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LETTER TO THE EDITOR

Cutoffs of high-energy plateaux for atomic processes 
in an intense elliptically polarized laser fi eld
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68588-0111, USA

Submitted October 2004; published online December 17, 2004

Abstract. We present analytical estimates for high-energy plateau cutoff positions in the 
spectra of the most common laser-atom processes (above-threshold detachment/ioniza-
tion, high-harmonic generation and laser-assisted electron-atom scattering) for the case of 
an elliptically polarized, low-frequency laser fi eld.

Among the most spectacular phenomena in laser-atom physics are the broad, plateau-
like structures in the high-energy spectra of strong fi eld processes. These features are well 
known in multiphoton processes involving bound atomic states (such as high-harmonic gen-
eration (HHG) and above-threshold ionization/detachment (ATI/ATD)) [1, 2]; their occur-
rence has also been predicted recently for laser-assisted electron-atom scattering (LAES) 
[3]. Plateau effects are most pronounced for linear laser polarization, in which case the ex-
tent of the plateau regions (i.e. the plateau cutoffs) for both HHG and ATI have been mea-
sured experimentally and agree with results of numerical analyses and classical and qua-
siclassical (mostly one-dimensional) models [1, 2]; they are given by (|E0|  +  3.17up) and 
10up respectively, where |E0| and up are the ionization potential and the ponderomotive shift. 
For an elliptically polarized fi eld, information on the plateau cutoffs is very sparse [2]: for 
HHG, an estimate of the cutoff position (see (13) below) was obtained in [4] using an ap-
proximate quantum result for the HHG amplitude within a zero-range potential (ZRP) mod-
el and in [5] using the semiclassical method for a Gaussian form of the dipole matrix ele-
ment; general features of plateau effects in ATI/ATD for an elliptically polarized fi eld have 
been discussed in [6]; plateau structures in LAES for the cases of elliptical and circular po-
larization have been predicted very recently in [7].

In this letter we present analytical estimates for the extent of high-energy plateaux in ATI/
ATD, HHG and LAES for an elliptically polarized fi eld. Our study is based on approximations 
to exact quantum results for the transition amplitudes within the quasienergy approach [8] for 
the case of a short-range potential [9, 10]. Detailed analytical study of strong fi eld process-
es is possible only for short-range potentials U(r) (i.e. without a Coulomb tail). As shown in 
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[11, 12], the position of plateau cutoffs in ATI/ATD and HHG is essentially independent of the 
spatial symmetry of an initial bound state and the shape of U(r). Thus in this study we use the 
most tractable model for U(r), the zero-range potential supporting a single bound state of en-
ergy E0 = – 2κ2(2m) –1. For LAES, the ZRP model represents a time-dependent extension of 
the scattering length approximation [13] for low-energy, s-wave electron scattering (the case 
for which rescattering effects are most important) from atoms that have negative ions with s-
electron ground states.

We describe the laser fi eld in the dipole approximation by the electric vector F(t): 

where F, ω, and e are the amplitude, frequency, and complex polarization vector. (Thus with 
our defi nitions the laser intensity, I  =  cF 2/(8π), is independent of the ellipticity η.) Unit vec-
tors ε̂ and k̂   defi ne respectively, the major semiaxis of the polarization ellipse and the direc-
tion of the laser beam. The ellipticity η is connected with the degrees of linear (A ) and circu-
lar (ξ ) polarization as follows: A =  (1  -  η2)/(1  +  η2), ξ  =  2η/(1  +  η2). Since |E0| is the only 
free parameter of the problem in our approach, we use below scaled units in which the elec-
tron energies and ω are measured in units of |E0|, momenta in units of κ and fi eld amplitudes 
in units of  F0 = √2m|E0|

3/(eħ).
The remarkable advantage of a ZRP model is that it allows one to represent the exact 

quasienergy solutions Φ(r, t) of the time-dependent Schrödinger equation for both bound state 
and scattering problems (as well as the corresponding transition amplitudes) in terms of the 
free-electron (Volkov) Green function and a time-periodic function f (t) that enters the bound-
ary condition for Φ(r, t) at the origin: 

