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A B S T R A C T

The structure of the hot downstream region below a radiative accretion shock, such as that of

an accreting compact object, may oscillate because of a global thermal instability. The

oscillatory behaviour depends on the functional forms of the cooling processes, the energy

exchanges of electrons and ions in the shock-heated matter, and the boundary conditions. We

analyse the stability of a shock with unequal electron and ion temperatures, where the

cooling consists of thermal bremsstrahlung radiation which promotes instability, plus a

competing process which tends to stabilize the shock. The effect of transverse perturbations

is considered also. As an illustration, we study the special case in which the stabilizing

cooling process is of order 3/20 in density and 5/2 in temperature, which is an approximation

for the effects of cyclotron cooling in magnetic cataclysmic variables. We vary the efficiency

of the second cooling process, the strength of the electron±ion exchange and the ratio of

electron and ion pressures at the shock, to examine particular effects on the stability

properties and frequencies of oscillation modes.

Key words: accretion, accretion discs ± shock waves ± binaries: close ± white dwarfs.

1 I N T R O D U C T I O N

Depending on the form of cooling processes present, radiative shocks may suffer thermal instabilities. The resulting sequence of oscillatory

modes has frequencies and stability properties determined by the functional form of the energy loss terms, the rate of energy exchange

between ions and electrons, and the particular boundary conditions of the system. Oscillations modulating the structure of the hot

downstream column cause variations in the observable emissions. Radiative shocks in several different astrophysical systems show thermal

instability, for example the interactions between supernova shocks and the interstellar medium, and accretion streams on to magnetic and

non-magnetic compact objects. Many investigations have considered the stability properties of radiative shocks, either through numerical

calculations or perturbative analyses (e.g. Falle 1975, 1981; Langer, Chanmugam & Shaviv 1981, 1982; Chevalier & Imamura 1982;

Imamura, Wolff & Durisen 1984; Chanmugam, Langer & Shaviv 1985; Imamura 1985; Bertschinger 1986; Innes, Giddings & Falle

1987a,b; Gaetz, Edgar & Chevalier 1988; Wolff, Gardner & Wood 1989; Imamura & Wolff 1990; Houck & Chevalier 1992; Wu,

Chanmugam & Shaviv 1992; ToÂth & Draine 1993; Dgani & Soker 1994; Imamura et al. 1996; Saxton, Wu & Pongracic 1997; Saxton et al.

1998).

In accreting white dwarfs the flow meets a stand-off accretion shock where the inwards falling matter is suddenly decelerated to

subsonic settling flow. The shock sits above the white dwarf surface at a height determined by the path length of the radiative cooling of the

downstream material xs < 1
4

vff tcool, which depends on the free-fall velocity of the white dwarf vff � �2GMwd=Rwd�1=2, and on the cooling

time-scale tcool , kBT=L, where L is a radiative cooling loss function. In cataclysmic variables (see Warner 1995), the white dwarf accretes

mass from a close red dwarf companion star. Thermal bremsstrahlung cooling is an important cooling process in the post-shock region. In

cases where the magnetic field of the white dwarf is strong, �Bwd * 10 MG�, (e.g. Lamb & Masters 1979; King & Lasota 1979), cyclotron

radiation provides another important cooling process. These competing processes have different dependences on the local flow variables,

and therefore they influence the shock stability and oscillatory behaviour differently.

Langer et al. (1981) carried out time-dependent numerical investigations of accretion on to a white dwarf in a planar geometry. Their

results show quasi-periodic oscillations owing to thermal instability when the cooling is via bremsstrahlung radiation. In the linear

perturbative analysis as in Chevalier & Imamura (1982), the radiative shock with bremsstrahlung cooling was shown to have a stable

fundamental mode and unstable overtones. They also investigated other cases with a power-law cooling function in density r and
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temperature T, L / raTb, with various choices of the power indices (e.g. �a; b� � �0:5; 2� for bremsstrahlung cooling). These investigations

show that radiative shocks where the index b is higher are more strongly stabilized against perturbations.

Bertschinger (1986) studied the effect of placing the radiative shock in a spherical geometry. Again the cooling function was a single

power-law of density and temperature. In addition to radial perturbations, transverse perturbations were investigated, which are expressed in

terms of a scaled transverse wavenumber in addition to the usual oscillation frequency. The modes that are stable in the purely radial

analysis of Chevalier & Imamura (1982) are destabilized in the presence of transverse oscillation, but all modes are stable in the limit of

large wavenumber.

The stability of physically extended shocks was studied by Houck & Chevalier (1992) for radial accretion on to compact objects, with

a Newtonian gravitational potential. The adiabatic index of the gas and the indices of the single power-law cooling term were varied, In the

limit of a non-extended shock envelope their calculations yield the same results as Chevalier & Imamura (1982). However even a slight

spherical extension of the post-shock region has an effect on the stability: stabilizing the first and second harmonics but destabilizing the

higher order modes.

Physical factors other than the cooling processes and geometry also affect the stability properties of a radiative shock. The effects

of mass loss from the sides of the post-shock accretion column were examined by Dgani & Soker (1994) by including a sink term in

the mass continuity equation. They found that the transverse leakage has a stabilizing effect in the presence of several single power-

law radiative cooling processes, and this stabilization was less effective when the cooling had a lower temperature index. ToÂth &

Draine (1993) investigated radiative shocks that were subject to thermal instability but were supported by a transverse magnetic field.

This magnetic pressure support is decisive in determining the stability properties, rather than the characteristics of the radiative cooling

alone.

The consequences of inequality between electron and ion temperatures, and the effect of the energy exchange between these fluid

components, was considered by Imamura et al. (1996), with the effects of bremsstrahlung and Compton cooling. Their perturbations

included a transverse component, as in Bertschinger (1986), although the geometry of the system was planar. Modes with transverse

components were less stable than purely longitudinal equivalents, and the presence of the electron±ion exchange also promoted instability.

These new effects were qualitatively similar under different choices of the temperature index of the single cooling process.

In these studies, the usual treatment of the radiative cooling processes was to use an approximate energy loss term that is a single

power-law in local fluid properties. In the presence of multiple cooling processes, intermediate power-law indices tend to be used. This is

not an adequate treatment for the detailed effects of the competition between cooling processes, which is especially important when one

process, such as thermal bremsstrahlung radiation, promotes thermal instability, while another process, such as cyclotron emission, has a

stabilizing influence. The complicated competition between such processes must be treated by taking an explicit sum of independent power-

law contributions for the respective processes.

