

ial standard error, which is [(95)(5)/2000]1/2 = 0.4873.  For β1, which enters the 

onlinear mixed model linearly and is associated with the random effects, the estimates 

obtained from FELA-EM-REML, Laplace-ML, and the two zero-expansion 

approximations (ZERO-ML and ZERO-REML) are more accurate than those from the 

2000 22 θ

d 

95% confidence intervals computed using the m

1
ˆ( rθ

v

o

binom

n
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two eblup-expansion approximations (EBLUP-ML and EBLUP-REML).  The two eblup-

expansion approximations significantly underestimate the estimator by 1.61% and 1.54%, 

respectively, while the other four approximations all provide unbiased estimates.  For β2, 

which enters the model nonlinearly and is associated with the random effects, the 

ll six approximations produce significantly biased estimates, 

the %Bias are r  absolute maximum value 2.22% for EBLUP-ML 

3

The two zero-expans  and ZERO-REML) significantly 

overestimate β3 by 5.29% while the two eblup-expansion methods (EBLUP-ML and 

EBLUP-REML) underestimate the parameter by 3.94% and 3.81%, respectively.  

Although FELA-EM-REML and Laplace-ML approximations give significantly positive 

biased estimates for β3, the %Bias is 0.89% and 0.67%, respectively, which is more than 

three times smaller than those from the four linearization methods.  The two 

approximations that give unbiased or close-to-unbiased (%Bias < 1) estimates for all 

three fixed effects are FELA-EM-REML and Laplace-ML approximations.  The observed 

95% confidence interval coverages obtained from FELA-EM-REML approximation are 

more accurate than those from the other five methods (ZERO-ML, EBLUP-ML, Laplace-

ML, ZERO-REML, and EBLUP-REML).  For β1, the EBLUP-ML method gives a 

considerable lower coverage rate while the other five approximations all attain their 

estimates obtained from FELA-EM-REML and Laplace-ML approximations are more 

accurate than those from the four linearization methods.  Although the 95% confidence 

intervals show that a

elatively small with an

approximation.  For β , which enters the model nonlinearly and is the only non-random 

coefficient, the estimates obtained from FELA-EM-REML and Laplace-ML 

approximations are again more accurate than those from the four linearization methods.  

ion approximations (ZERO-ML
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nominal coverages.  For β2, the only approximation method which gives similar coverage 

to the nominal value is FELA-EM-REML while the observed coverages tend to decrease 

from the nominal one for the other five methods.  For β3, both Laplace-ML and FELA-

EM-REML approximations attain their nominal coverages while the other four 

approximations all provide a significantly lower coverage rate compared to the nominal 

value.  The square root of mean square errors (RMSE) of β1 and β2 are relatively similar 

for all six approximations considered.  For β3, the RMSE’s for the two zero-expansion 

approximations (ZERO-ML and ZERO-RML) are roughly 30% larger than those from 

the other four approximations. 
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Table 4.1: Simulation results for the fixed effects in the logistic model 

Approximation  Mean %Bias RMSE 95% CI %CVR 
   

2001 =β    
    ZERO-ML 200.77 0.38 23.18 [199.75, 201.78]   94.21 
    EBLUP-ML 196.77† -1.61 23.37 [195.76, 197.79]   93.12* 
    Laplace-ML 200.24 0.12 22.99 [199.23, 201.25]   93.90 
    ZERO-REML 200.77 0.38 23.18 [199.75, 201.78]   94.62 
    EBLUP-REML 196.92  -1.54 23.35 [195.90, 197.93]   94.08 
    FELA-EM-REML 200.45 0.22 22.99 [199.44, 201.46]   94.85 
    

700=

†

2β     
    ZERO-ML 685.31† -2.10 67.07 [682.44, 688.18]   91.84* 
    EBLUP-ML 684.46† -2.22 61.58 [681.85, 687.07]   92.35* 
    Laplace-ML 702.
    ZERO-REML 685.31

81† 0.40 64.04 [700.01, 705.61]   92.80* 
† -2.10 67.07 [682.44, 688.18]   92.60* 

  EBLUP-REML 685.02† -2.14 61.57 [682.41, 687.64]   92.91* 
  FELA-EM-REML 703.63† 0.52 64.35 [700.81, 706.44]   93.55 

   

  
  
 

3503 =β     
    ZERO-ML 368.52† 5.29 28.53 [367.57, 369.47]   89.77* 
    EBLUP-ML 336.22† -3.94 21.67 [335.48, 336.95]   86.29* 
    Laplace-ML 352.36† 0.67 18.38 [351.56, 353.16]   95.70 
    ZERO-REML 368.52† 5.29 28.53 [367.57, 369.47]   89.83* 
    EBLUP-REML 336.68† -3.81 21.32 [335.95, 337.41]   86.99* 
    FELA-EM-REML 353.12† 0.89 18.62 [352.32, 353.93]   95.65 
† The 95% CI does not cover the true value of the parameter and the estimate is 

significantly biased at 5% level. 

* The %CVR is outside the interval (93.54, 96.46). 
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Table 4.2 contains the simulation results for the variance-covariance components in the 

For varia ponents associa h the r fects th

the nonlinear mixed model linearly (  and ), the estimate obtained from FELA-
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three approximations (Laplace-ML, EBLUP-REML, and FELA-EM-REML) all give 

unbiased estimates with a maximum absolute %Bias of 3.60% for FELA-EM-REML.  

For )(D 2
12 , FELA-EM-REML is the on appro ation that gives an unbiased estimate 

while the other five approximations all significantly overe ate t arameter with a 

minimum %Bias of 5.34% for Laplace-ML.  For the subject specific variance ( 2σ ) 

estimation, the est te ob ed from the FELA-EM-REML approximation has the 

smallest abs .  Both ZERO approximations (ZERO-ML and ZERO-REML) 

significantly overestimate the estimators by 3.33% and 3.47%, respectively while the 

2

two zero-expansion approximations (ZERO-ML and ZERO-RML) can be 20% larger 

than those from the other four approximations. 

 

 

ly xim

stim he p

ima tain

olute %Bias

other four approximations all give unbiased estimates.  The RMSE’s of the variance-

ponents for the random effects are relatively similar for all six 

ations considered.  For the subject specific variance, , the RMSE’s for the 

 

covariance com

approxim σ
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Table 4.2: Simulation results for the variance-covariance components in the logistic 

model 

Approximation  Mean %Bias RMSE 95% CI 
  

2500)1(
11 =D   

    EBLUP-ML 2320.64† -7.17 1130.36 [2271.72, 2369.56]
†

    ZERO-REML 2536.82 1.47 1250.57 [2482.03, 2591.62]

    FELA-EM-REML 2513.06 0.52 1236.47 [2458.86, 2567.26]

1875)1(
12 −=D   

    ZERO-ML -1584.84  15.48 2168.42 [-1679.04, -1490.64]
    EBLUP-ML -1759.22† 6.17 2100.43 [-1851.16, -1667.28]
    Laplace-ML -1848.94 1.39 2194.75 [-1945.14, -1752.73]
    ZERO-REML -1655.99† 11.68 2354.78 [-1758.77, -1553.21]

    FELA-EM-REML -1942.56 -3.60 2395.32 [-2047.52, -1837.60]

15625)1(
22 =D   

    ZERO-ML 14995.95  -4.0
    EBLUP-ML 13496.89† -13.6

    ZERO-ML 2380.77† -4.77 1156.50 [2330.34, 2431.20]

    Laplace-ML 2365.50  -5.38 1145.93 [2315.61, 2415.39]

    EBLUP-REML 2474.28 -1.03 1214.53 [2421.05, 2527.51]

  

†

    EBLUP-REML -1849.64 1.35 2293.72 [-1950.19, -1749.10]

  

† 3 9626.84 [14574.83, 15417.06]
2 7797.83 [13168.03, 13825.75]

  Laplace-ML 14535.80† -6.97 8125.87 [14182.80, 14888.80]
  ZERO-REML 16223.19† 3.83 10506.15 [15763.38, 16683.01]
  EBLUP-REML 14611.80† -6.48 8261.24 [14252.39, 14971.22]
  FELA-EM-REML 15565.90 -0.38 8794.90 [15180.37, 15951.44]

  
  
  
  
† The 95% CI does not cover the true value of the parameter and the estimate is 

significantly biased at 5% level. 
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Table 4.2 (continued): Simulation results for the variance-covariance components in the 

logistic model 

Approximation  Mean %Bias RMSE 95% CI 
  

2600)2(
11 =D   

    ZERO-ML 2457.13† -5.49 1179.50 [2405.81, 2508.46]
    EBLUP-ML 2394.28† -7.91 1153.53 [2344.52, 2444.03]
    Laplace-ML 2441.36† -6.10 1169.81 [2390.55, 2492.17]
    ZERO-REML 2621.89 0.84 1274.79 [2566.01, 2677.76]
    EBLUP-REML 2556.44 -1.68 1237.81 [2502.22, 2610.67]
    FELA-EM-REML 2597.47 -

1

1

 
† 3.33 42.14 [644.22, 647.43]

    EBLUP-ML 625.19 0.03 34.20 [623.69, 626.69]
  Laplace-ML 624.65 -0.06 34.08 [623.16, 626.15]

    ZERO-REML 646.66† 3.47 42.60 [645.05, 648.27]
  EBLUP-REML 625.93 0.15 34.23 [624.43, 627.43]
  FELA-EM-REML 624.95 -0.01 34.09 [623.46, 626.44]

0.10 1261.94 [2542.15, 2652.79]
  

1950)2(
12 −=D   

    ZERO-ML -1562.23† 19.89 2185.52 [-1656.52, -1467.95]
    EBLUP-ML -1755.07† 0.00 2129.31 [-1848.02, -1662.12]
    Laplace-ML -1845.87† 5.34 2220.77 [-1943.12, -1748.63]
    ZERO-REML -1630.01† 16.41 2371.62 [-1733.02, -1526.99]
    EBLUP-REML -1840.48† 5.62 2318.91 [-1942.02, -1738.94]
    FELA-EM-REML -1935.95 0.72 2423.62 [-2042.19, -1829.71]
  

16250)2(
22 =D   

    ZERO-ML 15687.81† -3.46 0004.15 [15249.95, 16125.67]
    EBLUP-ML 14153.24† -12.90 8080.46 [13811.15, 14495.34]
    Laplace-ML 15245.90† -6.18 8479.55 [14876.80, 15615.01]
    ZERO-REML 16998.83† 4.61 10947.57 [16520.05, 17477.62]
    EBLUP-REML 15350.00† -5.54 8604.18 [14974.88, 15725.11]
    FELA-EM-REML 16362.10 0.69 9215.58 [15958.15, 16766.06]
  

    ZERO-ML 645.82
6252 =σ  

  

  
  
† The 95% CI does not cover the true value of the parameter and the estimate is 

gnificantly biased at 5% level. si
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4.5.2 First-order compartment model 

A 3-parameter first-order compartment model used by Pinheiro and Bates (1995), but 

d groupin s and tw om effects associated with each of the 

grouping factor was used to generate the data.  The values of the fixed-effects parameters, 

ariance pa the cov , and  were a

nd Bate ix l is giv

with two crosse g factor o rand

the variance-cov rameters, ariate  the dose lso similar to those 

used by Pinheiro a s (1995).  The nonlinear m ed mode en by 
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),0( 2σN  and independent of .  )1( )2(
ib  and b j

We use Dose = 1, M 12= , 1 =M , 11=ijn  fo ,...,1r i 1M=  a

ulation results for the fixed-effects estimates.  For β1, the 

two zero-expansion approximations significantly underestimate the parameter by 3.34% 
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while the other four approximations show very little negative bias with a maximum 

e results are 

milar to those for β1.  Both zero-expansion approximations significantly underestimate 

the estimator with %Bias by 4.24% while the other four approximations provide a small 

but significant bias with a maximum absolute value of %Bias 0.52% for EBLUP-REML.  

For the observed 95% confidence interval coverages, the only approximation method 

which gives similar coverages to the nominal values for all three fixed effects is FELA-

EM-REML.  For β1, all six approximations considered attain their nominal coverages.  

For β2, both EBLUP-REML and FELA-EM-REML provide values similar to the nom

overages while the other four approximations (ZERO-ML, EBLUP-ML, Laplace-ML, 

RO-REML) all ificantly lower coverage rate , the observed 

rom -R the two 

are sign cantly lo r than t ominal valu ile the other 

three methods (Laplace-ML, EBLUP-REML, and FELA-EM-REML) all give similar 

coverages to their nominal ones.  We also note that the RMSE of both β1 and β2 is 

relatively similar for all approxima onsidered and the RMSE of β3 for the two zero-

expansion approximations is about twice as large as that for the other four 

approximations. 

 

absolute value of %Bias 0.32% for Laplace-ML.  For β2, the two zero-expansion 

approximations highly overestimate the parameter by more than 18% while the two 

eblup-expansion approximations significantly underestimate the estimator by 6.82% and 

6.79%, respectively.  The two approximations that give unbiased estimates for β2 are 

FELA-EM-REML and Laplace-ML.  For the non-random coefficient β3, th

si

inal 

c

and ZE  give sign s.  For β3

coverages obtained f  ZERO EML and ML linearization methods (ZERO-

ML and EBLUP-ML) ifi we he n es wh

tions c
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Table 4.3: Simulation results for the fixed effects in the first-order compartment model 

Approximation  Mean %Bias RMSE 95% CI %CVR 
      

31 −=β       
    ZERO-ML -3.1003  -3.34 0.1473 [-3.1051, -3.0956]    94.41 
    EBLUP-ML -3.0048† -0.16 0.1047 [-3.0094, -3.0002]    93.68 
    Laplace-ML -3.0095  -0.32 0.1048 [-3.0141, -3.0050]    94.60 
    ZERO-REML -3.1002† -3.34 0.1472 [-3.1049, -3.0954]    95.12 
    EBLUP-REML -3.0042 -0.14 0.1047 [-3.0088, -2.9996]    94.75 
    FELA-EM-REML -3.0091† -0.30 0.1048 [-3.0136, -3.0045]    95.10 
    

5.0=

†

†

2β     
    ZERO-ML   0.5902† 18.04 0.2304 [0.5808, 0.5995]    92.14*
    EBLUP-ML   0.4659† -6.82 0.2277 [0.4560, 0.4759]    92.46*
    Laplace-ML   0.4984 -0.31 0.2288 [0.4884, 0.5085]    93.30*
    ZERO-REML   0.5903† 18.06 0.2302 [0.5810, 0.5996]    93.00*
    EBLUP-REML   0.4661† -6.79 0.2280 [0.4561, 0.4760]    94.08 
    FELA-EM-REML   0.5008 0.17 0.2295 [0.4908, 0.5109]    94.15 
    

5.23 −=β    

    EBLUP-ML -2.4872  0.51 0.0590 [-2.4897, -2.4847]    86.85*

    ZERO-REML -2.6060  -4.24 0.1269 [-2.6090, -2.6029]    90.64*

    FELA-EM-REML -2.5116  -0.46 0.0588 [-2.5141, -2.5090]    96.25 

 
    ZERO-ML -2.6059† -4.24 0.1268 [-2.6090, -2.6028]    90.58*

†

    Laplace-ML -2.5114† -0.46 0.0588 [-2.5139, -2.5089]    95.95 
†

    EBLUP-REML -2.4871† 0.52 0.0589 [-2.4896, -2.4845]    96.28 
†

† The 95% CI does not cover the true value of the parameter and the estimate is 

significantly biased at 5% level. 