(1)

The functions f (t) are different for quasistationary quasienergy states (QQESs) Φe(r, t) with 
complex quasienergies, e =  Re e  –  i(Γ/2), and for scattering states Φp(r, t) with real quasi-
energies, e =  p2  +  up, where p is the incoming electron momentum. We distinguish f(t) for 
these two cases by fe(t) and fp(t), respectively; they contain the complete information on the 
binding (for ATD and HHG) and scattering potential (for LAES) effects and play a key role in 
our analyses. The exact quantum results for the LAES and ATD amplitudes involve a sum of 
generalized Bessel functions multiplied by the Fourier-coeffi cients of f (t) [3, 10]. For our pur-
poses, it is convenient to represent these amplitudes in an equivalent form in terms of the fol-
lowing Fourier integral: 

(2)

where cPn(t) is the periodic (in time) part of the Volkov wavefunction at the origin, 

and where A(t) = Ḟ (t)/ω2 , up = F 2/(2ω2) and pn is a fi nal (detached or scattered) electron 
momen tum. As shown by an accurate quantum analysis of our exactly solvable 3D-model, 
plateau features in strong fi eld phenomena originate from those occurring in the spectra of the 
Fourier-coeffi cients of f(t), or, equivalently, of the Fourier-harmonics of Φ(r, t) near the ori-
gin (cf (1)). Thus, below we shall analyse the plateau features for the function fe(t) fi rst, before 
considering the elliptical polarization cutoff laws for HHG and ATI processes.
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(i) Plateau features in the spectrum of the Fourier-coeffi cients of fe(t). For bound state prob-
lems such as ATD or HHG, the complex quasienergy e and the Fourier-coeffi cients f2k of the 
QQES wavefunction Φe(r, t) at the origin, 

(3)

satisfy a homogeneous system of linear equations [14]: 

(4)

The matrix elements Mkk’ (e) involve an integral containing Bessel functions Jp(x): 

(5)

The algorithms for direct numerical solution of the system (4) are discussed in [10]. In fi gure 
1(a) we present the typical plateau-like behaviour (for positive k) of the coeffi cients f2k for dif-
ferent values of A (note that f2k ~ A2|k| at A→ 0 (or ξ → ±1)). 

To estimate the cutoff in the spectrum of f2k analytically, we use the ‘rescattering approxi-
mation’ [10] for f2k (i.e. the fi rst iteration of system (4) assuming 

(6)

The approximation (6) is very accurate for an intense low-frequency fi eld F(t) [10]. Since 
the parameter ζk depends smoothly on k, the k-dependence of the coeffi cients f2k is dominat-
ed by that of the matrix elements Mk0(e = –1). To estimate these matrix elements, we note fi rst 
that the argument z(τ) of the Bessel function in (5) has maxima and minima at τ  =  τn, n  =  1, 
2,  ..., where τn are roots of the equation [4]: 

(7)

The upper bound of |z(τ)| is given by its value for the lowest τn (i.e. τ1  =  4.086): 

(8)

Figure 1. (a) Plateaux in the spectrum of the Fourier-coeffi cients f2k for F  =  0.3, ω  =  
0.128, and fi ve different values of A (from top to bottom): 1.0, 0.923, 0.835, 0.724, 0.6. 
Arrows show the cutoffs given by equation (12). (b) Harmonic yield as a function of 
the harmonic number for the same values of F, ω, and A as in panel (a). Arrows show 
the cutoffs given by equation (13). I0  =  (2|E0|3e2)/(32c3).



