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Processing of Yield Map Data 

J. L. Ping and A. Dobermann

Department of Agronomy and Horticulture, University of Nebraska–Lincoln,  
Lincoln, NE 68583-0915, USA. Correspondence:  adobermann2@unl.edu  

Abstract
Yield maps reflect systematic and random sources of yield variation as well as numerous errors 
caused by the harvest and mapping procedures used. A general framework for processing of 
multi-year yield map data was developed. Steps included (1) raw data screening, (2) standard-
ization, (3) interpolation, (4) classification of multi-year yield maps, (5) post-classification spatial 
filtering to create spatially contiguous yield classes, and (6) statistical evaluation of classification 
results. The techniques developed allow more objective mapping of yield zones, which are an 
important data layer in algorithms for prescribing variable rates of production inputs. 

Keywords: yield data screening, yield mapping, spatial classification, yield zones 

Introduction 

Yield mapping is one of the most widely used precision farming technologies. 
As more yield monitors are used and multiple-year yield data are accumulated, 
there is increasing need for robust data processing and interpretation techniques. 
Yield monitor data contain systematic and random sources of measured yield varia-
tion, including (i) more stable yield variability related to climate and soil-landscape 
features, (ii) variable management-induced yield variability, and (iii) measurement 
errors associated with the yield mapping process itself (Stafford et al., 1996; Lark et 
al., 1997; Blackmore and Moore, 1999; Arslan and Colvin, 2002b). Management-in-
duced variation includes random events that typically occur in small patches, such 
as planter skips, poor crop establishment, non-uniform fertilizer application, herbi-
cide damage, lodging or pest damage. Measurement errors include grain flow and 
moisture sensor errors, errors due to geo-referencing and combine movement, op-
erator errors, and data processing errors (Blackmore and Moore, 1999; Arslan and 
Colvin, 2002b). 

Although a single-year yield map is useful for posterior interpretation of possi-
ble causes of yield variation, it is of limited value for strategic site-specific manage-
ment decisions over medium to long-term periods. With multiple years of geo-refer-
enced yield data, repeating yield patterns and their natural causes can be separated 
from management-or measurement-induced random yield variation in each year. 

Our primary goal was to develop methodological guidelines for creating maps 
of yield classes in irrigated continuous maize (Zea mays L.) and maize-soybean (Gly-
cine max. [L] Merr) systems, which must represent zones with different yield expec-
tation within a field. Figure 1 illustrates a recently proposed flow diagram of yield 
data processing. In previous publications, we have reported on specific methodol-
ogies for each of the data processing steps shown in Figure 1, i.e., a new algorithm 
for raw data screening (Simbahan et al., 2004), the use of remote sensing imagery 
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for improving yield data interpolation (Dobermann and Ping, 2004), and techniques 
for spatial classification of multi-year sequences of yield maps into classes of differ-
ent yield performance (Dobermann et al., 2003; Ping and Dobermann, 2003). The ob-
jective for the present study was to apply the complete approach as a whole at a site 
which had not been used in previous studies on developing these methodologies, 
i.e., to validate the conclusions drawn for other sites with similar environmental 
and management characteristics. 

Material and methods 

Study site and yield data collection 

Yield monitor data were collected from an irrigated continuous maize field near 
Bellwood, Nebraska, USA (41.3267° N, 97.3356°W) from 1997 through 2002. This 
field was 68.3 ha in size and included four major soil series (Soil Survey Staff, 1999): 
Thurman loamy fine sand (mesic Udorthentic Haplustolls), Muir silt loam (superrac-
tive, mesic Cumulic Haplustolls), Ovina-Thurman coarse-loamy sand (mixed, mesic 
Fluvaquentic), and Brocksburg sandy loam (mixed, mesic Pachic Argiustolls). Thur-
man soils with low fertility and yield potential mainly occurred across the south-
west to northeast field parts, where elevation and slope changed from 3% to 6%. The 
rest of the field was flat with slopes in the 0–3% range. A drainage ditch crossed the 
whole field from north to south in the western half of the field (Figure 2). 

Maize was planted around April 20 each year at a density of about 75,000 plants 
ha–1 and combine-harvested around October 15 using a calibrated Ag Leader™  
PF3000 yield monitor with elevator mounted moisture sensor (Ag Leader® Tech-
nology, Inc., Ames, IA, USA) and a differential Global Positioning System (GPS) re-

Figure 1. Proposed flowchart for post-processing of yield monitor data. Modified from 
Ping and Dobermann (2003). 



Processing of YielD maP Data     195

ceiver. The combine harvested with a swath width of 6.1 m (eight rows) and yields 
were recorded at 2 or 3 s logging intervals. Grain yields were expressed in Mg ha–1 
with moisture content of 0.155 g H2O g–1. 