Chanmugam et al. (1985) performed numerical calculations of the accretion on to a magnetic white dwarf with a sum of separate

bremsstrahlung and cyclotron power-law contributions. When cyclotron cooling was strong, the shock was stabilized against oscillations.

Further examinations (Wu et al. 1996) revealed that the stabilizing influence depends on the magnetic field strength. In a weak-field regime

�B & 10 MG� the competition of the bremsstrahlung and cyclotron cooling, each dominating in different phases of a two-phase oscillatory

cycle, allows the perpetuation of small-amplitude oscillations (Wu et al. 1992).

Hujeirat & Papaloizou (1998) performed one- and two-dimensional numerical calculations to investigate the structure and time-

dependent behaviour of accretion on to compact objects in the presence of bremsstrahlung cooling, and with consistent solution of the

radiative transport and MHD equations. Magnetic field strengths were investigated up to ,1022 times the values found in magnetic

cataclysmic variables (mCVs). They found that radiation-matter coupling in the flow below the photosphere reduces the amplitudes of the

shock oscillations, but that the oscillations are sensitive to the lower boundary condition. In weak-field cases, latitudinal flows out of the

accretion column reduce or suppress oscillations; and in stronger field cases there remains some transverse kinks in the magnetic field near

the shock, which tends to suppress oscillations because of the effect found by ToÂth & Draine (1993).

A composite cooling function was used in the single-temperature perturbative stability analyses of Saxton et al. (1997) and Saxton et

al. (1998). The energy loss term consisted of a sum of terms for thermal bremsstrahlung radiation �Lbr / r2T0:5� and a second power-law

process with a destabilizing influence �L2 / raTb for b * 1). The cases considered included that of an effective cyclotron cooling term

�Lcy / r0:15T2:5� appropriate for the conditions and flow geometry of accreting magnetic white dwarfs. The analyses examined effects of

different values of the efficiency of the second cooling process, which depends on the magnetic field strength in the cyclotron-cooling case.

Increasing the cyclotron cooling strength stabilized each mode monotonically, but this happened in a more fundamentally complicated

manner than straightforward comparison of cooling and oscillatory time-scales would suggest. The order and manner in which the

harmonics stabilized depends on the indices of the second cooling process.

In the paper we generalize the previous work in Saxton et al. (1997) and Saxton et al. (1998) for bremsstrahlung±cyclotron radiative

accretion shocks in mCVs, by including the effects of unequal electron and ion temperatures and the possibility of transverse perturbations

(for a corrugated shock). The equations for a radiative post-shock accretion flow are presented in Section 2 and the terms and formulation of

the perturbation analysis are developed in Section 3. In Section 4 we calculate and interpret the frequency and stability properties of the

eigenmodes, and explore the effects of varying the parameters of the two-temperature condition, and the relative strengths of the competing

cooling processes. In Section 5 we discuss the significance of our results in contrast with previous studies dealing with cases with different

physical processes or which were less general. We conclude in Section 6.
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2 F O R M U L AT I O N

We assume the adiabatic index g � 5=3 for an ideal gas, and the equation of state

P � rkBT

mmH

; �1�

where kB is the Boltzmann constant, and mH is the mass of the a hydrogen atom. The time-dependent mass continuity, momentum and

energy equations for the planar post-shock accretion flow are:
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where P, Pe, v and r are respectively the total pressure, electron pressure, velocity and density of the stream; L is the composite radiative

cooling function, and G is the electron±ion energy exchange.

G � 4
������
2p
p

e4neni ln C

mec

ui 2 �me=mi�ue

�ue � ui�3=2

� �
�6�

where ln C is the Coulomb logarithm, c is speed of light, e is the electron charge, ue � kBTe=mec2 and ui � kBT i=mic
2 are the electron and

ion temperatures (see, e.g. Melrose 1986). The electron and ion number densities are ne � Zr=�Zme � mi� and ni � r=�Zme � mi� if the ion

charge is Z (Z � 1 for completely ionized hydrogen plasma).

Optically thin thermal bremsstrahlung radiation provides one of the two cooling processes present, and the other is taken to be a single

power-law cooling term. To simplify the analysis, we express the total cooling function in terms of the bremsstrahlung cooling term and a

function expressing its functional form compared with the bremsstrahlung cooling term. The parameter e s is the efficiency of the second

cooling process compared to bremsstrahlung cooling, evaluated at the shock, which depends non-linearly on the magnetic field strength,

mass and radius of the white dwarf, and the pre-shock density and cross-sectional circumference and area of the accretion flow.

LT ; Lbr � L2 � Lbr 1� es
Pe

Pe;s

� �a r

rs

� �2b
" #

: �7�

where r s and Pe,s are the density and electron pressure at the shock, Lbr � C r2�Pe=r�1=2 and the constant

C � �2pkB=3me�1=2�25pe6=3hmec3��m=kBm3
p�1=2gB, with h being the Planck constant, me the electron mass, mp the proton mass, m the

mean molecular weight of the gas and gB the Gaunt factor (see Rybicki & Lightman 1979).The numerical value of C is 3:9 � 1016 in cgs

units, assuming that m � 0:5 and gB < 1. The indices a and b are constants describing the functional form of the second cooling process;

they adopt particular values for radiative accretion shocks in different physical contexts, but we retain them as parameters for the sake of the

general formulation, until results for mCVs are outlined below. (In general for a cooling function L2 / raTb; a � b 2 1=2 and

b � 3=2 2 a� b.)

Expressing the composite cooling function in terms of the bremsstrahlung cooling assures us that the second cooling function goes to

zero as the density becomes infinite. Using this form assures us that the stability results depend only on the indices of the cooling function

and are insensitive to the implementation of the boundary condition at the white dwarf surface, which becomes unambiguous. Alternatively,

the cooling could be stopped at a finite density or temperature, with a softened form of the bremsstrahlung term and a different choice of

lower boundary. However this approach is mathematically equivalent to the one we have taken except that the new boundary conditions are

less obvious, especially for the perturbed variables.

