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IMSH: An Iterative Heuristic for SRLG 
Diverse Routing in WDM Mesh Networks 

Ajay Todimala and Byrav Ramamurthy 
Department of Computer Science and Engineering 

University of Nebraska-Lincoln 
Lincoln NE 68588-01 15 U.S.A. 

Email: {ajayt, byrav}@cse.unl.edu 

Abstract- survivable routing of a connection involves 
computation of a pair of diverse routes such that at most 
one mute fails when failures occur in the network topology. 
A subset of links in the network that share the risk of failure 
at the same time are said to belong to a Shared Risk Link 
Gmup (SRLG) [3]. A network with shared risk link groups 
defined over its links is an SRLG network. A failure of 
an SRLG is equivalent to the failure of all the links in 
the SRLG. For a connection to he survivahle in an SRLG 
network its working and protection paths must he routed 
on SRLG diverse paths. SRLG diverse routing problem has 
been proved to he NP-complete in [l] 

According to the quality of service requirement of 
a survivable connection request, dedicated protection or 
shared protection can be used to establish the connection 
request. With dedicated protection, the connection is 
established on both the SRLG diverse working and 
protection paths. The simplest heuristic for computing 
SRLG diverse path pair is the two-step approach, hut 
it suffers from the trap topology problem. In [Z] an 
iterative heuristic (ITSH) using the two-step approach was 
proposed to compute least cost SRLG diverse path pair. 
Suurhalle’s algorithm computes a pair of least cost link- 
disjoint paths between a node pair. In this work we present 
a modified Suurhalle’s heuristic for computing the SRLG 
diverse routes between a node pair. We then propose 
an iterative heuristic (IMSH) which uses the modified 
Suurballe’s heuristic for computing the least cost SRLG 
diverse routes. We also present an 1/2-cost-improvement 
optimality check criterion for dedicated protection. 

Keywords: WDM Networks, Shared Risk Link Gmup 
(SRLG), Least Cost SRLG Diverse Routing (LC-SDR), 
Dedicated and Shared Protection. 

I. INTRODUCTION 
WDM networks have gained tremendous popularity 

due to their ability to tap the enormous amount of 
bandwidth in an optical fiber. Their growing popularity 
and bandwidth capacity have made survivability in these 
networks an important aspect. The physical layer in a 
WDM optical network consists of nodes inter-connected 

This work was supported in part by the U. S. National Science 
Foundation grants (ANI-0074121 and EPS-OWIPW). 

by optical fiber links. The fiber links in the physical layer 
pass through conduits and right-of-ways. Multiple fiber 
links may pass through common conduits and right-of- 
ways. When there is a failure in the conduit or right-of- 
way, all the fiber links passing through the conduit may 
fail at the same time. Such fiber links that share the same 
risk of failure are said to he in same shared risk link group 
(SRLG) [3]. Failure of an SRLG is equivalent to the 
failure of all the links in the SRLG. SFUG failures can 
be used to model several types of failure conditions like 
single-link failures, conduitlright-of-way failures, fiher- 
span failures, double-link failures or any failure of other 
possible subset of links sharing a common risk. 

The wavelength-level connections in such a network 
are set up on lightpaths and they can he protected in 
two ways: dedicated protection and shared protection. 
In dedicated pmtection the connection is established on 
both the working and the protection paths and the data 
is sent on both the paths. Once the destination detects 
the failure on the working path it immediately switches to 
the protection path. In shared protection the connection 
is established on the working path and the resources are 
reserved along the protection path. Shared protection 
allows multiple protection paths to share the resources 
when their corresponding working paths do not fail at the 
same time. 

Under dedicated protection, the least cost link disjoint 
path pair problem has polynomial solution [4]. But the 
problem of least cost link disjoint path pair computation 
under shared protection is proved to be NP-complete in 
[5].  In dedicated protection the cost of the working path 
is independent of the cost of the protection path. We 
call such cost structure an independent cost structure of 
dedicated protection. In shared protection, the cost of the 
protection path depends on the working path. A link can 
he used by a protection path at no extra cost if it is already 
being used for protecting some other working path, link- 
disjoint from its corresponding working path. We call 
such a cost structure as dependent cost sfrucfure. Due to 
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the’independent cost structure of dedicated protection, we 
have a polynomial solution to the least cost link-disjoint 
path pair problem. In contrast, due to the dependent cost 
structure of shared protection the problem of least cost 
link-disjoint path pair is NI-complete [5]. 