Note that changes in water management, tillage and row direction probably 
influenced the yield patterns. From 1997 through 2000, only one centre-pivot irri-
gation system was used (indicated by the circle in Figure 4), while 14.8 ha on the 
southern end received furrow irrigation. In 2001, a second half-pivot was installed 
in the south and both pivots covered 67.8 ha since then. The field was managed as a 
ridge till system with 0.91 m row spacing until 2000, but with 0.76 m row spacing in 
2001 and 2002. The southeast corner had maize rows in east–west direction before 
2001, whereas all other areas were planted in north–south row direction. The whole 
field was planted in north south row direction in 2001 and 2002. 

Screening and interpolation of yield data 

Yield monitors are sensitive to changes in grain yield but a time delay exists be-
cause the grain flow through a combine resembles a diffusive process (Arslan and 

Figure 2. Yield monitor data measured in 2002 (top left), all data points removed by the 
yield screening algorithm (top right), and the frequency distribution of maize grain yield 
before (bottom left) and after screening (bottom right). 
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Colvin, 2002b). In a first data processing step, grain flow delay correction and con-
version of annual yield monitor raw data (.yld files) to advanced text file format 
were done using SMS Basic 1.01 (Ag Leader® Technology, Inc., Ames, IA, USA). 
Optimal grain flow shift settings were identified using the procedure proposed by 
Beal and Tian (2001). This procedure assumes that incorrect grain flow shift would 
result in a large ratio of the surface area of a 3-dimensional plot of the yield mon-
itor data (yield plotted as z-variable versus geographical coordinates) to the 2-di-
mensional projected area of the upper surface (equivalent to the harvested whole 
field area). Optimum selection of grain flow shift would occur when this ratio is at 
a minimum. For all four fields, we estimated this ratio for different grain flow shifts 
ranging from 6 to 18 s and plotted it against the delay time. Based on the results, a 
value of 10 s was found to be optimal grain flow shift for maize, confirming results 
obtained at similar other sites (Simbahan et al., 2004). 

Following this, yield monitor data were screened to eliminate common errors. A 
sequential screening algorithm was applied, which screens for and deletes six types 
of erroneous or uncertain values (Simbahan et al., 2004): (1) combine header status 
is up, (2) start-and end-pass delays for both headlands and stop-and-go segments 
within the field, (3) frequency distribution outliers of distance traveled, grain flow, 
and grain moisture, (4) yields outside user-defined minimum and maximum bio-
logical yield limits, (5) small patches or narrow strips with extremely low or high 
yields that are not closely related to immediate neighbors, and (6) short segments 
and co-located yield records. 

Steps (1) and (2) remove technical errors that are always associated with yield 
monitor operation (Blackmore and Moore, 1999; Arslan and Colvin, 2002b). Step 
1 eliminates erroneous data values that are recorded while the combine header is 
up. Step 2 removes yield points recorded after the header has been lowered but 
grain flow has not started or has not stabilized yet (start-pass delay), as well as 
values at the end of harvest segments, when cutting has stopped but the header 
has not been raised yet (end-pass delay). Settings for start-and end-pass delays 
may differ among crops and harvest combines due to differences in swath width, 
harvest speed, and grain flow through a combine. To obtain location-specific set-
tings, grain flow measured during a short time period after start of a new harvest 
segment or before the end of a harvest pass was plotted versus time for numer-
ous different harvest passes in the field (data not shown). Based on this, 12 and 
6 s were selected as default settings for start-and end-pass delay, respectively, 
which was different from the 8 and 4 s delays found in the study of Simbahan et 
al. (2004), respectively. 

Steps 3 through 6 attempt to remove other erroneous yield records caused by 
combine operation and yield sensing, as well as uncertain values due to local-
ized, extreme yield variation. A combination of statistical tests and empirical cri-
teria is used for this screening. In step 3, an outlier test is performed for the vari-
ables grain flow, grain moisture, and distance traveled, based on the global means 
and standard deviations (SD) of these three measurements. Values outside the 
mean ± 3 SD range are deleted. In step 4, the user must provide an estimate of the 
expected biologically possible yield range. The value for the maximum possible 
yield should represent the crop yield potential (Evans, 1993), whereas the min-
imum value should be a number close to the minimum value the combine har-
vester can measure accurately. Default values in our studies were 0.01 for lower 
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and 22 Mg ha–1 for upper yield limits in maize (155 g kg–1 moisture content). The 
maximum value represents the estimated yield potential for this site, based on 
crop simulations done using long-term weather data and the Hybrid Maize model 
(Yang et al., 2004). 

