View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by DigitalCommons@University of Nebraska

University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

Computer Science and Engineering, Department

CSE Technical reports of

2004

An Analysis of MCMC Sampling Methods for Estimating Weighted
Sums in Winnow

Qingping Tao
University of Nebraska-Lincoln, qtao@cse.unl.edu

Stephen Scott
University of Nebraska-Lincoln, sscott2@unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/csetechreports

b Part of the Computer Sciences Commons

Tao, Qingping and Scott, Stephen, "An Analysis of MCMC Sampling Methods for Estimating Weighted
Sums in Winnow" (2004). CSE Technical reports. 111.
https://digitalcommons.unl.edu/csetechreports/111

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Technical reports by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

https://core.ac.uk/display/17213797?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/csetechreports
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/csetechreports?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/csetechreports/111?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F111&utm_medium=PDF&utm_campaign=PDFCoverPages

Technical Report TR-UNL-CSE-2004-0007
Dept. of Computer Science, University of Nebraska

An Analysis of MCMC Sampling Methods for Estimating
Weighted Sums in Winnow

Qingping Tao tao@cse.unl.edu)and Stephen D. Scott

(sscott@cse.unl.edu)
Department of Computer Science & Engineering, Univerditf@braska, Lincoln, NE
68588-0115 USA

April 1, 2004

Abstract. Chawla et al. introduced a way to use the Markov chain MontéoGaethod to
estimate weighted sums in multiplicative weight updat®atgms when the number of inputs
is exponential. But their algorithm still required extamsisimulation of the Markov chain
in order to get accurate estimates of the weighted sums. \8fsope an optimized version
of Chawla et al’s algorithm, which produces exactly the satassifications while often
using fewer Markov chain simulations. We also apply thrdeensampling techniques and
empirically compare them with Chawla et al.'s Metropolisgéer to determine how effective
each is in drawing good samples in the least amount of tinterins of accuracy of weighted
sum estimates and in terms of Winnow’s prediction accuracy.

Keywords: DNF, Winnow, Markov Chain Monte Carlo

1. Introduction

Chawla et al. (2004) introduced the use of the Markov chaimtédCarlo
(MCMC) method to estimate weighted sums in multiplicativeight update
(MWU) algorithms when the number of inputs is exponentiahe®f their
applications was using Littlestone’s (1988) Winnow altfon to learn DNF
formulas. Although their preliminary empirical resulteanuch stronger than
what their theoretical results implied, they still requlirextensive simulation
of the Markov chain to draw “good” samples (i.e. from closdhe chain’s
stationary distribution) in order to get accurate estimaté the weighted
sums. This significantly slowed their algorithm.

We propose an optimized version of Chawla et al.’s algorjthitich often
uses less computation time without any loss in classifinasiocuracy. We
give two theorems to prove the correctness of our algorittifa.also give
lower bounds on how much computation time our algorithm sale.

In our experiments, we empirically compare three MCMC samgptiech-
niques (Gibbs, Metropolized Gibbs and parallel temperitoglChawla et
al.'s Metropolis sampler to determine how effective eacim iguickly draw-
ing good samples, in terms of accuracy of weighted sum etsnand in
terms of Winnow's prediction accuracy. The experimentauhs show that

* An early version of this paper appeared as Tao and Scott J2003

p;‘w (© 2004Kluwer Academic Publishers. Printed in the Netherlands.

v6.tex; 1/04/2004; 9:52; p.1

Administrator
Technical Report TR-UNL-CSE-2004-0007
Dept. of Computer Science, University of Nebraska

2 Qingping Tao and Stephen D. Scott

Metropolis sampler has worse performance than Gibbs andoptaized
Gibbs on estimating weighted sums. Gibbs shows better qpeafoce than
Metropolized Gibbs when the number of variables is largeudfm there is
little difference between them when the number of varialidesmall. For
prediction errors, there is little difference between an€MIC techniques.
Also, on the data sets we experimented with, we discoveraidathapproxi-
mations of Winnow have no disadvantage over brute force @inf.e. when
weighted sums are computed exactly). Thus generalizatioaracy is not
compromised by the approximation.

We also extend Chawla et al.’s algorithm to handle genedlfpon-boolean)
inputs and multi-class outputs. These results are criticapplying MCMC
methods to other applications of MWU algorithms with expuiadly large
feature spaces. For example, the Winnow-based algoritAracménd Scott (2004)
(adapted from Goldman et al. (2001)) for learning conceqtsifa general-
ization of the multiple-instance model (Dietterich et d1997)) is efficient
for low dimensions, but does not scale well. It is possiblat tBhawla et
al’s MCMC-based approach can be very useful to make thridihgn (and
others) more scalable, but first a thorough empirical amatylsthe sampling
method is required.

The rest of our paper is as follows. In Section 2 we discusdad|work.
Section 3 describes Chawla et al.'s MCMC approach for esitimaveighted
sums and presents our optimized version. Section 4 givesifiberent MCMC
sampling techniques. Section 5 gives several extensiotiedfasic Winnow
algorithm. We then report our experimental results in ®&db and conclude
in Section 7.

2. Related Work

2.1. LEARNING DNF FORMULAS USING WINNOW

Let f = PVPV...V Pk bethe target function, wheté = c;1 AcioA. . . Aciy
is a term and:;; is a constraint on the value of attributelf we let attribute

j take on values from1, ..., k;}, thenc;; = ¢ € {1,...,k;} means that for
an examplex to satisfy constraint;;, x; = /. If ¢;; = 0, thenz; can be any
value from{1,...,k;} and still satisfy the constraint. l{; = 0, then this

attribute value is unspecified and only satisfies a “don’e’taonstraint of
¢;j = 0. In other wordsx satisfiesP; iff for all j, eitherz; = ¢;; orc;; = 0.
Thus the set of possible terms available faand the instance space are both
Q= H?;&{O, ..., k;}. It is easily seen that if example hasn, specified
values (i.e.nyx values> 0), then there are exactly"= terms satisfied by
it. The problem of learning conventional DNF formulas (ke.= 2 for all

4) has been heavily studied in a learning-theoretic framkweig. Bshouty

v6.tex; 1/04/2004; 9:52; p.2

An Analysis of MCMC Sampling Methods for Estimating WeigthtBums in Winnow 3

et al. 1999; Khardon et al. 2001, but positive results exy o restricted
cases, and the general DNF problem remains hpen

The algorithm Winnow of Littlestone (1988) is a linear thekl learner
that uses multiplicative updates to change its weights.néiinis anon-line
learning algorithm, which means that learning proceedsiats. At trial ¢,
Winnow receives an input vecta, and makes its predictiofy = 1 if W, =
w; - x; > 0 and 0 otherwise, where, is its weight vector at triat and6 is
the threshold. Then Winnow is told the true labgland updates its weight
vector as followsw; 11, = wtvia“’”?i(yt_gt) for some learning rater > 1.
If wiy1; > wye;, we call it apromotionand if wy1; < ws;, we call it a
demotion Littlestone showed that if the target concept labellinge¢kamples
can be represented as a monotone disjunctiod aff the NV total inputs
to Winnow (i.e. a disjunction where none of tl#€ inputs are negated in
the target function), then Winnow can exactly learn thedgtopncept while
making at mosO (K log N) prediction mistakes. Hence Winnow can be used
to learn DNF formulas by using all possible terms as its iaphktg. ifk; = 2
for all 7, there will be N = 3" possible terms, where is the number of
variables in original input vectax. For a particular instance, input z; to
Winnow is 1 if x satisfies termi and O otherwise. The number of mistakes
that Winnow will make on any sequence of examples is théAn), where
K is the number of terms in the target disjunction.