Most of the research on computing least cost SRLG 
diverse path pair is concentrated on shared protection [2], 
[51, [61, [71, [81, [91. In this work we present an iterative 
heuristic for computing the least cost SRLG diverse path 
pair for a connection. The iterative heuristic can be used 
for both shared and dedicated protection. We present 
an 1/2-cost-improvement optimality verification criterion 
based on the independent cost structure of dedicated 
protection. 

In 
Section 2 we present the problem formulation. Section 
3 presents some of the heuristics for computing the least 
cost SRLG diverse path pair. In Section 4 we present 
our iterative modified Suurhalle’s heuristic (IMSH) for 
computing least cost SRLG diverse path pair with its 
optimality verification under dedicated protection. In 
Section 5 we discuss the experimental results and in 
Section 6 we give the concluding remarks. 

The rest of the paper is organized as follows. 

11. PROBLEM FORMULATION 

Given a network topology with SRLG constraints and 
a node pair (s, d)  the least cost SRLG diverse routing 
(LC-SDR) problem is to find a pair of least cost SRLG 
diverse routes in the physical topology such that at any 
instant of time at most one of the routes fails due to single 
SRLG failure. SRLG diverse routing problem is proved 
to he NP-complete [I]. We assume the independent cost 
structure of dedicated protection i.e., the cost of using a 
link for the working path is same as the cost of using the 
link for the protection path. In this work we consider 
dynamic traffic but the heuristic proposed can also he 
used to compute the least cost SRLG diverse paths for 
static traffic network scenario. The cost function of the 
edges in the network changes with network state. We 
assume that all the edges in the graph G have a base cost 
corresponding to the length of the edge. The cost of the 
edge increases by a constant factor 01 with the increasing 
number of used wavelengths on the edge in addition to the 
base cost of the edge. The current cost of the edge ( i , j ) ,  
c ( i , j )  = b ( i , j )  + 1y x u( i , j )  where b ( i , j )  is the base 
cost of the link ( i , j )  and u ( i , j )  is the number of used 
wavelengths on link ( i , j ) .  

111. RELATED WORK 
There has been considerable research done on 

computing the SRLG diverse routes on a given topology 
with SRLG constraints. Many heuristics have been 
proposedin [lo], [ I l l ,  [12], [2], [I31 to compute diverse 

routes between a given node pair. One of the most 
formidable problem these heuristics face is the trap 
topology problem. The trap topology problem is a 
network scenario where a given heuristic could not find 
the diverse routes on the given topology between a node 
pair even though diverse routes exist. It is important to 
note that the trap topology problem is specific neither to 
the heuristic nor the network topology but is due to the 
combination of both. Some heuristics may succeed tn 
find SRLG diverse routes for a given node pair on the 
given network, while others may fail. In the remainder 
of this section we will briefly survey previously proposed 
heuristics. 

One of simplest and straight forward method to find a 
pair of SRLG diverse paths in a given graph G with SRLG 
constraints is the fwo-step heuristic (TSH). This approach 
finds a shortest path p in the graph 6. It @en removes 
all the links along the shortest path computed and the 
links that are in SRLG conflict with the links along p in 
the graph G. The approach finds shortest path p’ in the 
modified graph G‘. If such a path p’ exists, then p and p’ 
are SRLG diverse in the original graph G. In some special 
cases, however, this approach even fails to find the link- 
disjoint paths. 

The Iterative Two-step Heuristic (ITSH) was proposed 
by P-H. Ho in [21. The ITSH heuristic executes the two- 
step heuristic (TSH) iteratively until an optimal solution 
is obtained. In the i th iteration it uses ith shortest path 
(computed using Yen’s K shortest path algorithm [15] 
or an equivalent algorithm) as the seed path in the TSH. 
For verification of the optimality the lTSH iterates until 
the cost of the seed path exceeds the current optimal. 
A detailed discussion of the lTSH and its optimality 
verification criterion is presented in [2]. 