3 P E RT U R B AT I O N A N A LY S I S

The shock position xs and velocity vs are subject to a first-order perturbation (as in Imamura et al. 1996):

vs � vs1 eiky�vt �8�
xs � xs0 � xs1 eiky�vt: �9�
with frequency v and a transverse wavenumber k allowing a transverse component for corrugated oscillation. Subscripts 0 and 1 correspond

to the stationary state solution and perturbed quantities respectively. In the stationary solution, the shock is at rest: vs0 � 0. The longitudinal
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perturbation of the shock position and velocity are related by vs1 � xs1v. The frequency of the perturbation is v , and k is the wavenumber

of a transverse component of the perturbation in the y direction. Eigenmodes are labelled by a transverse wavenumber and dimensionless

eigenfrequency, which are defined as:

k � xs0k �10�
d � xs0

vff

v �11�

The eigenfrequency is complex, d � dR � idI, where d I is the oscillatory part proportional to the frequency of the particular mode. Stability

is indicated by the sign of the growth/decay term dR. Positive dR values indicate instability; negative values indicate stability. The physical

scales of the system are vff the free-fall velocity of the white dwarf, ra the accretion density, and xs0 the equilibrium shock height. The size

of the perturbation is indicated by the parameter 1 ; vs1=vff, and therefore xs1 � 1xs0=d.

To simplify the calculations, the hydrodynamic quantities are expressed in terms of dimensionless variables, allowing the scales of the

system to be removed from later equations. These dimensionless variables are expressed in terms of the stationary solutions and

perturbations of the velocity, density, total pressure and electron pressure, varying with position in the accretion column j ; x=xs. The white

dwarf surface is at j � 0 and the shock is j � 1.

r�j; y; t� � ra´z0�j��1� 1lz�j� eiky�vt� �12�
v�j; y; t� � 2vff ´�t0�j��1� 1lt�j� eiky�vt�; 1t0�j�ly�j� eiky�vt� �13�
P�j; y; t� � rav2

ff ´p0�j��1� 1lp�j� eiky�vt� �14�
Pe�j; y; t� � rav2

ff ´pe0�j��1� 1le�j� eiky�vt�: �15�
where the complex functions lz , lt , ly, lp and le represent the effect of the perturbation on the downstream profiles of density, vertical

velocity, transverse velocity, total pressure and electron pressure respectively.

The space and time derivatives of a flow variable f, in a frame following the shock, are given by:
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1
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� �
: �18�

None of the hydrodynamic variables has an explicit dependence on position within the accretion column. These shock-frame derivatives are

used to expand the equations for mass, momentum and energy continuity, whence are extracted expressions describing the stationary

solution and a set of differential equations for the perturbed variables.

We consider expressions in terms of the dimensionless stationary-solution velocity �t0 ; 2v0=vff� to simplify the form of the

equations. The stationary solution is obtained by solving the hydrodynamic equations without the time-dependent terms, and it is

completely described by two simple algebraic equations for the density and pressure,

z0 � 1=t0 �19�
p0 � 1 2 t0 �20�
plus two differential equations: one for the velocity-position profile and the other for the electron pressure:

dj

dt0

� gp0 2 t0

~L
�21�

dpe

dt0

� 1

t0

1 2
~G
~L

� �
�gp0 2 t0�2 gpe

� �
�22�

where

~G � �g 2 1��rav3
ff=xs0�21G � �g 2 1�cccei

1 2 t0 2 2pe����������
t5

0p
3
e

q �23�

and

~L � �g 2 1��rav3
ff=xs0�21L � �g 2 1�cc

������
pe

t3
0

r
�1� esf �t0;pe�� �24�

are appropriate dimensionless forms of the electron±ion exchange and total cooling function respectively. The parameter cei describes the

speed of the electron±ion exchange compared to the cooling; when cei & 1 the two-temperature treatment is justified; otherwise the system
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behaves like the single-temperature shock described in Saxton et al. (1998). In physical terms the constants cc and cei are:

cc �
xs0ra

vff

´ C ; �25�

and

cei �
1

v2
ff

´
�g 2 1�
C 4�2p�1=2 ln C

e4m
1=2
e

m
7=2
i

 !
Y(ss): �26�

and Y(ss) < 1 (see Saxton 1999). The function f(t0, p e) describes the local ratio of the power of the second cooling process relative to the

bremsstrahlung emission. It takes the form:

f �t0;pe� � 4a�b

3a
1� ss

ss

� �a

pa
e t

b
0 �27�

and ss ; �Pe=Pi�s is the ratio of electron to ion pressures at the shock surface. Upon substitution of these expressions (19, 20, 23, 24,27),

the equations for the stationary solution velocity (21) and pressure profiles (22) become:

dj

dt0

� g 2 �g� 1�t0

�g 2 1�cc�1� esf �t0;pe��

������
t3

0

pe

s
�28�

dpe
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� 1
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1 2
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1 2 t0 2 2pe

t0p2
e
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�g 2 �g� 1�t0�2 gpe

� �
�29�

For the case of bremsstrahlung cooling alone �es � 0� there exists an analytic solution (Aizu 1973). For the general two-process cooling

function it is necessary to carry out a numerical integration.

The hydrodynamic equations expressed in terms of the dimensionless perturbed variables give rise to a set of five coupled complex

first-order differential equations, which can be expressed in matrix form as:

2t0 2t0 0 0 0

0 2t0 0 t0 2 1 0

0 0 2t0 0 0

gt0p0 0 0 2t0p0 0

gt0pe 0 0 0 2t0pe

26666666664

37777777775

l 0z
l 0t
l 0y
l 0p
l 0e

2666666664

3777777775
�

F1

F2

F3

F4

F5

2666666664

3777777775
�30�

where a prime denotes derivatives in j and the functions on the right hand side collect the terms which lack derivatives of the perturbed

variables. In general, for a cooling function composed of a sum of several power-law terms, they are:

F1�t0;pe; j� � 2j�ln t0� 0 2 dlz � ikt0ly �31�
F2�t0;pe; j� � 2�d 2 t 00�lt � j�ln t 00� � t 00lz 2 t 00�lp 2 lt� �32�
F3�t0;pe; j� � 2�d 2 t 00�ly � ik�1 2 t0�lp � ikt 00j=d �33�
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3

2
g2�t0;pe�lz � 1

2
g1�t0;pe�le 2 lt 2 lp � 1

d
2

j
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� �
�34�
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le � p0lp 2 2pele

p0 2 2pe

2 lt 2 le � 1
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2
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t0

� �
�35�

where the functions g1(t0, pe) and g2(t0, pe) are defined as:

g1�t0;pe� � 1� 2esaf �t0;pe�
1� esf �t0;pe� ; �36�

g2�t0;pe� � 1 2
2

3

esbf �t0;pe�
1� esf �t0;pe�
� �

; �37�

The perturbed transverse velocity variable ly has an inconspicuous influence. If not for its presence in the F1 function, ly would be

decoupled from the other perturbed variables, and could be integrated separately after finding the solutions in the other variables.