L30 FLEGEL, FROLOV, MANAKOV, & STARACE IN JOURNAL OF PHYSICS B 38 (2005)

For our purposes, it is necessary to estimate the matrix element Mk0 for large k: k > A|z1| (where 
A|z1| �1 for small ω and Aup � ω). For these parameter values, the Bessel function in (5) may 
be replaced by its Debye asymptotic limit [15]: 

(9)

Since |Jk(Az(τ))| has a global maximum at τ  =  τ1, the dominant contribution of Jk(Az(τ)) to 
the integral in (5) comes from the small interval of τ centred at τ  =  τ1. Substituting in (9) x → 
Az(τ) and expanding z(τ) up to second-order terms near the point τ  =  τ1, we obtain the follow-
ing approximation for the Bessel function in (5): 

(10)

where                                                                                     Using (10) to evaluate the integral 
in (5) for k΄  =  0, the resulting approximate value for |Mk0| is 

(11)

where α  =  k – |z1| – ω –1. The approximation represented by (11) and (6) provides numerical 
results for | f2k | that are in excellent agreement with those calculated using the exact equation 
(4) for k values around the cut-off and beyond the plateau region. An analytical estimate for kc 
corresponding to the cut-off in the spectrum of | f2k | may be deduced by estimating the max-
imum of |Mk0| in (11) as a function of k (cf [4]). The position of this maximum may be esti-
mated as the average of kb and ke, kmax ≡ kc  =  (kb  +  ke)/2, where kb ≈ A|z1| corresponds to the 
maximum of the Bessel function in (11) and ke ≈ |z1|  +  ω –1 corresponds to the maximum of 
the exponential in (11). Thus we obtain the following result for kc: 

(12)

which agrees well with the exact numerical results for the cut-off positions in fi gure 1(a) for A 
≥ 0.6 (or, equivalently, for |η| ≤ 0.5).

(ii) HHG. Proceeding to the analysis of plateau cut-offs in HHG spectra, we note the sim-
ilarity of plateau structures for f2k in fi gure 1(a) to those in fi gure 1(b) for the harmonic yield 
(calculated using the exact quantum results for the HHG amplitude in a ZRP model [16]). 
Moreover, each cut-off for a given A in fi gure 1(b) (i.e. the energy, E (h)

max, that corresponds to 
a maximum of the harmonic yield in the region of the plateau cut-off) is reasonably described 
by the following formula (except for A =  0.6, in which case the high-energy plateau almost 
vanishes and the harmonic yield is nine orders less than for A =  1): 

(13)

which is equivalent to (12). This coincidence is not surprising and has a simple physical inter-
pretation owing to the fact that the coeffi cient f2k determines the population of the (2k)th Fou-
rier-harmonic of the QQES Φe(r, t) at the origin (see (1)), i.e. it is proportional to the ampli-
tude for the electron having the energy E2k  =  Re e  +  2kω ≈ E0  +  2kω. According to (12), a 
strong laser fi eld effectively populates only the Fourier-harmonics of Φe(r, t) near the origin 
having k up to k ≈ kc, from which the electron can emit (spontaneous) harmonic photons hav-
ing a maximum energy                                                                   Note, that the estimate 
(13) was already obtained earlier [4] based on a straightforward evaluation of an approximate 
expression for the HHG amplitude in the complex quasienergy approach for a ZRP model. (It 
is interesting that in [4] all coeffi cients f2k were neglected except for f0  =  1. However, the re-
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sulting HHG amplitude has a form similar to that of the matrix element Mk0(e  =  –1), thus 
yielding the same cutoff as in (12).) The high accuracy of the estimate (13) for the case of lin-
ear polarization has been demonstrated in the experiment of [17]. We note that the estimate 
(12) has been obtained under the condition Aup � ω; thus the cut-off law (13) as well as that 
for ATD (see (15) below) cannot be employed for laser polarizations very close to circular (in 
which case f2k  =  f0δk0 [14], HHG is impossible and plateau structures in ATI/ATD disappear).

(iii) ATD. Substituting the Fourier-expansion (3) into (2) (where pn = √nω – 1 – up ), the 
ATD amplitude An is expressed in terms of a coherent sum of contributions from separate co-
effi cients f2k multiplied by generalized Bessel functions [10]. Owing to the plateau-like behav-
iour of f2k , in order to obtain an analytical estimate for the high-energy cutoff in the ATD spec-
trum we therefore assume that only the coeffi cient  f2kc gives the dominant contribution to the 
amplitude An in (2) for values of n near the cut-off of the high-energy plateau. (We have con-
fi rmed numerically that the addition of coeffi cients f2k with k < kc does not change the esti-
mates below.) Then, replacing the function fe(t) by a single harmonic, fe(t) ~ exp(–2ikcωt), we 
handle the integral over t in (2) using the saddle point method, where the saddle points ts are 
given by 