Suurballe’s algorithm [4] finds the least cost link- 
disjoint path pair in a graph, if such a path-pair exists. 
The obvious way to solve the problem of least cost link 
disjoint path pair is to formulate the problem as the 
network flow problem [14] and find the min-cost max- 
flow in the network from s to t. Suurballe’s algorithm 
essentially uses this idea to give a polynomial algorithm. 

Let us briefly discuss Suurhalle’s algorithm for 
computing the least cost link-disjoint path pair. Given 
the directed graph G = (V, E )  and the cost function C 
for the edges in the graph G. Initially cost of all the 
edges is non-negative and C ( i , j )  = C(j , i ) .  Compute 
a shortest path p between the node pair (s,t) in graph G. 
Copy the graph G and its cost function C to a modified 
graph G’ and cost function C’ respectively. Let the cost 
C’(j ,  i) of the link (j, i) in graph G’ for each link (i, j )  
along the shortest path p is set to -C(j, i) (negative cost). 
Remove the directed links ( i , j )  along the shortest path 
p in G’. Compute a shortest path p’ from s to t in 
the modified graph G’. It is important to note that the 



modified graph has edges with negative costs. Remove 
the interlacing edges on paths p and p‘ to get a pair of 
least cost link disjoint paths. The paths computed by 
Suurhalle’s algorithm need not he SRLG diverse. 

(a) (b) 

Fig. 1. (a) Graph G with the shortest path (a-m-n-t). 
(b) Modified graph G’ with the edge costs along the shortest path 
(8-m-n-t) negated. 

Theorem 111.1: The modified graph G‘ in Suurhalle’s 
algorithm has no negative cost cycle. 

Proof Consider the graph G shown in the Fig. l(a) 
where s+m+n+t is the shortest path between node pair 
(s, t )  and m,n are intermediate nodes. The modified 
graph G’ is shown in the Fig. l(h). Let C’(n+m) denote 
the cost of the sum of all the edges along the path segment 
n+m of the path p. Suppose for contradiction that G‘ has 
a negative cost cycle (m+o+n+m). Therefore, 

c’(n7-m) + C’(mto+n) < 0 
- C ( n t m )  + C(m+o+n) < 0 

C(m+o+n) < C(n-tm) 

It implies the path (s+m-o+nit) is shorter than 
path (s+m+n+t) in the original graph G. A 
contradiction, since we assumed that (s+m+n+t) is 
the shortest path. Therefore G‘ has no negative cost cycle. 

w 
Therefore by Theorem 111.1 Suurhalle’s algorithm 

cannot he used in the iterative heuristic for computing the 
least cost diverse paths. Since using any other path than 
the shortest path as the seed path in the iterative procedure 
may result in negative cycle in the modified graph. Then 
the shortest path cannot he found in the modified graph. 
In this work we present a modified Suurhalle’s heuristic 
(MSH). We propose an iterative heuristic (IMSH) which 
uses the MSH to compute the least cost SRLG diverse 
path pair for a connection. We also present an 112- 
cost-improvement optimality verification criterion for our 
proposed IMSH under the dedicated protection. In 
the next section we describe the modified Suurballe’s 
heuristic and IMSH to compute the least cost SRLG 
diverse paths. 

Iv. OUR ITERATIVE APPROACH 
Given an undirected weighted graph G = (V, E )  with 

SRLG constraints R and a node pair (s, t ) ,  the least cost 
SRLG diverse routing (LC-SDR) problem is to find a pair 
of SRLG diverse routes between s and t. 

A. Modified Suurballe’s Heuristic (MSH) 
Let us first describe the modified Suurballe’s heuristic 

to compute the SRLG diverse path pair. The outline of the 
modified Suurballe’s heuristic is given in the Algorithm I .  
The input to the heuristic is a directed graph G with a set 
of SRLG R and a cost function C of the edges. Given 
the seed path p between the source s and destination t the 
heuristic returns a pair of SRLG diverse paths if such an 
SRLG diverse path pair can he computed, else it returns 
NULL. We call this modified Suurballe’s algorithm a 
heuristic since it does not guarantee that it will always 
retnrn a pair of SRLG diverse routes. 