The matrix in (30) is non-singular everywhere in the post-shock region except at t0 � 0. In a practice this singularity does not matter

because the numerical integration can be taken to some small value t0 � D . 0 and the results reach a limit as D! 0. The matrix equation
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is inverted using (21) to yield equations for the perturbed variables.

d

dt0

lz

lt

ly

lp

le

2666666664

3777777775
� 1

~L

1 21 0 1=t0 0

2gp0=t0 1 0 21=t0 0

0 0 2�gp0 2 t0�=t0 0 0

g 2g 0 1=p0 0

g 2g 0 g=t0 2�gp0 2 t0�=t0pe

2666666664

3777777775

F1

F2

F3

F4

F5

26666666664

37777777775
�38�

These resulting differential equations are split into real and imaginary parts to yield ten first-order differential equations in real

eigenfunctions, lz. R
; lzI

; ltR
; lt I

, lyR; lyI
; lpR

; lp I
, leR

, and leI
, plus the known parameters and variables of the static solution, a , b

j (t0) and pe(t0). This decomposition is straightforward because only the vector parts of (38) are complex. To obtain the equations for real

variables, we substitute the real parts of the l-variables in the left side and real parts of the F-functions in the right side. Similarly, the

equations for the eigenfunctions' imaginary parts are obtained by substituting imaginary parts of the l-variables and F-functions.

Optically thick cyclotron emission provides an important cooling process for accretion on to strongly magnetic white dwarfs. An

optically thick radiative process cannot in general be described by a simple local energy loss function. A full treatment requires

simultaneous solution to the time-dependent hydrodynamic and radiative transfer equations. However for the particular geometry of the

field-aligned accretion flow in mCVs and the physical conditions typical of such systems, cyclotron radiation is optically thick up to a

critical frequency at which it becomes optically thin. The total power escaping from the post-shock region locally in the accretion column

approximately takes the form of a power-law cooling term Lcyc / r3=20T5=2
e , which in the terms of (7) corresponds to indices a � 2:0 and

b � 3:85 (see Langer et al. 1982, Wu, Chanmugam & Shaviv 1994, Cropper et al. 1999). This approximation renders the linear analysis

tractable.

For the special case of a mCV radiative shock with bremsstrahlung and cyclotron cooling present, the parameter e s is related to the

magnetic field at the accretion pole. The expression for e s is as described in Wu (1994). In the single-temperature limit ss � 1, but the value

in the two-temperature conditions depends on the conduction of energy upstream of the ion shock, carried by the electrons. Our analysis

treats s s as a parameter.

4 R E S U LT S

4.1 Eigenmodes

The 10 real differential equations are integrated numerically using a Runge±Kutta method. In terms of the dimensionless perturbed

variables, the boundary conditions at the shock are t0 � 1=4; j � 1; pe � 3
4
�1� 1=ss�21; lz � 0; lt � 23; ly � 3ik=d and lp � le � 2.

At the dwarf surface (t0 � 0; j � 0; pe � 1=2) there are no specific conditions on the values of the perturbed density and pressures, but the

stationary wall condition lt � 0 applies (see Chevalier & Imamura 1982; Imamura et al. 1996; Saxton et al. 1997). Integration proceeds

between t0 � 0 and t0 � 1=4 for trial values of dR and d I. Values of the ds are sought which yield lt � 0 when the differential equations

are integrated to t0 � 0 (using the search method described in the appendices of Saxton et al. 1998) Each of these eigenvalues corresponds

to an oscillatory mode of the shock. The modes form an indefinite sequence consisting of a fundamental mode and a succession of

overtones.

The survey of the complex frequency eigenplane is conducted in a region of d appropriate for the lowest modes. The range of

frequency d I explored is from 0 to 3.5; the growth/decay term dR is taken from 0.4 down to 20:4 or lower if necessary in cases of higher k.

The perturbed velocity eigenfunction is evaluated at the white dwarf surface for each sampled of d . Values of 2logjltjwd are plotted and the

maxima of this quantity indicate the d eigenvalues.

This procedure is performed for single-temperature (ss � 1, large cei) and two-temperature (ss < 1; cei finite) cases.

Eigenfrequencies of the six lowest modes are calculated under the conditions ss � 0:2; 0:5; 1 and cei � 0:1; 0:5; 1 to test the effect of

the unequal electron and ion pressures at the shock, and the rate of electron±ion energy exchange in the accretion column. For each case we

investigate the modes' frequencies and stability properties under conditions with bremsstrahlung cooling alone �es � 0�, cyclotron cooling

comparable to the bremsstrahlung �es � 1�, and cyclotron cooling dominant �es � 100�, as evaluated at the shock surface. These

eigenvalues are tabulated in Table 1.

Applying the special restricted choice of the es � 0 exactly recovers earlier results of Imamura et al. (1996) for a two-temperature

shock with only a single bremsstrahlung cooling process. Taking the limits of high cei and ss � 1 reduces our equations to reproduce the

single-temperature case with multiple cooling, as in Saxton et al. (1997). Taking this limit and es � 0 together reproduces the single-

temperature bremsstrahlung-cooling only results of Chevalier & Imamura (1982).

The frequencies and stability behaviour of the fundamental and first overtone in the presence of the two-temperature conditions and

composite cooling was also investigated for non-longitudinal perturbations. This corrugation of the shock is represented by non-zero values

of the dimensionless transverse wavenumber k.
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Table 1. Eigenvalues dR, d I in the absence of transverse perturbation
�k � 0�, for various conditions of electron/ion pressure ratio at the shock
(s s), strength of electron±ion energy exchange (cei), and relative
efficiency of cyclotron cooling (e s).

s s cei e s�0 e s�1 e s�100

0.2 0.1 20.001 0.307 20.057 0.343 20.113 0.335
0.048 0.902 20.040 0.808 20.073 0.567
0.066 1.529 20.030 1.363 20.067 0.978
0.092 2.141 0.005 1.896 20.052 1.387
0.095 2.769 20.001 2.444 20.036 1.758
0.114 3.385 0.027 2.995 20.046 2.154

