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Abstract—Thirty weak base 1,2,4-dispiro trioxolanes (secondary ozonides) were synthesized. Amino amide trioxolanes had the best
combination of antimalarial and biopharmaceutical properties. Guanidine, aminoxy, and amino acid trioxolanes had poor antima-
larial activity. Lipophilic trioxolanes were less stable metabolically than their more polar counterparts.
� 2006 Elsevier Ltd. All rights reserved.

The discovery of artemisinin (ART)1 and its semisyn-
thetic derivatives dihydroartemisinin (DHA), arteme-
ther (AM) and artesunate (AS) (Fig. 1) triggered2 the
search for superior semisynthetic artemisinins3 and syn-
thetic peroxide antimalarials.4

The first attempts to improve synthetic peroxide5 and
semisynthetic artemisinin6 antimalarial specificity and
biopharmaceutical properties by incorporating weak

base functional groups and heterocycles were largely
unsuccessful. Since that time, however, continued
work7–12 in this area has produced some encouraging re-
sults as illustrated by synthetic peroxides 1 (OZ209)13

and 2 (trioxaquine),14 and semisynthetic artemisinin 3
(artemisone)15 (Fig. 2). In this paper, we describe the
synthesis16 and antimalarial properties of thirty 1,2,4-
dispiro trioxolanes (secondary ozonides) containing
azole heterocycles and aliphatic and aromatic amine
functional groups. Metabolism and pharmacokinetic

0960-894X/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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Figure 1. Artemisinin and its semisynthetic derivatives.
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Figure 2. Weak base antimalarial peroxides.
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data are presented for selected trioxolanes. Our aim was
to identify a potent weak base analog of 1 with high oral
activity, good biopharmaceutical properties, and low
toxicity.

Trioxolanes 13, 14, 15, and 17 were obtained by post-
ozonolysis transformations of their precursor trioxolane
esters and phthalimides; the latter were obtained by
Griesbaum coozonolysis17,18 reactions between the
O-methyl oximes of 2-adamantanone (4) or 4-tert-butyl
cyclohexanone (5) (for 13) and the appropriate 4-substi-
tuted cyclohexanones 6 (Scheme 1). Symmetrical oxime
ethers such as 4 preclude the syn-anti isomerism of the
resulting carbonyl oxide intermediates, and ensure that
the stereochemistry of the cycloaddition is only a
function of the starting material ketones. For 4-substi-
tuted cyclohexanones, the major trioxolane isomers are
uniformly cis with the substituent and peroxo groups
at the equatorial and axial positions, respectively.19,20

With the exception of 31, each of the trioxolanes
reported herein is single cis isomer. Indeed, X-ray
crystallographic analysis21 of 7,19 the phthalimide pre-
cursor of 14, reveals that it has a cis configuration
(Fig. 3).

Alcohol 17 (96%) was obtained by lithium borohydride/
lithium triethylborohydride22 reduction of its precursor
methyl ester (cis). Conversion of 17 to its mesylate, fol-
lowed by azide formation and triphenyl phosphine
reductions afforded amine 15 (52% overall). Azole 45
(61%) was formed by treatment of the mesylate deriva-
tive of 17 with imidazole/NaH. Amines 13 (65%) and
14 (69%) were obtained by hydrazinolysis of their

precursor phthalimides. Unlike amine 15, amines 1
and 14 were unstable as hydrochloride salts, but were
quite stable as mesylate or tosylate salts.