Step 5 attempts to remove yield variability that often occurs in small patches or 
strips. Following the movement of the combine through the field, a local neighbor-
hood test is performed for each location for which a yield monitor value has been 
recorded (Simbahan et al., 2004). Using inverse distance interpolation, grain yield is 
estimated for each location from all values within a moving window that includes 
the three preceding and three succeeding yield records in the same swath as well as 
yield records within a band perpendicular to the tangent of the path traveled, cross-
ing three adjacent harvest passes on both the left and right sides of the path trav-
eled. The confidence interval of the estimate is obtained (default value: 95% or 2 
SD). If the measured yield is outside this interval, the yield value is considered a 
spatially uncorrelated outlier and discarded. The rationale for this definition is that 
yield at any location is likely to be spatially correlated to its immediate neighbors, 
irrespective of the direction of the combine movement. If that is not the case, a ran-
dom event must have caused an unusually high or low yield value recorded at the 
location being tested, either due to yield monitor error or due to specific crop man-
agement events that occur in very small patches. The former may include sudden 
changes in speed or grain flow (Arslan and Colvin, 2002a,b), whereas the latter may 
be caused by planter skips, poor crop establishment, non-uniform fertilizer applica-
tion, herbicide damage, lodging, pest damage, or other events. Conceptually, the lo-
cal outlier test performed in Step 5 is similar to the H-method proposed by Noack et 
al. (2003), but both the definition of the local neighbors and the statistical outlier test 
differ from it. 

Step 6 removes short segments caused by combine stop-and-go events within 
the field and data points that were recorded with the same geographical coordi-
nates. Short segments are considered unreliable because most data points in them 
are affected by start-or end-pass delays. As a default, segments with less than 12 
yield monitor points were identified as short segments and deleted. Co-located data 
points can be caused by GPS error or overlapping harvest passes. 

To eliminate yield variation caused by different management systems, 
screened annual yield data were normalized by dividing the measured values by 
the average of the corresponding irrigation method for a given field and year. The 
resulting relative yields were the relative percentage yields as used by Blackmore 
(2000) and indicate how the yield at each point differs relative to the mean of the 
field. Normalized point yield data were interpolated to a 4 m × 4 m grid using or-
dinary block kriging (Minasny et al., 2002). Maps for each year as well as maps of 
the mean yield and its standard deviation across all 6 years were used for cluster 
analysis. 

Spatial classification of yield variability   

Ward’s minimum variance method (SAS Institute Inc., 1999) was used for hi-
erarchical cluster analysis, while non-hierarchical clustering was done using the 
fuzzy k-means method (Minasny and McBratney, 2003). Following the approach 
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described by Dobermann et al. (2003), input variables for the cluster analysis were 
either average relative yield (MY, univariate classification), average relative yield 
and SD of yield (MS, bivariate classification) or all individual years of yield maps 
(AY, multivariate classification). The number of classes ranged from 2 to 10. 

Many management decisions require that maps of yield classes contain relative 
large, homogeneous and spatially contiguous units. Two approaches for creating 
maps of spatially more contiguous yield classes were evaluated (Ping and Dober-
mann, 2003). In the first approach, prior-classification interpolation (PCI), it was as-
sumed that larger grid sizes may result in maps of yield classes with less spatial 
noise and better suitability for management. To evaluate this, the square grid size of 
the annual yield maps was increased from 4 m (16 m2 cells), 8 m (64 m2), 16 m (256 
m2), 32 m (1024 m2), to 64 m (4096 m2) using ordinary block kriging and the global 
variogram option in VESPER (Minasny et al., 2002). The resulting interpolated yield 
maps were then used for cluster analysis to map yield classes. 

In the second approach, post-classification filtering (PCF), block kriging inter-
polation of annual yield maps was done at 4 m (16 m2 cells) grid size, followed 
by cluster analysis and applying image filtering techniques to the map of yield 
classes (spatial clusters) to smoothen the map units. That process involved a se-
quence of applying Focal Analysis, Clump, and Eliminate functions in Erdas 
Imagine 8.5 (Leica Geosystems, Atlanta, GA, USA) to the original 4-m maps of 
the yield classes created by cluster analysis (Ping and Dobermann, 2003). Square 
window sizes in this filtering were varied to be equivalent to the grid sizes of 
8, 16, 32, and 64 m used in PCI. Focal Analysis is a smoothing process, which 
uses a moving window to replace the value of a cell (= center point of a moving 
window) based on a set of surrounding cells. We used window medians to re-
place the center point from the neighbors of 3 × 3, 5 × 5, 9 × 9, and 17 × 17 cells, 
which simulated the corresponding 4, 8, 16, 32, and 64 m grid sizes used in the 
PCI approached. Next, in clumping analysis, each cell was assigned to contiguous 
groups and the resulting images were then processed through the ELIMINATE 
function, which removes small clumps by replacing the values of pixels in these 
clumps with the value of nearby larger clumps. The software applies a focal ma-
jority filter on the input file in an iterative fashion, so that the data values of large 
clumps overwrite the data values of small clumps. The iteration continues un-
til all the small clumps have been completely removed. The final clumps are then 
recoded using the ‘‘Original Value’’ attribute so that the output values of the re-
maining clumps are in the same range as the values in the original file (Leica Geo-
systems, 2003). 