0.2 0.5 20.007 0.306 20.106 0.340 20.166 0.247
0.047 0.894 20.054 0.758 20.043 0.528
0.060 1.513 20.076 1.272 20.111 0.775
0.085 2.120 20.040 1.756 20.088 1.104
0.087 2.739 20.054 2.253 20.071 1.406
0.106 3.349 20.026 2.770 20.086 1.710

0.2 1.0 20.009 0.306 20.123 0.332 20.163 0.211
0.047 0.891 20.056 0.744 20.056 0.520
0.060 1.509 20.087 1.243 20.101 0.701
0.085 2.115 20.046 1.717 20.109 1.006
0.086 2.733 20.067 2.193 20.081 1.271
0.105 3.342 20.043 2.701 20.094 1.541

0.5 0.1 0.003 0.304 20.025 0.322 20.057 0.309
0.051 0.898 0.006 0.849 20.027 0.582
0.068 1.522 0.020 1.435 20.014 1.013
0.093 2.132 0.044 2.002 0.003 1.416
0.096 2.756 0.044 2.585 0.002 1.819
0.114 3.370 0.064 3.161 0.008 2.232

0.5 0.5 20.006 0.306 20.065 0.332 20.135 0.264
0.048 0.892 20.019 0.823 20.023 0.551
0.061 1.511 20.016 1.389 20.081 0.868
0.086 2.117 0.011 1.930 20.049 1.218
0.088 2.735 0.006 2.490 20.051 1.547
0.107 3.345 0.031 3.047 20.059 1.906

0.5 1.0 20.008 0.305 20.078 0.332 20.148 0.239
0.048 0.891 20.023 0.814 20.036 0.549
0.061 1.508 20.023 1.376 20.092 0.816
0.085 2.113 0.006 1.910 20.073 1.159
0.087 2.730 20.002 2.463 20.064 1.448
0.106 3.339 0.023 3.015 20.083 1.781

1.0 0.1 0.010 0.299 20.001 0.303 0.002 0.277
0.056 0.892 0.036 0.856 0.027 0.564
0.071 1.511 0.047 1.447 0.048 0.997
0.093 2.118 0.064 2.025 0.052 1.378
0.095 2.735 0.064 2.610 0.043 1.798
0.112 3.345 0.078 3.192 0.060 2.199

1.0 0.5 20.005 0.304 20.039 0.319 20.096 0.262
0.049 0.890 0.009 0.846 0.007 0.554
0.063 1.507 0.019 1.430 20.032 0.909
0.087 2.112 0.042 1.995 20.000 1.257
0.089 2.729 0.040 2.576 20.022 1.610
0.107 3.337 0.061 3.150 20.014 1.992

1.0 1.0 20.007 0.305 20.050 0.322 20.122 0.247
0.049 0.890 0.004 0.843 20.015 0.559
0.062 1.506 0.012 1.425 20.059 0.876
0.086 2.110 0.038 1.988 20.025 1.230
0.088 2.727 0.035 2.566 20.038 1.545
0.106 3.335 0.056 3.139 20.046 1.915
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4.2 Frequency quantization

Under the simple conditions, for either bremsstrahlung-dominated cooling or a single-temperature shock, the oscillatory part of the

eigenfrequency follows a quantized sequence like the modes of a pipe open at one end. In a linear fit to this sequence, the harmonics n

follow dI < dIO�n 2 1=2� � dC, with frequency spacing d IO and a small constant correction offset dC. The two-temperature parameters s s

and cei and the secondary process' cooling efficiency e s determine the values of these constants. Parameter fits were performed for the first

six harmonics under different conditions, and the results for the constant and linear coefficients are shown in Table 2.

For a purely bremsstrahlung-dominated shock the mode spacing dIO < 0:6 regardless of the two-temperature conditions. As e s is

increased under given s s and c ei conditions, d IO becomes steadily smaller. For very efficient cyclotron cooling �es � 100� the spacing is

reduced to dIO < 0:3. The decline of d IO with increasing e s is fastest for cases with high cei; and increasing cei for given (s s, e s)

(approaching single-temperature conditions) makes d IO smaller. In other words, when the electron±ion exchange is weak, the effect of e s on

the mode frequencies is reduced.

The frequency offset constant dC increases steadily with increasing e s for all observed values of the two-temperature and cooling

parameters (s s, c ei). For an increasingly cyclotron-cooling dominated flow in the presence of strong two-temperature effects, dC ! 1
2
dIO,

which means that the nature of the modes becomes more analogous to a pipe with two open ends. The increased importance of the two

temperature effects in the large e s regime means that the fixed wall boundary condition loses importance and the global stability of the

accretion column depends more on the disparity of electron and ion temperatures within the stream than on the radiative cooling processes

(cf. Imamura et al. 1996). The frequency and stability properties in this case are determined by the exchange process rather than the

radiative cooling.

Better fits are obtained by introducing another parameter describing a quadratic dependence on harmonic number,

dI < dQn2 � dIO�n 2 1=2� � dC. This quadratic correction is very small in all examined cases, but its presence affects the values of d IO

and dC such that dC ! 1
2
dIO sooner and more readily in the high-e s cases, as shown in Table 3. With this fit dC < 1

3
dIO by the point of

es � 100. Without the dQ term, the sequence of modes approaches the behaviour of a doubly open pipe much more slowly in e s.

4.3 Stability properties

The most unstable systems investigated are those with bremsstrahlung cooling only �es � 0�. Varying the values of s s and c ei has little

effect in the small-e s extreme, because most of the cooling is due to bremsstrahlung radiation, which occurs in the dense region near the

white dwarf surface, where the electron and ions have nearly reached equilibrium regardless of their initial two-temperature conditions

close to the shock. For most realistic parameters with low or modest e s, the fundamental mode is stable. The fundamental is unstable only in

cases of extremely low cei, modest or high s s, and low e s. Otherwise the second harmonic is the lowest potentially unstable mode.

Except when cyclotron cooling and two-temperature effects are both very strong (when cei is very small and e s is large), for given

conditions of (s s, cei), increasing e s stabilizes every mode in a monotonic manner. Under these usual conditions a mode which is unstable for

some value of e s is also unstable for all cases of lower e s; and furthermore an increase in e s does not causes a decrease in a mode's stability.

For a given change of e s the stability term dR of each mode progresses in a way that is individual to the mode and apparently

independent of the stability behaviour of the other modes of the sequence. Some modes experience more rapid reduction in dR for a given

increase in e s, therefore they tend to stabilize earlier or quicker than other modes, if all else is equal.