* The %CVR is outside the interval (93.54, 96.46). 
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Table 4.4 shows the simulation results for the variance-covariance components in the 
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0.1% for Laplace-ML.  The RMSE of the variance-covariance components is relatively 

similar for all approximations considered. 
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Table 4.4: Simulation results for the variance-covariance components in the first-order 

compartment model 

Approximation  Mean %Bias RMSE 95% CI 
  

05.0)1(
11 =D   

    ZERO-ML   0.0484† -3.22 0.0235 [0.0474, 0.0494]
    EBLUP-ML   0.0467† -6.55 0.0215 [0.0458, 0.0477]
    Laplace-ML   0.0475† -4.97 0.0218 [0.0466, 0.0485]
    ZERO-REML   0.0509 1.73 0.0251 [0.0498, 0.0520]
    EBLUP-REML   0.0492 -1.68 0.0228 [0.0482, 0.0502]
    FELA-EM-REML   0.0500 0.00 0.0232 [0.0490, 0.0510]
  

 
    ZERO-ML -0.0061† NA 0.0336 [-0.0076, -0.0046]
    EBLUP-ML -0.0002 NA 0.0335 [-0.0017,  0.0013]
    Laplace-ML -0.0005 NA 0.0344 [-0.0020,  0.0010]
    ZERO-REML -0.0060† NA 0.0359 [-0.0076, -0.0045]
    EBLUP-REML   0.0002 NA 0.0360 [-0.0014,  0.0018]
    FELA-EM-REML   0.0005 NA 0.0372 [-0.0011,  0.0022]
  

 
    ZERO-ML   0.1832† -26.73 0.1133 [0.1791, 0.1872]
    EBLUP-ML   0.2284† -8.64 0.1117 [0.2236, 0.2332]
    Laplace-ML   0.2321† -7.17 0.1153 [0.2271, 0.2371]
    ZERO-REML   0.1943† -22.30 0.1136 [0.1899, 0.1986]
    EBLUP-REML   0.2422† -3.13 0.1177 [0.2370, 0.2473]
    FELA-EM-REML   0.2487 -0.50 0.1240 [0.2433, 0.2542]

0)1(
12 =D  

25.0)1(
22 =D  

† The 95% CI does not cover the true value of the parameter and the estimate is 

significantly biased at 5% level. 
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Table 4.4 (continued): Simulation results for the variance-covariance components in the 

first-order compartment model 

Approximation  Mean %Bias RMSE 95% CI 
  

06.0)2(
11 =D   

    ZERO-ML   0.0582† -2.93 0.0270 [0.0571, 0.0594]
    EBLUP-ML   0.0562† -6.41 0.0243 [0.0551, 0.0572]
    Laplace-ML   0.0570† -5.06 0.0246 [0.0559, 0.0580]
    ZERO-REML   0.0616† 2.68 0.0290 [0.0603, 0.0629]
    EBLUP-REML   0.0594 -1.00 0.0258 [0.0583, 0.0605]
    FELA-EM-REML   0.0603 0.57 0.0263 [0.0592, 0.0615]
  

0)2(
12 =D   

    ZERO-ML -0.0063† NA 0.0413 [-0.0081, -0.0045]
    EBLUP-ML   0.0000 NA 0.0405 [-0.0018,  0.0017]
    Laplace-ML -0.0004 NA 0.0415 [-0.0022,  0.0014]
    ZERO-REML -0.0064† NA 0.0444 [-0.0083, -0.0045]
    EBLUP-REML   0.0003 NA 0.0437 [-0.0016,  0.0023]
    FELA-EM-REML   0.0009 NA 0.0452 [-0.0010,  0.0029]
  

3.0)2(
22 =D   

    ZERO-ML   0.2219† -26.03 0.1353 [0.2170, 0.2268]
    EBLUP-ML   0.2723† -9.23 0.1386 [0.2663, 0.2783]
    Laplace-ML   0.2785† -7.18 0.1436 [0.2722, 0.2847]
    ZERO-REML   0.2371† -20.97 0.1351 [0.2318, 0.2423]
    EBLUP-REML   0.2902† -3.28 0.1468 [0.2837, 0.2966]
    FELA-EM-REML   0.3006 0.21 0.1558 [0.2938, 0.3075]
  

    ZERO-ML   0.2
25.02 =σ   

580† 3.20 0.0129 [0.2576, 0.2584]
    EBLUP-ML   0.2498 -0.06 0.0089 [0.2494, 0.2502]
  Laplace-ML   0.2497 -0.10 0.0089 [0.2493, 0.2501]

    ZERO-REML   0.2582† 3.26 0.0130 [0.2577, 0.2586]
  EBLUP-REML   0.2500 0.00 0.0089 [0.2496, 0.2504]

    FELA-EM-REML   0.2498 -0.07 0.0089 [0.2494, 0.2502]

  

  

† The 95% CI does not cover the true value of the parameter and the estimate is 

significantly biased at 5% level. 
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4.6 Discussion 

The results of Section 4.5 indicate that the proposed FELA-EM-REML algorithm gives 

iable estimation results for ed and variance-covariance 

components when used to approximate the log-likelihood function in the nonlinear mixed 

plicated rand  such a inea  model with two crossed 

t generally either unbiased or close-to-unbiased (%Bias < 1) 

fixed e  the variance-covariance components with the 95% 

idence interval coverages similar to the nominal value for all the fixed effects.  The 

es of this ap n method are its combination

tation is sl re than th  ML e appr

 Laplace ation) and estimat racy (

rder  compared with the error of order  from Laplace approximation for 

nce-covarian  

ts esti e esti ob from FELA-EM-REML 

pproximation are similar to those from the Laplace-ML approximation, but are more 

hose from the four linearization ods d by W

ELA-EM-RE Laplace ppr ons prod

%Bias < ates wit  95% dence in

 biased estimates with uncertain direction (i.e., the bias 

an be either negative or positive) and provide considerably lower coverage rates 

compared to the nominal one.  We also observe that the two eblup-expansion 

accurate and rel both fix effects 

model with com om effects s nonl r mixed

random effects.  I  produces 

estimates for both the ffects and

conf

main advantag proximatio  of computational 

efficiency (compu ightly mo at of  Laplac oximation yet less 

than that of REML approxim ion accu having an error of 

o  )/1( 2nO )/1( nO

estimating varia ce components).

 

For the fixed effec mation, th mates tained 

a

accurate than t  meth  propose olfinger and Lin 

(1997).  Both F ML and -ML a oximati uce unbiased or 

close-to-unbiased ( 1%) estim h the  confi terval coverages 

similar to the nominal value for all fixed effects while the four linearization methods 

frequently generate significantly

c
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approximations generally produce smaller bias than the two zero-expansion 

imation

 for covariance parameters is uncertain.  

hey can generate either unbiased or significantly biased estimates.  The two zero-

approximations and the two zero-expansion approximations can give estimates 

with %Bias more than 18% (both zero-expansion approximations for estimating β2 in the 

first-order compartment model).  The RMSE of the fixed effects is generally similar for 

all approximations considered except for estimation of β3 where the RMSE obtained from 

the two zero-expansion approximations is about twice as large as that from the other four 

approximations. 

 

For the variance-covariance estimation, our proposed FELA-EM-REML algorithm is the 

only approximation that always gives unbiased estimates for variance and covariance 

parameters while the EBLUP-REML approximation ranks a second.  The three ML 

approx s (ZERO-ML, EBLUP-ML, and Laplace-ML) generally underestimate the 

variance parameters while their performance

T

expansion approximations (ZERO-ML and ZERO-REML) can generate very poor 

estimates with %Bias more than 20% (i.e., estimating )1(
22D  and )2(

22D  in the first-order 

compartment model).  The RMSE of the variance-covariance components is relatively 

similar for all approximations considered. 
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4.7 Conclusions 

The proposed FELA-EM algorithm gives accurate and reliable estimation results, either 

unbiased or close-to-unbiased (%Bias < 1), with the 95% confidence interval coverages 

similar to the nominal value for both fixed effects and variance-covariance components 

when used to approximate the log-likelihood function in the nonlinear mixed model with 

complicated random effects such as nonlinear mixed model with two crossed random 

effects.  For the fixed effects estimation, the Laplace approximation also produces 

nbiased or close-to-unbiased estimates with the observed coverages similar to the 

as more than 20%. 

u

nominal 95% level while the four linearization methods frequently generate significantly 

biased estimates with uncertain direction and give significantly lower 95% confidence 

interval coverages than the nominal one.  The two zero-expansion approximations can 

give estimates with %Bias more than 18% when estimating β2 in the first-order 

compartment model.  For the variance-covariance estimation, our proposed FELA-EM-

REML algorithm is the only approximation that always gives unbiased estimates while 

the EBLUP-REML approximation ranks a second.  The three ML approximations 

generally underestimate the variance parameters and can give either unbiased or 

significantly biased estimates for covariance.  The two zero-expansion approximations 

can generate very poor estimates with %Bi
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4.8 Summary 

In this paper we have extended the FELA-EM algorithm for single level nonlinear mixed 

models to that for multilevel nonlinear mixed models with two crossed random effects.  

The extended FELA-EM algorithm is computationally efficient (similar to the REML 

version of the Laplace approximation) and shows great accuracy of the parameter 

estimation for multilevel level nonlinear mixed models with two crossed random effects.  

Two simulation studies were conducted to evaluate the accuracy of the extended the 

FELA-EM algorithm for estimating multilevel nonlinear mixed models with two crossed 

random effects and compare it with the ML version of the Laplace approximation and the 

four linearization methods proposed by Wolfinger and Lin (1997).  Of all the 

approximation methods considered in this paper, the extended FELA-EM algorithm is the 

only one that gives unbiased or close-to-unbiased (%Bias < 1%) estimates for both the 

fixed effects and variance-covariance components and 95% confidence interval 

coverages similar to the nominal value for all the fixed effects.  While the extended 

FELA-EM algorithm is computationally more intensive than the linearization methods, 

the sample code written in R and provided in the appendix of this dissertation is highly 

efficient and generally converges reliably and rapidly. 
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CHAPTER 5 

MULTILEVEL NONLINEAR MIXED EFFECTS MODELS WITH BOTH 

CROSSED AND NESTED RANDOM EFFECTS APPLIED IN A REPLICATED 

LATIN SQUARE DESIGN FOR MODELING TEMPERATURE OF FEEDING 

PIGS  

5.0 

 multilevel nonlinear mixed-effects model with both crossed and nested random effects 

applied in a replicated Latin square design is used to model feeding pigs’ body 

temperature in conjunction with three different thermal environmental treatments, the 

amount of feed intake and the duration of the meal.  Three-level random effects are 

introduced into a modified first order compartment model and the within-event 

correlation is described by an AR(1) model.  We found that the thermal environmental 

treatments (28ºC + High air speed) and (18ºC + Low air speed) are significantly different 

from the reference treatment (28ºC + Low air speed) at the 5% level.  The significant 

effects of feed intake and meal duration on feeding pigs’ dynamic overall heat transfer 

coefficients such as the heat accumulation rate constant and the heat elimination rate 

constant were also detected.  The nonlinear mixed-effects model was fit by the fully 

exponential Laplace approximation EM (FELA-EM-REML) algorithm, a newly 

developed method that can produce highly accurate estimates for variance-covariance 

components (giving an error of order ). 

 

 

Abstract 

A

)/1( 2nO
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Key Words: Nonlinear mixed models; EM algorithm; Fully exponential Laplace 

.1  Introduction 

to convert feed to weight gain is influenced by the thermal 

meal duration. 

approximation; Crossed and nested random effects; Compartment model; Replicated 

Latin squares. 

 

 

5

An animal’s ability 

environment.  A better understanding of an animal’s response to the thermal environment 

can be achieved through investigating its body temperature data.  By estimating an 

animal’s dynamic overall heat transfer coefficients, such as the heat accumulation rate 

constant and the heat elimination rate constant using its body temperature data, we can 

help producers define an optimum range for the thermal environment so that they can 

adjust their production facilities to the environment best suited to enhance an animal’s 

well being and feed efficiency.  There are two objectives for this study.  First, we fit a 

modified first-order compartment model to characterize the thermoregulatory responses 

of pigs during a feeding event.  Parameters include the initial tympanic temperature, the 

heat accumulation rate constant and the heat elimination rate constant.  Second, we 

compare those responses for three thermal environments (28°C air temperature and low 

air speed, 28°C air temperature and high air speed, and 18°C air temperature and low air 

speed) applied in a replicated Latin Square design and test the effect of the amount of 

feed intake as well as the effect of the 
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Nonlinear mixed models discussed in this paper can contain both crossed and nested 

random effects.  Currently, fitting nonlinear mixed-effects models with both crossed and 

nested random effects is a challenging topic in statistics.  Although a number of software 

ackages have been developed to fit nonlinear mixed models and generalized linear 

ixed models, most of them such as the SAS NLMIXED procedure (SAS Institute, 

and Sheiner, 1992) and the MIXOR family of programs 

kage offering the capacity to fit 

onlinear mixed models with both crossed and nested random effects is the SAS macro 

NLINMIX (Wolfinger and Lin, 1997).  The NLINMIX macro is based on the 

p

m

2004), NONMEM (Beal 

(Hedeker and Gibbons, 1996) only apply to single-level nonlinear mixed models and/or 

generalized linear mixed models without nested and crossed random effects.  The NLME 

package developed by Pinheiro and Bates (2000), available in both R (R development 

core team 2009) and S-PLUS (Insightful Corporation 2007), is powerful for fitting 

nonlinear mixed models with nested random effects, but it does not fit nonlinear mixed 

models with crossed random effects.  Rasbash and Goldstein (1994) show how to fit a 

linear mixed model with crossed random effects as a purely hierarchical formulation of 

nested random effects.  Zhou et al. (2006) developed a method to enable NLME in R to 

fit a nonlinear mixed-effects model with crossed random effects based on Rasbash and 

Goldstein’s idea for linear mixed-effects models.  This method can be used to fit a 

nonlinear mixed effects model with arbitrary levels of crossed and nested random effects.  

The evaluation of the log-likelihood function in nonlinear mixed models is a rather 

complex numerical issue even for single-level nonlinear mixed models because it 

involves the evaluation of a multiple integral that, in most cases, does not have a closed-

form expression.  The only popular software pac

n
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linearization methods.  It uses a first-order Taylor series expansion to approximate the 

nonlinear model function around the current estimates of the fixed effects and a choice of 

expansion locus for the random effects – either around zero that is the expected value of 

the random effects (Wolfinger and Lin, 1997, ZERO-expansion method), or around the 

current estimates of the random effects (Wolfinger and Lin, 1997, EBLUP-expansion 

method), and then maximizes the likelihood corresponding to the resulting approximate 

linear mixed effects model.  Linearization methods are computationally simple because 

they avoid complicated numerical integrations; however, they may produce substantial 

bias in parameter estimation with limited number of observations per subject and large 

variability of random effects (Ge, Bickel and Rice, 2004). 

 

All nonlinear mixed models presented in this paper are fitted by the FELA-EM-REML 

algorithm, a newly developed method that can produce highly accurate estimates for 

variance-covariance components.  A brief introduction to FELA-EM-REML for single-

level nonlinear mixed models is given in Section 5.2.5.  For theory and computation 

details of the FELA-EM-REML algorithm, see Chapters 3 and 4 for single- and multi-

level nonlinear mixed models, respectively.  The rest of this paper is organized as follows.  

In Section 5.2, we describe the experimental design of the data and address in detail the 

approach to nonlinear crossed random effects model building.  In Section 5.3, we identify 

the significant random effects and examine the treatment effects as well as the effects of 

the amount of feed consumed and the duration of the meal.  In Section 5.4, we describe 

the dynamic patterns of tympanic temperature.  Finally, in Section 5.5, we summarize the 

study. 
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5.2 Materials and methods 

5.2.1 Data 

Eigenberg (1994) conducted an experiment to study the tympanic temperature of feeding 

pigs in response to three predefined thermal conditions.  The experiment was designed as 

a Latin Square with three treatments, three pigs, and three treatment periods that are 

about three days in length.  The treatments consisted of three combinations of ambient 

temperature and air speed.  For the reference environment, treatment 1, the ambient 

temperature was set to 28 C and air speed was set to low (20 cm/s).  Pigs housed in this 

environment are expected to be at rest for much of the time, and thus, generate a 

latively stable body temperature record.  For treatment 2, the air temperature was set to 

 

such as the initial tympanic temperature, the heat accumulation rate constant, and 

re

28 C and air speed was set to high (90 cm/s).  Treatment 3 completes the treatment group 

with air temperature set to 18 C and air speed set to low (20 cm/s).  Both treatments 2 and 

3 would be expected to produce higher thermal loss on the pig than treatment 1. 