Evaluation of classification performance 

To compare the effectiveness of the different methods in explaining the yield 
variance in each year j, we used the complement of the relative variance (Webster 
and Oliver, 1990): 

RVj = 1 – sW
2 /sT

2                                                                  (1) 
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where sW
2 is the within-class variance and sT

2 is the total variance, both estimated 
by post-classification analysis of variance for a particular year j. An RVj value was 
computed for each individual yield map year and an average value (RVc) was com-
puted across years. An ideal classification method would have a RVc close to one 
and a small range of the RVj among individual years. An analysis of variance of the 
standardized mean yields among different classes was conducted to test for differ-
ences in mean relative yield among the yield classes. 

Results 

Yield data screening 

In studies with irrigated and rain-fed maize and soybean at sites in a similar 
environment, the yield screening algorithm removed 13–20% of the original yield 
monitor data (Simbahan et al., 2004). Similar ranges were found for irrigated maize 
grown at the Bellwood site. As an example, Figure 2 shows the result of the yield 
data screening in 2002. In this case, 16.4% (4992) of the original yield data were re-
moved, which greatly improved the frequency distribution of grain yield. The fre-
quency distribution of grain yield computed from the original yield monitor data 
was negatively skewed, including many zero values, but also some extreme yields 
which exceeded the known biological yield limit of about 22 Mg ha–1 for this site. 
Data removal mainly occurred in the non-irrigated, northwest field corner and near 
headlands, but also around stop-and-go segments within the field as well as loca-
tions dispersed throughout the entire area (Figure 2). 

Stepwise removal of yield monitor data indicated that 71% of all data removal 
took place in the first two steps of data screening, whereas the remaining 29% were 
removed in steps three through six of the screening algorithm (Figure 3). These pro-
portions were similar to observations made at other sites for both maize and soy-
bean (Simbahan et al., 2004). Data removal in the first two steps mostly included 
zero or very low yields, but few extremely high values were also removed. Errone-
ous yield points due to header-up status (1941) and start/end-pass delays (1581) in 
the yield monitor operation were mostly removed in the headland areas, but also 
included stop-and-go locations inside the fields. Step 3 removed 1007 yield data 
points, mostly located in the northwest field corner and around field edges. Most of 
these locations were outliers in the grain flow outlier test because maize in that non-
irrigated corner suffered from severe drought during the year 2002 growing season, 
resulting in nearly complete crop failure. Step 4 removed data points in the same 
area as well as some other locations scattered throughout the field based on the em-
pirically defined yield limits. Because many raw data values that would cause outli-
ers in the computed grain yield were removed in the preceding step (3), only 86 ad-
ditional points were deleted in step 4. 

Step 5 removed 371 yield points that were identified as local outliers within the 
moving local neighborhood (Figure 3). Such outliers included most of the remain-
ing yield points in the dry northwest corner as well as locations that were widely 
dispersed across the field. The latter included locations at which spikes or sudden 
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drops in yield occurred due to localized management problems or sudden shifts in 
combine speed. Step 6 deleted six points that had repeated records of yield for the 
same locations. 

Overall, these results confirm that the yield screening algorithm used was ro-
bust in detecting major errors or extremes in yield monitor data that may be caused 
by the yield mapping process, by management or by natural events. The propor-
tions of data removed in various steps were similar to previously analyzed fields. In 

Figure 3. Sequential removal of erroneous or uncertain yield data points in the six screen-
ing steps, shown for the yield monitor data measured in 2002. 
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particular, it should be noticed that the total number of points removed in screen-
ing steps 3 through 6 accounted for less than one third of all removed yield data, 
but their removal significantly improved the modeling of semivariograms of grain 
yield which, at other sites, led to a relative increase of the precision of interpolated 
yield maps by about 4% to 5% (Simbahan et al., 2004). 

Spatial and temporal yield variability 

Average maize yields after data screening ranged from 11.5 to 13.5 Mg ha–

1 during the 1997–2002 period, with maximum yields ranging from 17.0 to 21.8 
Mg ha–1 (Table 1). Relative spatial yield variability in each year was modest, with 
CVs ranging from 11% to 15%. In all years, the highest yields occurred in the 
southeast corner, whereas the lowest yields consistently occurred in northwest-
ern and central-east areas of the field (Figure 4). Linear correlation coefficients of 
grain yields between different years ranged from 0.37 to 0.69 (Table 2), slightly 
less than at two other irrigated maize sites with similar management (Dobermann 
et al., 2003). 

Temporal variation in crop response to soil and climate among years, changes 
in crop management, and remaining artifacts in the yield maps probably caused 
the variations in correlations among yields measured in different years. In most 
years, small patches of randomly low or high yields remained even after data 
screening, especially in 1998 and 1999 (Figure 4). Although the exact causes of 
these ‘‘speckles’’ were not identified, it is likely that many of them were due to 
random events that caused gaps in the canopy or other crop damage. In some in-
stances, undetected yield monitor errors such as surges in grain flow may have 
remained as well. 