The transition of a particular mode from the unstable �dR . 0� to stable �dR , 0� regions of the complex frequency eigenplane occurs

at some threshold value of e s that is individual to the mode and dependent on the (s s, c ei) conditions. The lowest modes usually stabilize at

lower e s because they tend to be in or closer to the dR , 0 region even in the bremsstrahlung-cooling only case. However there often are

exceptions, because of the the modes' rates of stabilization, ­dR/­e s, depend on e s and are individual to each n. There are many cases of

(s s, cei, e s) where a mode n is unstable but a higher mode n11 is stable. Therefore for some cases of (s s, cei) there are modes which can

never be the lowest unstable mode for any value of e s.
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Table 2. Mode frequency spacing d IO and offset dC for a linear fit d >I< dIO�n 2 1=2� � dC, under different two-temperature
conditions (s s,cei) and efficiency of the second cooling process (e s).

s s cei e s d IO dC s s c ei e s d IO dC s s cei e s d IO dC

0.2 0.1 0 0.617 20.013 0.5 0.1 0 0.615 20.014 1.0 0.1 0 0.610 20.015
0.2 0.1 1 0.534 0.039 0.5 0.1 1 0.571 0.014 1.0 0.1 1 0.580 0.000
0.2 0.1 100 0.374 0.076 0.5 0.1 100 0.392 0.051 1.0 0.1 100 0.391 0.028

0.2 0.5 0 0.610 20.010 0.5 0.5 0 0.609 20.011 1.0 0.5 0 0.608 20.011
0.2 0.5 1 0.489 0.057 0.5 0.5 1 0.547 0.030 1.0 0.5 1 0.569 0.013
0.2 0.5 100 0.294 0.080 0.5 0.5 100 0.330 0.069 1.0 0.5 100 0.348 0.055

0.2 1.0 0 0.609 20.011 0.5 1.0 0 0.608 20.010 1.0 1.0 0 0.608 20.011
0.2 1.0 1 0.476 0.060 0.5 1.0 1 0.540 0.032 1.0 1.0 1 0.566 0.015
0.2 1.0 100 0.263 0.086 0.5 1.0 100 0.307 0.077 1.0 1.0 100 0.333 0.063
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It is instructive to examine collectively the stability values dR of the sequence of modes at some set of parameters (s s, c ei, e s). In the

cases of lower e s there is a general pattern in which each successive harmonic is less stable than the lower neighbouring mode; dR increases

with harmonic number n. The increases of dR between consecutive modes is smaller in the ranges of higher n. As e s increases this trend

weakens, because some modes stabilize fast enough to overtake neighbouring lower modes. When e s is very high, the modal stability

eigenvalues, dR, are scattered in a negative range of values, except for the lowest modes which tend to deviate further towards greater or

lesser dR. The introduction and strengthening of two-temperature effects enhances the departures from the general pattern.

The eigenmodes for various e s under the one- and two-temperature conditions are compared in Fig. 1. Decreasing c ei from indefinitely

high values (single-temperature flow) to very low values (the two-temperature conditions strong) has little effect on the stability of the

modes if bremsstrahlung cooling is the dominant process (e s is small). In intermediate ranges of e s, with cyclotron and bremsstrahlung

cooling comparable in efficiency, strengthening the two-temperature conditions tends to stabilize most modes. When e s is very high, the

influence of two-temperature effects on the stability of individual modes is pronounced. Introduction of two-temperature effect in high e s

tends to destabilize most modes, and the pattern of variations of dR from one mode to the next becomes very different from the one-

temperature case. For some (s s, cei), two-temperature effects cause one or more of the lower modes to remain unstable even for very high

e s, or even to destabilize a mode as e s increases past some threshold.

4.4 Transverse perturbation

The stability properties and frequency behaviour of the oscillatory modes were investigated in the presence of transverse perturbations,

under the two-temperature conditions and with explicit competition between bremsstrahlung cooling and the second cooling (cyclotron

cooling). The eigenvalues of the fundamental and first overtone were traced through a range of k for particular choices of (s s, cei, e s).

The special case k � 0 is the absence of transverse perturbations in which the oscillatory behaviour is the same as that described in

subsections above. In the limit of large k all of the modes become strongly stable, and the frequencies approach a sequence like a doubly

open pipe, dI / dIOn, Between these extremes, the effect of transverse perturbations on the frequency and stability of the accretion column

is specific to each mode. For a given mode with harmonic number n, the interesting behaviour takes place up to a threshold k < 2n� 1. As

k increases, there is a growing region of the eigenplane within which the modes n & �k 2 1�=2 show the simple behaviour like the large-k

extreme. The modes outside the region experience individual and non-simple disturbances as k is varied, reverting to the standard k � 0

behaviour in the large-n modes.

For each mode, the instability term dR experiences a number of maxima as k varies (see Figs 2±7). For a mode with harmonic number

n, there are n of these maxima. Increasing e s affects the values of these maxima in (k , dR). For low e s the maxima are most distinct, but one

or more maxima may become narrow and shallow almost to the point of vanishing as e s becomes very large. (See Fig. 5, for example.) In

the fundamental mode, the single maximum is at about k < 3=2 for low e s (see the es � 0 restricted case in Imamura et al. 1996) and

gradually moves towards lower k as e s increases. In the first overtone, there is a maximum at k � 0 and another one in the vicinity of

k , 1 2 4. As e s increases, the former maximum lowers in dR and narrows, whilst the second maximum moves to lower k. When a

maximum of instability (other than k � 0) migrates to smaller k with increasing e s, the tendency is for the peak dR to increase until some

critical value of e s is attained, after which the peak dR decreases slowly with increasing e s. These thresholds depend upon n, cei and s s.

The threshold is less than es � 100 when s s is small. In instances of very high e s a mode may be stable for all k , except when s s is large or

cei is small. In all cases studied, enormous values of es * 100 are required to stabilize modes other than the fundamental. For example, the

fundamental is stabilized completely by es � 100 in Figs 2,4, but not in Fig. 6, where c ei is too small.