Algorithm 1 MSH(G, R, C, p, s, t, (PI, p2)) 
I :  Copy the graph G to a modified graph G‘ 
2: Remove the directed edge (b,j) in the graph G’, 

V ( i , A  E P 
3: fnr each edge (i, j) in SRLG conflict with at least one 

4: C( i , j )  t C ( i , j )  + M where M sum of edge 
costs of all the edges in the graph G 

5: C ( j , i )  c C ( j , i )  + M 
6: endfnr 
7: Let C ( j , i )  t O,V(z,j) E p 
8: if A shortest p‘ in the modified graph G’ from s to t 

9: Remove the interlacing edges between the paths p 
and p‘ and re-group the remaining edges along the 
paths p and p i  to get link disjoint paths pl and p2 
ifpl,pZ are SRLG disjoint then 

edge along the path p do 

exists then 

I O  
11: Compute the cost of path pair @i,p2), 

12: Retum (Cost(pl,p2)) 
13: else 
14: Return(m) 
15: end if 
16: else 
17: Return (CO) 

18: endif 

Cost(p1, PZ) 

Let us discuss the working of the modified Suurhalle’s 
heuristic. Steps 1-7 compute a modified graph G’ of the 
input graph G based on the seed path p .  In steps 3-6, 
the cost of the links that are in SRLG conflict with the 
links along the path p is increased by M (sum of the 
costs of all the links in the network) to give lower priority 
to these conflict-links while computing SRLG disjoint 
path in the modified graph. The rest of the heuristic 
(steps 8-18) is similar to the Suurballe’s algorithm except 
in step 10 the disjointedness of the path pl and p~ is 
verified. Since the edges in the modified graph G’ have 
non-negative costs, Dijkstra’s algorithm can he used to 
compute the shortest path in modified graph G’ in Step 8. 
We know that the time complexity of Dijksm’s algorithm 
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is O(m + n log n) where n is the number of nodes and m 
is the number of linkdedges in the network. Step 9 takes 
O ( n )  time, since the shortest path has at most n edges. 
The Step 10 takes O(n + T )  time where T is the number 
of shared risk link groups in the network. Therefore the 
time complexity of the modified Suurballe’s heuristic is 
O(m+r+nlogn). Thecostofthe pathpaircomputed by 
the modified Suurballe’s heuristic is at most the cost of the 
path pair computed by the two-step approach. Theorem 
IV.1 proves this essential fact. 

TheoremlVI: Given a graph G = (V ,E) ,  the cost 
function C for its edge set E, a seed path p from source s 
to destination d. If CMS, CTs be the costs of the SRLG 
diverse path pair computed by modified Suurballe’s 
heuristic and the two-step approach respectively then 
CMS 5 CTS. 

Pmofi Let G‘, G” be the modified graphs of 
modified Suurballe’s heuristic and two-step approach 
respectively. Let pi and p” be the shortest paths from 
s to t computed in the modified graphs of the modified 
Suurballe’s heuristic and two-step approach respectively. 
We know that in G’ all the directional edges ( i , j )  along 
the seed path p are removed and the cost link ( j ,  i )  for 
all the links ( i , j )  along the seed path p is zero. And we 
also know that links ( i ,  j) and ( j ,  i) for all the links (i, j )  
along the seed path p are removed in the graph G”. There 
exists two cases for path p‘. 

Case I :  p‘ does not use any of the links ( j ,  i )  whose 
cost is zero. Then the path pair computed by modified 
Suurballe’s heuristic is @,p‘) and its cost is CMS = 
Cqst(p) + Cost(p’) where Cost(p) and Cost(p‘) are the 
costs of the paths p and p’ respectively. It is easy to see 
that p‘ is also the shortest path from s to t in the graph G” 
i.e., p‘ = p“. Therefore CTS = Cost(p) + Cost(p’) = 

Case 2: p’ uses some link ( j ,  i )  whose cost is zero. 
Then the cost of the path pair computed by modified 
Suurhalle’s heuristic, CMS 5 Cost@) + Cost(p‘) - 
C ( i , j )  where C( i , j )  is the cost of the link ( i , j )  in the 
original graph G. Since the modified Suurballe’s heuristic 
removes the interlacing link ( i , j )  and computes the path 
pair using the remaining links along the path p and p‘. 
The cost of the path pair computed by two-step approach 
is CTS = Cost(p) + Cost(p”). By the construction 
of graphs C’ and G”, Cost(p’) 5 Gost(p”). Then 

w 

C M S .  

