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MEASURABLE CHOICE AND THE INVARIANT 
SUBSPACE PROBLEM 

BY EDWARD A. AZOFF AND FRANK GILFEATHER1 

Communicated by P. R. Halmos, February 8, 1974 

In [1], J. Dyer, A. Pedersen and P. Porcelli announced that an affir
mative answer to the invariant subspace problem would imply that every 
reductive operator is normal. Their argument, outlined in [1], provides a 
striking application of direct integral theory. Moreover, this method leads 
to a general decomposition theory for reductive algebras which in turn 
illuminates the close relationship between the transitive and reductive 
algebra problems. 

The main purpose of the present note is to provide a short proof of 
the technical portion of [1] : that invariant subspaces for the direct inte
grands of a decomposable operator can be assembled "in a measurable 
fashion". The general decomposition theory alluded to above will be 
developed elsewhere in a joint work with C. K. Fong, though we do 
present a summary of some of its consequences below. 

All Hubert spaces discussed in this paper will be separable and all 
operators will be bounded. We use the term 'algebra' to refer to an iden
tity—containing algebra of operators which is closed in the weak operator 
topology. A transitive algebra is an algebra having no nontrivial invariant 
subspaces; more generally, an algebra is called reductive if it is reduced 
by each of its invariant subspaces. 

The reader is referred to [2] or [3] for the details of direct integral 
theory; the primary purpose of the following summary is to fix notation. 
Let JU be the completion of a finite positive regular Borel measure supported 
on a or-compact subset of a separable metric space A and let {en}9 l^n^co, 
be a collection of disjoint Borel subsets of A with union A. Let hx ç h2 s • • • 
ç/joo be a sequence of Hubert spaces with hn having dimension n and h^ 
spanned by the remaining hn

9s. We write h = $A 0 h{X)fi (dX) for the Hubert 
space of (equivalence classes of) weakly measurable functions ƒ from 
A into / ^ such that for X e en9 f(X) e h(X)=hn9 and JA \\f(X)\\2fx (dX)<oo. 
The element in h represented by the function X-^f(X) is denoted by 
J A 0 / ( % ( ^ ) . 

ÂMS {MOS) subject classifications (1970). Primary 47A15, 46L15; Secondary 
28A20. 
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An operator A on h is said to be decomposable if there exists a /j-meas-
urable operator-valued function A(-) defined on A for which A(X) is an 
operator on h(X) and for ƒ in h, (Af)(X)=A(X)f(X). We write A = 
ƒ A 0 A(X)ju (dX) for the equivalence class corresponding to A('). If A(X) 
is a scalar multiple of the identity on h(X) for almost all X, then A is called 
diagonal. 

The following proposition should be compared with [1, Theorem 3(a)]. 
The measure-theoretic difficulties alluded to there are avoided here 
because the hypotheses on A allow us to use von Neumann's principle of 
measurable choice. 

PROPOSITION. Let A=^A^A(X)fx{dX) be a decomposable operator 
on h. Then the set T of X e A, for which A(X) has a nontrivial invariant 
subspace, is measurable. Furthermore, there exists a decomposable pro
jection P=JA 0 P(X)/Lt (dX) such that Ph is invariant under A and P(X) is 
nontrivial if and only if XeT. 

PROOF. Without loss of generality, we assume that A=ek for some 
k^. oo and that \\A\\ ^ 1 . We denote by B the set of contraction operators 
on hk with the weak operator topology and recall that this makes B into 
a compact metric space. Thus, by modifying the {A (X)} on a set of measure 
zero if necessary, we may as well assume the correspondence X->A(X) is a 
Borel map between A and B. 

Set E={(X, Q)e AxB.Q is a nontrivial projection and QA(X)Q~ 
A(X)Q}. Then YlA(E)=Tand since composition is a Borel map from BxB 
to B, we see that E is a Borel subset of A x B . We now apply von 
Neumann's principle of measurable choice ([2, Chapter I, Lemma 4.7] or 
[3, §16, Lemma 4]). This shows that Tis measurable and gives us a Borel 
function P whose domain D differs from T by a set of measure zero and 
whose graph is contained in E. The proof is completed by setting P(X)=0 
for X $ D. 

The following is the result announced in the title of [1]. 

THEOREM. The following are equivalent'. 
(1) Every operator on a Hilbert space of dimension greater than one has 

a nontrivial invariant subspace. 
(2) Every reductive operator is normal. 

PROOF. The implication (2) implies (1) is clear. Conversely, assume 
(1) and suppose A is a reductive operator on a Hilbert space h. Let ê be 
a maximal abelian von Neumann subalgebra of {A}' (the commutant of 
A). Applying Theorem 6 of [2, Chapter I], we decompose h as a direct 
integral, h = JA 0 h(X)/u (dX), of Hilbert spaces in such a way that S co
incides with the corresponding algebra of diagonal operators. Since A 
commutes with <f, it is decomposable and we write A = j A 0 A(X)JU (dX). 
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Let P and T be as in the Proposition. Clearly P commutes with S and 
since A is reductive, P also commutes with A. Thus the maximality of ê 
shows Pee, i.e. P{X) is trivial for almost all X. Consequently, Thas meas
ure zero and it follows from (1) that almost all of the spaces h(X) are one 
dimensional. In particular A = JA 0 A(2)ju (dX) is diagonal and hence 
normal. 

The technique illustrated above can be used to develop a method for 
expressing a reductive algebra as a direct integral of transitive algebras. 
Naturally this illuminates the close relationship between the transitive 
and reductive algebra problems. The following three results (as well as 
the one above) all follow with the aid of such a decomposition and illus
trate this point. 

THEOREM. The following are equivalent'. 
(1) The only abelian transitive algebra is the trivial one. 
(2) Every abelian reductive algebra is selfadjoint. 

THEOREM. The following are equivalent: 
(1) Every operator A has a nontrivial hyperinvariant subspace {i.e. in

variant for {A}') or is a multiple of the identity. 
(2) Every reductive algebra of the form {A}' is selfadjoint. 

THEOREM (RADJAVI-ROSENTHAL). Every reductive algebra containing a 
maximal abelian selfadjoint algebra of operators is selfadjoint. 
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