For all modes under all conditions, the oscillatory frequency d I increases monotonically with k . In the presence of transverse

oscillations, consecutive modes are no longer unique in d I: it is possible for modes n and n� 1 to have the same d I but different transverse

component k . However the modes do not become degenerate; there is no case in which different modes have the same k and d I. For each

mode the rise of d I with k is smooth and is a function of e s. Typical values of the gradient ­d I/­e s, for given k , are greater for higher e s. For

sufficiently high k and e s, d I reaches a plateau for each mode. (See the left side of Figs 2±7).
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Table 3. Parameters of the frequency spacing for a quadratic fit, dI<dQn21d IO(n21/2)1dC, under different two-temperature conditions (s s,cei) and
efficiency of the second cooling process (e s).

ss c ei e s d IO dC dQ ss cei e s d IO dC dQ ss cei e s d IO dC dQ

0.2 0.1 0 0.604 20.002 0.002 0.5 0.1 0 0.602 20.033 0.002 1.0 0.1 0 0.601 0.007 0.001
0.2 0.1 1 0.484 0.080 0.007 0.5 0.1 1 0.541 0.038 0.004 1.0 0.1 1 0.564 0.013 0.002
0.2 0.1 100 0.291 0.144 0.012 0.5 0.1 100 0.319 0.113 0.011 1.0 0.1 100 0.327 0.082 0.009

0.2 0.5 0 0.596 0.001 0.002 0.5 0.5 0 0.595 0.001 0.002 1.0 0.5 0 0.595 0.000 0.002
0.2 0.5 1 0.436 0.102 0.007 0.5 0.5 1 0.508 0.062 0.005 1.0 0.5 1 0.541 0.036 0.004
0.2 0.5 100 0.252 0.115 0.006 0.5 0.5 100 0.279 0.112 0.007 1.0 0.5 100 0.292 0.101 0.008

0.2 1.0 0 0.594 0.002 0.002 0.5 1.0 0 0.594 0.001 0.002 1.0 1.0 0 0.593 0.002 0.002
0.2 1.0 1 0.428 0.100 0.007 0.5 1.0 1 0.501 0.065 0.006 1.0 1.0 1 0.536 0.041 0.004
0.2 1.0 100 0.245 0.100 0.003 0.5 1.0 100 0.282 0.098 0.004 1.0 1.0 100 0.298 0.093 0.005
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4.5 Summary

We have found the following.

(i) When e s is large, two-temperature effects are very important in determining the frequency and stability properties of the accretion

flow; when e s is small, the two-temperature conditions are ineffectual. Increasing e s decreases the frequency spacing of the modes. Varying
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Figure 1. Complex d � dR � idI eigenplanes, with contours of the logarithm of the perturbed velocity eigenfunction evaluated at the white dwarf surface.

The modes are the points where the perturbed velocity goes to zero, marked with crosses. The left column represents the one-temperature cases; the right

column shows two-temperature cases with cei � 0:5 and ss � 0:5. The top row shows bremsstrahlung-cooling only shocks, with es � 0; in the middle row

bremsstrahlung and cyclotron cooling are comparable es � 1; and in the bottom row cyclotron cooling dominates es � 100.
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e s alters the instability of each mode at a rate that depends on the harmonic number n, and the two-temperature flow parameters (s s, cei).

Except when e s is very large and s s is small, the dR of each mode only ever decreases with an increase in e s.

(ii) The effect of varying the electron±ion coupling cei is insignificant in the bremsstrahlung-cooling dominated regime (e s small).

Decreasing cei, making the electron±ion exchange inefficient, tends to destabilize the accretion column in all modes, and increases the

frequency spacing of the modes slightly.

(iii) Varying the ratio of electron and ion pressures at the shock s s affects the frequency spacing of the modes in non-simple ways. For

some choices of the global parameters a given change in s s increases the frequency spacing; in other cases it causes a decrease. Decreasing

s s usually reduces the instability of modes, and this is accentuated when e s is high.

(iv) Transverse perturbations yield dR maxima in k that can destabilize modes that are stable to purely longitudinal oscillations. If s s

is not too small then these maxima may enter the stable regime again for sufficiently great e s.

5 D I S C U S S I O N

Most previous perturbative analyses of radiative shocks (e.g. Chevalier & Imamura 1982, Bertschinger 1986, Houck & Chevalier 1992, ToÂth

& Draine 1993, Dgani & Soker 1994) represented the cooling function as a single-power-law term, and set the indices to various values to

mimic the presence of different physical cooling processes. Such formulations do not adequately describe systems where more than one

cooling process is significant, especially where these processes differ greatly in their innate influences over thermal instability. The realistic

interplay between the influences of a stabilizing cooling process and a destabilizing cooling process was explicitly included in Saxton et al.

(1997) and Saxton et al. (1998). This condition is retained in the present extended treatment, and by taking the one-temperature limit we

recover the earlier results.

Our investigation considers the additional effects of unequal electron and ion temperatures, as in the work of Imamura et al. (1996),

which considered accretion on to non-magnetic white dwarfs. Ours combines the two-temperature treatment with the effects of the joint

presence of bremsstrahlung and cyclotron cooling. Therefore our analysis is applicable to radiative accretion shocks on white dwarfs in

magnetic cataclysmic variables with radiative cooling time-scales possibly comparable to or faster than the electron±ion energy

exchange.

The accretion column in a mCV is not geometrically extended in the vertical direction (see e.g. Cropper 1990), and the field-

aligned flow suffers no transverse mass flux (unlike the case of Dgani & Soker 1994). Our the cases of nonzero e s correspond to

magnetic fields much stronger than those investigated by Hujeirat & Papaloizou (1998), and therefore the field can not develop

large transverse kinks that would suppress oscillations by the mechanism of ToÂth & Draine (1993). The altitude of the shock above

the white dwarf surface is negligible compared to the size of the white dwarf, so the variation of gravity in the accretion column,
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Figure 2. Oscillatory part and stability term of the eigenfrequency for the n � 1 mode, with varying transverse wavenumber k, in the presence of two-

temperature effects. Squares, triangles and diamonds represent the bremsstrahlung plus cyclotron cooling cases es � 0; 1; 100 respectively.
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studied by Houck & Chevalier (1992), is unimportant. Therefore we do not investigate effects of non-planar geometry (as in

Bertschinger 1986). Transverse perturbations, which are manifest as corrugation of the shock structure and oscillation, are studied

(as in Imamura et al. 1996).

Except when the energy exchange of electrons and ions is very weak, increasing the efficiency of the cyclotron cooling e s (i.e.

strengthening the ambient magnetic field) stabilizes each mode monotonically. The modes stabilize at independent rates in e s, meaning that

some of those modes which are highly unstable in the weak-field regime may actually stabilize at low thresholds of e s. The detailed

behaviour of the mode stabilization in e s depends on the parameters s s and cei.
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Figure 3. Same as Fig. 2 but for the n � 2 mode.