Temporal variability was affected by water management as indicated by rela-
tively small correlation coefficients before 2001 as compared to after 2001, when 
the second pivot was installed (Table 2). Except for the edge areas where tillage 
and row direction changed, high yielding areas tended to have low standard de-
viation, whereas low yielding areas, headlands, and areas with changing irriga-
tion management tended to have high standard deviation of relative yield across 
years (Figure 4). 

Table 1. Summary statistics of maize grain yield at Bellwood, Nebraska. Values shown re-
fer to the yield monitor data remaining after data screening 

Year  Mean  Median  Min  Max  SD  Skewness  CV 
                                                                 Mg ha–1                                                                              % 

1997  11.9  12.1  0.7  20.0  1.64  –1.61  14 
1998  12.7  12.7  1.7  21.8  1.64  –0.91  13 
1999  12.3  12.7  1.5  20.1  1.70  –1.66  14 
2000  11.5  11.9  1.3  17.0  1.68  –1.59  15 
2001  12.0  12.2  2.4  21.0  1.30  –1.49  11 
2002  13.5  13.5  0.2  21.7  1.54  –1.95  11 
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Figure 4. Kriged maps of relative grain yield at Bellwood from 1997 through 2002, mean 
yield (MY), and the standard deviation (SD) of grain yield across all years. Within each 
column, the left legend refers to the map shown above, the right legend to the map shown 
below. Relative yields were calculated as the relative difference to the field mean (%/100), 
i.e., a value of 1 represents the field mean yield for a particular year. Maps for 2001–2002 
also show the pivot access road constructed in 2001. 



Processing of YielD maP Data     203

Yield classification as affected by classification method, data source, and class number 

Yield classification across years was affected by clustering method, data source, 
and the number of yields classes chosen (Figure 5). When mean yield (MY) or 
mean yield plus standard deviation (MS) were used as inputs for the cluster anal-
yses, both Ward and fuzzy k-means methods showed similar results, in which RVc 
increased with class number increasing from 2 to 7, but leveling off thereafter (Fig-
ure 5). Furthermore, MY resulted in better performance than did MS, as indicated 
by somewhat larger RVc values. Using MY data and seven yield classes, both clus-
tering methods accounted for 52% of the overall yield variation observed across 
all 6 years. This level of yield variation accounted for was similar to RVc values 
of 0.60–0.66 for six to seven yield classes (MY-based) obtained at two other irri-
gated maize sites in Nebraska (Dobermann et al., 2003). The slightly lower RVc at 
the Bellwood site was probably due to the management changes occurring during 
the 1997–2002 period. 

When yield maps of all individual years were used as input variables for mul-
tivariate cluster analysis (AY), the fuzzy k-means method resulted in significantly 
greater RVc than those obtained with the Ward method. Moreover, with both clus-
tering algorithms, RVc kept increasing with increasing class number particularly for 

Table 2. Linear correlation coefficients between maize grain yields in different years 

Year  1997   1998  1999  2000 2001 

1998  0.37 
1999  0.45  0.45 
2000  0.42  0.42  0.59 
2001  0.51  0.39  0.44  0.42 
2002  0.42  0.38  0.39  0.39  0.69 

Figure 5. Average yield variability accounted for by the classification of multi-year yield 
map data (RVc) as a function of data sources used and the number of classes selected. (a): 
hierarchical cluster analysis using Ward’s methods; (b): non-hierarchical fuzzy-k-means 
cluster analysis. 
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the fuzzy-k-means method (Figure 5). Maximum RVc achieved was 0.64 with fuzzy-
k-means, using AY data, and 10 yield classes (Figure 5b). 

There is a tradeoff between class number and classification performance. A 
large number of classes results in increased RVc, but at the cost of increased map 
fragmentation, which may cause difficulties for implementing site-specific input 
management (Boydell and McBratney, 2002). In fuzzy k-means clustering analy-
sis, two indices, fuzziness performance index (FPI) and modified partition entropy 
(MPE), can be used to determine the optimum class number (Roubens, 1982). The 
FPI estimates the degree of membership sharing among classes and ranges from 
0 to 1, where a higher value indicates strongly sharing membership and 0 means 
crisp classes. The MPE estimates the degree of disorganization of classes and ranges 
from 0 to 1, higher MPE indicates strong disorganization and 0 indicates superior 
organizations. 

Typically, FPI and MPE decline with increasing number of classes number and 
the optimum classification is reached at near minimum of both FPI and MPE. How-
ever, the relationships between FPI and MPE with class number do not always 
show such expected patterns (Boydell and McBratney, 2002). In our case study, 
both FPI and MPE increased with increasing class number (Figure 6). Lark and Staf-
ford (1997) suggested to select the optimal class number k when MPEk–1 → MPEk  
≈ MPEk+1. Following this criterion, the optimal number of classes in our case was 
seven (Figure 6). 