Of course, the algorithm as described above is not efficente brute
force computation ofV; = w; - x| takes timeQ2(N), which is exponentidl
in n. Thus another approach is needed to complteOne possibility is to
use kernels, as illustrated by Khardon et al. (2001) for teee&ptron algo-
rithm (i.e. using additive weight updates). However, wihiiey showed that
it is possible to efficiently compute the weighted sum ford@ptron when
learning DNF, they also showed that in the worst case, thained-based
algorithm make22(") prediction mistakes. They also argued that unless P
= #P, it is impossible to efficiently exactly simulate Winndar learning
DNF. Thus we look to Chawla et al. (2004), who use MCMC methiods
estimatd/V; for Winnow with high probability as opposed to Khardon et al.’s
hardness result that says deterministicsimulation of Winnow is possible
for DNF. While Chawla et al. do not guarantee an efficient DNgoathm
in the learning-theoretic sense, their results yield aratiffe heuristic for
learning DNF. This is in part due to the fact that in order torectly simulate
Winnow, it is not required that the estimaté, be close td¥;, but only that
it be on the same side of the thresholasV;.

11t is unlikely that an efficient distribution-free (PAC) DNEarning algorithm ex-
ists (Blum et al., 1994; Blum et al., 1993).

2 Note that storing all weights takeé3(N) space, but we can compute the weight of a
particular termP by evaluating it on the training set, eliminating the neesttwe the weights.

v6.tex; 1/04/2004; 9:52; p.3

4 Qingping Tao and Stephen D. Scott

2.2. MARKovV CHAIN MONTE CARLO METHODS

The Markov chain Monte Carlo method uses a Markov chain talsita
Monte Carlo experiments that provide approximations tontjtias by per-
forming statistical sampling experiments. Starting with work of Metropo-
lis et al. (1953) and Geman and Geman (1984), MCMC methods baen
widely used to solve problems in statistical physics anddB&n statistical
inference. One major class of these problems is approxisatemation,
whose goal is to approximate the sui = > .qw(z), wherew is a
positive function defined of that is a large but finite set of combinatorial
structures.

Generally a Markov chaii with state spac@ and stationary distribution
m is designed to bergodic that is, the probability distribution ové con-
verges asymptotically to regardless of the initial state. Thé is repeatedly
simulated forI" steps and generates samples almost according TheseS
samples are then used to estimate the quantity of intersstlly we discard
states in the firsi}y steps and assume there would be a rapid convergence to
7 during these steps. Thig)-step procedure is calldalirn-in.

After burn-in, M then would return the element at the state as a sample
from the empirical distribution® at the end of the simulation. Then this
process would be restartefl times, which mean§” = S7T,. Rather than
repeatedly restarting the whole process, the more commabmitgie is to
sample from a single run of the process, which means the Mackain
would be simulated for anothe¥ steps after burn-in, each additional step
generating a new sample. Thus the total number of stépsHsiy + .S. One
benefit of multiple runs is that samples are completely iedepnt, but this
requires more computation. Instead, a single run only naesilsgle burn-in
procedure and the samples drawn from it would be good endubh thain
converged tar rapidly. Since efficiency is essential in our experiments, w
use a single run rather than multiple runs.

Two well-studied problems with MCMC solutions are the apjmate
knapsack problem and the problem of approximating the sutineoiveights
of a weighted matching in a graph (e.g. Jerrum and Sincl@@§)). Chawla
et al. (2004) combined these two sloultions and gave a Melisogampler
(Metropolis et al., 1953) to approximate the weighted suniinnow for
learning DNP. Then they evaluated this algorithm on simple simulated dat
sets. We extend their work by adding optimizations (SecB@) and apply-
ing three other sampling techniques: Gibbs, Metropolizétb&and parallel
tempering.

3 They also used a similar technique to approximate weightetssn Weighted Majority
(Littlestone and Warmuth, 1994) of classifiers created lmsking (Schapire and Singer, 1999)
for predicting nearly as well as the best pruning of an ensemb

v6.tex; 1/04/2004; 9:52; p.4

An Analysis of MCMC Sampling Methods for Estimating WeigthtBums in Winnow 5

3. Estimating Weighted Sumswith MCMC

3.1. CHAWLA ET AL."S MCMC SOLUTION FOR WINNOW

We now describe Chawla et al.’s (2004) MCMC solution forrestiingiV; («),
whereWi(a) = Y peq, we,p(@), w,p(a) = a®) is term P's weight of
training* Winnow with learning ratev, andcw; (P) = u;(P) — v(P), where
u¢(P) is the total number of promotions of terfat timet andv,(P) is the
total number of demotions.

LetQ; C Q be the set o2™ terms that are satisfied by example(n; < n
is the number of non-zero valuesxn). For each termP’ = (p},...,p)) €
O, letP = (p1,...,pn,) € 4 be defined as follows:

1. deletep, from P’ for all 7 such thate; = 0 and call the new tern®”;

2. setp; = 1if p!/ > 0andp;, = 0if p/ = 0.

Chawla et al. then build a set of Markov chaift$; on the state spade,
that are based on Metropolis sampler (see Section 4.1). &ath)M, (o) €
M, has a specific learning raté and a stationary distribution, (P) =
we p(a) /Wi ().

They then defing‘} t() = Wt P(Oél 1 t)/wt P(O[Z t) Wherealt = (
—)i=tfor 1 <i <r,r isthe smallest integer such thidt+ ——)"~! > «

andmt = w(P.) + v (P.) whereP, = (0,0,...,0). Then they get
Wiai14)
fl T ¢, fl - : .
t P%(:)t . t() Wt(ai’t)

SoWi(ei—1.+)/Wi(ai+) can be estimated by computing the sample mean of
fit(P), which allowsW;(«) to be computed since

_ Wit B Wi(ag,t) o
Wi(a) = <7Wt(ar—l,t)> (Wt(al t)> Wi(on)

andWy(ay1+) = W(1) = || = 2™. Therefore, for each valug, ¢, . . ., a, 4,
Sy samples are drawn frodv; («; +) after discarding the first; ; steps. I£X; ;

is the sample mean ¢f ;(P) and| M,| = r,—1, then Chawla et al.'s estimate
of Wt(()é) is

Wt(a) = 2nt H 1/Xi7t .