CMs < CTs. Hence proved. 

heuristic computes the SRLG path pair using the modified 
Suurballe’s heuristic with ith shortest path as the seed 
path. Let ( p i , $ )  be the SRLG diverse path pair 
computed and its cost be Cost(pi,p:). If SRLG diverse 
path pair could not be computed, the heuristic continues 
with the next iteration. If IMSH heuristic is allowed 
to run until all the shortest paths are explored it will 
eventually stop and give the optimal solution. We restrict 
the maximum number of times the heuristic can iterate 
by a pre-determined upper bound ‘MAX-lTERATIONS’, 
The IMSH if allowed to mn until all the shortest paths are 
explored it is an algorithm. Since the number of possible 
shortest paths between any node pair in a networks can he 
exponential we restrict the number of iterations and so is 
IMSH a heuristic. 

Let us now present the optimality verification criterion 
of the proposed IMSH. Let PP,,,-,,t be the current 
optimal SRLG diverse path pair found and its cost he 
C,,,-,pt. In the ith iteration, let Cost@*) be the cost 
of the shortest path computed using Yen’s algorithm [15]. 
Let (p’,,py) he the SRLG diverse path pair computed 
using modified Suurballe’s heuristic, if such a path pair 
exists. Let @i,py)  be more optimal than the current 
optimal PP,,,-,t, i.e., 

Cost@:) + Cost(pY) < c,,,-,t (1) 

Now Cost@:), Cost(p:) 2 CO&;). Since, without 
loss of generality, if Cost(p:) < Cost@;) the optimal 
SRLG path pair must have already been computed using 
pi as the seed path. Therefore, 

2Cost(p;) 2 Cost(pi)  + Cost(p:’) (2)  

From Eq. 1 and 2 we get, 

ZCost@a) < c , , r - ,p t  

Costb;) < Cc,r-opt/2 

Therefore if the cost of the current seed path in the i th 
iteration is greater than or equal to Ccur--opt/2, then the 
optimal SRLG diverse path pair is PPeur-opt. 

B. Iterative Modijied Suurballe’s Heirrisfic (IMSH) 
Let us now describe the iterdtive heuristic for 

computing the least cost SRLG diverse paths. The lMSH 
iteratively executes the modified Sunrballe’s heuristic 
using ith shortest path as the seed path in each iteration. 
In the ith iteration, the heuristic computes the ith shortest 
path from s to t using Yen’s algorithm [15]. The 

Fig, 2, 24.node 43.1ink physical network with sRLGs 
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Algorithm 2 IMSH(G, R, C, s, 1) 
I :  Initialize Optimum SRLG diverse path pair, 

PPc,,-,pt t NULL 
2: Initialize the cost of optimal SRLG diverse path pair, 

3 i t 0  
4: optimal-not-found t TRUE 
5: while (i 5 MAX-ITERATI0NS)A (optimal-not- 

6: Compute the (i + l ) th  shortest path pi using Yen's 
algorithm. 

I tmpCost -MSH(G, R, C ,  p i ,  s, 1, @I, p y ) )  
8: if (tmpCost < Cost(PP,,,-,pt) then 

I O  Cost(PPc,,-opt) t tmpCost 
1 1 :  endif 
12: 
13: optimal-not-found t FALSE 
14: endif 
15: end while 

Cost(PPc,r-opt) + fx 

found) do 

9: PPcu,-,t - (P:>P;) 

if Cost(pi) 2 (Cost(PPc,,-,t)/2) then 

Fig. 3. 
lMSH on 24-node network. 