Treatment 2 has higher thermal loss due to higher air speed and treatment 3 has higher 

thermal loss due to lower air temperature.  Six pigs were randomly selected from eleven 

litters and they were split into two weight groups: three heavy animals (29.5±1.8 kg) and 

three light animals (22.5±1.0 kg).  The heavier animals were exposed to the treatments 

first, then the lighter animals.  Each weight group was used twice producing a total of 

four Latin Squares (two with heavy animals and two with light animals).  During the 

experiment, each pig had the opportunity to eat approximately three meals every day for 

three days and each of the meals had the potential to produce one set of thermal index 

values 
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the heat elimination rate constant.  The access to feed was controlled by solenoid latches 

 had access to feed only three times per day for a one-

he meal times were: 2:00 AM, 8:30 AM and 3:00 PM.  The tympanic 

on the feeding system.  The pigs

hour period.  T

temperature and feed intake of each pig were recorded every 48 seconds.  An example 

showing changes in tympanic temperature and feed intake is presented in Figure 5.1.  In 

this example, pig 27 (a member of the heavy group) was observed during the first 

experimental period where the second treatment (28ºC + High air speed) was applied.  

During this period, there were six feeding events and each feeding event produced a 

tympanic temperature spike.  The whole study is a replicated Latin square design with 

three treatments, three pigs, and three treatment periods in each of the four squares.  We 

limit our discussion to modeling body temperature for the heavy group but believe ideas 

can be extended to models for light group, and leave consideration of both groups for 

future research efforts.  Only feeding events of the first largest meal on the third day of 

each period were included in the study.  For each feeding event, the temperature record is 

analyzed for a record length of 80 minutes.  In total, there are 18 feeding events 

considered in this study corresponding to the treatment structure presented in Table 5.1. 
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Figure 5.1: Example of changes in tympanic temperature (ºC) and feed intake (kg) of pigs 

over Julian calendar time for pig 27 (a member of the heavy group) during first 

experimental period in the second run under treatment 2 (28ºC and high air speed) 
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indicates that the feeding event was used in the study.  

 

Table 5.1: Treatment structure for the replicated Latin square design 

85 27 59 

First Run (Square 1) 

Period 1 T2 T3 T1 

Period 2 T1 T2 T3 

Period 3 T3 T1 T2 

Second Run (Square 2) 

Period 1 T1 T2 T3 

Period 2 T3 T1 T2 

Period 3 T2 T3 T1 
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5.2.2 Statistical model 

Compartment models are nonlinear models in which the response is described by a linear 

system of ordinary differential equations.  Compartment models have been widely used 

in the literature for characterizing patterns of growth and decline.  For examples see 

Bates and Watts (1988), Davidian and Giltinan (1995), Lindsey (1999), and Pinheiro and 

Bates (2000).  If we assume that the change of body heat H in a feeding pig follows a one 

compartment model with first-order heat accumulation Ka and first-order heat 

elimination Ke during feed intake, the following differential equation can be created: 

Ha,Ka
X
Ha

⋅−=
∂
∂  

H,KeHaKa
X∂
H

⋅−⋅=
∂  

where Ha is heat produced by different activities such as standing up, moving, chewing, 

ith initial conditions 

gives a modified three-parameter first-order compartment model: 

 

and digesting food.  Integrating the pair of differential equations w

ε,)X +⋅    e(e
KeKa

KaYoY KaXKe −
−

+= −⋅−                                     1) 

 

where the response variable Y is anic (inner ear) tem ture (C he 

independent variable X is the time in h the within- p errors re assum to 

be norm ean 0 and variance-covariance matrix 

parameters in the model: Yo is the initial tympanic temperature (C), Ka is the heat 

accumulation rate constant (hour-1), and Ke is the heat elimination rate constant (hour-1).  

The heat accumulation rate constant Ka is a measure of the rate of increase in the body 

                 (5.

the tymp pera ), t

ours, and grou  ε  a ed 

ally distributed with m Ψ .  There are three 
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temperature caused by the feeding event; while the heat elim
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the rate of decrease in the body temperature.  The larger Ka, the faster the body 

temperature approaches its maximum; the larger Ke, the faster the body temperature goes 

back to its initial value.  For the nonlinear mixed-effects model applied in the replicated 

Latin squares with both crossed and nested random effects, two factors (three treatment 

levels and two squares), two covariates (feed intake and meal duration), and three levels 

of random effects were incorporated in the modified three-parameter first-order 

compartment model (5.1) for each of the three parameters: 
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where the βλ1’s represent the means of the first treatment for Yo, Ka, and Ke 

corresponding to λ = 1, 2, 3, respectively; the βλ2’s represent the differences of the means 

between the second treatment and first treatment; the βλ3’s represent the differences of the 

means between the third and first treatments; the βλ4’s are the coefficients associated with 

the amount of feed intake; the βλ5’s are the coefficients related to the meal duration; and 

the βλ6’s are the coefficients related to the square.  The random effects bPIGiλ represent the 

deviation from the population mean associated with the ith pig for i = 1, …, 6, similarly, 

random effects bPDjλ represent the deviations associated with the jth period for j = 1, …, 6, 

nd random effects bEVTkλ represent the deviations associated with the kth feeding event 

for k = 1, …, 18 for each λ = 1, 2, 3.  We further assume that bPIGi, bPDj, bEVTk and ε are 

independent of each other.  Since our preliminary analysis did not detect a significant 

treatment-by-square interaction effect on any of the three parameters, the treatment-by-

square interaction was not included in the nonlinear mixed model (5.2). 

 

5.2.3 Crossed and nested random effects 

In our study, within a square, pig and period are crossed with each other and event is 

nested within the combination of pig and period.  The random effects associated with pig 

and period are called crossed random effects and those associated with feeding event are 

nested random effects. 

 

5.2.4  Model building 

5.2.4.a)  Random effects specification 

a
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We start with the multilevel nonlinear mixed effects model with all factors and covariates 

to investigate random-effects variation, which is a common model-building strategy used 

in statistical literatures for fitting mixed effects models (Littell, Milliken, Stroup, 

Wolfinger, and Schabenberger, 2006).  In equation (5.1), the within-event errors, ε , are 

initially assumed to be independent N(0,σ2I), where I represents the identity matrix.  In 

equation (5.2), all three parameters are initially considered to be mixed, including all 

factors, covariates, and pig-, period-, and event-level random effects.  To avoid 

convergence problems, a diagonal structure of the variance-covariance matrices DPIG, 

DPD, and DEVT is assumed.  Under these assumptions, equations (5.1) and (5.2) are fit 

including all treatments, covariates, and random effects (all pig-, period-, and event-level 

random effects in all three parameters).  Then, the random-effect terms with small 

variances are removed if the likelihood ratio test (LRT) is non-significant.  In this way, a 

model is obtained including all significant random-effect terms under the assumptions of 

iagonal variance-covariance matrices of random effects and independence of within-

.  Next, the variance-covariance matrices of 

or correlation structure specification 

 collected over time for each eating event, we 

investigate the need for within-event correlation structures in the nonlinear mixed effects 

d

event error with all treatments and covariates

random effects are changed from diagonal to unconstrained structure, and the model is 

refit.  Again, the likelihood ratio test (LRT) is used to determine if the unconstrained 

covariance structure significantly improves the fit of the multilevel nonlinear mixed 

effects model. 

 

5.2.4.b)  Within-event err

Since the tympanic temperature was
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model by looking at the plot of the empirical autocorrelation function (ACF) and assess 

the adequacy of a particular correlation structure by examining the ACF plot from the 

corresponding model.  

 

5.2.4.c)  Model diagnostics 

After the random-effect and within-event error correlation structure specifications,  the 

intrinsic relative curvature (IN) and the root mean square parameter effects curvature (PE) 

proposed by Bates and Watts (1980) are used to assess the nonlinear behavior of the final 

model by setting all random effects at zero (Noh and Lee 2008).  When both IN and PE 

curvatures are less than or equal to 0.3, the nonlinearity of the final model is considered 

close-to-linear.  The validity of the parameter estimates is examined by Box’s 

approximate measure of bias (1972), percent excess variance based on Lowry and 

Morton’s asymmetry measure (1983), and Hougaard’s approximate measure of skewness 

(1985), which is suggested by Ratkowsky (1990).  When %Bias and %excess variation 

are under 1%, and the absolute skewness is less than 0.25, we conclude that the behavior 

of the associated parameter is reasonably close-to-linear (Ratkowsky).  The plot of 

standardized residuals versus fitted values is used to examine departure from model 

assumptions.  The normal Q-Q plots of the random effects and the within-event errors are 

used to investigate the normality of the random effects and the within-event errors, 

spectively.  A final assessment of the adequacy of the nonlinear mixed effects model is 

nostics show that all the 

re

provided by a plot of the augmented predictions.  If diag

assumptions are satisfied, the model can then be used to compare treatments over time 

and test the effects of the covariates. 
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5.2.5 Review of FELA-EM algorithm 

The fully exponential Laplace approximation EM algorithm (FELA-EM) is an EM 

algorithm (Dempster, Laird, and Rubin 1977) for obtaining restricted maximum 

kelihood (REML) estimates in nonlinear mixed effects models.  In the E-step of the 

lly exponential Laplace method (Tierney and Kadane 1986; 

li

FELA-EM algorithm, the fu

Tierney, Kass, and Kadane 1989) is used to approximate the conditional expectations of 

the complete data sufficient statistics.  The main advantages of this newly developed 

approach are its combination of computational efficiency (preserving the numerically 

simplicity of Laplace approximation) and great estimation accuracy (giving an error of 

order )/1( 2nO  for estimating variance-covariance components).  The model used here to 

introduce the FELA-EM algorithm is a single-level nonlinear mixed effects model given 

by: 

 

,,...,1    ,,...,1    ,),( iijiij njMify ==+= εbβ                                                     (5.3) 

 

f β

i

associated with the thi  subject (not varying with 

where  is the observation on the  subject, is a nonlinear function,  is a p-

dimensional vector of fixed effects,  is a q ensional random effects vector 

ijy thj  thi

b

 

-dim

j ) and assumed i.i.d. ),( D0N , ijε  is 

the error and assumed i.i.d. ),0( 2σN , M  is the number of subjects, and in  is the number 

observations on the thi  subject.  It is further assumed that ib  and ijε  are independent.  

For the nonlinear mixed effects model (5.3), assume a flat prior for the fixed effects β  

(Wolfinger 1993) and consider ( yc ),b, β  and  )c ,bβ( as the complete data and the 
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missing data, respectively.  Let ,( 2θ σc= )D  represent the parameters for which REML 

estimates are required.  The FELA-EM algorithm alternates between an expectation step 

(E-step) and a maximization step (M-step) that can be described as follows. 

 

5.2.5.a) E-step 

The E-step computes the conditional expectation of the complete data log-likelihood 

);,,( θbβyl , 
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M

simplified to compute the expec  the sufficient statistics of the c plete data for 

2σ  and 

 is the total number of observations.  Since the 

density of the complete is from the exponential family, the E-step can be 

om
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5.2.5.b) M-step 

The M-step is to find )1( +kθ  by solving the equation 

 

.0);,();,,()( )()( =
∂
∂

=
∂
∂

∫ bβθybβθbβy
θ

θθ
θ
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By allowing differentiation under the integral sign, the unique solution to (5.6) is given 

by 
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5.2.5.c)  Fully Exponential Laplace Approximation 

(5.8) omputed analytically because both Equations (5.7) and  generally cannot be c

);( )(kR );( )(
,

k
nmSE θy  θy  and E can be nonlinear in the fixed and random effects.  We 

approximate equations (5.7) and (5.8) by the fully exponential Laplace approximation

introduced by Tierney and Kadane (1986).  The fully exponential Laplace approximation 

to the ratio of two related integrals is given by 
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Applying the fully exponential Laplace approximation (5.9) to (5.10) yields 
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5.3 Results and discussion 

5.3.1 Specification of random effects 

We start with the multilevel nonlinear mixed effects model with all treatments and 

covariates to investigate random-effects variation.  Diagonal structures of the variance-

covariance matrices are initially assumed for DPIG, DPD, and DEVT and we also assume the 

within-event errors , to be independent.  We remove one random effect term from the 

parameters at

components (T

fects structures are used, LRTs can be used to check if th

the seven models are shown in Table 5.3.  The similar Log-Likelihoods and the large p-

values for the likelihood ratio test suggest that the seven models give essentially 

equivalent fits so the simpler model (i.e., the model with fewer random effects), Model 7, 

is preferred.  The smallest AIC and BIC values further confirm that Model 7 has the best 

performance.  That is to say, the pig- and period-level random effects associated with all 

 the diagona EV

elated, which results in Model 8 (i.e., 

nonlinear mixed model with the unconstrained DEVT).  The fitting comparison of Model 7 

with Model 8 indicates that the LRT is not significant at 5% level (p-value=.975).  

Therefore, Model 7 with diagonal variance-covariance matrices of the event-level 

random effects is preferable over Model 8 with unconstrained variance-covariance 

structures of random-effects.  

, ε

 a time.  This results in several models with different random-effects 

able 5.2).  Since the reduced models are nested within the full model and 

the same fixed-ef e reduction in 

random effects causes any significant changes in model performance.  Comparisons of 

three parameters (Yo, Ka, and Ke) can be safely dropped from the full model (Model 1).  

Starting with Model 7 (i.e., nonlinear mixed model with l D T), we assume 

that the event-level random effects are corr
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Tabl 5.2: Variances for none linear mixed models with different random-effects 

Model 

components 

Pig Period Event 

Yo Ka Ke Yo Ka Ke Yo Ka Ke 

1 7.6e-6 0.0010 0.0008 1.9e-6 0.0770 0.1092 .0256 0.4814 0.48370

2 1.7e-5 0.0006 6.7e-5  0.0665 0.1098 0.0256 0.4907 0.4848

3  0.0006 0.0007  0.0536 0.1091 0.0257 0.5010 0.4830

4   0.0010  0.0427 0.1010 0.0256 0.5085 0.4842

5     0.0326 0.1019 0.0256 0.5195 0.4874

6      0.1036 0.0258 0.5616 0.4863

7       0.0257 0.5580 0.5816
 

 

Table 5.3: Comparisons of model fit with different random-effects components 

Model* AIC BIC Log-Likelihood LRT† p-value 

1 -2339.68 -2291.45 1179.838   

2 -2341.68 -2298.28 1179.838 <0.001 >0.9999 

3 -2343.67 -2305.09 1179.836 0.004 0.9980 

4 -2345.66 -2311.91 1179.830 0.016 0.9995 

5 -2347.64 -2318.71 1179.819 0.038 0.9998 

6 -2349.54 -2325.43 1179.771 0.134 0.9997 

7 -2351.21 -2331.92 1179.605 0.466 0.9982 
* Model as described in Table 2. 

† Log-Likelihood Ratio Test is calculated with respect to Model 1. 
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5.3.2 Specification of within-event error correlation structure 

We use the function acf in R package MASS (Venables and Ripley 2002) to investigate 

the within-event e orrelation at differ   The plot of the rrelation 

function o del ws h corr ns a g the hin-e  error (Figure 5.2).  

Af  the io e d c n r  e

modeling th wit t rrel ion e, p M , 

the tocorr ation fu ction  inv stig o  T

of the autocorrelation function is displayed in Figure 5.3 and does not show any high 

correlations among the within-event error.  Henc , Model  is t r el

omparison of the treatments and the test of the covariate effects. 