The following results hold for this estimation procedure.

4 W, is a function ofx since Chawla et al. define their approximation method usngral
different values ofv; € [1, o]. Note that, however, the actual sequence of updates made (.
the values ofww.(P)) will be the same regardless of;. This single sequence of updates
is determined by running the learning algorithm with thegioral learning raten. Hence

wt,P(ai)/wt,p(aj) = (ai/ozj)w'(P)_

v6.tex; 1/04/2004; 9:52; p.5

6 Qingping Tao and Stephen D. Scott

THEOREM 1. (Chawla et al., 2004Let the sample siz6; = [130r.e? /€]
and M; be simulated long enough for each sample such that the @miat
distance between the empirical distribution angl, is at moste/(5¢2r;).

Then for any > 0, W;(«) satisfies
Pr|(1 - Wi(a) < W) < (1+€Wi(a)| 216 .

COROLLARY 2. (Chawla et al., 2004Using the assumptions of Theorem 1,
if Wi(a) & [r5 meg] for all ¢, then with probability at least — 4, the
number of mistakes made by Winnow on any sequence of exasgiesost

8+ 14KnIn(k +1).

3.2. WHAT IS THE BEST CHOICE OFr?

According to Chawla et al.'s MCMC solution, the computattome of esti-
matingW,(«) depends on the number of chains- 1, the number of burn-in
stepsTy and the sample siz8. To reduce the computation time, we need
to reduce eithefl; and S, or r;. We could choose relatively smally and

S if all of the chains inM; converged to their stationary distributions fast
enough. This could be achieved by using a good sampler, vididiscussed
in Section 4. In this section, we analyze if we could choosmallgrr; than
Chawla et al.’s proposition.

Define f; ,(P) = wy,p(o;_y ;) /we,p(ey,), Where, , = (1 + m/m;)

’ . . / ,_1
for1 < i < r, r,is the smallest integer such thél + n/mt)rt > «,

i—1

andx andm, are positive constants. Obviouslft,.(P) is a special case of

fi.(P) whenr = 1 andm; = m,. If we increases or use a smallem,, we
would decrease;. In Theorem 4 below, we extend Theorem 1.
LEMMA 3. For any distributionr of Q;, if m; > max{u;(P,),v;(P.)}, for
alliandP, e " < f; (P) < e”.

Proof.Let o' = maxpeg, {ut(P)—ve(P)} andpi"™ = minpeg, {us(P)—
v (P)}, i.e. the maximum and minimum number of net promotions. &ic
is satisfied by any term and (), vi(Pe.) > 0, ug(Pe) > pi"** > " >
—v¢(P.). Thereforeyn; > max{|p]"**|, |""|}.
Forall P € €,

’ ’ ’W(P) w(P)
, w o, o,
fi,t(P) = t’P(rl’t) = /1’t =1+ ﬁ/)
wt,P(%gt) QG ¢ my

wherew(P) = ui(P) — v(P). Therefore,

max

/ =P <\ . m,
fit(P)=<1+) §<1+) §<1+) <e",
’ my my my

v6.tex; 1/04/2004; 9:52; p.6

An Analysis of MCMC Sampling Methods for Estimating WeigthtBums in Winnow 7

and

min

/ =P <\ o\
(o2 (o) o) e
’ my my my

By substituting Lemma 3’s bounds into Theorem 1, we get tHeviing.

THEOREM 4. If m, > max{u;(P,),v;(P.)}, let the sample siz&; =
[130e2~+,/€*| and M, be simulated long enough for each sample such that
the variation distance between the empirical distributeord 7, , is at most

¢/(5e2%#,). Then for anys > 0, W;(«) satisfies
Pr (1 - eWi(a) < Wila) < (1+€Wi(a)] > 136

According to Theorem 4, we can sef = max{u;(P.), v;(P.)}, which
is often less than Chawla et al.'s proposalmef = u:(P.) + v(FP.) (see
Section 3.1). But Theorem 4 tells us that if we increassy 1 , we would
need almost? times the sample size ard times smaller variation distance.
This means that the result of our MCMC solution would becomese if we
reduce the number of chains without drawing more samplass iflseems we
could not expect to get as good a result as before with lesputation time
by increasings. But Theorem 4 only gives the worst-case theoretic bounds.
In practice, increasing might reduce computation time without dramatically
affecting the performance of estimations. Also, in the reedtion we de-
scribe ways to use fewer chains without reducing the acguwiour Winnow
simulations.

3.3. QUR OPTIMIZED MCMC SOLUTION

In Chawla et al.'s MCMC solution;; —1 Markov chains need to be simulated.
Here we give an optimized solution that is based on the idaatthexactly
simulate Winnow, we only need to know what Winnow’s predintis going
to be (i.e. on what side of the threshadldhat W will fall on), not what the
weighted sum exactly is. So it is possible that we could stopputing our
estimate after only a subset of the chaing\ih has been run.

Let " = maxpeo, {u(P) — w(P)}, pf"™ = minpeg, {uy(P) —
v (P)} (i.e. the maximum and minimum number of net promotions), and

U, = {2,...,r}. Given some¥’ C ¥,, we can define the following two
conditions:
Wt azt At v
C ’ > 0, 1
Zg, Wi(ei—1,t) (Oéz—u) - (1)
Wt aZt aZt _BO’HL(L(L'
D : < 0, 2
Zg, Wi(ai-1,t) (Oéz—u) @)

v6.tex; 1/04/2004; 9:52; p.7

8 Qingping Tao and Stephen D. Scott

min max

whereC = 2"t []iL (&)pt andD = 2" []i*, (%)pt . Now we

1=2 1.t 1.t

can prove the following theorem.

THEOREM 5. If 39’ C W, that satisfies condition (1) , thé;(a) > 6; If
IV’ C ¥, that satisfies condition (2), thdi;(a) < 6.
Proof. Becausey; ; > a;_1; > 0 andw;(P) — o™ > 0 for all P € (U,

mzn min

w(P) wi(P)—p
Doa T = YAl

PeQy PeQy

min

So elais) (Qi) " > 1. Then

Wi(oi—1,t) \ci—1,t

Hrt Wt Oézt Qg t
C 3
Wt Oéz 1t) Q1

Similarly we can prove the second statement;

min min
- -

Wi t) ;¢
¢ H Wi(ei—1,t) () 2 0.

e Qi —1,t

v

Theorem 5 tells us that it would not always be necessary t@liun — 1
Markov chains if we were only interested in Winnow’s preitins. Instead,
we can sometimes limit our simulations to a subset of Marloairss. So
what we want is to find such a subset with the smallest size.