(14)

The maximum value of pn corresponds to the minimum real value of ts. For electron ejection 
along the major axis of the polarization ellipse, pn,max is given by 

(15)

As shown in fi gure 2(a), the estimate (15) agrees reasonably well with the exact results for a 
ZRP model (calculated similarly to those in [18]; note that, e.g., for Kr (|E0| ≈ 14.0 eV) these 
results as well as those in fi gure 1 correspond to ω ≈ 1.79 eV and I ≈ 3.5 × 1015 W cm –2). The 
rapid decrease of the average plateau heights in fi gure 2(a) with decreasing A originates from 
the similar decrease of f2k in fi gure 1(a). 

(iv) LAES. Similar to the QQES case, the exact scattering state Φp(r, t) of an electron with 
an initial momentum p in a ZRP model is essentially determined by its boundary condition (1) 

Figure 2. (a) ATD spectra of electrons ejected along the major polarization axis for 
the same laser parameters F, ω, and A as in fi gure 1(a). Arrows indicate the cutoffs giv-
en by (15). (b) Energy distribution of scattered electrons (for forward scattering along 
the major axis of the polarization ellipse) for F  =  0.5, ω  =  0.155, E  =  3.1775  =  
20.5ω  =  0.61up , and for different values of A (indicated in fi gure). Hollow and fi lled 
vertical arrows show the K- and R-plateau cutoffs given respectively by (19) and (21), 
(22). The vertical line corresponds to the case of elastic scattering, p2

n  =  E.
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at the origin [3] (with f (t) ≡ fp(t)). For our purposes, it is convenient to re-write the inhomoge-
neous system of linear equations for the Fourier-coeffi cients of fp(t) (see [3]) in terms of an in-
homogeneous integral equation: 

(16)

where 

Once fp(t) is known, the exact amplitude An [3] for LAES with absorption (n > 0) or emission 
(n < 0) of |n| photons may be recovered according to equation (2), in which the scattered elec-
tron momentum is pn = √nω + p2 .

Let us consider fi rst the iterative solution for fp(t), neglecting the rhs of (16): 

(17)

As shown in [3], this result is equivalent to the Kroll-Watson (low-frequency) approximation 
[19] and describes the low-energy part (the ‘K-plateau’) of the electron spectrum. Using (17), 
the integral over t in the amplitude (2) may be estimated by the saddle point method, where 
the saddle points, t  =  ti(i  =  1, 2,  ...), are given by 

(18)

Analysis shows that the amplitude (2) oscillates as a function of n for real values of ti and has 
an exponential smallness for complex ti. Thus the position of the K-plateau cutoff corresponds 
to the minimum value of pn at which the roots ti of equation (18) acquire an imaginary part. 
The extent of the K-plateau reaches a maximum when the vectors p and pn are collinear with 
the major axis of the polarization ellipse: 

(19)

where the signs ∓ correspond to parallel/antiparallel directions of p and pn. Thus, for the case 
of backscattering, the low-energy K-plateau exists for any p, while for forward scattering it 
exists only for incoming electron energies E  =  p2 less than (1  +  A )up and its maximum ex-
tent, En,max  =  4(1  +  A )up, is reached at E → 0. (The analysis of the K-plateau cutoff for the 
case of nonzero scattering angle θ between pn and p in the plane of the polarization ellipse has 
been presented in [7].)