Figure 4. Same as Fig. 2 but for the n � 1 mode, ss � 0:2; cei � 0:5.
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As in Saxton et al. (1998) the instability of a particular mode does not imply the instability of all higher modes, when more than a

single cooling process is significant. This characteristic of competition between cooling processes persists in the general two-temperature

and non-longitudinal oscillation cases. If cyclotron cooling is significant relative to bremsstrahlung cooling, the electron±ion exchange

process determines the sequence of dR, but the frequency spacing of the quantized d I sequence depends mainly on e s. Cases of

bremsstrahlung-cooling dominated shocks are similar and their properties are scarcely affected by two-temperature effects.

The basic sequence of mode stabilities in the bremsstrahlung-cooling dominated case has a stable fundamental and each higher mode
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Figure 5. Same as Fig. 2 but for the n � 2 mode, ss � 0:2; cei � 0:5.

Figure 6. Same as Fig. 2 but for the n � 1 mode, ss � 0:5; cei � 0:1.
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less stable than its predecessor. Strengthening cyclotron cooling tends to stabilize all the modes, but does so in a fashion that is individual to

each mode, so that deviations from the trend develop as e s increases (especially in the presence of two-temperature effects). For low e s

these stability deviations are slight. For greater e s, the dR sequence of the modes is a less simple pattern depending on the parameters of the

shock pressures s s and electron±ion exchange cei.

Two-temperature effects dominate the properties of the modes when e s is very high, and beyond some threshold in e s, which depends

on (s s, cei), two-temperature effects have a destabilizing influence. If the electron±ion exchange is sufficiently weak, the exchange process

dominates the oscillations and some modes that would be stable at lower e s become unstable again at higher e s.

The non-simple order in which the modes are stabilized means that the thermal instability properties of accretion shocks in mCVs are

not simply a trivial result of a relationship between oscillatory, cooling and energy exchange time-scales. The competing effects must be

considered in detail. However we note that our analysis proves modes to be unstable, but does not necessarily prove stability. Minorsky

(1962, chapter 14) uses topological and perturbative analytic arguments to consider the general conditions of stability of non-linear

oscillatory systems. This issue was also addressed by Lyapunov in his analysis of stability of dynamical systems (Lyapunov 1966, see

section 1.5.3, Leipholz 1970 for another treatment of Lyapunov's theorems on stability). In summary, the linear terms dominate in the limit

of small amplitudes, i.e. every mode that is linearly unstable remains unstable in a full non-linear treatment, although higher-order

contributions may cause a stable limit cycle at larger amplitudes.

6 C O N C L U S I O N S

We investigated plane-parallel radiative shocks in which bremsstrahlung and cyclotron cooling may be fast compared with electron±ion

energy exchange. Parameters and boundary conditions are chosen to be appropriate for accretion on to the surface of a magnetic white

dwarf. The cooling function was an explicit sum of contributions from thermal bremsstrahlung (which destabilizes the flow) and cyclotron

cooling (which has a stabilizing tendency).

The relative efficiency of the cyclotron emission e s is varied. Stability of the shock to longitudinal and non-longitudinal

perturbations was investigated. The ratio of electron and ion pressures at the shock s s, and the rate of electron±ion energy exchange cei

were also varied. Variations of the exchange, pressure and cooling parameters, (s s, cei, e s), affect the stability and frequency of each

mode in a manner that is individual to the mode and the conditions of the stream. Increasing e s increases the stability of each mode,

until a threshold value in e s is exceeded. Beyond this point, increasing e s destabilizes a mode slowly. This threshold is very high except

when cei is very small.

The introduction of unequal electron and ion temperatures has little effect on the modes of a bremsstrahlung-cooling dominated

accretion column. In these cases, the higher harmonics tend to be less stable to oscillations. When bremsstrahlung and cyclotron cooling are

comparable in strength, the pattern of the modes' stabilities becomes less regular, and two-temperature effects tend to stabilize the shock.
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Figure 7. Same as Fig. 2 but for the n � 2 mode, ss � 0:5; cei � 0:1.



Two-temperature radiative shocks 691

For a cyclotron-cooling dominated shock all of the modes are stable in the single-temperature limit, but introduction of two-temperature

effects can make them less stable. In some cases of small cei one or more of the lower modes may be unstable even for high e s. Unlike the

bremsstrahlung emission, cyclotron cooling is strongest near the shock, where the difference of electron and ion temperatures is greatest.

Therefore the slightest presence of two-temperature effects means that the stability of a cyclotron-cooling dominated shock is dominated by

the energy exchange between the two fluid components rather than the cooling function.

Many cases exist where the mode n is unstable while the mode n� 1 is stable, and some higher modes are unstable. This is a general

characteristic of radiative shocks with competing stabilizing and destabilizing cooling processes, and is preserved in the generalization to

conditions with two-temperatures and non-longitudinal perturbations.

The oscillatory parts of the dimensionless eigenfrequencies d I follow a sequence which is approximately regular and linear. In the

single-temperature case this sequence resembles the modes of a pipe open at one end: dI < dIO�n 2 1=2� � dC. When two-temperature

effects are present the limit of large e s causes the frequencies to approach quantization like a doubly open pipe dI < dIOn, because of the

fixed velocity condition at the white dwarf surface becomes less significant than the electron±ion thermal disparity throughout the column.

The frequency spacing of the modes, d IO, always decreases as e s increases, but tends to increase when the electron±ion exchange is weaker.

The frequency offset dC is small for low e s and it generally increases with increasing e s; in the limit of cyclotron cooling and two-

temperature dominance the offset approaches dC ! 1
2
dIO, giving the doubly open pipe behaviour.

Introducing transverse perturbations can destabilize modes that are stable to purely longitudinal perturbations, except when

cyclotron cooling dominates or two-temperature effects are strong. The modes become non-unique in d I, for different k . In the limit

of large k all modes are stable with oscillatory parts quantized like a doubly open pipe d I/n, regardless of the manner of their

quantization under the same parameters in the absence of transverse perturbations. Each mode has a number of instability maxima

in k , and these maxima evolve as the parameters (s s, cei, e s) change. When the pressure ratio at the shock s s is small, the

maxima of dR are stabilized at lower e s. When the electron±ion exchange is weak (cei is small), the maxima may continue to

destabilize at high e s.
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