LetI';(¥,) be the set of alll’ that satisfy (1), and'(¥;) be the set of all
U’ that satisfy (2). We defin&’ "™ € T';(¥,) as aminimum 1-prediction set
if [wrn| < || for all U/ € T'1(¥,), and ¥ € T'o(¥;) as aminimum
O-prediction setif |[¥p*n| < || for all ¥/ € T (¥,). This leads us to
Theorem 6.

THEOREM 6. If % exists {ry, 7y —1,..., 7 — 07|+ 1} is a minimum
1-prediction set, and """ exists,{2,3,...,|¥5"| + 1} is a minimum
O-prediction set.

Proof.Let 5 = (1 + m%). Using Cauchy’s inequality, we can prove that

P
Wi(ip1,)We(icrg) = Y O‘Zfl(,t) > a?ff,‘f)
Pe; Qe

= Y) Y gl Dm@

PeQ Qe

- (5i-wt(P>/z)2 > (=@ /2)

PeQ; QEN:

2
S gD
PeQy

= Wiloi)Wi(age)

v

v6.tex; 1/04/2004; 9:52; p.8

An Analysis of MCMC Sampling Methods for Estimating WeigthtBums in Winnow 9

Wi(aiy1,e) Wi(out) . -
So I;/t(o:-,lt)t Z Wt(tai,f,t) foralli € {2,...,7 — 1}. Now let¥ =

{T‘t,’l"t — 1, Y |\P71nzn| + 1}

Wt Qg t Qg t vt Wt azt Qi t v
’ > 2 > 0.
CHWt (cvi— 1t)<) ¢ H =0

Pt Qi1 ZG\IJ"”” tlai—1,) \ Qo1

min

Therefored’ € T'y (V). Since|¥'| = ={rom—1,...,m—
| W |+1} is a minimum 1-prediction set. Similarly we can pra\&3, . .., ||+
1} is @ minimum O-prediction set. 5

According to Theorem 6, iFV;(«) > 6 and we simulate Markov chains in
the order ofr;, v, — 1,...,2, and halt when we find a minimum 1-prediction
set, we need no more computation than any other sequencerkézhains.
Similarly to get a minimum O-prediction set, we use no moraitth than
any other sequence i;(«r) < # and we simulate them in the order of
2,3,---,1:. Then we get an optimized MCMC solution for Winnow as in
Table I.

In Table I, we can estimatg/*** and /" with u;(P.) and —v,(P.)
becausey(P.) > @ > " > —y,(P.). Then we choose one of the
two orders {r,---,2} or{2,---,r:}) by guessing the most likely prediction
y;. When we use Winnow to predict an unlabeled example, we ciosid
assumey, is 1. When we are training Winnow, we can ggas the class label
of training examplex. But a better way is that at thih training iteration, let
y; = 9:—1(x), whereg,;_ is the prediction ok at the(t — 1)th iteration. The
heuristic is that the weighted sum =fmight not change too much after the
last time Winnow mek. At the beginning of training, all weights of Winnow
arel. SoW;(«) = 27 for all examples. 1R > 6, v} = 1, otherwiseD.

Another question is how small7* and ¥7*" can be. We know that if
Wy(«) is very close to the thresholl the chance for our algorithm to stop
early is small. Below we give the upper bounds of the size¥Bf* and
pin,

THEOREM 7. If Wi(a) > 0, let Wy () = (1 + €)8 wheree > 0. Then the
size of 0" is at mostr; — 1 —In(1+¢); If Wy(a) < 0, letW;(a) = (1—¢€)0
where0 < € < 1. Then the size 0" is at mostr; — 1 + In(1 — ¢).

Proof. If Wy(a) > 6, then7"" exists. LetW = {ry,r—1,... 7 —k+
1} (so |¥¥| = k). According to Theorem 6F% is a minimum 1-prediction
set if k is the minimum value that makels} satisfy (1).

. oy, ;. @t
Notice Wy (o) = Wi(a, 1) = CIIL, W‘z/(taz f)t) (ai;f,t) . Then (1)
can be written as

min

- Wi) ;¢ v
< b b
b< € H Wi(oi—1+) ;

i=rt—k+1 al—l,t

v6.tex; 1/04/2004; 9:52; p.9

10 Qingping Tao and Stephen D. Scott

Table I. Optimized MCMC solution for Winnow

1: Given an example&, guess Winnow’s most possible predictionyjs
as described in the text
2: if y; is 1 then

min

3 Wila) =2 [T, (2)”
4: fori=r;to02do
5: compute the sample meaf; ; with M, («; ;)
6 Wile) — (225) 7 Wila)/ X
7: if W, (a) > 0 then
8: STOP and returnyj; (x) « 1.
o: end if
10: endfor
11: returng(x) < 0
12: else

max

R) ¢
13: Wt (Oé) — 2™ H:t:Q (a‘j‘if t)
14: fori=2tor, do

15: compute the sample meaf ; with M, («; +)
. ay \ O

16 Wile) — (25) 7 Wile)/Xus

17: if Wi(a) < 6 then

18: STOP and returnj,(x) < 0.

19: end if

20: end for

21: returngy(x) « 1

22: end if

ri— K _pmin
. a)/ H Wi(Oézt Q¢
Wiloi—14) \ ie1t

_ . min

Wt(ar —k t) Qo —k t v
14+ ¢€)0 . "
(0/ Wi(ou) o1t

Since ¢ > 0, Wt(a”_m) = ZPEQt Oézlff’)t, a1 = 1 anth(al,t) =
2,

P)— min
Spea, b < (14 2™ @3)

® Notice ¢ is always greater than 0 for standard versions of Winnow dndt maintain
positive weights.

v6.tex; 1/04/2004; 9:52; p.10

An Analysis of MCMC Sampling Methods for Estimating WeigthtBums in Winnow 11

wi(P)— min
Srea, (e — 1+) <0, (@)
4) is equivalent to (1). S&* is a minimum 1-prediction set i is the
1

minimum solution of (4). Ift + € > a";) """ for all P, then the above

inequality holds. Applyingy,, 4, = (1 + 7)™ "" yields

1\ =t(P) ="
In(l4+¢ > (rr—k—1)In (1—|— —)

my

1\ =t(P) ="
rt—1—1In(l14¢)/In <1—|——>

my

RA
v

__,min

Notice (1+;L)=P)=0i"™" < (14 L)m < e. Sok’ =, —1—In(1+€)
is a solution of (4). Therefore the minimum solution of (4)shbe at most
k'. Then we get an upper bound |@f7*"| asr; — 1 — In(1 +¢). Similarly we
can prove that; — 1+ In(1 —) is an upper bound df¢g""|.

According to Theorem 7, our optimized MCMC solution useseatst
In(1 + ¢€) fewer chains than that Chawla et al. (2004)’s solution if pine-
diction is 1 and at leash(1 — ¢)~! fewer chains if the prediction is 0. Also
we notice that out solution will use less chaindiif is farther away fron®,
which means it saves more computation time.