An additional criterion that we propose is the rate of change in RVc with in-
creasing number of yield classes. As the number of classes increases, RVc gradu-
ally rises to a maximum value (Figure 5), but the rate of its increase declines sharply 
(Figure 6). At the Bellwood site, further gain in RVc became small once class num-
bers exceeded six and the change in RVc remained nearly constant for 7 to 9 classes. 
Thus, seven classes from the fuzzy k-means clustering of AY data appeared to be a 
reasonable solution for this site. 

Figure 6. Fuzziness performance index (FPI), modified partition entropy (MPE), and 
the rate of change of the average yield variance accounted for by the classification (RVc, 
%/100) as function of the number of yield classes chosen. Values refer to fuzzy-k-means 
clustering using individual years (AY) as input data. 
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Spatial yield classification as affected by aggregation method and filtering of yield classes 

Irrespective of the method chosen, yield classification based on small grid cells 
often results in fragmented maps that include much noise such as single pixels or 
small patches embedded within larger areas (Dobermann et al., 2003). The original 
yield classification method—fuzzy-k-means with AY data and seven yield classes 
mapped for 4m × 4 m grid cells—resulted in 1178 individual patches (or potential 
management units), averaging just 0.058 ha per patch (Figure 7, top left). The clus-
tering procedures focused on maximizing the variance between classes and mini-
mizing the variance within classes, without constraints to form spatially contiguous 
patches that are large enough for management. Map fragmentation in yield classes 
may be caused by numerous small patches remaining in annual yield maps, even 
after intensive screening (Figure 4). 

In general, map fragmentation decreased as interpolation grid sizes in the 
PCI method or spatial filtering window sizes in the PCF method were increased 
(Figure 7). However, important differences occurred between these two meth-
ods. In the PCI procedure, increase in interpolated grid size caused a significant 
loss of map quality, as evidenced by a steep decline in RVc (Figure 8) and maps 
that did not accurately depict spatial yield patterns (Figure 7, top row). Choos-
ing a coarse resolution of more than 8 m × 8 m for yield interpolation prior to 
classification (PCI method) resulted in significant loss of information. Misclassi-
fications mainly occurred near yield transitions, there was poor agreement with 
the original map, and statistical separation of mean yields among classes was 
poor (Table 3). 

In contrast, applying spatial filtering techniques to maps of yield classes that 
were created by cluster analysis of yield maps with a 4 m × 4 m resolution (PCF 
method) greatly improved the suitability of the map of yield classes for site- spe-
cific management. Post-classification spatial filtering removed map fragmentation 
and map unit contamination due to erroneous data, thereby creating maps of yield 
classes that were composed of smoother, spatially contiguous map units (Figure 7, 
bottom row). The original map resolution was maintained, little loss of the yield 
variability accounted for occurred (only small decrease in RVc, Figure 8), and high 
spatial agreement with the original 4-m map was maintained. Average relative 
yields were significantly different among all yield classes (Table 3), indicating that 
good separation of yield zones was maintained. For example, seven yield classes at 
the original, unfiltered grid size of 4 m were mapped as 1178 patches with a mean 
patch size of 0.058 ha, accounting for 58% of the yield variance. With a 64 m filtering 
window size used in PCF, the number of patches decreased to 39 (mean size 1.75 ha 
per patch) with 42% of the yield variance accounted for. In comparison, increasing 
the interpolated grid size in PCI to 64 m yielded 112 patches (mean patch size 0.61 
ha), but only 12% of the yield variance accounted for. The same PCF approach with 
64-m filtering window resulted in 19 patches per field, patch sizes averaging 3.3 ha, 
and 53–57% of yield variance accounted for at two other irrigated maize sites in Ne-
braska, which had similar environmental conditions and crop management (Ping 
and Dobermann, 2003). 
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Figure 7. Maps of yield classes as affected by the spatial aggregation method. PCI: prior-clas-
sification interpolation with grid cell size ranging from 4 to 64 m. PCF: post-classification fil-
tering with grid cell size 4 m and filtering window size ranging from 4 to 64 m. All maps 
were derived from fuzzy k-means cluster analysis of individual years (AY) as input data. 
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Table 3. Effect of post-classification filtering with 64-m window size on the mean rela-
tive yield, standard deviation (SD), coefficient of variation (CV, %), and the proportional 
area (% of whole field) of yield classes. Different letters show significant differences of the 
means of yield classes based on Duncan’s multiple range test 

Method                                                 Class       Mean               SD                  CV                Area 