Alkylation of 1 with 2-bromoacetamide and 2-chloro-
pyrimidine in the presence of K2CO3 afforded 28 (44%)
and 36 (20%) (Scheme 2). Carbamate 19 (63%) and gua-
nidine 20 (56%) were obtained by treatment of 1 with
ethyl chloroformate/Et3N and 1H-pyrazole-1-carbox-
amidine hydrochloride/Et3N. Amine 27 (55%) was
obtained by reductive amination of formaldehyde with
amine 1. Aminoxy trioxolane 18 (69% overall) was
obtained by Mitsunobu reaction of alcohol 8 with
N-hydroxyphthalimide followed by hydrazine deprotec-
tion. Reductive amination reactions were used to obtain
amines 32 (74%) and 31 (45%) (1:1 mixture of cis and
trans achiral diastereomers) from ketone 9 and amines
22 (36%), 23 (39%),25 (46%), 30 (61%), and 34 (49%)
from aldehyde 10 (Scheme 2). Imidazole 41 (70%) was
obtained from 10 by treatment with 40% aq glyoxal fol-
lowed by 7 N methanolic ammonia. Reaction of
mesylate 11 with the anions of pyrazole and methyl 4-im-
idazole carboxylate afforded 39 (81%) and the isomeric
imidazole ester precursors of 43 (20%) and 44 (47%).
Successive treatment of these esters with 15% KOH,
BOC anhydride, and 7 N methanolic ammonia afforded
imidazole amides 43 (11% overall) and 44 (27% overall).
Tetrazole 42 (69% overall) was obtained by successive
treatment of active ester 12 with 3-aminopropionitrile,
trimethylsilyl azide/TPP/DIAD, sodium bicarbonate,
and 1 M HCl according to the method of Johansson
et al.23 Trioxolanes 1, 7–12, 16, 21, 24, 26, 29, 33, 35,
37, 38, and 40 were obtained as previously described.19,20
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Scheme 1. Trioxolane synthesis by Griesbaum coozonolysis and post-

ozonolysis transformations.

Figure 3. Ellipsoid plot of 7 showing the atom numbering used for the X-ray crystallographic report. The phthalimide and epoxide substituents are in

equatorial positions on the cyclohexane ring, and the peroxide substituent is in the axial position. Displacement ellipsoids are shown at the 50%

probability level.
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Scheme 2. Trioxolane synthesis via post-ozonolysis transformations.
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In vitro and in vivo antimalarial activities13 were mea-
sured using the chloroquine-resistant K1 and chloro-
quine-sensitive NF54 strains of Plasmodium
falciparum, and Plasmodium berghei-infected mice,
respectively. In vivo data were determined using single
10 mg/kg oral doses of the trioxolanes administered on
day 1 post-infection in a non-solubilizing, standard sus-
pension vehicle (SSV) formulation comprising 0.5% w/v
carboxymethyl cellulose, 0.5% v/v benzyl alcohol, 0.4%
v/v Tween 80, and 0.9% w/v sodium chloride in water.
The complete lack of activity for 13 demonstrates the
essential contribution of the spiroadamantane ring sys-
tem to the antimalarial properties of 1 and its analogs.
For the homologous series of primary amines 14, 1,
and 15, in vitro potencies and metabolic stabilities were
essentially invariant, but in vivo activity was the highest
for 1 (Table 1). The primary alcohol isosteres 16, 8, and
17 were similarly potent in vitro, but were not as effec-
tive in vivo. The weaker in vivo activities of the alcohols
may be due in part to their decreased metabolic stabili-
ties (predicted hepatic ER > 0:5), presumably a function
of their greater lipophilicities. The poor antimalarial
profile of 18, the aminoxy isostere of 15, shows that a
basic amino group is required for optimal antimalarial
activity. On the other hand, the data for 20 show that
substituting a more basic guanidine for the primary
amine in 1 diminishes antimalarial potency by an order
of magnitude. Ethyl carbamate 19, a potential prodrug
of 1, had an antimalarial profile equal to that of 1, but

was considerably less metabolically stable due, presum-
ably, to hydrolysis of the carbamate functional group.

The data for secondary and tertiary aliphatic amines are
depicted in Table 2. With the exception of amino acid
23, all of the secondary amines were quite potent
(IC50s <1 ng/mL). Of these, only cyclopropyl amine 21
and diamine 26 had activities <99.5%. Data for amino-
ester 22, aminoacid 23, and aminoamide 24 show that 22
was rapidly metabolized (predicted hepatic ER > 0:99),
probably by conversion to the metabolically stable 23,
and that 24 provides an optimal combination of func-
tional groups (amine, amide). Aminoamide 25, the
homolog of 24, also had a very good antimalarial profile
and had a metabolic stability similar to that of 24.
Although tertiary amines 27 and 28 had good potency
in vitro, they were not very active in vivo. When the ter-
tiary amine was the proximal N atom of a piperazine
heterocycle (29, 30), in vivo activity improved
substantially.