4. Sampling from 7, ;

All that remains is efficiently drawing samples from the ¢isalines 6 and 15
in Table). Chawla et al. (2004) applied the Metropolis sEmpvhich is the
most popular MCMC method, to the state spQgeHere we also look at three
other MCMC sampling techniques including Gibbs samplertrbfmlized
Gibbs sampler, and parallel tempering.

4.1. METROPOLISSAMPLER FORWINNOW

The Metropolis sampler (Metropolis et al., 1953) can beiapdio problems
where the state is either continuous or discrete, as longjiagossible to
compute the ratio of the probabilities of two states. To dsamples from the
stationary distribution, the Metropolis sampler repetednsiders randomly
generated changes to the variables of the current Btated accepts new state
@ with probability min(1, 7(Q) /7 (P)).

Chawla et al. defined/;(«) based on the Metropolis sampler. Each tran-
sition in M, («) selects a single variable € P at random and proposes a
new valuel — p;. Then the Metropolis acceptance probability faf(«) is

v6.tex; 1/04/2004; 9:52; p.11

12 Qingping Tao and Stephen D. Scott

min(1,7(Q)/m(P)), whereQ = (p1,...,pi—1,1 — pi,...,pn,). Then they
used the Metropolis sampler far; () as in Tablé I1.

Table 1. The Metropolis sampler for Winnow

1: With probability1/n, let Q = P; otherwise,
2: Selecti uniformly at random froml,...,n;, and letQ =
(pla <oy Pi-1, 1 — Piy- - apnt);

3: LetQ = Q' with probabilitymin{1, ’;((%)) }, where

Q) _ Y@ _ =@ -=i(P)
m(P) wy, p ’

else letQ) = P.

4.2. GBBS SAMPLER FORWINNOW

The Gibbs sampler (Geman and Geman, 1984) is widely apj#idalprob-
lems where the variables have conditional distributiona parametric form
that can easily be sampled from. In a single transition ofGitebs sampler,
each variable is replaced with a value picked from its distion conditioned
on the current values of all other components.

For any state? < 2, each variable; only has two possible values: 0 and

1. IfPOZ (pla"'7pi207"'7pnt) andPl = (pla"'7pi: 17"'7pnt)1the
conditional distribution is

7Ta7t(P)
7Toz,t(PO) + 7Toz,t(Pl) .

Then we define the Gibbs sampler fof; () as in Table lIl.

The Gibbs sampler has a number of distinct features. Theitoomel
distributions of the Gibbs sampler are constructed on pkimwledge of
«. Furthermore, the Gibbs sampler is, by construction, minténsional. It
generates new values for all variables and only after th@itjputs a sample.
In the Metropolis sampler, the variable to be changed isctedetotally at
random.

Wa,t(pi ’ P\{pl}) =

® We compute the weights oP and Q' by evaluating them on the training set (see
Footnote 2).

v6.tex; 1/04/2004; 9:52; p.12

An Analysis of MCMC Sampling Methods for Estimating WeigthtBums in Winnow 13

Table Ill. The Gibbs sampler for Winnow

1L.Q—P

2. fori=1,---,n,do

3: letQ :(qllv"'aqiflvl_q’ia"'7Q;r7.t);

4: Let@ = Q with probabilityr, .(Q | P\ {p:}), where
Wa,t(Q/ | P\ {pi}) = wt,Q’/(wt7Q/ +we,p)

= 1/(1+ awt(P)*Wt(Q/));

5: end for

4.3. METROPOLIZED GIBBS SAMPLER FORWINNOW

The Metropolized Gibbs sampler (Liu, 1996) is a modificatidrihe Gibbs
sampler. It has been proven to be statistically more effidiean the Gibbs
sampler. The sampler draws a new vaiievith probability

Tat(P; | P\ {pi})
1—mau(pi | P\ {pi}) ’

and accepts with the Metropolis-Hastings acceptance piidga

i {1 1 — 7o s(pi | P\ {pi}) }

"1 = Tau(p; | P\ {pi})

As mentioned in Section 4.2, each componeriRjronly has two possible
values. So the Metropolized Gibbs sampler becomes a Mdisogampler
that repeatedly updates all components in a fixed order. \&/e Ibioiild the
Metropolized Gibbs sampler fav/;(«) by replacing the acceptance proba-
bility in line 4 of Table Il with

min{l Tat(Q | Q\ {a:}) } 7

=7 (@ 1@\ {ai})

where

’

0@ [Q\{a) _ Q) _ w@) =@

1-ma(Q | Q\{a}) 7(Q)

v6.tex; 1/04/2004; 9:52; p.13

14 Qingping Tao and Stephen D. Scott
4.4, RARALLEL TEMPERING FORWINNOW

The idea of parallel tempering (Geyer, 1991) is to artiflgiahsemble a set of
Markov chains with different, but related stationary disitions. It involves
two sets of steps: local steps in each chain and swap stepsdretwo chains.
Each local step is defined by each Markov chain, such as Matsogampler
or Gibbs sampler. In each swap step, two chains make an eyetwriheir
current states. For example, chairs at stateP; and chainj is at stateP;.
After a swap step, chainwill be at stateP; and chainj will be at statep;.
Swap steps are introduced to allow greater mobility ancefasixing. After
all of the chains make a local step, the sampler attempts &p siae current
states of two of the chains. The acceptance probabilityv@pping states’;
andP; between two chainsand; is min {1, %}.
g)] J

In our MCMC solution, we build-; — 1 parallel Markov chains\/;(«;)

with stationary distributions

- Wt(Oéi) N Wt(Oéi)

Tt (P)

Then we get the parallel tempering version of our sampleia dable IV.
In Table IV, we simulate all, — 1 Markov chains in parallel, while our
optimized MCMC solution needs to run these chains in a spes#guence
(see Section 3.3). In order to apply our optimized solutiwa,can partition
the sequence into small groups, use parallel temperingch geoup and
run these groups sequentially. Then we can apply our opingnlution on
these groups. But we might not find the best subset of chaimglesited in
Theorem 6 since we will only check the constraints after theukation of a
group of chains instead of a single chains.

Table IV. Parallel tempering for Winnow

1:forT=1,---,5do

2: With probability ps.wap, randomly choose a neighboring pair of
chains, say andi + 1, and swap current staté% and P, ; with
probability

min {1, (1+ 1/mt)Wt(P1:)—wt(Pi+1)} _

3: Simulate allr; — 1 Markov chains for a single step via their
samplers.

4: Save current states of all — 1 Markov chains as samples.