Percentage of successful optimality checks using ITSH and 

V. EXPERIMENTAL DESIGN 

We conducted experiments on 24-node network 
(shown in Fig.2) and 14-node NSF network. We assume 
that the number of wavelengths on each fiber link in 
both the networks is 16. We simulated dynamic traffic 
with calls arriving into the network having Poisson 
distribution with mean arrival rate A.  The connections 
have exponential holding time with mean l/p. The load 
on the network is measured as Alp. The number of 
calls simulated in the network during each simulation 
run are 10,000 and 100, 000 for 24-node network and 
NSF network respectively. We implemented both the 
heuristics ITSH and IMSH .The performance is measured 
in terms of blocking probability, percentage of optimality 
checks, average number of iterations per call and the 
average time taken to compute the SRLG diverse path 
pair. The blocking probability is the ratio of the number of 
blocked calls to the total number of calls simulated. The 
percentage of optimality checks is the percentage of calls 

-.1_/.1_ 

Fig. 4. Average number of iterations per call using ITSH and IMSH on 
24-node network. 

1 ' L * IO 12 3. I. 1. In 
m . I . P L . 7 , ~  

Fig. 5. Average computation lime of 1-1 cost SRLG diverse path pair 
using ITSH and IMSH in 24node network. 

for which the optimality (ledst cost) of the SRLG diverse 
path pair is verified. The average number of iterations is 
the average of the total number of iterations executed by 
the heuristics (ITSH or IMSH) for computing the diverse 
path pair for the number of calls simulated. The average 
time taken (in seconds) for computing the SRLG diverse 
paths for a call. The experiments are run on a unloaded 1 
GHz AMD Athlon machine with 256 MB RAM. 

The blocking probability for both the heuristics is 
almost same and therefore the graph is not shown. Fig. 3, 
Fig. 4 and Fig. 5 show the percentage of successful 
optimality checks, average number of iterations per call 
and average computation time respectively for varying 
upper bound on the number of iterations of the heuristics 
(ITSH and IMSH). The results also show that IMSH 
verifies the optimality of SRLG diverse path pair for 
99.08% of the connections when the upper bound on 
the number of iterations is 20. While ITSH could only 
verify the optimality of 40.38% of connections. With the 
increasing limit on the number of iterations, the average 
number of iterations per connection for the ITSH for 
computing and verifying the optimality of the SRLG 
diverse path pair also increases linearly. In contrast the 
number of iterations per connection for the IMSH is 
almost constant. 

Fig. 6 and Fig. I show the percentage of optimality 
verifications and the average number of iterations per call 
for the ITSH and IMSH on NSF network topology. The 
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Fig. 6. 
M S H  on NSF network. 

Percentage of successful optimality checks using ITSH and 

Fig. 7. Average number of iterations per call using n S H  and IMSH on 
NSF network. 

percentage of optimality checks for IMSH grows quickly 
when the upper bound on the number of iterations of 
IMSH is increased from 2 to 6 and reaches 100% when 
the upper bound is 14. The percentage of optimality 
checks for lTSH grows but relatively slowly when 
compared to IMSH. The average number of iterations 
per call before stopping for the ITSH increases almost 
linearly with the increasing upper bound on the number 
of iterations of the ITSH. In contrast the average number 
of iterations for WISH is almost constant. The blocking 
probabilities of lTSH and IMSH are almost similar (graph 
not shown). The results from the 24-node and NSF 
networks show that IMSH computes the optimal solutions 
more efficiently than the lTSH. 

VI. CONCLUSIONS 
In this work we studied the problem of SRLG diverse 

routing for protection. The problem of diverse routing 
has been extensively studied in the literature in the 
context of lmk disjointedness and SRLG diversity under 
shared protection. We presented a modified Suurhalle’s 
heuristic for computing SRLG diverse routes. We 
presented an iterative heuristic (IMSH) for computing 
least cost SRLG diverse routes using modified Suurballe’s 
heuristic. Based on the independent cost structure of 
working and protection paths in dedicated protection we 
presented a 112-cost-improvement optimality verification 
criterion. The experimental results show that both ITSH 

and the proposed IMSH have almost the same blocking 
probability for 24-node and 14-node NSF networks. The 
proposed IMSH computes the solution more efficiently 
than ITSH and verifies the optimality of almost all the 
solutions. 
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