Model 7 

rror c ent lags.  autoco

f Mo 7 sho igh elatio mon  wit vent

ter  inclus n of th  first-or er auto orrelatio  structu e AR(1) to Mod l 7 for 

e hin-even  error co at structur  which roduces odel 9 we use 

 au el n  again to e ate the c rrelation at different lags. he plot 

e  9 he prefer ed mod  for the 

c
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5.3.3 Model diagnostics 

The intrinsic relative curvature (IN) and the root mean square parameter effects curvature 

(PE) of Model 9 are 0.051 and 0.132, respectively.  Since both IN and PE curvatures are 

less than 0.3 we may say that the nonlinearity of the final model (Model 9) is close-to-

linear when all random effects equal zero.  The asymptotic properties of fixed effects 

estimates in Model 9 are given in Table 5.4.  The small %Bias (< 1%), %excess variation 

(< 1%), and the absolute skewness (< 0.25) indicate that the behavior of all fixed effects 

parameters are also reasonably close-to-linear.  Figure 5.4, the plot of the standardized 

residuals versus the fitted values corresponding to Model 9 shows that the residuals are 

distributed symmetrically around zero, with an approximately constant variance.  It does 

ot indicate any departure from the model assumptions for the within-event errors, except 

for three possible outlying observations which are located outside ±4 standard deviations 

(Kutner, Nachtsheim, and Neter 2004).  Similarly, the normal Q-Q plots of the 

standardized residuals (Figure 5.5) and the random effects (Figure 5.6) do not show any 

violations of the normality assumption for the within-event errors and the random effects, 

respectively.  A final assessment of the adequacy of the nonlinear mixed-effects model is 

ented predictions in Figure 5.7.  From the plot, we can see

 

that the final nonlinear mixed-effects model (Model 9) provides a reasonable 

representation of the tympanic temperatures during feeding events. 

 

 

 

n

given by the plot of the augm  

that the predicted temperatures are close to the observed values.  Therefore, we conclude
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Table 5.4: Asymptotic properties of fixed effects estimates in Model 9 

Fixed Effects Estimate %Bias %Excess Variance Skewness 

Yo 

β11: T1  39.0318 -0.0008 0.0961 -0.0409 

β12: T2 – T1 0.0857 0.1894 0.1407 0.0629 

β13: T3 – T1 -0.0519 -0.1999 0.1369 0.0654 

β14: Square -0.1877 -0.0272 0.1985 -0.0087 

Ka 

β21: T1 4.7008 0.1211 0.1641 0.0767 

β22: T2 – T1 -1.5280 0.1709 0.2797 -0.1176 

β23: T3 – T1 -0.8912 0.2163 0.3286 -0.1158 

β24: Feed Intake 1.1827 0.1448 0.1349 0.0678 

β25: Meal Duration -4.6128 0.0860 0.1264 -0.0494 

β : Square 0.4558 -0.0075 0.1463 -0.0130 26

Ke 

β : T1 1.1596 0.0646 0.2365 0.1479 31

β32: T2 – T1 1.4578 0.0551 0.5887 0.2275 

β33: T3 – T1 1.3631 0.1031 0.4311 0.2140 

β : Feed Intake 1.0154 0.1531 0.2876 0.1677 34

β : Meal Duration -1.7973 0.1880 0.2791 -0.1616 35

β36: Square -0.1211 -0.1485 0.5338 -0.0127 
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Figure 5.4: Scatter plot of standardized residuals versus fitted values for Model 9 
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Figure 5.6: Normal Q-Q plots of the estimated random effects for Model 9 
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Figure 5.7: Observed (○) and predicted (―) tympanic temperatures (C) over time (min) 

for eighteen feeding events 
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5.3.4 Comparison of the Three Thermal Environmental Treatments and Test of 

the Feed Intake and Meal Duration Effects 

We compared the three th l environme ents and tested the effects of feed 

intake, meal duration, and square defined in Table 5.1 based on the results from Model 9 

(Table 5.5).  We found that treatment 2 (28ºC + High air speed) and treatment 3 (18ºC + 

Low air speed) were significantly different from treatment 1 (28ºC + Low air speed) for 

both accumulation and elimination rate constant parameters: Ka and Ke.  The treatment 

effect on the initial tympanic temperature (Yo) was not detected.  When testing the 

effects of feed intake and meal duration, we found that the amount of feed intake had no 

significant effect on Ka or Ke, while the meal duration had a significant effect on Ka, but 

not on Ke.  The initial body temperature Yo in the two runs was significantly different, 

but not for Ka and Ke.  From the parameter estimates, we found that both increasing the 

air speed ecreasing the environmental temperature could help pigs te heat 

effectively.  In comparison with the reference treatment 1, increasing the air speed 

(treatment 2) decreased the heat accumulation rate constant by 1.5280 hour-1 and 

increased the heat elimination rate constant by 1.4578 hour-1; while decreasing 

environmental temperature (treatment 3) decreased the heat accumulation rate constant 

by 0.8912 hour-1 and also increased the heat elimination rate constant by 1.3631 hour-1

xamination of the estimates of meal duration and square showed that increasing the 

meal duration was able to decrease the heat accumulation rate constant by 4.6126 hour-1 

while the average initial body temperature (Yo) in the second run was 0.1877 C lower 

than that in the first run.  These results agree with the partial results obtained by 

Eigenberg (1994) and Zhou et al. (2006).  Eigenberg’s work (1994) focused on modeling 

erma ntal treatm

and d elimina

.  

E
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the index of heat dissipation and showed similar treatment differences, that is, both 

increasing the air speed and decreasing the environmental temperature can help pigs 

 

eliminate heat effectively.  Zhou et al. (2006) investigated the feeding pigs’ dynamics 

specifying two heat transfer rate coefficients using the data from the first run of the heavy 

group (Eigenberg, 1994).  They found similar treatment effects but they did not include 

the effects of feed intake and meal duration in their model. The proposed model in this 

paper includes two rate coefficients (i.e., heat accumulation and heat elimination rate 

constants), three treatments levels and the two covariates (i.e., feed intake and meal 

duration).  We detected the significant effects of treatments on both heat accumulation 

and heat elimination rate constants. We, also, found that the meal duration was significant. 

This indicates the quicker a pig eats the faster its body temperature approaches a 

maximum. 
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Table 5.5: Estimates of fixed effects coefficients for Model 9 

Fixed Effects Estimate Standard P-value Error 

Yo 

β11: T1 39.0318 0.0780 < 0.0001 

β12: T2 – T1 0.0857 0.0951 0.3602 

β13: T3 – T1 -0.0519 0.0950 0.5732 

β14: Square -0.1877 0.0773 0.0149 

Ka 

β21: T1 4.7008 1.0120 < 0.0001 

β22: T2 – T1 -1.5280 0.4919 0.0019 

β23: T3 – T1 -0.8912 0.4845 0.0645 

β24: Feed Intake 1.1827 0.8440 0.1579 

β25: Meal Duration -4.6128 1.4234 0.0012 

β26: Square 0.4558 0.6091 0.4452 

Ke 

β31: T1 1.1596 0.9623 0.2236 

β : T2 – T1 1.4578 0.4823 0.0025 32

β : T3 – T1 33 1.3631 0.4741 0.0040 

β34: Feed Intake 1.0154 0.8621 0.2341 

β35: Meal Duration -1.7973 1.4195 0.2014 

β36: Square -0.1211 0.6291 0.8304 
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5.4 Conclusions 

The proposed com ent model does a good job of fi panic tem  

of pigs during a feeding event.  All three parameters, initial tympanic temperature (Yo), 

heat ac m te constant (Ka)  elimination rate constant (Ke), in the 

propose e considered as m ects.  Th level rand cts 

influen parameters Yo, Ka dependen e the pig- od-

level ra did not have influ ny of the ters and hence can be 

s  d  the nonlinear mix l.  Both t 2 (28ºC + High air 

speed) and treatm ) were sig  the 

referen 1 (28ºC + Low air sp  both Ka a he heat ac ion 

rate con s lower in treatment 2 a ent 3 than ent 1 wh eat 

elimination rate as greater in bot tment 2 and trea ent 3 when com  

w the ent 1.  The amo ed intake had no significant influence on 

any of rs (Yo, Ka e) while the length of meal duration 

gnificantly decreased Ka.  There was no significant effect of meal duration on either the 

itial body temperature or the heat elimination rate constant.  The initial body 

mperature Yo in the second run was significantly lower than that in the first run while 

the effect of square on either Ka or Ke was not detected. 

partm tting the tym peratures

cu ulation ra and heat

d model wer ixed eff e event- om effe

ced all three and Ke in tly whil and peri

ndom effects ence on a  parame

afely ropped from ed mode treatmen

ent 3 (18ºC + Low air speed nificantly different from

ce treatment eed) for nd Ke.  T cumulat

stant wa nd treatm  in treatm ile the h

 constant w h trea tm pared

ith  reference treatm unt of fe

 the three paramete , and K

si

in
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5.5 Summary 

This study provides a three-parameter modified first-order compartment model to 

describe the thermoregulatory responses of pigs during a feeding event.  These 

thermoregulatory responses can best be described in terms of the initial tympanic 

temperature, the heat accumulation rated constant, the heat elimination rate constant and 

factors that affect them.  The crossed and nested random effects have been introduced 

into the model to simultaneously model the pig, period, and event variations.  

Comparisons of three environment treatment effects over time and testing of the feed 

intake, meal duration, and square effects are incorporated in the proposed model.  We 

present a general approach to building a multilevel nonlinear mixed model with both 

crossed and random effects and advocate in detail a way to simplify the random effect 

terms.  We fit the nonlinear mixed effects model by the fully exponential Laplace 

approximation EM algorithm, a newly developed method that can give an error as small 

as of order )/1( 2nO  for variance-covariance parameters. 
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APPENDIX: R program for fitting the logistic model formulated by the equation 

.1) using FEL(4.4 A-EM algorithm 

 

####################### 
# G
####################### 
 
library(MASS) # load MASS library 

n1 <- 10 # levels of CF1 
n2 
n <
nP <- 3 # number of parameters 
 
CF1 <- gl(n1, n2*n) # create CF1 
CF2
 
 <- c(200, 700, 350) # fixed effects 
.ini <- a 
s2 <- 625 # variance of error 
2.ini <- s2 

D1.ini <- D1 
D2 <- matrix(c(2600,-1950, -1950,16250), ncol = 2) # D matrix of CF2 
D2.ini <- D2 
 
b1 <- mvrnorm(n1, integer(2), D1) # random effects of CF1 
b1.1 <- rep(b1[,1], each = n2*n) # b1 in parameter 1 
b1.2 <- rep(b1[,2], each = n2*n) # b1 in parameter 2 
 
b2 <- mvrnorm(n2, integer(2), D2) # random effects of CF2 
b2.1 <- rep(b2[,1], each = n, times = n1) # b2 in parameter 1 
b2.2 <- rep(b2[,2], each = n, times = n1) # b2 in parameter 2 
 
error <- rnorm(n1*n2*n, mean = 0, sd = sqrt(s2)) # error 
 
phi1 <- a[1]  + b1.1 + b2.1 
phi2 <- a[2]  + b1.2 + b2.2 
phi3 <- a[3]  
 
x <- rep(c(118,484,664,1004,1231,1372,1582), len=n*n1*n2) # predictor 
y <- phi1/(1 + exp(-(x - phi2)/phi3)) + error # response 
DATA <- data.frame(CF1, CF2, x, y) # create data 
 
# remove all variables 
rm(n1, n2, n, nP, CF1, CF2, a, s2, D1, D2) 
rm(b1, b1.1, b1.2, b2, b2.1, b2.2) 
rm(error, phi1, phi2, phi3, x, y) 
 
 

ENERATE A DATA SET # 

 

<- 10 # levels of CF2 
- 7 # number of obs for each individual 

 <- gl(n2, n, n2*n*n1) # create CF2 

a
a

s
D1 <- matrix(c(2500,-1875, -1875,15625), ncol = 2) # D matrix of CF1 
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######################################## 

##############################
 

# EXTRACT USEFUL INFORMATION FROM DATA # 
########## 

F2 <- DATA$CF2 
x <- DATA$x 

 
 
f total obs 

he model 
m effects 

x - phi2)/phi3))) # model 
phi2", "phi3")) # derivative 

1):length(ab)] 

) 
 b1)/2  + sum(b2 %*% invD2 * b2)/2 

t G related to b1 

1[1,2] 
2 + invD1[2,2] 

b1.11,G.b1.12), cbind(G.b1.12,G.b1.22)) 

iag(integer(n2)) 
grad[,1],CF2)/s2 + invD2[1,1] 

diag(G.b2.12) <- rowsum(grad[,1]*grad[,2],CF2)/s2 + invD2[1,2] 
diag(G.b2.22) <- rowsum(grad[,2]*grad[,2],CF2)/s2 + invD2[2,2] 

  G.b2 <- rbind(cbind(G.b2.11,G.b2.12), cbind(G.b2.12,G.b2.22))   
   

CF1 <- DATA$CF1 
C

y <- DATA$y 
n1 <- length(levels(CF1))
n2 <- length(levels(CF2))
<- length(y) # number oN 

nP <- 3 # number of parameters in t
 <- 2*n1 + 2*n2 # number of randonb

 
 
###################### 
# DEFINE EXPRESSIONS # 
#################### ##

 
model.exp <- expression(phi1/(1 + exp(-(
r.exp <- deriv3(model.exp, c("phi1", "de

 
 
####################### 

like.obj # # START OF nl
####################### 
 
nllike.obj <- function(ab) { 

P]   a <- ab[1:n
b <- ab[(nP+  

  b1 <- matrix(b[1:(2*n1)], ncol = 2) 
  b2 <- matrix(b[(2*n1+1):length(b)], ncol = 2)   
  phi1 <- a[1] + b1[CF1,1] + b2[CF2,1] 
phi2 <- a[2] + b1[CF1,2] + b2[CF2,2]   

  phi3 <- a[3] 
  der <- eval(der.exp) #f value 
  grad <- attr(der, "gradient") #1st derivative 
hess <- attr(der, "hessian") #2nd derivative   

   
# calculate g   

  g <- crossprod(y-der)/(2*s2
  g <- g + sum(b1 %*% invD1 *
 
# compute par  

  G.b1.11 <- G.b1.12 <- G.b1.22 <- diag(integer(n1)) 
D1[1,1]   diag(G.b1.11) <- rowsum(grad[,1]*grad[,1],CF1)/s2 + inv

s2 + invD  diag(G.b1.12) <- rowsum(grad[,1]*grad[,2],CF1)/
diag(G.b1.22) <- rowsum(grad[,2]*grad[,2],CF1)/s  

  G.b1 <- rbind(cbind(G.
   
