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J.C. Fenton and C.E. Gough
School of Physics and Astronomy, University of Birmingham,

Edgbaston, Birmingham B15 2TT, United Kingdom.

Analytic and computational methods are used to consider the effects of heating on IV mea-
surements on commonly used mesa structures fabricated from single crystals of highly anisotropic
superconductors. We address the time dependence of the temperature rise as well as its ultimate
value and discuss the relative advantages for measurements of employing small mesa-size, short
pulses and ns-to-µs measurements.

In the highly anisotropic high-temperature super-
conductor Bi2Sr2CaCu2O8+δ (2212–BSCCO), almost-
insulating layers separate the superconducting copper-
oxide bilayers; intrinsic Josephson junctions are formed
along the out-of-plane direction1. To investigate con-
duction across these junctions, several groups have fabri-
cated mesa structures on the almost atomically flat sur-
faces of cleaved single crystals, using a combination of
photolithographic patterning, chemical etching and ion-
beam milling (see, for example, Refs.2–9).

For such intrinsic Josephson junctions in 2212–
BSCCO, the McCumber parameter βc is large, where
βc = 2eIcCR2/~ ≡ (ωPCR)2 and Ic is the critical cur-
rent of an individual Josephson junction, R is the single-
particle resistance of a junction, C its capacitance and
ωP is the plasma frequency. The resultant IV charac-
teristics are therefore highly hysteretic. For a stack of
several intrinsic junctions, the characteristics are also
multibranched. The resistive branches probe tunneling
quasiparticle properties. The IV characteristics mea-
sured across arrays of intrinsic junctions can therefore
be used to determine the c-axis quasiparticle tunneling
conductivity and the superconducting energy gap.

During any measurement of the resistive quasiparticle
branches, heat is generated in the mesa. Recently we
have argued that the backbending features often observed
in such measurements were the result of such heating10.
In this article, we discuss heat-flow in mesa structures
further.

We first derive analytical results for heat flowing from
the mesa into the bulk crystal, taking into account the
anisotropic thermal conductivity κ of the crystal. Heat-
ing soon after a pulse is switched on is considered as
well as steady-state heating. Results of numerical mod-
elling, taking into account the temperature dependence
of the thermal conductivity and heat capacity, are also
presented. We then discuss the role of thermal boundary
resistances and heat-flow into the contacts.

It is important to consider all possible channels for
heat flow away from the mesa. This clearly depends on
how the sample is fabricated, mounted and cooled. A
schematic representation of a typical mesa structure is
shown in Fig. 1. For our measurements10? , the samples
are fabricated from single crystals (∼1 mm×1 mm×10–
100 µm) of 2212–BSCCO set flush in a polymer epoxy on
a sapphire substrate. A combination of photolithography,

chemical etching and ion-beam milling is used to pattern
mesa structures of area (30 µm)2 and 10–100 nm thick
on top of the single crystal. Metal contact tracks ≈5 µm
thick run from the edge of the substrate to the top of each
mesa. These tracks are separated from the bulk-crystal
surface by an insulation layer of hard-baked photoresist
∼1 µm thick.

FIG. 1: Schematic of sample. Arrows indicate heat-flow away
from the mesa. The crystal is mounted in epoxy on a sapphire
substrate in good thermal contact with a copper block (not
shown).

The sample is mounted on a copper sample-block at
the end of a measurement probe, and placed inside
a continuous-flow cryostat, where it is surrounded by
cooled helium gas. This cooling is sufficient to keep the
temperature of the copper block constant (to within 0.1
K) during a measurement.

For our initial model, we assume that heat flow in the
system is dominated by heat flowing from the mesa into
the bulk crystal. The system can then be modelled as a
semi-infinite medium with the mesa acting as a circular
surface heat source of radius a, with uniform power input
Q̇ — power density q̇ ≡ Q̇/πa2 — and with no other heat-
flow across the surface. Q̇ corresponds to the total heat
generated in the mesa during measurements. The model
is identical to the lower half of an infinite medium with
power input 2Q̇ from a circular source.