The data for secondary aromatic amines are depicted in
Table 3. All of these had good potencies in vitro (IC50s

<5 ng/mL), and with the exception of 36, had in vivo
activities P 99.5%. Anilides and sulfanilamides 31-34
were considerably more lipophilic (LogDpH 7.4 >5) than
their aliphatic amine counterparts shown in Table 2.
Not surprisingly, 31 and 32 were rapidly metabolized
as was 34 (predicted ER > 0:7). Interestingly, pyridine

Table 1. Lipophilicity, metabolic stability, and activity of primary amino trioxolanes and their alcohol and aminoxy isosteres, and carbamate and

guanidine derivatives against P. falciparum in vitro and P. berghei in vivo

OO

O
R

OO

O NH2

1, 10, 14-20 13

Compound R LogP/DpH 7.4
a IC50

b (ng/ml) K1/NF54 Activity (%)c ERd

None — — — 0 —

13e — 3.3D >100/>100 0 ND

14f NH2 2.7D 0.81/0.31 98 <0.3

1e CH2NH2 2.6D 0.39/0.42 99.98 0.24

15g (CH2)2NH2 2.9D 0.15/0.48 99.08 <0.3

16h OH 3.9 0.25/0.51 93 0.62

8h CH2OH 5.1 0.83/0.20 99.15 0.51

17 (CH2)2OH 5.6 0.30/0.75 89 0.65

18e CH2ONH2 5.6D 28/20 47 ND

19 CH2NHCO2CH2CH3 6.2 0.40/0.56 99.94 0.57

20g CH2C@NH(NH2) 1.2D 6.2/7.6 9 ND

AMh — 3.3 0.74/1.2 99.36 0.89

ASh — 3.5 1.3/1.6 67 0.43i

a Calculated as previously described,13,20 LogDpH 7.4 denotes the octanol/buffer partition coefficient at pH 7.4 which is relevant for the ionizable

analogs.
b Mean from (n = 2–3). Individual measurements differed by less than 50%.
c Groups of three P. berghei-infected MORO mice were treated orally one day post-infection with trioxolanes dissolved or suspended in SSV.

Antimalarial activity was measured by percent reduction in parasitemia on day three post-infection. Individual measurements differed by less than

10%.
d Predicted hepatic extraction ratios (ER) using human liver microsomes.30

e Mesylate salt.
f Tosylate salt.
g Hydrochloride salt.
h Data from Dong et al.25

i Value for DHA, the primary metabolite of AS.
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35 and pyrimidine 36 were similarly potent in vitro, but
the less basic 36 was much less active than 35 in vivo.

The data for the azoles are depicted in Table 4. With the
exception of acidic tetrazole 42, all had IC50s < 2 ng/mL.
Compared to imidazole 38, the less basic pyrazole (39)
and triazole (40) isosteres were equally potent in vitro,
but only 40 was as active in vivo, and it was unexpected-
ly less stable metabolically. Compared to N-alkyl imidiz-
ole 38, the more polar 2-substituted imidazole 41 was
more potent in vitro, but, it was much less active in vivo.
Imidazoles 43 and 44 show that increasing the polarity
of 38 by carboxamide substitution maintains antimalar-
ial efficacy, but where measured (44), decreases metabol-
ic stability. Imidazole 45 shows that extending the link
between the cyclohexane and imidazole heterocycle
increases lipophilicity but does not enhance antimalarial
efficacy.

To assess whether some of the new weak base trioxol-
anes could cure P. berghei-infected mice, we adminis-

tered a 3 · 10 mg/kg divided dose on days +1, +2, and
+3 post-infection. In this experiment, 1 was completely
curative, semisynthetic artemisinins AM and AS provid-
ed no cures,13 and 24, 31, 32, and 38 cured 1/5, 2/5, 4/5,
and 0/5 of the infected mice, respectively.

Selected trioxolanes were administered intravenously
(IV) and orally (PO) to rats24 and pharmacokinetic data
for 1, 8, 24, 38, DHA, and AM are shown in Table 5.
The data indicated that alcohol 8 was rapidly cleared
after IV dosing by conversion to its less active25 carbox-
ylic acid metabolite. After PO dosing, plasma concentra-
tions of 8 were not detected indicating very low oral
bioavailability. Weak base trioxolanes 1, 24, and 38 each
had a considerably longer half-life compared to 8 and
oral bioavailabilities ranging from 30% to 60%.