The analysis of the high-energy part of the electron spectrum requires a more exact account 
of the scattering potential corresponding to the next iteration of (16), fp(t) ≈ f (0)

p(t)  +  f (1)
p(t), 

in which (17) is substituted on the rhs of (16) to obtain 

(20)

For low frequencies, the integrals over τ in (20) as well as over t in (2) may be evaluated using 
the saddle point method. The saddle points in the plane of τ, τs  =  τs(t)(s  =  1, 2,  ...), are giv-
en by equation 

(21)
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while those in the t-plane, t  =  tf (f  =  1, 2,  ...), are given by (see [7] for details) 

(22)

As for the case of the K-plateau, the rescattering (R) plateau corresponds to the values of pn 
for which there exist real solutions of equations (21) and (22), i.e. the cutoff of the R-plateau 
is given by the minimum value of pn at which the roots tf and τs become complex. For the cas-
es of A =  1 and A =  0, equations (21) and (22) reduce to a single equation involving only the 
roots τs, so that the cutoff value of pn may be obtained by maximizing pn( p, θ, τs) over the set 
of τs (for given p, θ and laser parameters). For forward scattering (θ  =  0) either along the la-
ser polarization (for A =  1) or in the polarization plane (for A =  0), the cutoff value of pn is 
given by [3, 7] 

(23)

 

The energy spans of the K and R-plateaux depend signifi cantly on the energy E  =  p2 and the 
laser polarization. For linear polarization and forward scattering, the extent of each plateau 
is maximal at p → 0, with the maximum extent of the R-plateau being En,max ≈ 10.2up (as in 
equation (15) for ATD). En,max decreases with increasing E and the R-plateau disappears at E ≈ 
10.2up [3]. Our numerical analysis for circular polarization and forward scattering shows that 
the R-plateau is masked at low energies by the more intense K-plateau, becoming visible only 
for energies E ≥ 0.03up. With increasing E, its extent becomes maximal (En,max ≈ 5.1up) for E 
≈ 0.2up and thereupon decreases smoothly to ≈ 4.1up for E ≈ 4.1up. For E ≥ 4.1up, the R-pla-
teau for circular polarization vanishes. (For nonzero scattering angles θ, the extent of the R-
plateau depends upon the sign of ξ (a circular dichroism effect) [7].)

In fi gure 2(b) we present the energy distribution of electrons for forward scattering along 
the major polarization axis (calculated using the exact results [3] for the scattering amplitude 
An), where the vertical arrows indicate the cutoff positions given by equations (19), (21) and 
(22). (For e -  H scattering, these results correspond to an incoming electron energy of 2.4 
eV and a CO2 laser fi eld (λ  =  10.6 μm) of intensity 3.7 × 1011 W cm - 2.) Although the ex-
act dependence (according to (21), (22)) of the R-plateau cutoff position on A is nonlinear, our 
numerical analysis shows that it is fairly well approximated by the following interpolation 
formula: 

(24)

where E(A)
n,max  =  [p(A)

n,max]
2 and p(A = 1)

n,max and p(A = 0)
n,max are given by (23). In particular, 

for A =  0.8, 0.6 and 0.2 in fi gure 2(b), the exact cutoffs ( p2
n  =  46.11, 41.01, and 30.84) are 

almost indistinguishable from those given by (24) (p2
n  =  46.14, 41.06, and 30.89). The most 

spectacular feature of the high-energy plateau for LAES compared to those for HHG and ATD 
in fi gures 1(b) and 2(a) is that its height (but not its length!) is almost independent of the ellip-
ticity, including for the case of pure circular polarization.

In conclusion, we have obtained analytical estimates for the ellipticity dependence of high-
energy plateau cutoffs for the most fundamental intense laser-atom processes based on rig-
orous quantum results for transition amplitudes within the quasienergy approach (and their 
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low-frequency analysis). For the case of linear polarization, the cutoff positions coincide with 
predictions of classical and semiclassical simulations based on the widely known rescattering 
scenario [20–22]. Thus our results provide a quantum justifi cation of the rescattering picture 
as well as its extension to the case of an arbitrary laser polarization including (for LAES) the 
intriguing case of circular polarization. Indeed, equations (21), (22) have a transparent clas-
sical interpretation in terms of rescattering. First, the relation (18) describes LAES as a sin-
gle collisional event at the origin, in which an incoming electron instantly changes its mo-
mentum from p to pn at a certain moment, t  =  ti , governed by the conservation of energy for 
the incoming and scattered electrons (i.e. equality of the lhs and rhs of (18), respectively). In 
contrast, equations (21) and (22) correspond to the two-step (rescattering) scenario of LAES, 
which involves an intermediate state with electron momentum k. Namely, at the time ti  =  tf 
– τs the incoming electron changes its momentum from p to k (see (21)), so that after time τs 
the electron can be returned by the elliptically polarized laser fi eld to the origin, where at the 
time tf  =  ti + τs it acquires the fi nal momentum pn at the second collisional event (see (22)).