The anisotropy of the thermal properties of a highly
anisotropic superconductor such as 2212–BSCCO is
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taken into account by a transformation from coordi-
nates x, y, z, κab, κc to coordinates x∗, y∗, z∗, κ∗ for which
the thermal conductivity is isotropic. We have cho-
sen the transformation x∗ = (κab/κc)−1/6x , z∗ =
(κab/κc)1/3z , κ∗ = κ

2/3
ab κ

1/3
c = κab(κab/κc)−1/3,

which requires no rescaling for the volume, time or heat
input.

The temperature rise for a system with a temperature-
independent thermal diffusivity D∗ = κ∗/cv can then
be determined by solving the thermal diffusion equation
with the above boundary conditions. The temperature
rise immediately below the centre of the source is given
by11

θ =
∫ t

0

q̇∗

cv

√
πD∗t0

(
1− exp

(
− a∗2

4D∗t0

))
dt0, (1)

which has different time dependences at short and long
times. In this model, θ is proportional to the power gen-
erated in the mesa stack, which is proportional to the
number of junctions in the mesa stack. Note that the
input power density q̇ is independent of the mesa radius
a for a given voltage bias per junction.

Since the heated volume for t ¿ a∗2/D∗ = a2cv/κab

is ∼ A∗
√

D∗t = A
√

Dct, where Dc = κc/cv, the short-
time solution corresponds to one-dimensional heat-flow
into the crystal below the mesa. The initial temperature
rise directly beneath the source is given by

θ =
2q̇∗√
πκ∗cv

t1/2 =
2q̇√

πκccv
t1/2 (2)

=
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cvA
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.

The temperature rise depends only on the thermal prop-
erties in the c-direction.

For t ∼ a∗2/D∗, the solution crosses over to its long-
time limit,

θ = θt→∞− Q̇

2(πD∗)3/2cv
t−1/2 = θt→∞− q̇a2

2

√
cv

πκ 2
ab κc

t−1/2,

(3)
reaching a steady-state value of

θt→∞ =
q̇∗a∗

κ∗
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πκaba

√
κab

κc
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.

(4)
The steady-state solution depends on the geometric mean
of the thermal conductivities in the in-plane and out-of-
plane directions. For distances from the source & a∗,
this solution corresponds to heat flowing from the source
radially in the transformed coordinates.

Krasnov et al. previously obtained an analytic solu-
tion for the steady-state temperature rise using a similar
model. Their solution, Eqn. 6 in Ref.12, contains an ad-
ditional numerical factor of π/4 as a result of assuming

FIG. 2: Temperature variation in the coefficient α for the
short-time temperature rise θ=αt1/2, calculated using ther-
mal parameters obtained from measurements in the litera-
ture. The input power corresponds to the heat generated in
a single-junction stack. The inset shows the crossover mesa-
size above which a one-dimensional model is appropriate for
measurements after the first 50 ns of heating.

a uniform temperature at the source, rather than a uni-
form heat-input. A factor

√
κab/κc is also missing from

their solution20.
Employing published data for the thermal conductiv-

ity and heat capacity of 2212–BSCCO13–15, the tem-
perature rise during measurements can be estimated.
The initial temperature rise θ(Tbase) = nα(Tbase)t1/2 de-
pends strongly on the starting temperature Tbase. Fig-
ure 2 shows the temperature variation of the coefficient
α. In all the quantitative calculations presented here,
we assume typical junction parameters with a normal-
state resistivity ρN = 27 Ωcm and with each junc-
tion biased at a gap voltage 2∆/e=50 mV. We also
assume a temperature-independent thermal-conductivity
anisotropy κab/κc=816. The initial rate of temperature
rise increases rapidly with decreasing starting tempera-
ture, largely due to the rapid decrease in the heat capac-
ity at low temperatures with a much smaller change in
the thermal conductivity.

