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Simulation of the growth of CVD films 

1. INTRODUCTION 
Chemical vapor deposition (CVD) is the preferred method of 
manufacture for solid films used in many industrially impor- 
tant thin and thick film applications. Requirements for the 
physical, mechanical and electrical properties of these films 
are becoming increasingly difficult to achieve, and depos- 
ition morphology plays an important role in this regard. 
Recently, we proposed a continuum model describing the 
evolution of a gassolid interface during atmospheric pres- 
sure CVD (Viljoen er al.. 1994). A linear stability analysis 
(LSA) was used to determine the effect of reactor conditions 
on planar growth stability. The present paper discusses nu- 
merical solution of this model, and uses simulation examples 
to illustrate interface evolution under typical deposition con- 
ditions and from arbitrary initial interface shapes. 

2. MODEL FORMULATION 
We consider the growth of an amorphous solid film dur- 

ing a typical hish pressure (0.1-1 atm), low Knudsen number 
(Kn<< l )  CVD process. Transport of gaseous species to the 
interface is assumed to be diffusive. Details of the model 
derivation are given in Viljoen et al. (1994) and only the final 
dimensionless governing equations are presented here. The 
gas phase concentration balance becomes: 

and the interface evolution equation (solid phase): 

with boundary conditions 

9 
V = l  a t [ = -  

L' (3) 

V(0, c) = c) where n = 0, f 1, f 2, ... (4) 

and 

H(0) = H(nP), 

H:@) = H,("[ ) ,  

H,,(O) = H < < ( l l f ) ,  
(6) 

H,<;(O) = Hcic(nC), where n = 0, & 1, _+ 2, ... 

and where 

Note that the period over which changes are considered is d. 
The value of Pe is extremely small for most cases since film 
growth occurs at  such a low rate. Another important para- 
meter is the Damkohler number, Da, which we can define as 
kK,,s/D,. It gives an indication of the relative magnitude of 
gas diffusional and surface kinetic resistance. In our system 
a Damkohler number Da<c I represents kinetic control and 
practically no gas diffusional resistance, while Da>> l corres- 
ponds to deposition in the severely diffusion-limited regime. 
Note that the Damkohler number we define here is equiva- 
lent to the so-called CVD number defined by Van den Brekel 
and Jansen (1977). They used it to characterize the state of 
the deposition process, after their experiments of Si depos- 
ition showed that deposition uniformity decreased with in- 
creasing values of the CVD number. Our simulation 
examples will show similar phenomena. 

3. SOLUTION OF GOVERNING EQUATIONS 

A previous study (Viljoen et al., 1994) showed that valu- 
able information about a deposition process can be obtained 
from a linear stability analysis (LSA), without solving the full 
system of equations. The LSA is used to predict system 
conditions where planar film growth and thus film uniform- 
ity can be ensured. However, it is also important to be able to 
predict film morphology by solving the governing equations 
under different sets of operating conditions and from arbit- 
rary initial conditions. 

The governing equations represent a set of coupled, non- 
linear partial differential equation (PDEs), which need to be 
solved numerically. A time scale of change can be identified 
for each phase: r, = L 2 / D f  is the characteristic time for gas 
diffusion and 7, = L/& the characteristic time for interface 
evolution. The ratio of these characteristic times gives an 
indication of the time scale on which to solve the problem. 
This ratio is given by sd7, = Pe. Since Pe<< l for all cases we 
will consider, it means that the gas phase is in pseudo steady 
state with respect to growth in the solid phase. This greatly 
simplifies the solution procedure. Instead of solving the 
governing equations simultaneously, evolution of the inter- 
face can be followed on the time scale of solid growth and at 
each instant in time the steady state gas phase problem can 
be solved independently. 

The gas phase problem was solved with e.g. the Galerkin 
Finite Element Method, using quadrilateral elements and 
bilinear basis functions. For the following interface evolu- 
tion, we discretized the horizontal coordinate into an equi- 
distant grid and approximated spatial derivatives with finite 
difference formuli. This transforms the problcm into a set of 
ordinary differential equations (ODES), for which we used an 



explicit solution method. Stability requirements dictate 200 
a small time step, and the maximum time step can be deter- 
mined'with a formula similar to that defined for parabolic 
equations [see e.g. Finlayson (1980)l. In our case, however, 
spatial derivatives up to fourth order are present in the 
surface diffusion term. This is not common in chemical 
engineering applications, where typically reaction-diffusion E loo 
or convection-diffusion problems are encountered. Higher 5 
derivatives tend to amplify the effect of kinks in the interface. 
Computational problems can usually be avoided by Booding " 
problem areas with many points. Unfortunately, this de- 6 
creases the maximum allowable time step. For example, if ' 

the number of points are doubled, the time step has to be X 
reduced about sixteen times. For time integration a fourth 
order Runge-Kutta method with automatic time step adjust- 
ment was used. 