Acknowledgments
This work was supported in part by NSF Grant PHY-0300555, by RFBR Grant 04-02-16350 
and by the joint Grant VZ-010-0 of the CRDF and the RF Ministry of Education. AVF ac-
knowledges support of the “Dynasty” Foundation.

References 
[1]  Protopapas M, Keitel C H and Knight P L 1997 Rep. Prog. Phys. 60 389  
[2]  Becker W, Grasbon F, Kopold R, Milosevic D B, Paulus G G and Walther H 2002 Adv. At. Mol. Opt. 

Phys. 48 35  
[3]  Manakov N L, Starace A F, Flegel A V and Frolov M V 2002 Piz. Zh. Eksp. Teor. Fiz. 76 316; Manakov N 

L, Starace A F, Flegel A V and Frolov M V 2002 JETP Lett. 76 256 (Engl. Transl.)  
[4]  Becker W, Long S and McIver J K 1994 Phys. Rev. A 50 1540  
[5]  Milosevic D B 2000 J. Phys. B: At. Mol. Opt. Phys. 33 2479  
[6]  Kopold R, Milosevic D B and Becker W 2000 Phys. Rev. Lett. 84 3831  
[7]  Flegel A V, Frolov M V, Manakov N L and Starace A F 2004 Phys. Lett. A at press  
[8]  Manakov N L, Ovsiannikov V D and Rapoport L P 1986 Phys. Rep. 141 319  
[9]  Manakov N L, Frolov M V, Starace A F and Fabrikant I I 2000 J. Phys. B: At. Mol. Opt. Phys. 33 R141  
[10]  Manakov N L, Frolov M V, Borca B and Starace A F 2003 J. Phys. B: At. Mol. Opt. Phys. 36 R49  
[11]  Frolov M V, Manakov N L, Pronin E A and Starace A F 2003 Phys. Rev. Lett. 91 053003  
[12]  Milosevic D B, Gazibegovic-Busuladzic A and Becker W 2003 Phys. Rev. A 68 050702(R)  
[13]  Landau L L and Lifshitz E M 1992 Quantum Mechanics 4th edn (Oxford: Pergamon)  section 133  
[14]  Manakov N L and Fainshtein A G 1980 Zh. Eksp. Teor. Fiz. 79 751; Manakov N L and Fainshtein A 

G 1980 Sov. Phys. - JETP 52 382 (Engl. Transl.)  
[15]  1965 Handbook of Mathematical Functions ed Abramowitz M Stegun I A (New York: Dover)  equation 

(9.3.7)  
[16]  Borca B, Flegel A V, Frolov M V, Manakov N L and Starace A F 2002 Phys. Rev. A 65 051402(R)  
[17]  Papadogiannis N A, Kalpouzos C, Witzel B, Fotakis C and Charalambidis D 2000 J. Phys. B: At. Mol. 

Opt. Phys. 33 L79  
[18]  Borca B, Frolov M V, Manakov N L and Starace A F 2002 Phys. Rev. Lett. 88 193001  
[19]  Kroll N M and Watson K M 1973 Phys. Rev. A 8 804  
[20]  Kuchiev M Yu 1987 Piz. Zh. Eksp. Teor. Fiz. 45 319; Kuchiev M Yu 1987 JETP Lett. 45 404 (Engl. 

Transl.)  
[21]  Kulander K C, Schafer K J and Krause J L 1993 Super-Intense Laser-Atom Physics (NATO ASI Series B: 

Physics vol 316) ed B Piraux et al (New York: Plenum) p 95  
[22]  Corkum P B 1993 Phys. Rev. Lett. 71 1994


	Cutoffs of high-energy plateaux for atomic processes in an intense elliptically polarized laser field
	

	untitled