As an example of the short-time temperature rises pre-
dicted by the analytic solutions, we find α=3.70, 0.85 and
0.15 K/

√
ns at 4 K, 10 K and 40 K respectively. This

would imply respective temperature rises after only 1 µs
for a single junction stack of 117 K, 27 K and 5 K. The
very large temperature rises show the need to take into
account the temperature variation of the thermal proper-
ties in order to make realistic predictions for the tempera-
ture rise, even a short time after heating begins. Numeri-
cal simulations, which include this temperature variation,
are presented below. We note that, given the monotonic
decrease in α as temperature increases, the computed
temperature rise will be intermediate between the tem-
perature rises obtained using θ=nαt1/2 with α = α[Tbase]
and α = α[Tbase + θ] respectively. The analytic solutions
therefore provide limits between which the actual tem-
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perature rise must lie.

FIG. 3: Time dependence of the mesa temperature for
a one-junction stack from numerical simulations with a
one-dimensional model of heat-diffusion, using temperature-
dependent thermal parameters. The broken lines show
the time dependence of the temperature assuming base-
temperature values for the thermal parameters. Curves for
three different base-temperatures (4 K, 12 K and 20 K) are
shown.

FIG. 4: Mesa-temperature after 50 ns as a function of the
number of junctions in the stack. The starting temperature
was 4 K, shown as a broken line. The circle data points were
obtained using a one-dimensional model of heat-diffusion, us-
ing temperature-dependent thermal parameters. The triangle
data points were obtained accounting for heat-flow through a
finite thermal boundary resistance into the silver electrode.
Published values were used to estimate the temperature-
dependent thermal parameters. The ratio of cross-sectional
areas Aelectrode/Amesa was taken to be 1 (closed triangles) or
0.2 (open triangles).

Figure 3 shows the computed initial temperature rise
directly beneath a single junction, obtained from a one-
dimensional model using temperature-dependent thermal
properties, for a number of different starting temper-
atures. The temperature rises are significantly smaller
than those calculated assuming base-temperature values
for the thermal parameters, shown as broken curves, par-
ticularly at low base-temperatures. Figure 4 shows the

temperature rise after 50 ns for a stack containing n iden-
tical junctions. The temperature rise is not simply pro-
portional to the number of junctions, because of the tem-
perature dependence of the thermal parameters.

The one-dimensional solution is only appropriate for
timescales much shorter than a∗2/D∗. On longer
timescales, the predicted t−1/2 approach to the final,
steady-state temperature will also be affected by the tem-
perature variation of the thermal properties.

The inset in Fig. 2 shows the mesa radius ac at which
the 50 ns measurement-time becomes comparable to
a∗2/D∗. At 4 K, the crossover size is ac = 2 µm. At
40 K, the crossover size is ac = 0.2 µm. For mesas much
larger than the crossover size, the temperature rise after
50 ns is well-approximated by the one-dimensional model.
In such cases, the temperature rise is independent of the
mesa radius and much less than its steady-state value; IV
measurements on a 50 ns timescale are particularly ad-
vantageous compared with dc measurements. For smaller
mesas, the temperature rise is smaller than this model
predicts, approaching its steady-state value.

FIG. 5: Steady-state temperature rise obtained from a ra-
dial model with temperature-dependent thermal conductiv-
ity, with a starting temperature of 4 K. The open and closed
circles show the temperature rise for heat input from a single-
junction and a 10-junction stack, respectively. Note the log-
arithmic scales. The dashed and dotted lines indicate the
corresponding temperature rises using respectively the 4 K
and 250 K values for the thermal conductivity.

To demonstrate the effect of the temperature depen-
dence of the thermal conductivity on the steady-state
temperature rise, we can model the heat-flow by assum-
ing that heat flow is radial for r∗ ≥ a∗ and that the
region r∗ < a∗ is at constant temperature. The temper-
ature rise can then be evaluated by numerical integra-
tion from large r∗ to a∗ of ∇θ = Q̇/(κ(T )2πr∗2). Fig-
ure 5 shows the steady-state temperature rise from 4 K
as a function of mesa radius, for mesa stacks with one
and ten junctions, using published values for κ(T ). Note
the logarithmic scales and the much reduced heating for
small-sized mesas. The steady-state temperature rises
are much greater than the short-time temperature rises.
Whereas mesa-size has no effect on the 50 ns tempera-
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lengthscale dimension L L∗ characteristic time

at 4 K at 40 K

mesa thickness c 30 nm 60 nm 70 ps 10 ns

mesa width ab 30 µm 20 µm 8 µs 1.3 ms

crystal thickness c 100 µm 200 µm 0.8 ms 130 ms

crystal width ab 1 mm 0.7 mm 10 ms 1.6 s

TABLE I: Characteristic lengthscales and corresponding
timescales in the experimental system. The characteristic
times take into account the anisotropy of the thermal con-
ductivity.

ture rise for a∗2/D∗ & 50 ns, the steady-state heating is
drastically reduced by using smaller-area mesas.