5: end for

v6.tex; 1/04/2004; 9:52; p.14

An Analysis of MCMC Sampling Methods for Estimating WeigthtBums in Winnow 15

5. Other Extensions

5.1. DISCRETIZING REAL-VALUED ATTRIBUTES

Since our algorithm can only handle discrete-valued attei®, we employ
the method of Elomaa and Rousu (1999) to discretize contswalued at-
tributes. For each attribute, we sort (in ascending ordsryalues over all
examples and then divide its value range into several iatemccording to
some evaluation function that estimates the class coheriare given set of
examples. Here we use the Average Class Entropy as the gvaltianction.

Letld S; be a partition ofS, the Average Class Entropy of the partition is:

AC’E(E—J S;) = Z %H(SZ) = Fll Z |Si|H(S;)

where the entropy functiofl (S) = — >, P(Cj, S) log, P(Cj, S) , where

m is the number of classes at{C}, S) is the proportion of the examples
in S that belong to the clas§'. A good property of Average Class entropy
is cumulativity, i.e. the impurity of a partition can be oipied by a weighted
summation over the impurities of its subsets. Cumulatifatsilitates incre-
mental evaluation of impurity values. So we can apply a dyingmogram-
ming scheme that is suggested by Elomaa and Rousu (1999%dretite
real-valued attributes.

An advantage to partitioning a single continuous attributeto several
intervals (i.e. mapping to a singlek-valued attribute) versus finding several
thresholds for (i.e. mappinge to k£ — 1 boolean attributes) is that the state
spacef) is smaller, as i If £ — 1 boolean attributes are used, thé =
35 Licotner (ki + 1), whereother is the set of other attributes. In contrast,
a singlek-valued attribute yieldS2| = (k+ 1) [1;comer (ki +1). In addition,
reducingn makes exact computation @f; (which requires enumerating up
to 2" terms) easier, so it is more likely that we can do exact coatjmut of
W, rather than an approximation, which increases accuracy.

5.2. HANDLING MISSING DATA

There is an implicit means in our representation of examiblaiscan be used
to handle missing data. If the values of some attributes afmpte x are
missing in an example, we simply assign 0 to these attribamesdefine a
term P to not be satisfied by unlessp; = 0 for all ¢ such thatz; = 0 (see
Section 2.1). We also tried the popular approach of asgigtuirthe missing
attribute the most common value in the same class.

v6.tex; 1/04/2004; 9:52; p.15

16 Qingping Tao and Stephen D. Scott

5.3. MULTI-CLASS CLASSIFICATION

Since Winnow only can only make binary predictions, we trame Win-

now DNF learner for each class, i.e. a “one versus the regifaggh. So
given an examplex with a label of clasg, x is presented to Winnoyas a
positive example and to all others as a negative exampler Afaining all

Winnows, we take an unlabeled example, estimate the weightms of all
Winnows on that example , and predict the class with the Winthat has the
maximum weighted sum. In our experiments, we observed tlat i each
single Winnow has a high error rate, the Winnow of the claasdh example
belongs to frequently is the one with the highest weighted.sliherefore
our algorithm frequently had low prediction error even whiea individual

binary classifiers did not.

6. Experimental Results

In our experiments, we evaluated three MCMC sampling teghes: Metropo-
lis, Gibbs and Metropolized Gibbs, each with and withougpial tempering
(PT). So we tested samplers. We compared their performance on estimating
weighted sums on two data sets: simulated data similar taiieal by Chawla
et al. (2004) and Voting data from the UCI repository (Blakale 2004). We
then tested our optimized algorithm on the simulated datkfige UCI data
sets to find what kind of impact these MCMC samplers have omirs
predictions. We also compared the computation costs of ptimaed solu-
tion with Chawla et al.'s algorithm in terms of the total nuentof Markov
chains simulated.

We started out tests with data similar to Chawla et al.’s &ied data.
They used data with € {10, 15,20}. In our experiment, we used their sim-
ulated data generator to generate random 5-term monotorie fdDishulas,
usingn € {10, 15,20, 25,30, 35,40}. For each value of. there werel0
training/testing sets, each wild training examples and 50 testing examples.
In our experiments on UCI data, we partitioned each datanset:iblocks,
wherek = 10 if the data set size was 300. Otherwise the number of
blocks was reduced to ensure that each block was of sizesit3BaSince
our algorithm can only handle discrete-valued attribues also discretized
continuous-valued attributes.

Neal (1995) pointed out that it takes abdiit steps to move to a state
T steps away because of the random walk nature of MCMC samflbes
farthest distance between two state§jns n, the number of variables. Thus
we set the burn-in tim@, = n2. Our experiments showed that this burn-
in time worked very well. In each experiment, we counted aguifate of a

v6.tex; 1/04/2004; 9:52; p.16

An Analysis of MCMC Sampling Methods for Estimating WeigthtBums in Winnow 17

single variable of current state as a single sampling stepu¥éd the same
number of sampling stepg’; for all six samplers.

6.1. COMPARISONS OFWEIGHTED SUM ESTIMATES

Our first experiments were designed to evaluate how well thight estima-
tion procedures with different samplers guessed the weibiims. Since we
are interested in estimated weighted sums instead of jadigtions in these
experiments, we turned off our optimized solution. Durininéw’s train-
ing, we computed the estimates with six samplers, while veatgunl weights
using the exact weighted sum computed via brute force (il@n¥w was
trained using the exact weighted sums). So all samplersedgook the same
distributions and state spaces. Then we compared them trstngeasure
Guess Errorgiven in Chawla et al. (2004), which is the average error ef th
estimates|(V — W|/W).

Figure 1 shows the results on Voting, which Hasvariables andi35
examples. We séf, = 256 and variedls € {800, 1600, 3200, 6400, 9600,
12800, 16000}. We trained Winnow for 20 rounds alt) partitions. So Fig-
ure 1 represents averages over more 0 estimates.

In the figure, there are dramatic drops of Guess Error fgdthto 6400
sampling steps. Whel; > 9600, Ts has much less effect on Guess Error.
This indicates that at that point Markov chains may be closté station-
ary distribution7;. The parallel tempering version of each sampler showed
little effect. This is because the number of chainsfor each estimation
increased quickly. It was more th&0 after 8 training iterations and even-
tually more than150. So even setting the swap probability @® did not
provide enough swap steps to make a big improvement. FdF,alGuess
Errors of Gibbs and Metropolized Gibbs are always lower thatropolis.
Although Metropolized Gibbs has a lower Guess Error tharb§ilthe dif-
ference between these two samplers is very small, espegiaién T, =
9600, 12800, 16000.

To evaluate the effect of varying the number of attributesre measured
Guess Error of the six samplers on the simulated®ataFigure 2,7} is
fixed at10000 and7, = n2. Gibbs and Metropolized Gibbs are still always
better than Metropolis. The Guess Error of MetropolizediiSits lower than
Gibbs whemn < 25. But whenn > 25, Gibbs becomes the best sampler.

" The number of sampleS drawn by the Metropolis sampler i&. But S for the Gibbs
and Metropolized Gibbs samplersZs/n because they only use states as samples after all
variables have been updated (see Section 4).