Preliminary toxicological investigations (5-day toxicity
studies in male rats with daily oral administration) indi-
cated toxicological profiles of 1, 24, and 38 similar to that
of artesunate, including gastric irritation, hepatocellular

Table 2. Lipophilicity, metabolic stability, and activity of secondary and tertiary amino trioxolanes against P. falciparum in vitro and P. berghei

in vivo

OO

O

21-26

HN R

OO

O R

N

N
O

H

OO

O

27, 28

N R
R

NH

N
OR =

29

30

Compound R LogDpH 7.4 IC50 (ng/ml) K1/NF54 Activity (%) ER

21a Cyclopropyl 2.8 0.56/0.45 59 0.33

22a CH2COOEt 5.7 0.42/0.45 99.64 >0.99

23a CH2COOH 2.5 11/17 99.80 0.25

24 CH2CONH2 3.6 0.30/0.59 99.67 0.40

25a (CH2)2CONH2 2.4 0.41/0.91 99.92 0.36

26b CH2C(CH3)2NH2 3.4 0.49/0.83 95 ND

27a CH3 3.8 0.35/0.75 74 0.34

28 CH2CONH2 3.8 1.7/2.0 86 ND

29 — 4.0 1.3/1.8 99.81 0.50

30 — 4.6 1.6/2.4 99.01 ND

a Mesylate salt.
b Dimesylate salt.

Table 3. Lipophilicity, metabolic stability, and activity of aromatic amino trioxolanes against P. falciparum in vitro and P. berghei in vivo

OO

O HN R

OO

O
NHR

31, 32 33-37

Compound R LogDpH 7.4 IC50 (ng/ml) K1/NF54 Activity (%) ER

31 4-CONH2C6H5 6.2 1.1/1.0 99.98 0.74

32 4-SO2NH2C6H5 5.8 2.7/3.0 99.98 0.73

33 4-CONH2C6H5 6.3 0.94/1.6 99.73 ND

34 4-SO2NH2C6H5 5.9 2.0/3.0 99.95 0.84

35 3-Pyridyl 5.4 0.25/0.34 99.58 ND

36 2-Pyrimidinyl 5.3 0.65/1.2 80 ND

37a 2-Thiazolyl 6.4 2.3/2.2 99.49 ND

a Mesylate salt.
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hypertrophy, renal tubular changes, and atrophy of lym-
phatic tissues. No signs of neurotoxicity were seen. The
overall toxicity of 24 and 38 was significantly lower than
that of 1. Findings tended to be reversible at the end of a
1-week recovery period. Preliminary genotoxicity tests
(Ames microsuspension26 and MNT in vitro27 assays)
were not indicative of a relevant genotoxic or clastogen-
ic/aneugenic potential. hERG patch-clamp assays
revealed IC50 values of 1.8 and 2.7 lM28 for 1 and 24,
similar to those of 2.5 and 2.6 lM29 for chloroquine
and mefloquine.

In summary, compared to primary amino trioxolanes
14, 1, and 15, alcohol (16, 8, 17) and aminoxy (18) isos-
teres, and guanidine (20) and amino acid (23) analogs
had inferior antimalarial and biopharmaceutial profiles.
As exemplified by imidazole 38, the good antimalarial
profiles of several weak base azoles show that trioxol-
anes do not require an aliphatic amino functional group
for high antimalarial activity. The reduced potency of 23
and 42 is consistent with our previous observation25 that
trioxolane carboxylic acids have weak antimalarial
activities. Although none of these new weak base triox-
olanes had antimalarial profiles superior to that of 1,
amino amides 24, 25, 29, and 31–34 were nearly as effec-

tive; however each of these was less stable metabolically
than 1. Indeed, lipophilic trioxolanes tended to be less
stable metabolically than their more polar counterparts.
Importantly, 1, 24, and 38 each displayed an improved
half-life and oral bioavailability relative to DHA and
AM, and the latter (24, 38) were less toxic than 1. Future
studies will determine the potential of weak base trioxol-
anes as antimalarial drug development candidates.
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