Base (4-m grid)  7  1.066 A  0.023  2.2  22.0 
 6  1.022 B  0.016  1.6  29.2 
 5  1.002 C  0.026  2.6  13.1 
 4  0.972 D  0.020  2.1  19.5 
 3  0.901 E  0.028  3.2  11.8 
 2  0.836 F  0.063  7.6  1.1 
 1  0.775 G  0.059  7.6  3.3 
PCI (64-m grid)  7  1.030 A  0.052  5.0  29.6 
 6 0.994 B  0.054  5.4  9.3 
 5 0.992 B  0.034  3.4  8.7 
 4 0.992 B  0.063  6.3  21.0 
 3  0.982 C  0.061  6.3  13.0 
 2  0.961 D  0.092  9.5  17.6 
 1  0.783 E  0.063  8.1  0.8 
PCF (4-m grid with 64-m filtering)  7  1.061 A  0.033  3.1  15.1 
 6  1.023 B  0.034  3.4  36.3 
 5  0.999 C  0.035  3.5  14.0 
 4  0.970 D  0.048  5.0  21.3 
 3  0.899 E  0.059  6.6  10.6 
 2  0.834 F  0.062  7.5  1.1 
 1  0.768 G  0.074  9.7  1.7 

Figure 8. Effect of different spatial aggregation techniques on the average yield variance 
accounted for by the classification (RVc , %/100). PCI: prior-classification interpolation 
with grid cell size ranging from 4 to 64 m. PCF: post-classification filtering with grid cell 
size 4 m and filtering window size ranging from 4 to 64 m. Values refer to fuzzy-k-means 
clustering using individual years (AY) as input data. 
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Discussion 

The goal of the procedure outlined in Figure 1 is to map patterns of yield varia-
tion that are relatively consistent over time. Like many previous attempts, the pro-
posed methods for yield data processing are not perfect, but they have worked well 
in the case studies conducted so far. The study at the Bellwood site largely con-
firmed the results obtained for other sites (Cairo, Clay Center, and Mead) with sim-
ilar conditions for irrigated maize-soybean production in Nebraska (Dobermann et 
al., 2003; Ping and Dobermann, 2003; Simbahan et al., 2004), allowing us to draw 
several more general conclusions. 

Errors associated with the harvest process and extreme short-distance yield 
variation caused by random seasonal events should be filtered out if the objective 
is to perform a multi-year analysis of yield patterns. The latter may be caused by 
measurement error, crop management or other events that are not related to the 
broader spatial patterns of crop yield variation. Often it remains uncertain whether 
extremes in yield data reflect true low or high yields or artifacts due to field man-
agement and harvest. This presents a challenge for any screening program. The raw 
data screening algorithm used here eliminated erroneous yield values based on a 
logical, sequential order of data screening, with a minimum of empirical limits im-
posed. It is likely to be robust enough to obtain more accurate yield maps that bet-
ter illustrate the major spatial patterns of yield variation. The algorithm provided 
consistent results in terms of (i) what data were removed, (ii) the proportions of 
the different screening steps, and (iii) improvement in yield map precision (Simba-
han et al., 2004). Whether the algorithm removed all erroneous or uncertain yield 
data cannot be fully assessed because selecting accurate validation criteria remains 
a challenging issue. Further improvements of the yield data screening algorithm 
are possible by improving methods for specifying grain flow delays, changing the 
configuration or criteria used in the local neighborhood search, or adding criteria 
for detecting errors due to varying swath width or overlap of harvest passes (Beck 
et al., 1999). The latter was not an issue in the row crops used in our studies. Using 
more sophisticated methods for grain flow delay correction to reduce the amount 
of yield smoothing that occurs when a crop is combine-harvested are of particular 
interest for studies in which very accurate yield measurements at fine spatial res-
olution are required. Instead of using fixed lag times for grain flow delay correc-
tion (as in most commercial yield mapping software), impulse response models can 
be used to reverse the smoothing behavior that is typical for yields measured with 
combines (Whelan and McBratney, 2000; Whelan and McBratney, 2002; Lark and 
Wheeler, 2003). 

Spatial variation in crop yield data is mainly a function of climate, indigenous 
variation in soil productivity, field management and measurement error. If cli-
mate variation has less effect on crop growth (e.g., in irrigated agriculture), man-
agement is consistent and mapping errors are small and mostly random, only few 
years (perhaps about 5 years) of yield maps are required for a reliable yield clas-
sification. In that case, using mean relative yield (MY) in combination with any 
clustering method is often a reasonable choice for yield classification (Dobermann 
et al., 2003). However, fuzzy k-means clustering tends to be more sensitive to the 
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choice of input data than, for example, hierarchical cluster analysis methods, 
which may be beneficial in environments with greater yield variability. Where 
management changes more frequently or greater climatic variation affects crop 
yield variability within a field and from year to year, longer time series of yields 
maps (perhaps 5–10 years) are required and yield classification should be done 
based on fuzzy k-means classification of AY data to properly account for this vari-
ability. Such conditions are typical for rain-fed agriculture, but they also occurred 
at the irrigated Bellwood site because changes in irrigation methods, row direc-
tion and tillage practices caused significant inter-annual variation in yield pat-
terns (Figure 4). 