  # compute part G related to b2 

 d  G.b2.11 <- G.b2.12 <- G.b2.22 <-
diag(G.b2.11) <- rowsum(grad[,1]*  
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  # compute part G related to both b1 & b2 
,1],CF1:CF2)/s2, byrow=T, 

[,2],CF1:CF2)/s2, byrow=T, 
    ncol = n2) 
rix(rowsum(grad[,2]*grad[,2],CF1:CF2)/s2, byrow=T, 

        ncol = n2) 
12.11,G.b12.12), cbind(G.b12.12,G.b12.22)) 
G.b12), cbind(t(G.b12),G.b2))   

)$modulus 

value <- 0.5*N*log(2*pi*s2) + 0.5*n1*log(det(D1)) + 
         0.5*n2*log(det(D2)) + 0.5*log.detG + g   

tive w.r.t. fixed & random effects 

invG.b1 <- invG[1:(2*n1),1:(2*n1)] 

a.gr <- colSums((y-der)*(-grad))/s2 
er)*(-grad[,1:2]),CF1)/s2     
 invD1     
r)*(-grad[,1:2]),CF2)/s2     
 invD2      

for(jj in 1:nP){ 
 a #### 
o a[jj] 
.b1.22 <- diag(integer(n1)) 

d[,1],CF1)/s2 

[,jj,2]*grad[,1],CF1)/s2 

2]+hess[,jj,2]*grad[,2],CF1)/s2 

   
invG.dG.b1 <- invG.b1*dG.b1 

[jj] 

  diag(dG.b2.11) <-  
]+hess[,jj,1]*grad[,1],CF2)/s2 

  

  G.b12.11 <- matrix(rowsum(grad[,1]*grad[
                     ncol = n2) 
G.b12.12 <- matrix(rowsum(grad[,1]*grad  

                 
  G.b12.22 <- mat
             
  G.b12 <- rbind(cbind(G.b
  G.b <- rbind(cbind(G.b1, 
     
  G <- G.b # finalize G 
  log.detG <- determinant(G, logarithm = TRUE
 
  
  
 
  # calculate 1st deriva
  invG <- solve(G)   
  
  invG.b2 <- invG[(2*n1+1):(2*n1+2*n2),(2*n1+1):(2*n1+2*n2)] 
  invG.b12 <- invG[1:(2*n1),(2*n1+1):(2*n1+2*n2)] 
  
  b1.gr <- rowsum((y - d
  b1.gr <- b1.gr + b1 %*%
  b2.gr <- rowsum((y - de
  b2.gr <- b2.gr + b2 %*%
  
    #### 1st derivative w.r.t.

b1 related t    # compute dG.
    dG.b1.11 <- dG.b1.12 <- dG
    diag(dG.b1.11) <-  
        rowsum(hess[,jj,1]*grad[,1]+hess[,jj,1]*gra
    diag(dG.b1.12) <-  
        rowsum(hess[,jj,1]*grad[,2]+hess

2) <-      diag(dG.b1.2
        rowsum(hess[,jj,2]*grad[,
    dG.b1 <- 0.5*rbind(cbind(dG.b1.11,dG.b1.12), 
                       cbind(dG.b1.12,dG.b1.22))
    
 
    # compute dG.b2 related to a
    dG.b2.11 <- dG.b2.12 <- dG.b2.22 <- diag(integer(n2)) 
  
        rowsum(hess[,jj,1]*grad[,1
    diag(dG.b2.12) <-  
        rowsum(hess[,jj,1]*grad[,2]+hess[,jj,2]*grad[,1],CF2)/s2 
    diag(dG.b2.22) <-  
        rowsum(hess[,jj,2]*grad[,2]+hess[,jj,2]*grad[,2],CF2)/s2 
    dG.b2 <- 0.5*rbind(cbind(dG.b2.11,dG.b2.12),  

                   cbind(dG.b2.12,dG.b2.22))             
    invG.dG.b2 <- invG.b2*dG.b2 
 
    # compute dG.b12 related to a[jj] 
    dG.b12.11 <-  
        matrix(rowsum(hess[,jj,1]*grad[,1]+hess[,jj,1]*grad[,1],  
                      CF1:CF2)/s2, byrow=T, ncol = n2) 
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    dG.b12.12 <-  
        matrix(rowsum(hess[,jj,1]*grad[,2]+hess[,jj,2]*grad[,1],  
                      CF1:CF2)/s2, byrow=T, ncol = n2) 

b12.11,dG.b12.12),  

gr[jj] <- a.gr[jj] + sum(invG.dG.b1, invG.dG.b2, 2*invG.dG.b12) 

    #### 1st derivative w.r.t. b1 ####     

        rowsum(hess[,jj,1]*grad[,1]+hess[,jj,1]*grad[,1],CF1:CF2)/s2 

,jj,1]*grad[,2]+hess[,jj,2]*grad[,1],CF1:CF2)/s2 

:CF2)/s2 

G.b1),ncol=2)) +  
l=2))) 

.b2.11,  

ums(matrix(diag(invG.b2[1:n2,  
yrow=T,ncol=n2)) +  
.b2[(n2+1):(2*n2),   

     

lated to a[jj] 

[,2],CF2:CF1)/s2 
    b2.gr[,jj] <- (b2.gr[,jj] +  

dG.b2),ncol=2)) +  

gr[,jj] +  

ol=n1)) +  

n1)))        

attr(value, "gradient") <- c(a.gr, b1.gr, b2.gr)     

    dG.b12.22 <-  
        matrix(rowsum(hess[,jj,2]*grad[,2]+hess[,jj,2]*grad[,2],  
                      CF1:CF2)/s2, byrow=T, ncol = n2) 
    dG.b12 <- 0.5*rbind(cbind(dG.
                        cbind(dG.b12.12,dG.b12.22)) 
    invG.dG.b12 <- invG.b12*dG.b12      
    a.
     
    if(jj <= 2){ 
  
      # prepare dG.b2 related to a[jj] 
      M.b2.11 <-  
  
      M.b2.12 <-  
          rowsum(hess[
      M.b2.22 <-  
          rowsum(hess[,jj,2]*grad[,2]+hess[,jj,2]*grad[,2],CF1
      b1.gr[,jj] <- (b1.gr[,jj] +  
          rowSums(matrix(rowSums(invG.d
              2*rowSums(matrix(rowSums(invG.dG.b12),nco
      b1.gr[,jj] <- (b1.gr[,jj] +  
          0.5*rowSums(matrix(diag(invG.b2[1:n2,1:n2])*M
              byrow=T, ncol=n2)) +  
          2*0.5*rowS
              (n2+1):(2*n2)])*M.b2.12,b
          0.5*rowSums(matrix(diag(invG
              (n2+1):(2*n2)])*M.b2.22,byrow=T,ncol=n2)))   
 
      #### 1st derivative w.r.t. b2 ####     
      # prepare dG.b1 re
      M.b1.11 <- rowsum(hess[,jj,1]*grad[,1] + 

j,1]*grad[,1],CF2:CF1)/s2                  hess[,j
      M.b1.12 <- rowsum(hess[,jj,1]*grad[,2] + 
                 hess[,jj,2]*grad[,1],CF2:CF1)/s2 
      M.b1.22 <- rowsum(hess[,jj,2]*grad[,2] + 
                 hess[,jj,2]*grad
  
          rowSums(matrix(rowSums(invG.
          2*rowSums(matrix(colSums(invG.dG.b12),ncol=2))) 
      b2.gr[,jj] <- (b2.
          0.5*rowSums(matrix(diag(invG.b1[1:n1,1:n1])*M.b1.11, 
              byrow=T,nc
          2*0.5*rowSums(matrix(diag(invG.b1[1:n1,  

n1)])*M.b1.12,byrow=T,ncol=n1)) +               (n1+1):(2*
          0.5*rowSums(matrix(diag(invG.b1[(n1+1):(2*n1),  
              (n1+1):(2*n1)])*M.b1.22,byrow=T,ncol=
    } 
  }  
  
  return(value) 
} 
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################## 
# START OF D.obj # 
################## 
 
D.obj <- function(D1,D2,s2,ab) { 
  invD1 <- solve(D1) 
  invD2 <- solve(D2) 
 
g.obj <- function(ab) {  
  a <- ab[1:nP] 
  b <- ab[(nP+1):
  b1 <- matrix(b[1

length(ab)] 
:(2*n1)], ncol = 2) 

)   

[CF1,2] + b2[CF2,2] 

2)/2 

r.t. a 

b2.gr <- b2.gr + b2 %*% invD2   

  

vel=0) 

, ncol = 2)   

 <- attr(der, "gradient") # 1st derivative 

 compute part G related to a 
G.a <- (colSums((y-der)*(-hess)) + crossprod(grad))/s2 

  b2 <- matrix(b[(2*n1+1):length(b)], ncol = 2
  phi1 <- a[1] + b1[CF1,1] + b2[CF2,1] 
  phi2 <- a[2] + b1
  phi3 <- a[3]     
  der <- eval(der.exp) # f value 
  grad <- attr(der, "gradient") # 1st derivative 
 
  # calculate g 
  g <- crossprod(y-der)/(2*s2) 
  g <- g + sum(b1 %*% invD1 * b1)/2 + sum(b2 %*% invD2 * b
   
  # calculate 1st derivative of g w.
  a.gr <- colSums((y - der)*(-grad))/s2    
        
  # calculate 1st derivative of g w.r.t. b 
  b1.gr <- rowsum((y - der)*(-grad[,1:2]),CF1)/s2     
  b1.gr <- b1.gr + b1 %*% invD1 
  b2.gr <- rowsum((y - der)*(-grad[,1:2]),CF2)/s2     
  
  b.gr <- c(b1.gr, b2.gr) 
  attr(g, "gradient") <- c(a.gr, b.gr)  
     
  g 
} 
 
  # Update fixed & random effects 
  g.optim <- nlm(g.obj, ab, iterlim = 500, print.le
  g.optim   
  ab <- g.optim$estimate 
  a <- ab[1:nP] 
  b <- ab[(nP+1):length(ab)] 
  b1 <- matrix(b[1:(2*n1)], ncol = 2) 
  b2 <- matrix(b[(2*n1+1):length(b)]
 
  phi1 <- a[1] + b1[CF1,1] + b2[CF2,1] 
  phi2 <- a[2] + b1[CF1,2] + b2[CF2,2] 
  phi3 <- a[3]    

- eval(der.exp) # f value   der <
  grad
  hess <- attr(der, "hessian") # 2nd derivative 
 
  #
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  # compute part G related to b1 
 <- G.b1.22 <- diag(integer(n1)) 
owsum((y-der)*(-hess[,1,1]) +  
[,1],CF1)/s2 + invD1[1,1] 

(-hess[,1,2]) +  
],CF1)/s2 + invD1[1,2] 
sum((y-der)*(-hess[,2,2]) +  

F1)/s2 + invD1[2,2] 
.11,G.b1.12), cbind(G.b1.12,G.b1.22)) 

(integer(n2)) 

1,1] 
[,1,2]) +  

,2],CF2)/s2 + invD2[1,2] 
  

G.b2 <- rbind(cbind(G.b2.11,G.b2.12), cbind(G.b2.12,G.b2.22)) 

th b1 & b2 

T, ncol = n2) 
1,2]) +  
, ncol = n2) 
,2,2]) +  
, ncol = n2) 

12,G.b12.22)) 

)   

b1 
+grad[,1:3]*grad[,1],CF1)/s2 

1.2 <- rowsum((y-der)*(-hess[,1:3,2])+grad[,1:3]*grad[,2],CF1)/s2 
b1 <- rbind(G.ab1.1, G.ab1.2) 

# compute part G related to a & b2 
,1:3,1])+grad[,1:3]*grad[,1],CF2)/s2 

[,2],CF2)/s2 
ind(G.ab2.1, G.ab2.2) 

b2) 

G.ab,G.b)) 

monitor <- (0.5*N*log(2*pi*s2) - 0.5*nP*log(2*pi)  +  
n2*log(det(D2)) +  
hm = TRUE)$modulus +  

im$minimum) 

invG=solve(G), 
lus, ab=ab) 

  G.b1.11 <- G.b1.12
  diag(G.b1.11) <- r
    grad[,1]*grad  

  diag(G.b1.12) <- rowsum((y-der)*
      grad[,1]*grad[,2
  diag(G.b1.22) <- row
      grad[,2]*grad[,2],C
  G.b1 <- rbind(cbind(G.b1
 
  # compute part G related to b2 
  G.b2.11 <- G.b2.12 <- G.b2.22 <- diag
  diag(G.b2.11) <- rowsum((y-der)*(-hess[,1,1]) +  
      grad[,1]*grad[,1],CF2)/s2 + invD2[
  diag(G.b2.12) <- rowsum((y-der)*(-hess
      grad[,1]*grad[
  diag(G.b2.22) <- rowsum((y-der)*(-hess[,2,2]) +
      grad[,2]*grad[,2],CF2)/s2 + invD2[2,2] 
  
 
  # compute part G related to bo
  G.b12.11 <- matrix(rowsum((y-der)*(-hess[,1,1]) +  
      grad[,1]*grad[,1],CF1:CF2)/s2, byrow=
  G.b12.12 <- matrix(rowsum((y-der)*(-hess[,
      grad[,1]*grad[,2],CF1:CF2)/s2, byrow=T
  G.b12.22 <- matrix(rowsum((y-der)*(-hess[
      grad[,2]*grad[,2],CF1:CF2)/s2, byrow=T
  G.b12 <- rbind(cbind(G.b12.11,G.b12.12), cbind(G.b12.
 
  G.b <- rbind(cbind(G.b1, G.b12), cbind(t(G.b12),G.b2)
 

to a &   # compute part G related 
  G.ab1.1 <- rowsum((y-der)*(-hess[,1:3,1])
  G.ab
  G.a
 
  
  G.ab2.1 <- rowsum((y-der)*(-hess[
  G.ab2.2 <- rowsum((y-der)*(-hess[,1:3,2])+grad[,1:3]*grad
  G.ab2 <- rb
  G.ab <- rbind(G.ab1, G.a
 
  # finalize G 
  G <- rbind(cbind(G.a,t(G.ab)), cbind(
   
  
              0.5*n1*log(det(D1)) + 0.5*
              0.5*determinant(G, logarit
              g.opt
   
  list(val=g.optim$minimum, monitor=monitor, G=G, 
       detG=determinant(G, logarithm = TRUE)$modu
} 
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################### 
# START OF N1.obj # 
################### 
 
N1.obj <- function(D1,D2,s2,ab,s) { 
  invD1 <- solve(D1) 
  invD2 <- solve(D2) 
 
  for (jj in 1:20){  
  a <- ab[1:nP] 

ve   
t. b 

tive 

 * b2)/2 

b1.gr <- rowsum((y - der)*(-grad[,1:2]),CF1)/s2     

b.gr <- c(b1.gr, b2.gr)   

 crossprod(grad))/s2 

# compute part G related to b1 
1.12 <- G.b1.22 <- diag(integer(n1)) 

  rowsum((y-der)*(-hess[,1,1])+grad[,1]*grad[,1],CF1)/s2+invD1[1,1] 

vD1[1,2] 

2])+grad[,2]*grad[,2],CF1)/s2+invD1[2,2] 

  b <- ab[(nP+1):length(ab)] 
  b1 <- matrix(b[1:(2*n1)], ncol = 2) 
  b2 <- matrix(b[(2*n1+1):length(b)], ncol = 2)   
  phi1 <- a[1] + b1[CF1,1] + b2[CF2,1] 
  phi2 <- a[2] + b1[CF1,2] + b2[CF2,2] 
  phi3 <- a[3]     
  der <- eval(der.exp) # f value 
  grad <- attr(der, "gradient") # 1st derivati
  d.sse.b <- (y - der)*(-grad[,1:2]) # 1st derivative of sse w.r.
  hess <- attr(der, "hessian") # 2nd deriva
   
  # calculate g 
  g <- crossprod(y-der)/(2*s2) 
  g <- g + sum(b1 %*% invD1 * b1)/2 + sum(b2 %*% invD2
  g <- g - s*sum(b1[,1]^2)/n1 
 
  # calculate 1st derivative of g w.r.t. a 
  a.gr <- colSums((y - der)*(-grad))/s2     
        

  # calculate 1st derivative of g w.r.t. b 
  
  b1.gr <- b1.gr + b1 %*% invD1 
  b1.gr[,1] <- b1.gr[,1] - 2*s*b1[,1]/n1     
  b2.gr <- rowsum((y - der)*(-grad[,1:2]),CF2)/s2     
  b2.gr <- b2.gr + b2 %*% invD2   
  
  g.gradient <- c(a.gr, b.gr)  
 
  # compute part G related to a 
  G.a <- (colSums((y-der)*(-hess)) +
 
  
  G.b1.11 <- G.b
  diag(G.b1.11) <-  
    
  diag(G.b1.11) <- diag(G.b1.11) - 2*s/n1   
  diag(G.b1.12) <-  
      rowsum((y-der)*(-hess[,1,2])+grad[,1]*grad[,2],CF1)/s2+in
  diag(G.b1.22) <-  

  rowsum((y-der)*(-hess[,2,    
  G.b1 <- rbind(cbind(G.b1.11,G.b1.12), cbind(G.b1.12,G.b1.22)) 
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  # compute part G related to b2 
<- G.b2.22 <- diag(integer(n2)) 