The steady-state heating is independent of the strongly
temperature-varying heat capacity and depends only on
the thermal conductivity, which varies by a relatively
small factor ∼ 2 over the temperature range. The short
and long dashed lines in Fig. 5 show the corresponding
temperature rises assuming constant 4 K and 250 K val-
ues for the thermal conductivity.

The crossover between different limiting forms of the
analytic solution on a timescale ∼ a∗2/D∗ is associated
with a general feature of solutions to the diffusion equa-
tion: there is a change in the limiting analytic form at
various characteristic timescales τ ∼ L2/D, where L is
a characteristic lengthscale in the system. This may be
the origin of previously reported changes in the time de-
pendence of the voltage across the mesa stack on µs and
ms timescales17.

In the above models, we have only considered the in-
plane size of the mesa: this results in the single char-
acteristic timescale a∗2/D∗. Table I lists lengthscales L
and timescales τ for our experimental system. The tem-
perature rise on the timescale associated with the mesa
thickness is sufficiently small to be safely ignored. For
t ¿ a∗2/D∗, a negligible amount of heat diffuses out to
the edges of the bulk crystal; the finite crystal size can
therefore also be ignored on short timescales. Moreover,
in the steady-state, almost all the temperature drop is
over a lengthscale a few times the mesa in-plane dimen-
sion. The finite size of the bulk crystal therefore has lit-
tle influence on the final temperature rise, as previously
found by Krasnov et al.12.

In the models presented here, we have neglected any
electrical contact resistance at the mesa-electrode bound-
ary. The presence of such resistance would lead to signif-
icant additional heat generation, and consequently larger
temperature rises10. For example, an electrical contact
resistance of 100 Ω would generate the same amount of
heat as a stack of around 220 intrinsic junctions of area
(30 µm)2, assuming a typical junction resistivity of 27
Ωcm. This underlines the importance of ensuring con-
tact resistances are as small as possible.

So far, we have assumed that all the heat generated
in the mesa flows into the crystal. The models de-

scribed above are particularly applicable to the mesa
structures fabricated by focussed ion-beam (FIB) milling
(see S.J. Kim et al.18). In this case, electrical contact
to the mesa stack is via two much larger electrodes, pat-
terned out of the same bulk crystal. Heat generated in
the stack of intrinsic junctions is injected at the corners
of the two much larger bulk-crystal electrodes. These two
bulk-crystal electrodes may be considered as two halves
of a semi-infinite structure similar to a heat source on top
of a single semi-infinite base crystal, since directly below
a source on a base crystal, heat flows vertically down-
wards; heat-flow in the horizontal direction is therefore
negligible. This geometry eliminates heating from the
mesa contacts, since these are superconducting and pat-
terned from the same block of crystal as the mesa stack.

In the typical mesa structure shown in Fig. 1, we note
that the upper metal electrode can be cooled either by
heat flowing into the helium vapour or by heat flowing
back into the bulk crystal through the insulating pho-
toresist layer. Using sensible estimates for the thermal
conductances involved, we find that, at low temperatures,
the heat flowing from the electrode into the surrounding
helium, ∝ (Telectrode

4 − Tbath
4), will be much less than

the heat flowing back into the crystal through the insu-
lating layer. If we assume the top surface of the crys-
tal below the insulating layer is at a constant tempera-
ture, it is easily shown that, for small temperature rises,
the temperature of the electrode drops off exponentially
with distance away from the mesa12, with a typical decay
length of ld ∼ 20 µm21. All the heat generated within
the mesa then contributes to the overall heating, via heat-
flow through the bulk crystal. This increases the effective
size over which heat is injected into the crystal — partic-
ularly for mesas with dimension a ¿ ld — so the mesa
temperature rise can be significantly smaller than if all
the heat were injected into the bulk crystal over the mesa
area alone. (Note that, in Eqn. 4, θ ∝ A−1/2 for constant
Q̇.)