8 |t seems it is unpractical to run brute force Winnow wheis bigger than 20. But the
simulated data is randomly generated from monotone DNFasb eariable can only be 1 or
0. Since we do not need to consider the variables with 0 valee $ection 3.1), the expected
number of variables used by brute force Winnow each trial/3. So we can run brute force
Winnow even whem = 40.

v6.tex; 1/04/2004; 9:52; p.17

18 Qingping Tao and Stephen D. Scott

0.7 T

T T
Metropolis —+—

Gibbs —8—
Metropolized Gibbs —&—
Metropolis with PT ----%---
06 - Gibbs with PT ---o---
Metropolized Gibbs with PT ----v---

05

04

Guess Error

0.2

01

0 2000 4000 6000 8000 10000 12000 14000 16000
The number of sampling steps

Figure 1. Guess Error vs. the number of sampling st&p®n Voting.

As with Voting, parallel tempering only improved perforntanvery slightly.
Considering results in Figures 1 and 2, we can say that Géutpler is the
best choice on average in terms of the accuracy of estimatnghted sums.

6.2. COMPARISONS OFPREDICTION ERROR

Now we describe experiments that examine the predicticor efrMCMC-
based Winnow. In both training and testing, we ran the MCM(Sdu sim-
ulation instead of brute force. We performgefold cross-validation on six
data sets from the UCI repository and compusél; confidence intervals
(it is not practical to run brute force Winnow on auto and aaimg). Since
Winnow can only make binary predictions, we train one WinaMF learner
for each class. After training, we take an unlabeled exajrggémate the
weighted sums of all Winnows on that example, and predictctass with
the Winnow that has the maximum weighted sum. Table V sunzasithe
results. For each data set, all six samplers have simildonpeance. All
confidence intervals of each data set overlap. Although npba showed
a significant advantage over others, we notice that prediatirors of all
three samplers are often lower than their PT versions. Aanatiteresting fact
is that MCMC-based Winnow has even better performance thate fiorce
Winnow on iris and car. On breast cancer and voting data,Ribsamplers
showed little difference from brute force Winnow. Thus fbetdata sets we

v6.tex; 1/04/2004; 9:52; p.18

An Analysis of MCMC Sampling Methods for Estimating WeigthtBums in Winnow

0.35

19

03

Guess Error

T
Metropolis —+—
Gibbs —8—
Metropolized Gibbs —&—
Metropolis with PT ----%---
Gibbs with PT —---o---
Metropolized Gibbs with PT ----9---

15 20

25 30 35 40

The number of variables

Figure 2. Guess Error vs. the number of variabtesn simulated data.

tested, there does not seem to be any disadvantage to uswgMIC-based

approximation in place of brute force.

To further investigate these observations, we reran thergrpnts of Sec-
tion 6.1. There wer& experiments for simulated data aneéxperiments for

Table V. Comparisons of prediction errors on UCI data sBis<£ n? andT, = 10n?).
M - Metropolis, G - Gibbs, MG - Metropolized Gibbs, PT - Paeillempering, BF - Brute Force.

Data

Sets iris car breast cancer voting auto annealing
n 4 6 9 16 25 38

M 53+21 1.7+£0.8 31.5+£5.0 5.0£2.1 128+ 75 1.0£0.7

G 6.7+ 3.8 1.9£0.8 309+55 5.0+2.4 156 £ 7.8 0.6+0.5
MG 6.0+ 1.7 1.54+08 31.7+5.0 5.0£2.1 16.6 5.5 04+04
M+PT 6.0 + 3.2 1.7£0.9 32.7+£4.7 50+£1.6 18.6=+5.1 09+0.7
G+PT 6.7 2.7 1.54+08 31.5+38 59 +£2.5 18.4+4.7 1.34+0.9
MG+PT | 6.0 + 3.2 1.6 £0.7 31.8£5.8 54+2.5 181+43 07+0.5
BF 7.3+3.2 3.3+1.1 33.3£4.9 5.0+2.0 - -

v6.tex; 1/04/2004; 9:52; p.19

20 Qingping Tao and Stephen D. Scott

Table VI. Comparisons of prediction errors on Voting=£ 16 and7p = 256).
M - Metropolis, G - Gibbs, MG - Metropolized Gibbs, PT - Paeallempering, BF - Brute Force.

T, | 800 1600 3200 6400 9600 12800 16000
M 5.1+1.7 5.3%£16 50+21 53£1.8 5.0£1.3 48+1.6 5.5+24
G 46+25 48+1.5 5.0£2.4 4.8+21 6.0+25 46+18 43+20
MG 5.1+1.1 5.0£1.5 50+21 46+1.6 48=£1.8 50+2.7 59+25

M+PT 5.3+19 4.14+09 50+£16 55£1.5 50£18 41+£20 36+19
G+PT 5.3£1.4 48+18 5.9+£2.8 59£25 54+1.8 4.6+2.2 4.3£20
MG+PT | 5.1 +1.1 3.2+£0.9 54425 4.8+2.7 50+25 5.0+2.2 5.5£24

BF 5.0£2.0

Table VII. Comparisons of prediction errors on simulatethd@, = n? andT = 10000).
M - Metropolis, G - Gibbs, MG - Metropolized Gibbs, PT - Paeilfempering, BF - Brute Force.

n 10 15 20 25 30 35 40

M 1.8+1.6 2.6£2.6 7.44+39 42423 6.0+3.0 7.2+59 7.0£7.0
G 1.8+41.6 3.0£2.5 7.8+4.3 3.4+3.0 8.0+£35 74+49 6.2+3.8
MG 1.8+14 26+23 7.2+3.5 3.84£29 6.4£3.9 88£52 7.0£3.9

M+PT 14+15 4.4£24 744+37 3.2+28 64£41 70+38 58+45
G+PT 1.6£2.0 3.0£1.8 5.6+3.1 44433 7.4+45 7T7.2+£3.6 6.0£3.4
MG+PT | 1.6£1.5 2.6+2.6 7.0+4.3 3.2+2.3 7.8+4.3 9.6+5.5 6.0£4.1

BF 2.8£2.6 4.6+£3.8 7.24+4.2 4.4+44 62+39 T44£35 5.6£4.0

Voting. For Voting, 10-fold cross-validation was done fa@ch experiment.
Table VI reports the results. MCMC samplers with PT have @igitediction
error than non-PT versions whé&g is less than 9600, except f@f = 1600.
WhenT} is bigger than 9600, PT versions have equal or even bettésrper
mance compared to non-PT versions. We suspect this behsagbecause
whenT; is small, Guess Error of all samplers is high. The estimatddev
W varies a lot at different time simulations. Since parakehpering allows
greater mobility (see Section 4.4), PT would introduce nmvamgation, which
makes it is hard for Winnow to learn. But when Guess Error iy \ew,
this variation does not change Winnow’s learning procedageording to
Theorem 1 and 4. Also we notice that in this experiment, Gitassthe lowest
prediction error four times, which is best in non-PT versiBnt the best PT
sampler is Metropolis with PT. Finally, note that brute ®moes not have
any significant advantage over most approximations, anfiés avorse.