*(-hess[,1,1])+grad[,1]*grad[,1],CF2)/s2+invD2[1,1] 

-hess[,1,2])+grad[,1]*grad[,2],CF2)/s2+invD2[1,2] 

(-hess[,2,2])+grad[,2]*grad[,2],CF2)/s2+invD2[2,2] 
G.b2.11,G.b2.12), cbind(G.b2.12,G.b2.22)) 

& b2 
ess[,1,1]) +  

= n2) 
ss[,1,2]) +  
ow=T, ncol = n2) 

(rowsum((y-der)*(-hess[,2,2]) +  
= n2) 
12.12,G.b12.22)) 

,G.b2))   

G related to a & b1 

s2 

[,1:3]*grad[,2],CF1)/s2 

,1],CF2)/s2 

:3]*grad[,2],CF2)/s2 

 

G.ab)), cbind(G.ab,G.b)) 

e-8*(abs(ab) + 1.e-6))     

  G.b2.11 <- G.b2.12 
  diag(G.b2.11) <-  
    rowsum((y-der)  

  diag(G.b2.12) <-  
      rowsum((y-der)*(
  diag(G.b2.22) <-  
      rowsum((y-der)*
  G.b2 <- rbind(cbind(
 
  # compute part G related to both b1 
  G.b12.11 <- matrix(rowsum((y-der)*(-h
      grad[,1]*grad[,1],CF1:CF2)/s2, byrow=T, ncol 
  G.b12.12 <- matrix(rowsum((y-der)*(-he
      grad[,1]*grad[,2],CF1:CF2)/s2, byr
  G.b12.22 <- matrix
      grad[,2]*grad[,2],CF1:CF2)/s2, byrow=T, ncol 
  G.b12 <- rbind(cbind(G.b12.11,G.b12.12), cbind(G.b
 
  G.b <- rbind(cbind(G.b1, G.b12), cbind(t(G.b12)
 
  # compute part 
  G.ab1.1 <-  
      rowsum((y-der)*(-hess[,1:3,1]) + grad[,1:3]*grad[,1],CF1)/
  G.ab1.2 <-  
      rowsum((y-der)*(-hess[,1:3,2]) + grad
  G.ab1 <- rbind(G.ab1.1, G.ab1.2) 
 

te part G related to a & b2   # compu
  G.ab2.1 <-  
      rowsum((y-der)*(-hess[,1:3,1]) + grad[,1:3]*grad[
  G.ab2.2 <-  
      rowsum((y-der)*(-hess[,1:3,2]) + grad[,1
  G.ab2 <- rbind(G.ab2.1, G.ab2.2) 
 
  G.ab <- rbind(G.ab1, G.ab2)
 
# finalize G   

  g.hessian <- rbind(cbind(G.a,t(
      
ab.new <- ab - solve(g.hessian) %*% g.gradient   

  err <- max(abs(ab.new - ab) - 1.
  ab <- ab.new 
  err 
  if(err < 0) break 
  } 
   
  list(val=g, detG=determinant(g.hessian, logarithm = TRUE)$modulus) 
} 
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################### 
# START OF N2.obj # 
################### 
 
N2.obj <- function(D1,D2,s2,ab,s) { 
  invD1 <- solve(D1) 
  invD2 <- solve(D2) 
 
  for (jj in 1:20){  
  a <- ab[1:nP] 

d.sse.b <- (y - der)*(-grad[,1:2]) # 1st derivative of sse w.r.t. b 

 

m(b1[,2]^2)/n1 

r.t. a 
a.gr <- colSums((y - der)*(-grad))/s2     

st derivative of g w.r.t. b 

1:2]),CF2)/s2     

g.gradient <- c(a.gr, b.gr)  

- (colSums((y-der)*(-hess)) + crossprod(grad))/s2 

1.12 <- G.b1.22 <- diag(integer(n1)) 
 <-  

(-hess[,1,1])+grad[,1]*grad[,1],CF1)/s2+invD1[1,1] 
g(G.b1.12) <-  
  rowsum((y-der)*(-hess[,1,2])+grad[,1]*grad[,2],CF1)/s2+invD1[1,2] 

   rowsum((y-der)*(-hess[,2,2])+grad[,2]*grad[,2],CF1)/s2+invD1[2,2] 
diag(G.b1.22) <- diag(G.b1.22) - 2*s/n1 
G.b1 <- rbind(cbind(G.b1.11,G.b1.12), cbind(G.b1.12,G.b1.22)) 

 

  b <- ab[(nP+1):length(ab)] 
  b1 <- matrix(b[1:(2*n1)], ncol = 2) 
  b2 <- matrix(b[(2*n1+1):length(b)], ncol = 2)   
  phi1 <- a[1] + b1[CF1,1] + b2[CF2,1] 
  phi2 <- a[2] + b1[CF1,2] + b2[CF2,2] 
  phi3 <- a[3]     
  der <- eval(der.exp) # f value 
  grad <- attr(der, "gradient") # 1st derivative   
  
  hess <- attr(der, "hessian") # 2nd derivative 
  
  # calculate g 
  g <- crossprod(y-der)/(2*s2) 
  g <- g + sum(b1 %*% invD1 * b1)/2 + sum(b2 %*% invD2 * b2)/2 
  g <- g - s*su
 
  # calculate 1st derivative of g w.
  
        
  # calculate 1
  b1.gr <- rowsum((y - der)*(-grad[,1:2]),CF1)/s2     

r + b1 %*% invD1   b1.gr <- b1.g
  b1.gr[,2] <- b1.gr[,2] - 2*s*b1[,2]/n1 
  b2.gr <- rowsum((y - der)*(-grad[,
b2.gr <- b2.gr + b2 %*% invD2     

  b.gr <- c(b1.gr, b2.gr)   
  
 
  # compute part G related to a 
  G.a <
 
  # compute part G related to b1 
  G.b1.11 <- G.b

G.b1.11)  diag(
      rowsum((y-der)*
  dia
    
  diag(G.b1.22) <-  
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  # compute part G related to b2 
<- G.b2.22 <- diag(integer(n2)) 

*(-hess[,1,1])+grad[,1]*grad[,1],CF2)/s2+invD2[1,1] 

-hess[,1,2])+grad[,1]*grad[,2],CF2)/s2+invD2[1,2] 

(-hess[,2,2])+grad[,2]*grad[,2],CF2)/s2+invD2[2,2] 
G.b2.11,G.b2.12), cbind(G.b2.12,G.b2.22)) 

& b2 
ess[,1,1]) +  

= n2) 
ss[,1,2]) +  
ow=T, ncol = n2) 

(rowsum((y-der)*(-hess[,2,2]) +  
= n2) 
12.12,G.b12.22)) 

,G.b2))   

G related to a & b1 

s2 

[,1:3]*grad[,2],CF1)/s2 

,1],CF2)/s2 

d[,1:3]*grad[,2],CF2)/s2 

 

G.ab)), cbind(G.ab,G.b)) 

e-8*(abs(ab) + 1.e-6))     

terminant(g.hessian, logarithm = TRUE)$modulus) 

  G.b2.11 <- G.b2.12 
  diag(G.b2.11) <-  
    rowsum((y-der)  

  diag(G.b2.12) <-  
      rowsum((y-der)*(
  diag(G.b2.22) <-  
      rowsum((y-der)*
  G.b2 <- rbind(cbind(
 
  # compute part G related to both b1 
  G.b12.11 <- matrix(rowsum((y-der)*(-h
      grad[,1]*grad[,1],CF1:CF2)/s2, byrow=T, ncol 
  G.b12.12 <- matrix(rowsum((y-der)*(-he
      grad[,1]*grad[,2],CF1:CF2)/s2, byr
  G.b12.22 <- matrix
      grad[,2]*grad[,2],CF1:CF2)/s2, byrow=T, ncol 
  G.b12 <- rbind(cbind(G.b12.11,G.b12.12), cbind(G.b
 
  G.b <- rbind(cbind(G.b1, G.b12), cbind(t(G.b12)
 
  # compute part 
  G.ab1.1 <-  
      rowsum((y-der)*(-hess[,1:3,1]) + grad[,1:3]*grad[,1],CF1)/
  G.ab1.2 <-  
      rowsum((y-der)*(-hess[,1:3,2]) + grad
  G.ab1 <- rbind(G.ab1.1, G.ab1.2) 
 

te part G related to a & b2   # compu
  G.ab2.1 <-  
      rowsum((y-der)*(-hess[,1:3,1]) + grad[,1:3]*grad[
  G.ab2.2 <-  
      rowsum((y-der)*(-hess[,1:3,2]) + gra
  G.ab2 <- rbind(G.ab2.1, G.ab2.2) 
 
  G.ab <- rbind(G.ab1, G.ab2)
 
# finalize G   

  g.hessian <- rbind(cbind(G.a,t(
      
ab.new <- ab - solve(g.hessian) %*% g.gradient   

  err <- max(abs(ab.new - ab) - 1.
  ab <- ab.new 
  err 
  if(err < 0) break 
  } 
 
  list(val=g, detG=de
} 
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#################### 
# START OF N12.obj # 
#################### 
 
N12.obj <- function(D1,D2,s2,ab,s) { 
  invD1 <- solve(D1) 
  invD2 <- solve(D2) 
 
  for (jj in 1:20){  
  a <- ab[1:nP] 

d.sse.b <- (y - der)*(-grad[,1:2]) # 1st derivative of sse w.r.t. b 

 

m(b1[,1]*b1[,2])/n1 

r.t. a 
a.gr <- colSums((y - der)*(-grad))/s2     

st derivative of g w.r.t. b 

n1   
,1:2]),CF2)/s2     

   
b.gr <- c(b1.gr, b2.gr)   

c(a.gr, b.gr)  

pute part G related to a 
d))/s2 

 G related to b1 
b1.12 <- G.b1.22 <- diag(integer(n1)) 

 rowsum((y-der)*(-hess[,1,1])+grad[,1]*grad[,1],CF1)/s2+invD1[1,1] 
ag(G.b1.12) <-  

] 
iag(G.b1.12) <- diag(G.b1.12) - s/n1     
diag(G.b1.22) <-  
    rowsum((y-der)*(-hess[,2,2])+grad[,2]*grad[,2],CF1)/s2+invD1[2,2] 

  G.b1 <- rbind(cbind(G.b1.11,G.b1.12), cbind(G.b1.12,G.b1.22)) 
 

  b <- ab[(nP+1):length(ab)] 
  b1 <- matrix(b[1:(2*n1)], ncol = 2) 
  b2 <- matrix(b[(2*n1+1):length(b)], ncol = 2)   
  phi1 <- a[1] + b1[CF1,1] + b2[CF2,1] 
  phi2 <- a[2] + b1[CF1,2] + b2[CF2,2] 
  phi3 <- a[3]     
  der <- eval(der.exp) # f value 
  grad <- attr(der, "gradient") # 1st derivative   
  
  hess <- attr(der, "hessian") # 2nd derivative 
  
  # calculate g 
  g <- crossprod(y-der)/(2*s2) 
  g <- g + sum(b1 %*% invD1 * b1)/2 + sum(b2 %*% invD2 * b2)/2 
  g <- g - s*su
 
  # calculate 1st derivative of g w.
  
        
  # calculate 1
  b1.gr <- rowsum((y - der)*(-grad[,1:2]),CF1)/s2     

r + b1 %*% invD1   b1.gr <- b1.g
  b1.gr[,1] <- b1.gr[,1] - s*b1[,2]/n1 
  b1.gr[,2] <- b1.gr[,2] - s*b1[,1]/
b2.gr <- rowsum((y - der)*(-grad[  

  b2.gr <- b2.gr + b2 %*% invD2
  
  g.gradient <- 
 
  # com
  G.a <- (colSums((y-der)*(-hess)) + crossprod(gra
 
  # compute part

11 <- G.  G.b1.
  diag(G.b1.11) <-  
     
di  

      rowsum((y-der)*(-hess[,1,2])+grad[,1]*grad[,2],CF1)/s2+invD1[1,2
  d
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  # compute part G related to b2 
- G.b2.22 <- diag(integer(n2)) 

(-hess[,1,1])+grad[,1]*grad[,1],CF2)/s2+invD2[1,1] 

-hess[,1,2])+grad[,1]*grad[,2],CF2)/s2+invD2[1,2] 

(-hess[,2,2])+grad[,2]*grad[,2],CF2)/s2+invD2[2,2] 
G.b2.11,G.b2.12), cbind(G.b2.12,G.b2.22)) 

& b2 
ess[,1,1]) +  

= n2) 
ss[,1,2]) +  
ow=T, ncol = n2) 

(rowsum((y-der)*(-hess[,2,2]) +  
= n2) 
12.12,G.b12.22)) 

,G.b2))   

G related to a & b1 

s2 

[,1:3]*grad[,2],CF1)/s2 

,1],CF2)/s2 

rad[,1:3]*grad[,2],CF2)/s2 

g.hessian <- rbind(cbind(G.a,t(G.ab)), cbind(G.ab,G.b)) 

err <- max(abs(ab.new - ab) - 1.e-8*(abs(ab) + 1.e-6))     

  G.b2.11 <- G.b2.12 <
  diag(G.b2.11) <-  
    rowsum((y-der)*  

  diag(G.b2.12) <-  
      rowsum((y-der)*(
  diag(G.b2.22) <-  
      rowsum((y-der)*
  G.b2 <- rbind(cbind(
 
  # compute part G related to both b1 
  G.b12.11 <- matrix(rowsum((y-der)*(-h
      grad[,1]*grad[,1],CF1:CF2)/s2, byrow=T, ncol 
  G.b12.12 <- matrix(rowsum((y-der)*(-he
      grad[,1]*grad[,2],CF1:CF2)/s2, byr
  G.b12.22 <- matrix
      grad[,2]*grad[,2],CF1:CF2)/s2, byrow=T, ncol 
  G.b12 <- rbind(cbind(G.b12.11,G.b12.12), cbind(G.b
 
  G.b <- rbind(cbind(G.b1, G.b12), cbind(t(G.b12)
 
  # compute part 
  G.ab1.1 <-  
      rowsum((y-der)*(-hess[,1:3,1]) + grad[,1:3]*grad[,1],CF1)/
  G.ab1.2 <-  
      rowsum((y-der)*(-hess[,1:3,2]) + grad
  G.ab1 <- rbind(G.ab1.1, G.ab1.2) 
 

te part G related to a & b2   # compu
  G.ab2.1 <-  
      rowsum((y-der)*(-hess[,1:3,1]) + grad[,1:3]*grad[
  G.ab2.2 <-  
      rowsum((y-der)*(-hess[,1:3,2]) + g
  G.ab2 <- rbind(G.ab2.1, G.ab2.2) 
 
  G.ab <- rbind(G.ab1, G.ab2) 
 
  # finalize G 
  
      
  ab.new <- ab - solve(g.hessian) %*% g.gradient 
  
  ab <- ab.new 
  if(err < 0) break 
  } 
 

terminant(g.hessian, logarithm = TRUE)$modulus)   list(val=g, detG=de
} 
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################### 
# START OF M1.obj # 
################### 
 
M1.obj <- function(D1,D2,s2,ab,s) { 
  invD1 <- solve(D1) 
  invD2 <- solve(D2) 
 
  for (jj in 1:20){  
  a <- ab[1:nP] 

d.sse.b <- (y - der)*(-grad[,1:2]) # 1st derivative of sse w.r.t. b 

 

m(b2[,1]^2)/n2 

r.t. a 
a.gr <- colSums((y - der)*(-grad))/s2     

st derivative of g w.r.t. b 

1]/n2    

g.gradient <- c(a.gr, b.gr)  