However, the amount of heat lost to the helium vapour
will increase rather rapidly as the temperature of the
upper metal electrode increases, so that above ∼30 K,
this becomes the dominant cooling mechanism for the
metal electrode. This mechanism considerably increases
the amount of heat which has to be generated for the
mesa temperature to rise much above ∼30 K.

The static heating will be determined by heat-flow
from the electrode into the vapour and into regions of
the bulk crystal up to some distance from the mesa itself.
Maximizing the surface area of the electrode structure,
particularly in the immediate vicinity of the mesa, will
minimize the static heating of the mesa. Both the initial
and static heating will be reduced by using as thick an
electrode as possible.

At short times, the temperature rise will be dominated
by heat diffusion from the mesa into the upper electrode
and into the crystal directly below the mesa. Figure 4
shows numerical computations of this temperature rise,
taking into account the thermal boundary resistance be-
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tween the mesa and electrode, since this is important at
low temperatures. For Telectrode .10 K, little heat flows
into the electrode, as a result of the boundary resistance.

An exact treatment of the heat-flow problem would
require a three-dimensional calculation with full knowl-
edge of the thermal properties of all the materials in-
volved, along with their temperature variation. However,
we do not believe that our overall conclusions concerning
the relative importance of the various heat-flow channels
would be significantly changed. Differences in properties
such as electrode thermal conductance are likely to have
contributed to different degrees of heating in previously
reported measurements.

We now consider the justification for treating heat-flow
in 2212–BSCCO diffusively. The mean free path of in-
plane electrons in 2212–BSCCO is estimated to be ≈ 9
nm around 90 K, and ≈ 250 nm at 15 K. The mean free
path of phonons at low temperatures has been estimated
to be 1 µm12. A diffusive model for heat-flow into a bulk
crystal is therefore appropriate when the relevant length-
scales (i.e., those shown in Table I) are greater than 1 µm.
For mesas with in-plane dimensions ∼ 1 µm, we would
therefore expect deviations from a diffusive model. The
small thickness of a typical mesa (∼10–100 nm) suggests
that phonons generated in the mesa travel ballistically
through the mesa. However, we emphasize that the bal-
listic nature of phonons on sub-µm lengthscales does not
affect the applicability of a diffusive model in approx-
imating the temperature rise of the mesa, since most
of the temperature drop is across the bulk crystal, on
lengthscales larger than the mean free path of phonons.
We also note that, at low temperatures, phonons in 2212–

BSCCO may only be well-defined in special directions19.
This implies that the majority of energy transmission by
lattice vibrations is incoherent and diffusive.

Finally, we consider briefly how the above models
might aid interpretation of experiments. Extrapolation
to t = 0 of the time dependence of the IV charac-
teristic from data obtained at short times (t > 50 ns,
say), using the predicted temperature variation θ ∼ t1/2,
should, in principle, enable one to obtain intrinsic char-
acteristics unaffected by heating. However, it is also
necessary to consider the non-linear temperature depen-
dence of the voltage drop V across a junction for a given
tunnelling current and the changing power dissipation
in the mesa, when measurements are made below the
gap voltage. Since V (I0 = constant, T ) varies slowly
for eV ¿ (2∆(T ) − kT ) but much more rapidly for
eV ∼ (2∆(T ) − kT ), extrapolation can be particularly
difficult.

In summary, we have discussed heat-flow in the type of
mesa structures often used for investigation of intrinsic
Josephson junctions in 2212–BSCCO. We have presented
an analytic solution to the diffusion equation for the sys-
tem, which provides insights into the nature and details
of heating in the system. We have considered the time
evolution of the heating; this enables us to assess the
respective advantages of using small mesas and measure-
ments on short timescales as the means to reduce the
effects of heating on measurements. Both methods are
effective in reducing heating. At low-temperatures, mea-
surements on a 50 ns timescale suffer very much less from
heating than dc measurements, unless the mesa dimen-
sion is . 1 µm.
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