-100 
-250 0 250 

4. NUMERICAL EXAMPLES (a) Horizontal d i s tance  (pm)  

With periodic boundary conditions, one can in principle 
choose any length ofsubstrate on which to study deposition. 200 
However, if this length is too small, the results may not be 
representative of a real case. The horizontal length is there- 
fore chosen 5 to 20 times larger than the wavelength asso- 
ciated with the "most" unstable perturbation. The latter is 
the perturbation associated with the largest eigenvalue in the - 
LSA under the specific conditions [see Viljoen et al. (1994)l. E 100 

Consider a CVD process with parameters in tbe range 2. 
typical for the CVD growth of e.g. S i c  and CrB,, thus 

V 

atmospheric pressure and temperatures higher than 900 K. " 
Typical parameter values are given in Table 1. For these { 
parameters and at a temperature of 1100 K the wavelength 0 
of most unstable perturbation (as determined from LSA) is 4 
85.2 pm. Therefore, an acceptable horizontal length to 
choose as solution domain is 500 pm. 

Another important characteristic is the followiw We can 
use the LSA to determine the time needed to double the 
amplitude of a protrusion with most unstable wavelength, - 100 

which is the dominant one at short deposition times. At -250 0 250 
1100 K this time is 142 h, which means that in the typical (b) Horizontal d i s tance  (pm)  
duration of deposition we will not observe a significant 
change in planar morphology even though planar deposition 
is unstable under those conditions. This situation changes 200 

drastically for deposition at 1600 K, where the wavelength of 
most unstable perturbation is 7.6 pm. The time to doubie the 
amplitude is now only 140 S, which means very significant 
changes in the morphology will take place in normal operat- - 
ing times. E 100 

Now consider a case where the substrate has a random 3 
initial roughness onto which a film is deposited. The effect of 
temperature and Damkohler number on the morphology of 
film growth is shown in Fig. 1 Note that the duration ofeach 
run is different, since the deposition rate increases with .; 
increasing Damkohler number. The morphology ofthe Nms 3: O 
grown at Da = 1/20 and Da = 1 is very similar, but both 
cases are quite different than the run for Da = 20. At low to 
moderate Damkohler numbers the initial randomly rough 
surface develops into a characteristic nodular structure, 

-100 
-250 

Table 1. System parameters for typical CVD process 
(c) Horizontal d i s tance  (pm)  

Fig. 1. Effect of temperature and thus Damkohler number 
Parameter Value on uniformity of film growth at a constant pressure of 1 atm: 

I O - ~  
(a) Da = 1/20, (b) Da = 1, (c) Da = 20. 

s (m) 
6 (m) 10-10 ' 

~ K A D  ( 4 s )  2 X 10' exp[- 24056/T] 
DJ (m2/s) 10- 10~1.823 which is commonly observed in CVD experiments (Vanden- 
D, (m4/s) bulcke and Vuillard, 1976; Chin et al., 1977; Schmidt, 1991). 

e x p [  20W/T(5.0 The results indicate that larger nodules grow at the expense T 
(m) 8 X ~O-'/T of smaller ones. This growth-death phenomenon is com- 

monly observed in deposition processes (Messier, 1986). It 



I solid f i lm 

C / C ,  = 0.550 

0.530 

0.610 

0.480 

solid f i lm 

U v sol id  f i l m  

has been shown that the dominant nodule size follows 
a power law relation with respect to the film thickness, thus 
D, = t 4  where D, is the dominant nodule size, t the time of 
deposition or film thickness, and e an exponent which de- 
pends on deposition conditions. For the run at Da = l the 
exponent is found to be e = 0.64, which compares well with 

(a) Hor izon ta l  d i s t a n c e  (pm) 

' l '  l ' '  " l I 
- 250  0 250  

(b) Hor izon ta l  d i s t a n c e  ( p m )  

(C) Hor izon ta l  d i s t a n c e  ( p m )  

(c) Fig. 3. Effect of temperature and thus Damkohler number 
Fig. 2. Iso-concentration lines for deposition conditions in on step coverage in a trench at a constant pressure of 1 atm: 

Fig. 1. (a) Do = 1/20, (b) Da = 1, (c) Da = 20. 



the predicted value of Kardar et al. (1986). They solved 
a simplified growth model analytically and found the expo- 
nent to be e = 213. 