- (colSums((y-der)*(-hess)) + crossprod(grad))/s2 

1.12 <- G.b1.22 <- diag(integer(n1)) 

owsum((y-der)*(-hess[,1,1])+grad[,1]*grad[,1],CF1)/s2+invD1[1,1] 
diag(G.b1.12) <-  

] 
iag(G.b1.22) <-  
    rowsum((y-der)*(-hess[,2,2])+grad[,2]*grad[,2],CF1)/s2+invD1[2,2] 
G.b1 <- rbind(cbind(G.b1.11,G.b1.12), cbind(G.b1.12,G.b1.22)) 

  b <- ab[(nP+1):length(ab)] 
  b1 <- matrix(b[1:(2*n1)], ncol = 2) 
  b2 <- matrix(b[(2*n1+1):length(b)], ncol = 2)   
  phi1 <- a[1] + b1[CF1,1] + b2[CF2,1] 
  phi2 <- a[2] + b1[CF1,2] + b2[CF2,2] 
  phi3 <- a[3]     
  der <- eval(der.exp) # f value 
  grad <- attr(der, "gradient") # 1st derivative   
  
  hess <- attr(der, "hessian") # 2nd derivative 
  
  # calculate g 
  g <- crossprod(y-der)/(2*s2) 
  g <- g + sum(b1 %*% invD1 * b1)/2 + sum(b2 %*% invD2 * b2)/2 
  g <- g - s*su
 
  # calculate 1st derivative of g w.
  
        
  # calculate 1
  b1.gr <- rowsum((y - der)*(-grad[,1:2]),CF1)/s2     

r + b1 %*% invD1   b1.gr <- b1.g
  b2.gr <- rowsum((y - der)*(-grad[,1:2]),CF2)/s2     
  b2.gr <- b2.gr + b2 %*% invD2   
b2.gr[,1] <- b2.gr[,1] - 2*s*b2[,  

  b.gr <- c(b1.gr, b2.gr)   
  
 
  # compute part G related to a 
  G.a <
 
  # compute part G related to b1 
  G.b1.11 <- G.b
  diag(G.b1.11) <-  
    r
  
      rowsum((y-der)*(-hess[,1,2])+grad[,1]*grad[,2],CF1)/s2+invD1[1,2
  d
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  # compute part G related to b2 
<- G.b2.22 <- diag(integer(n2)) 

*(-hess[,1,1])+grad[,1]*grad[,1],CF2)/s2+invD2[1,1] 
s/n2     

-hess[,1,2])+grad[,1]*grad[,2],CF2)/s2+invD2[1,2] 

-hess[,2,2])+grad[,2]*grad[,2],CF2)/s2+invD2[2,2] 
bind(G.b2.11,G.b2.12), cbind(G.b2.12,G.b2.22)) 

 b2 
  

ow=T, ncol = n2) 
ss[,1,2]) +  

,2],CF1:CF2)/s2, byrow=T, ncol = n2) 
  
 n2) 

b <- rbind(cbind(G.b1, G.b12), cbind(t(G.b12),G.b2))   

3,1]) + grad[,1:3]*grad[,1],CF1)/s2 

,1:3]*grad[,2],CF1)/s2 

[,1],CF2)/s2 

) + grad[,1:3]*grad[,2],CF2)/s2 

%*% g.gradient 
))     

terminant(g.hessian, logarithm = TRUE)$modulus) 

  G.b2.11 <- G.b2.12 
  diag(G.b2.11) <-  
    rowsum((y-der)  

  diag(G.b2.11) <- diag(G.b2.11) - 2*
  diag(G.b2.12) <-  
      rowsum((y-der)*(
  diag(G.b2.22) <-  
      rowsum((y-der)*(
  G.b2 <- rbind(c
 
  # compute part G related to both b1 &
  G.b12.11 <- matrix(rowsum((y-der)*(-hess[,1,1]) +
      grad[,1]*grad[,1],CF1:CF2)/s2, byr
  G.b12.12 <- matrix(rowsum((y-der)*(-he
      grad[,1]*grad[
  G.b12.22 <- matrix(rowsum((y-der)*(-hess[,2,2]) +
      grad[,2]*grad[,2],CF1:CF2)/s2, byrow=T, ncol =
  G.b12 <- rbind(cbind(G.b12.11,G.b12.12), cbind(G.b12.12,G.b12.22)) 
 
  G.
 
  # compute part G related to a & b1 
  G.ab1.1 <-  
      rowsum((y-der)*(-hess[,1:
  G.ab1.2 <-  
      rowsum((y-der)*(-hess[,1:3,2]) + grad[
  G.ab1 <- rbind(G.ab1.1, G.ab1.2) 
 
  # compute part G related to a & b2 
  G.ab2.1 <-  

1]) + grad[,1:3]*grad      rowsum((y-der)*(-hess[,1:3,
  G.ab2.2 <-  
      rowsum((y-der)*(-hess[,1:3,2]
  G.ab2 <- rbind(G.ab2.1, G.ab2.2) 
 
  G.ab <- rbind(G.ab1, G.ab2) 
 
  # finalize G 
  g.hessian <- rbind(cbind(G.a,t(G.ab)), cbind(G.ab,G.b)) 
      

  ab.new <- ab - solve(g.hessian) 
  err <- max(abs(ab.new - ab) - 1.e-8*(abs(ab) + 1.e-6
  ab <- ab.new 
  if(err < 0) break 
  } 
   
  list(val=g, detG=de
} 
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################### 
# START OF M2.obj # 
################### 
 
M2.obj <- function(D1,D2,s2,ab,s) { 
  invD1 <- solve(D1) 
  invD2 <- solve(D2) 
 
  for (jj in 1:20){  
  a <- ab[1:nP] 
  b <- ab[(nP+1):length(ab)] 
  b1 <- matrix(b[1:(2*n1)], ncol = 2) 
  b2 <- matrix(b[(2*n1+1):length(b)], ncol = 2)   
  phi1 <- a[1] + b1[CF1,1] + b2[CF2,1] 
  phi2 <- a[2] + b1[CF1,2] + b2[CF2,2] 
  phi3 <- a[3]     
  der <- eval(der.exp) # f value 
  grad <- attr(der, "gradient") # 1st derivative   
  d.sse.b <- (y - der)*(-grad[,1:2]) # 1st derivative of sse w.r.t. b 
  hess <- attr(der, "hessian") # 2nd derivative 
   
  # calculate g 

b1 %*% invD1 * b1)/2 + sum(b2 %*% invD2 * b2)/2 

/s2     

t. b 
um((y - der)*(-grad[,1:2]),CF1)/s2     

um((y - der)*(-grad[,1:2]),CF2)/s2     

b.gr <- c(b1.gr, b2.gr)   

 G related to a 

(-hess[,1,1])+grad[,1]*grad[,1],CF1)/s2+invD1[1,1] 
g(G.b1.12) <-  
  rowsum((y-der)*(-hess[,1,2])+grad[,1]*grad[,2],CF1)/s2+invD1[1,2] 

   rowsum((y-der)*(-hess[,2,2])+grad[,2]*grad[,2],CF1)/s2+invD1[2,2] 
G.b1 <- rbind(cbind(G.b1.11,G.b1.12), cbind(G.b1.12,G.b1.22)) 

  g <- crossprod(y-der)/(2*s2) 
  g <- g + sum(
  g <- g - s*sum(b2[,2]^2)/n2 
 
  # calculate 1st derivative of g w.r.t. a 
  a.gr <- colSums((y - der)*(-grad))
        

  # calculate 1st derivative of g w.r.
  b1.gr <- rows
  b1.gr <- b1.gr + b1 %*% invD1 
  b2.gr <- rows
  b2.gr <- b2.gr + b2 %*% invD2   

]/n2     b2.gr[,2] <- b2.gr[,2] - 2*s*b2[,2
  
  g.gradient <- c(a.gr, b.gr)  
 
  # compute part
  G.a <- (colSums((y-der)*(-hess)) + crossprod(grad))/s2 
 
  # compute part G related to b1 
  G.b1.11 <- G.b1.12 <- G.b1.22 <- diag(integer(n1)) 

<-    diag(G.b1.11) 
      rowsum((y-der)*
  dia
    
  diag(G.b1.22) <-  
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  # compute part G related to b2 
<- G.b2.22 <- diag(integer(n2)) 

*(-hess[,1,1])+grad[,1]*grad[,1],CF2)/s2+invD2[1,1] 

-hess[,1,2])+grad[,1]*grad[,2],CF2)/s2+invD2[1,2] 

(-hess[,2,2])+grad[,2]*grad[,2],CF2)/s2+invD2[2,2] 
g(G.b2.22) - 2*s/n2   

bind(G.b2.11,G.b2.12), cbind(G.b2.12,G.b2.22)) 

 b2 
  

ow=T, ncol = n2) 
ss[,1,2]) +  

,2],CF1:CF2)/s2, byrow=T, ncol = n2) 
  
 n2) 

b <- rbind(cbind(G.b1, G.b12), cbind(t(G.b12),G.b2))   

3,1]) + grad[,1:3]*grad[,1],CF1)/s2 

,1:3]*grad[,2],CF1)/s2 

[,1],CF2)/s2 

) + grad[,1:3]*grad[,2],CF2)/s2 

%*% g.gradient 
))     

terminant(g.hessian, logarithm = TRUE)$modulus) 

  G.b2.11 <- G.b2.12 
  diag(G.b2.11) <-  
    rowsum((y-der)  

  diag(G.b2.12) <-  
      rowsum((y-der)*(
  diag(G.b2.22) <-  
      rowsum((y-der)*
  diag(G.b2.22) <- dia
  G.b2 <- rbind(c
 
  # compute part G related to both b1 &
  G.b12.11 <- matrix(rowsum((y-der)*(-hess[,1,1]) +
      grad[,1]*grad[,1],CF1:CF2)/s2, byr
  G.b12.12 <- matrix(rowsum((y-der)*(-he
      grad[,1]*grad[
  G.b12.22 <- matrix(rowsum((y-der)*(-hess[,2,2]) +
      grad[,2]*grad[,2],CF1:CF2)/s2, byrow=T, ncol =
  G.b12 <- rbind(cbind(G.b12.11,G.b12.12), cbind(G.b12.12,G.b12.22)) 
 
  G.
 
  # compute part G related to a & b1 
  G.ab1.1 <-  
      rowsum((y-der)*(-hess[,1:
  G.ab1.2 <-  
      rowsum((y-der)*(-hess[,1:3,2]) + grad[
  G.ab1 <- rbind(G.ab1.1, G.ab1.2) 
 
  # compute part G related to a & b2 
  G.ab2.1 <-  

1]) + grad[,1:3]*grad      rowsum((y-der)*(-hess[,1:3,
  G.ab2.2 <-  
      rowsum((y-der)*(-hess[,1:3,2]
  G.ab2 <- rbind(G.ab2.1, G.ab2.2) 
 
  G.ab <- rbind(G.ab1, G.ab2) 
 
  # finalize G 
  g.hessian <- rbind(cbind(G.a,t(G.ab)), cbind(G.ab,G.b)) 
      

  ab.new <- ab - solve(g.hessian) 
  err <- max(abs(ab.new - ab) - 1.e-8*(abs(ab) + 1.e-6
  ab <- ab.new 
  if(err < 0) break 
  } 
 
  list(val=g, detG=de
} 
 
 



 187

#################### 
# START OF M12.obj # 
#################### 
 
M12.obj <- function(D1,D2,s2,ab,s) { 
  invD1 <- solve(D1) 
  invD2 <- solve(D2) 
 
  for (jj in 1:20){  
  a <- ab[1:nP] 
  b <- ab[(nP+1):length(ab)] 
  b1 <- matrix(b[1:(2*n1)], ncol = 2) 
  b2 <- matrix(b[(2*n1+1):length(b)], ncol = 2)   
  phi1 <- a[1] + b1[CF1,1] + b2[CF2,1] 
  phi2 <- a[2] + b1[CF1,2] + b2[CF2,2] 
  phi3 <- a[3]     
  der <- eval(der.exp) # f value 
  grad <- attr(der, "gradient") # 1st derivative   
  d.sse.b <- (y - der)*(-grad[,1:2]) # 1st derivative of sse w.r.t. b 
  hess <- attr(der, "hessian") # 2nd derivative 
   
  # calculate g 

b1 %*% invD1 * b1)/2 + sum(b2 %*% invD2 * b2)/2 

/s2     

t. b 
um((y - der)*(-grad[,1:2]),CF1)/s2     

um((y - der)*(-grad[,1:2]),CF2)/s2     

b2.gr[,2] <- b2.gr[,2] - s*b2[,1]/n2       

 

 rowsum((y-der)*(-hess[,1,1])+grad[,1]*grad[,1],CF1)/s2+invD1[1,1] 
ag(G.b1.12) <-  

] 
iag(G.b1.22) <-  
    rowsum((y-der)*(-hess[,2,2])+grad[,2]*grad[,2],CF1)/s2+invD1[2,2] 
G.b1 <- rbind(cbind(G.b1.11,G.b1.12), cbind(G.b1.12,G.b1.22)) 

 

  g <- crossprod(y-der)/(2*s2) 
  g <- g + sum(
  g <- g - s*sum(b2[,1]*b2[,2])/n2 
 
  # calculate 1st derivative of g w.r.t. a 
  a.gr <- colSums((y - der)*(-grad))
        

  # calculate 1st derivative of g w.r.
  b1.gr <- rows
  b1.gr <- b1.gr + b1 %*% invD1 
  b2.gr <- rows
  b2.gr <- b2.gr + b2 %*% invD2   

n2   b2.gr[,1] <- b2.gr[,1] - s*b2[,2]/
  
  b.gr <- c(b1.gr, b2.gr)   
g.gradient <- c(a.gr, b.gr)   

 
  # compute part G related to a 

- (colSums((y-der)*(-hess)) + crossprod(grad))/s2   G.a <
 
  # compute part G related to b1 

1.12 <- G.b1.22 <- diag(integer(n1))   G.b1.11 <- G.b
  diag(G.b1.11) <-  
     
di  

      rowsum((y-der)*(-hess[,1,2])+grad[,1]*grad[,2],CF1)/s2+invD1[1,2
  d
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  # compute part G related to b2 
- G.b2.22 <- diag(integer(n2)) 

(-hess[,1,1])+grad[,1]*grad[,1],CF2)/s2+invD2[1,1] 

-hess[,1,2])+grad[,1]*grad[,2],CF2)/s2+invD2[1,2] 
g(G.b2.12) - s/n2       

-hess[,2,2])+grad[,2]*grad[,2],CF2)/s2+invD2[2,2] 
bind(G.b2.11,G.b2.12), cbind(G.b2.12,G.b2.22)) 

 b2 
  

ow=T, ncol = n2) 
ss[,1,2]) +  

,2],CF1:CF2)/s2, byrow=T, ncol = n2) 
  
 n2) 

b <- rbind(cbind(G.b1, G.b12), cbind(t(G.b12),G.b2))   

 + grad[,1:3]*grad[,1],CF1)/s2 

,1:3]*grad[,2],CF1)/s2 

[,1],CF2)/s2 

) + grad[,1:3]*grad[,2],CF2)/s2 

 

# finalize G 
G.ab)), cbind(G.ab,G.b)) 

ab.new <- ab - solve(g.hessian) %*% g.gradient 
e-8*(abs(ab) + 1.e-6))     

  G.b2.11 <- G.b2.12 <
  diag(G.b2.11) <-  
    rowsum((y-der)*  

  diag(G.b2.12) <-  
      rowsum((y-der)*(
  diag(G.b2.12) <- dia
  diag(G.b2.22) <-  
      rowsum((y-der)*(
  G.b2 <- rbind(c
 
  # compute part G related to both b1 &
  G.b12.11 <- matrix(rowsum((y-der)*(-hess[,1,1]) +
      grad[,1]*grad[,1],CF1:CF2)/s2, byr
  G.b12.12 <- matrix(rowsum((y-der)*(-he
      grad[,1]*grad[
  G.b12.22 <- matrix(rowsum((y-der)*(-hess[,2,2]) +
      grad[,2]*grad[,2],CF1:CF2)/s2, byrow=T, ncol =
  G.b12 <- rbind(cbind(G.b12.11,G.b12.12), cbind(G.b12.12,G.b12.22)) 
 
  G.
 