In general, the optimal number of yield classes will vary among sites, depend-
ing on the determinants of yield variation and the purpose of yield mapping and 
classification. At the Bellwood site and two other irrigated maize fields in similar 
environments of Nebraska (Dobermann et al., 2003), six to seven yield classes es-
tablished by cluster analysis provided sufficient resolution of the spatio-temporal 
yield variability observed. This may be a typical range for relatively flat, irrigated 
fields of this size (about 65 ha), in which soil variation as a key yield determinant 
is largely overwritten by sufficient water and nutrient supply. The optimal num-
ber of yield classes may vary more widely in different environments, but RVc as 
estimated here is a useful evaluation criterion for comparing different classifica-
tion choices. 

Yield zones used for site-specific management should display larger, spatially 
contiguous areas, which reflect major, and consistent differences in attainable 
yield, not noise introduced by annual factors and artifacts in a yield map. A first 
option for achieving this is to create yield maps at a relatively coarse grid size. 
Depending on the mapping purpose and scale a farmer wishes to manage, square 
grid sizes used of interpolated yield maps are often in the 10–50 m range (Lark 
and Stafford, 1998; Taylor et al., 2001). However, the results obtained at Bellwood 
(Figures 7 & 8) and two other sites (Ping and Dobermann, 2003) suggest that un-
realistic patterns of yield zones may result if the actual clustering is done using 
maps with large cell sizes. Likewise, many variable rate management technolo-
gies do not require large rectangular shapes for accurate equipment performance. 
Therefore, we recommend that the primary annual yield mapping be done at rel-
atively fine spatial resolution (e.g., grid sizes of about 5 m or even less), followed 
by spatial classification and/or filtering to create smoother and perhaps more ir-
regularly shaped map units. 

Spatially weighted clustering techniques (Oliver and Webster, 1989) could be 
used for creating maps of yield classes that contain little noise and in which map 
units are spatially contiguous. However, these methods are difficult to implement 
for large datasets of spatially dense information. 

Instead, we propose to map and classify yields at fine spatial resolution, fol-
lowed by post-classification spatial filtering using the PCF algorithms applied in 
our studies (Ping and Dobermann, 2003) or other smoothing techniques. We recom-
mend that window sizes for spatial filtering of yield maps should be in the 30–60 
m range. Depending on the filtering technique, the location-specific nature of yield 
variation, how much loss of information is acceptable and how large the desired 
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yield zones should be, a window size of more than 60 m may result in significant 
loss of information (Figure 8). A window size smaller than about 30 m may result 
in too many patches in the map (Figure 7), including many smaller ones that cannot 
be managed effectively. 

While the filtering techniques used in our studies significantly reduced spatial 
fragmentation in yield maps, the method is not optimal in a statistical sense because 
only the class membership is used, whereas individual properties pertaining to a 
group are ignored. Lark (1998) provided a more objective approach for post-clas-
sification smoothing. After performing a fuzzy classification of the data, the mem-
bership values in each class for each individual were subjected to spatial smooth-
ing. The fuzzy membership values were replaced by a spatially weighted average 
of the membership values within a local neighborhood. The weight ascribed to the 
membership of individual j when computing for the smooth membership for indi-
vidual i was proportional to their spatial dependence. Larks’ method results in spa-
tially less fragmented classes and it is suited for large datasets, but the choice of the 
size of the neighborhood is critical since a larger neighborhood will have a stronger 
smoothing effect. In future research, Lark’s method should be compared with the 
PCF technique proposed by us. 

Conclusions 

Spatially varying yield goals are used in many site-specific management pre-
scriptions. Because yield zones should mainly represent the stable site yield poten-
tial, they should be delineated as larger, spatially contiguous areas within a field. 
The sequence of procedures shown in Figure 1 allows doing this and it has proven 
to be robust, yielding similar results at several irrigated sites in Nebraska. Post-clas-
sification spatial filtering of maps of yield categories established by cluster analysis 
removed map fragmentation, thereby creating maps of yield classes that were com-
posed of contiguous map units. The original map resolution was maintained and 
little loss of the yield variance accounted for occurred. In contrast, interpolating 
yield maps to a coarse grid size before the classification leads to erroneous maps of 
yield classes and significant loss of information. 

More testing with other crops, in other environments, and with various yield 
monitor brands should be conducted. Further improvements of the yield screen-
ing algorithm could be possible by improving methods for specifying grain flow 
shifts, changing some of the test criteria used, or adding other criteria for detecting 
errors due to varying swath width or overlap of harvest passes. Guidelines for spa-
tial yield classification should be established for other key environments and crop-
ping systems. Inclusion of other data layers that affect yield (soil, topography, etc.) 
is needed for developing crop management zones and making management deci-
sions. Procedures such as those shown in Figure 1 should be better implemented in 
commercial farm software. 
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