At Da = 20 interface growth does not seem to follow the 
typical growth-death phenomenon. Nodules tend to develop 

(a) Horizontnl d i s t ance  (pm)  

-1001 " ' ' ' " ' I 
- 250  0 250 

(h] Horizontal d i s t ance  (+m) 

, 
- 100 - 

-250 0 250 

(C) Horizontal distance ( p m )  

Fig. 4. Effect of reactor pressure on step coverage of a trench 
under diffusion-limited conditions: (a) P = 1.0 atm, (b) P = 

0.5 atm, (c) P = 0.1 atm. 

into long fingws with deep groves between them. This has 
been observedexperimentally in the CVD growth of Si from 
SiHCI, in t h e p s  phase (van den Brekel, 1977) under diffu- 
sion-limited editions. It is also similar to dendritic growth 
observed in sddification experiments where evolution of the 
liquid-solid irfierface is driven by diffusion of heat (Huang 
and Glicksma, 1981a. h). The formation of groove4 is 
caused by deflkfion of reactant under diffusion-limited con- 
ditions. Note %e tendency of some fingers to nose ahead of 
their neighbon.This is clear from Fig. l(c), where reactant at 
the tip of the second nodule (at about the - 140 pm posi- 
tion) is depletrd'and growth therefore inhibited. Iso-concen- 
tration l~nes fmthe runs mentioned above are shown in Fig. 
2. Note how f5 reactant concentration close to the interface 
changes with &creasing Damkohler number. At U a  = 1i20 it 
is close to thevalue in the hulk and at Da = 20 i t  is close to 
zero. 

When fingmformation takes place, gradients of the inter- 
face ( a H / a t )  &ng the sides of fingers become very large and 
can in fact ajproach infinity. The growth model represents 
height of the rnterface H as a single-valued function of 
horizontal cwrdinate l ,  and it is therefore assumed ?Hi?: is 
finite. As a r d t ,  computational problems are encountered 
when gradielzs; become very large. To  solve this problem. 
one can r e f o a l a t e  the model in a parametric form, where 
a different pactmeter than thc horizontal coordinate is used. 
This will be iddressed elsewhere. 

Now c o n s i b  a case where the initial interface is in the 
form of a duc:or trench. This shape is typically found in the 
electronics industry, but the length scale may be quite differ- 
ent. I t  is often required that the thickness on all sides of the 
trench be thesame. This requirement can be expressed in 
terms of the s t q  coverage (Oh et al.. 1992). which represents 
the ratio offiln thickness in the bottom of the trench to that 
at the top o f . i e  trench. The effect of temperature and thus 
DamkZjhler nwrlbcr on the film growth in a trench is shown 
in Fig. 3. Driposition parameters and physical properties 
were the sameas in Table 1 and 50n pm of the substrate was 
considered. B e  results clearly illustrate that step coverage 
decreases withincreasing Damkohler number. which is sim- 
ilar to decreare in film uniformity observed in the previous 
example. 

The runs in  Fig. 3 were conducted at a constant pressure 
of 1 atm. S u s a s e  one wants to maintain the high deposition 
temperature'kt improve step coverage at that temperature 
by adjusting other parameters, such as reactant dilution 
ratio or  premm. At such a high temperature the deposition 
is diffusion-linjted, so step coverage should ~mprove if the 
diffusional limitation can be decreased. Gas diffusion is in- 
versely relatdto reactor pressure, which means step cover- 
age should improve if the reactor pressure is decreased at 
constant dil&n ratio. Three runs at different pressure and 
constant t e q r a t u r e  of 1443 K were performed and the 
results are shmn in Fig. 4. The graphs indicate that the step 
coverage indaed improves. Note that the Damkohler num- 
ber decreases linearly with decreasing pressure. 

5. CONCLUSIONS 
NumericrtBsolution of a continuum model derived for the 

evolution o f a  gas-solid interface during atmospheric pres- 
sure CVD, isdescribed. Simulation results showed that de- 
position m c p ~ o l o g y  is strongly dependent on the Damkoh- 
ler number, h. A significant decrease in film uniformity was 
observed forihrreasing values of the Da. This trend was also 
observed forgrowth in a trench, where step coverage was 
found to demmse with increasing values of Da. Under diflu- 
sion-limited canditions, step coverage was found to improve 
if the diffusimal limitations could be decreased by decreas- 
ing system pessure at constant substrate temperature. Thr 
numerical reults suggest that film uniformity and optimal 
step coveras can be achieved by changing operating condi- 
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