  # compute part G related to a & b1 
  G.ab1.1 <-  
      rowsum((y-der)*(-hess[,1:3,1])
  G.ab1.2 <-  
      rowsum((y-der)*(-hess[,1:3,2]) + grad[
  G.ab1 <- rbind(G.ab1.1, G.ab1.2) 
 
  # compute part G related to a & b2 
  G.ab2.1 <-  

1]) + grad[,1:3]*grad      rowsum((y-der)*(-hess[,1:3,
  G.ab2.2 <-  
      rowsum((y-der)*(-hess[,1:3,2]
  G.ab2 <- rbind(G.ab2.1, G.ab2.2) 
 
  G.ab <- rbind(G.ab1, G.ab2)
 
  
  g.hessian <- rbind(cbind(G.a,t(
      
  
  err <- max(abs(ab.new - ab) - 1.
  ab <- ab.new 
  if(err < 0) break 
  } 
 
  list(val=g, detG=determinant(g.hessian, logarithm = TRUE)$modulus) 
} 
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################### 
# START OF s2.obj # 
################### 
 
s2.obj <- function(D1,D2,s2,ab,s) { 
  invD1 <- solve(D1) 
  invD2 <- solve(D2) 
 
  for (jj in 1:20){  
  a <- ab[1:nP] 
  b <- ab[(nP+1):length(ab)] 
  b1 <- matrix(b[1:(2*n1)], ncol = 2) 
  b2 <- matrix(b[(2*n1+1):length(b)], ncol = 2)   
  phi1 <- a[1] + b1[CF1,1] + b2[CF2,1] 
  phi2 <- a[2] + b1[CF1,2] + b2[CF2,2] 
  phi3 <- a[3]     
  der <- eval(der.exp) # f value 
  grad <- attr(der, "gradient") # 1st derivative   
  hess <- attr(der, "hessian") # 2nd derivative 
  sse <- as.numeric(crossprod(y - der))     
  d.sse <- (y - der)*(-grad) 
   

d(y-der)/(2*s2) 

r.t. a 
2*s/N)     

st derivative of g w.r.t. b 

r + crossprod(t(b1), invD1) 

b.gr <- c(b1.gr, b2.gr)    

 G related to a 
s2 - 2*s/N) 

1], CF1) * (1/s2 - 2*s/N) + invD1[1,1] 
g(G.b1.12) <- rowsum((y-der)*(-hess[,1,2]) +  
  grad[,1]*grad[,2], CF1) * (1/s2 - 2*s/N) + invD1[1,2] 

   grad[,2]*grad[,2], CF1) * (1/s2 - 2*s/N) + invD1[2,2] 
G.b1 <- rbind(cbind(G.b1.11,G.b1.12), cbind(G.b1.12,G.b1.22)) 

  # calculate g 
  g <- crosspro
  g <- g + sum(b1 %*% invD1 * b1)/2 + sum(b2 %*% invD2 * b2)/2 
  g <- g - s*sse/N 
 
  # calculate 1st derivative of g w.
a.gr <- colSums(d.sse) * (1/s2 -   

        
  # calculate 1
  b1.gr <- rowsum(d.sse[,1:2], CF1) * (1/s2 - 2*s/N)     
  b1.gr <- b1.g
  b2.gr <- rowsum(d.sse[,1:2], CF2) * (1/s2 - 2*s/N)     

invD2)     b2.gr <- b2.gr + crossprod(t(b2), 
  
  g.gradient <- c(a.gr, b.gr)  
 
  # compute part
  G.a <- (colSums((y-der)*(-hess)) + crossprod(grad)) * (1/
 
  # compute part G related to b1 
  G.b1.11 <- G.b1.12 <- G.b1.22 <- diag(integer(n1)) 

<- rowsum((y-der)*(-hess[,1,1]) +    diag(G.b1.11) 
      grad[,1]*grad[,
  dia
    

  diag(G.b1.22) <- rowsum((y-der)*(-hess[,2,2]) +  
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  # compute part G related to b2 
<- G.b2.22 <- diag(integer(n2)) 
wsum((y-der)*(-hess[,1,1]) +  
,1],CF2) * (1/s2 - 2*s/N) + invD2[1,1] 

ess[,1,2]) +  
],CF2) * (1/s2 - 2*s/N) + invD2[1,2] 
sum((y-der)*(-hess[,2,2]) +  
2],CF2) * (1/s2 - 2*s/N) + invD2[2,2] 
G.b2.11,G.b2.12), cbind(G.b2.12,G.b2.22)) 

& b2 
ess[,1,1]) +  

byrow=T, ncol = n2) 
ss[,1,2]) +  
 - 2*s/N), byrow=T, ncol = n2) 

(rowsum((y-der)*(-hess[,2,2]) +  
byrow=T, ncol = n2) 
12.12,G.b12.22)) 

b12),G.b2))   

compute part G related to a & b1 
ess[,1:3,1]) +  
 (1/s2 - 2*s/N) 

d[,2],CF1) * (1/s2 - 2*s/N) 
G.ab1 <- rbind(G.ab1.1, G.ab1.2) 

 <- rowsum((y-der)*(-hess[,1:3,1]) +  
/N) 

/N) 

G.ab)), cbind(G.ab,G.b)) 

e-8*(abs(ab) + 1.e-6))     

odulus) 

  G.b2.11 <- G.b2.12 
  diag(G.b2.11) <- ro
    grad[,1]*grad[  

  diag(G.b2.12) <- rowsum((y-der)*(-h
      grad[,1]*grad[,2
  diag(G.b2.22) <- row
      grad[,2]*grad[,
  G.b2 <- rbind(cbind(
 
  # compute part G related to both b1 
  G.b12.11 <- matrix(rowsum((y-der)*(-h
      grad[,1]*grad[,1],CF1:CF2) * (1/s2 - 2*s/N), 
  G.b12.12 <- matrix(rowsum((y-der)*(-he
      grad[,1]*grad[,2],CF1:CF2) * (1/s2
  G.b12.22 <- matrix
      grad[,2]*grad[,2],CF1:CF2) * (1/s2 - 2*s/N), 
  G.b12 <- rbind(cbind(G.b12.11,G.b12.12), cbind(G.b
 
  G.b <- rbind(cbind(G.b1, G.b12), cbind(t(G.
 
  # 
  G.ab1.1 <- rowsum((y-der)*(-h
      grad[,1:3]*grad[,1],CF1) *
  G.ab1.2 <- rowsum((y-der)*(-hess[,1:3,2]) +  
      grad[,1:3]*gra
  
 
  # compute part G related to a & b2 
  G.ab2.1
      grad[,1:3]*grad[,1],CF2) * (1/s2 - 2*s
  G.ab2.2 <- rowsum((y-der)*(-hess[,1:3,2]) +  
      grad[,1:3]*grad[,2],CF2) * (1/s2 - 2*s
  G.ab2 <- rbind(G.ab2.1, G.ab2.2) 
 
  G.ab <- rbind(G.ab1, G.ab2) 
 
# finalize G   

  g.hessian <- rbind(cbind(G.a,t(
     
ab.new <- ab - solve(g.hessian) %*% g.gradient   

  err <- max(abs(ab.new - ab) - 1.
  ab <- ab.new 
  if(err < 0) break 
  } 
 
  list(val=g, detG=determinant(g.hessian, logarithm = TRUE)$m
} 
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################ 
# Main Program # 
################ 
 
 
emup <- function(theta,ab) { 
  D1 <- matrix(c(theta[1:2],theta[2:3]), ncol=2) 
  D2 <- matrix(c(theta[4:5],theta[5:6]), ncol=2)   
  s2 <- theta[7] 
  result.D <- D.obj(D1,D2,s2,ab)  

N1.ms <- N1.obj(D1,D2,s2,ab,-s)     

    result.D$val - N1.ps$val) 
ms$detG) +  

2.ps$detG) +  
    result.D$val - N2.ps$val) 

ms$detG) +  

N12.ps$detG) +  

tG - N12.ms$detG) +  
    result.D$val - N12.ms$val)  

s <- M1.obj(D1,D2,s2,ab,-s)     

5*(result.D$detG - M1.ms$detG) +  
M1.ms$val)  

M2.ps <- M2.obj(D1,D2,s2,ab,s)    

2.m1 <- exp(.5*(result.D$detG - M2.ps$detG) +  
    result.D$val - M2.ps$val) 

      result.D$val - M2.ms$val)  
 

  ab <- result.D$ab 
  a <- ab[1:nP] 
  b <- ab[(nP+1):length(ab)] # random effects of CF 1 
  b1 <- matrix(b[1:(2*n1)], ncol = 2) 
  b2 <- matrix(b[(2*n1+1):length(b)], ncol = 2)   
  s <- sqrt(.Machine$double.eps) 
 
  N1.ps <- N1.obj(D1,D2,s2,ab,s)    
  
  N1.m1 <- exp(.5*(result.D$detG - N1.ps$detG) +  
  
  N1.m2 <- exp(.5*(result.D$detG - N1.
      result.D$val - N1.ms$val)  
 
  N2.ps <- N2.obj(D1,D2,s2,ab,s)    
  N2.ms <- N2.obj(D1,D2,s2,ab,-s)     
  N2.m1 <- exp(.5*(result.D$detG - N
  
  N2.m2 <- exp(.5*(result.D$detG - N2.
      result.D$val - N2.ms$val)  
 
  N12.ps <- N12.obj(D1,D2,s2,ab,s)    
  N12.ms <- N12.obj(D1,D2,s2,ab,-s)     
  N12.m1 <- exp(.5*(result.D$detG - 
    result.D$val - N12.ps$val)   

  N12.m2 <- exp(.5*(result.D$de
  
 
  M1.ps <- M1.obj(D1,D2,s2,ab,s)    
  M1.m
  M1.m1 <- exp(.5*(result.D$detG - M1.ps$detG) +  
      result.D$val - M1.ps$val) 
  M1.m2 <- exp(.
      result.D$val - 
 
  
  M2.ms <- M2.obj(D1,D2,s2,ab,-s)     
  M
  
  M2.m2 <- exp(.5*(result.D$detG - M2.ms$detG) +  
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  M12.ps <- M12.obj(D1,D2,s2,ab,s)    
j(D1,D2,s2,ab,-s)     
*(result.D$detG - M12.ps$detG) +  
l - M12.ps$val) 

detG - M12.ms$detG) +  
l)  

D1,D2,s2,ab,-s)     
s2.ps$detG) +  

s2.ps$val) 
*(result.D$detG - s2.ms$detG) +  

 
 

1[2,2],D2[1,1],D2[1,2],D2[2,2],s2),  
     ab=ab, monitor = result.D$monitor) 

 <- c(a,b) 

 D2[1,1],D2[1,2],D2[2,2], s2) 

) + 1.e-1))    
D1.temp <- matrix(c(thet2[1:2],thet2[2:3]), ncol=2)   

2[5:6]), ncol=2)     
min(eigen(D2.temp)$values) <= 0 

  thet2[4] <- abs(thet2[4]) 

    thet2[6] <- abs(thet2[6])             
    thet2[7] <- abs(thet2[7])     
  } 

  M12.ms <- M12.ob
  M12.m1 <- exp(.5
    result.D$va  

  M12.m2 <- exp(.5*(result.D$
      result.D$val - M12.ms$va
 
  s2.ps <- s2.obj(D1,D2,s2,ab,s)    
  s2.ms <- s2.obj(
  s2.m1 <- exp(.5*(result.D$detG - 
      result.D$val - 
  s2.m2 <- exp(.5
      result.D$val - s2.ms$val)  
 
  D1[1,1] <- (N1.m1 - N1.m2)/(2*s) 
  D1[2,2] <- (N2.m1 - N2.m2)/(2*s)
  D1[1,2] <- (N12.m1 - N12.m2)/(2*s)
  D2[1,1] <- (M1.m1 - M1.m2)/(2*s) 
  D2[2,2] <- (M2.m1 - M2.m2)/(2*s) 
  D2[1,2] <- (M12.m1 - M12.m2)/(2*s)     
  s2 <- (s2.m1 - s2.m2)/(2*s) 
 
  list(theta = c(D1[1,1],D1[1,2],D
  
} 
 
 
# initial values 
a <- a.ini 
b <- integer(2*n1+2*n2) 
ab
D1 <- D1.ini 
D2 <- D2.ini 
s2 <- s2.ini 
 
i <- 0 
theta <- c(D1[1,1],D1[1,2],D1[2,2],
t("\n") ca

while(i < 300){ 
  temp <- emup(theta,ab) 
  thet2 <- temp$theta 
  ab <- temp$ab     
  i <- i + 1     

1.e-3*(abs(theta  err <- max(abs(thet2 - theta) - 
  
  D2.temp <- matrix(c(thet2[4:5],thet
  if(min(eigen(D1.temp)$values) <= 0 | 

| thet2[7] <= 0) { 
    thet2[1] <- abs(thet2[1]) 
    thet2[2] <- 0     
    thet2[3] <- abs(thet2[3])   
  
    thet2[5] <- 0     
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mp <- emup(theta,ab) 

t2[2:3]), ncol=2)   
t2[5:6]), ncol=2)     
 min(eigen(D2.temp)$values) <= 0 

  thet2 <- theta + deltheta 

), ncol=2)   
2.temp <- matrix(c(thet2[4:5],thet2[5:6]), ncol=2)     
if(min(eigen(D1.temp)$values) <= 0 | min(eigen(D2.temp)$values) <= 0 
| thet2[7] <= 0) break 

het2 - theta) - 1.e-6*(abs(theta) + 1.e-4)) 
(thet2 - theta))    

emp$monitor 
emp$theta 
taem - thet2 - gg 
% delgg 
ter(c(deltheta - adgg)/sum(deltheta*adgg), c(t(A) %*% 

eta)) 

heta,"\n")   
-6) break 

  i

 ab, iterlim = 500, print.level=0) 
 
ab[1],ab[2],ab[3],t(theta)) 

  theta <- thet2 
  cat(i,temp$monitor,err,theta,"\n")  
  if(err <0 | i >= 100) break 
} 
 
A <- -diag(length(theta)) 
te
gg <- temp$theta - theta 
monitor <- temp$monitor 
ab <- temp$ab 
while(i < 300){ 
  i <- i + 1     
  deltheta <- -A %*% gg 
  thet2 <- theta + deltheta 
  D1.temp <- matrix(c(thet2[1:2],the
  D2.temp <- matrix(c(thet2[4:5],the
  if(min(eigen(D1.temp)$values) <= 0 |

| thet2[7] <= 0) { 
    A <- -diag(length(theta)) 
    gg <- thetaem - theta 
    deltheta <- -A %*% gg 
  
  }    
  D1.temp <- matrix(c(thet2[1:2],thet2[2:3]
  D
  

  err <- max(abs(t
x(abs  err2 <- ma

  temp <- emup(thet2,ab) 
  monitor <- t
  thetaem <- t
  delgg <- the
  adgg <- A %*
A <- A + ou  
delth

  theta <- thet2 
+ delgg     gg <- gg 

  ab <- temp$ab 
  cat(i,temp$monitor,err,t

.e  if(err < 0 | err2 < 1
} 
 
if(i >= 300 | err < 0 | err2 < 1.e-6) { 
  D1 <- matrix(c(theta[1:2],theta[2:3]), ncol=2) 
  D2 <- matrix(c(theta[4:5],theta[5:6]), ncol=2)     
  s2 <- theta[7]     

nvD1 <- solve(D1)  
  invD2 <- solve(D2) 
 
  nllike.optim <- nlm(nllike.obj,
  ab <- nllike.optim$estimate  

(i,err,  dat.out <- data.frame
} 
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