v6.tex; 1/04/2004; 9:52; p.20

An Analysis of MCMC Sampling Methods for Estimating WeigthtBums in Winnow 21

Table VII reports results for simulated data. Here we fi¥¢dand var-
ied n. Each experiment involvedlO training/testing sets. Samplers with PT
have better performance wheris 10, 15 and 40, and show little difference
on othern. Because Guess Errors of PT and non-PT samplers are almost
same, the only reason is the randomness in samplers as wesigchefore.
MCMC-based Winnow achieved lower error rates than bruteef&innow
whenn is smaller than 20. But they have higher error rates whes 40
since Guess Error is relatively high. Also we notice thathis E£xperiment,
Gibbs has the lowest prediction error for three times, wigdbest in non-PT
version. But the best PT sampler is Metropolis with PT. Agaie see that
brute force’s error is at least as large as several of theoappations.

From all above results, we found when Guess Error is smallM@e
based Winnow can get equal or even better performance thda force
Winnow. Parallel Tempering introduces more random bemandCMC.
Its performance is hard to predict. In this sense, Gibbs &mmwhich has
the best performance in terms of Guess Error, is a good chttioagh its
advantage is less clear in terms of prediction error. We daemommend
using its PT version.

6.3. COMPARISONS OFCOMPUTATION COST

Here we report speedups of our optimized algorithm (Se&i8hover Chawla
et al.'s solution in terms of the total numbers of Markov cisathat are used.
In Tables VIl and IX, “MCMC?” is the total number of chains usby Chawla
et al.’s solution. “Opt MCMC" is the total number of chainsedsby our
algorithm. SV CMC = Y~7_(r,—1) andOpt MCMC = Y]_, r;, where
r; is the number of chains used by our optimized algorithm at trand ~
is the number of trials. “Savings” is the percentage of chaiar algorithm
saved, that isSavings = 1 — Opt MCMC/MCMC. “Savingsiheory”
is the percentage of chains our algorithm can save accotditige worst-
case analysis of Theorem 7. To comp$t€vingspeory, We computed the
number of chains saved for each trial and add them up overial.t So
Savingsiheory = (Doi=1 | In(Savg(Wy))|) /MCMC, where Savg(W;) =
14+ e if Wy > 0, Savg(W) = 1 — ¢, if W < 6. Since it is not practical
to computelV; for auto and annealing, we cannot compSteingseory
for those data sets. In the tabless the average over all triats = |(V; —
6)/6|, which is the normalized distance between true weighted Bgrand
thresholdb.

Results in Tables VIl and IX confirm that we do not need to riclzains
when estimating weighted sums. However, this widely vawéh the data
set. A possible reason is that the true weighted sums of Wirame much less
or much greater than the threshold for some data sets, aserdtar others.
When the true weighted sums diverge significantly from tmeghold, there

v6.tex; 1/04/2004; 9:52; p.21

22 Qingping Tao and Stephen D. Scott

Table VIII. Comparisons of the total number of Markov chaimssimulated data (in thousands).

n 5 MCMC Opt MCMC Savings (%) Savingstheory (%0)
10 0.351 4.6 4.1 11.3 6.4
15 0.365 11.9 11.2 6.3 3.9
20 0.340 20.8 18.7 10.0 7.0
25 0.454 23.5 21.2 9.7 6.8
30 0.363 40.8 37.5 8.1 51
35 0.421 58.7 53.0 9.7 6.2
40 0.294 60.9 53.2 12.7 6.8

Table IX. Comparisons of the total number of Markov chaindJ@1 data sets (in thousands).

Data Sets € MCMC OptMCMC Savings (%) Savingstheory (%)
iris 0.472 217.7 200.1 8.0 1.14
car 0.529 14272.7 14032.0 1.7 0.12
breast cancer 0.500 45176.2 45111.5 0.2 0.04
voting 0.587 1185.5 1132.0 4.5 0.48
auto - 138228 13751.7 0.5 -
annealing - 4855.2 3781.6 22.1 -

are more chances for our algorithm to stop early. As shownalneg VIii
and IX, whenSavingseory IS big, the true savings is often big.

7. Conclusionsand Future Work

We proposed an optimized MCMC solution for estimating weghsums in
Winnow. We showed that it often uses less computation tirae tBhawla
et al.'s (2004) solution without any loss of classificatiataracy. Our ex-
perimental results confirmed that our algorithm only needsse a subset
of all Markov chains implied by the original solution. We @lshowed how
to get such a subset with the smallest size and gave lowerdsoom how
many chains our solution can save. We also empirically coetpthree new
MCMC sampling techniques: Gibbs, Metropolized Gibbs andipel tem-
pering. They all showed better performance than Chawla’'st\étropolis
sampler in terms of accuracy of weighted sum estimates. ¥¢efatind that
the Gibbs sampler had good performance on average. Funtbdound that
all approximation algorithms had prediction error that vmasworse (and

v6.tex; 1/04/2004; 9:52; p.22

An Analysis of MCMC Sampling Methods for Estimating WeigthtBums in Winnow 23

often better than) a brute force version that exactly coegbdihe weighted
sums.

Future work includes applying our algorithm to other algjoris (e.g. the
algorithms of Tao and Scott (2004) and Goldman et al. (2004 riultiple-
instance learning) and exploring other MCMC techniques saag blocking
and over-relaxation (Neal, 1995). In addition, we are itigasing the effect
of pruning terms (i.e. using only heavy terms) on predictoouracy, found
via both the Markov chain and a genetic algorithm. We are d&s@loping
other methods to reduce training time, e.g. by limiting esaim (input to
Winnow) to be constraints on at mastattributes (i.e. at most non-0Os are
allowed per term). This reduces the state space size fotlgxammputing
W; to || = O(n¥) as opposed t@". Khardon et al. (2001) discuss this
idea in a slightly different context. Also, Khardon et alvgjia negative re-
sult for exactly simulating Winnow for learning DNF (Secti@.1). Does a
similar result exist for randomized algorithms simulatignnow with high
probability?

Acknowledgements

This work was funded in part by NSF grants CCR-0092761 and@&P3900
and a grant from the University of Nebraska Foundation. & alao supported
in part by NIH Grant Number RR-P20 RR17675 from the IDeA pamgrof
the National Center for Research Resources. This work wapleted in part
utilizing the Research Computing Facility of the Univeysif Nebraska.

References

Blake, C.L. and C. J. Merz: 2004, ‘UCI Repository of machirearhing databases’.
http://www.ics.uci.edu/"mlearn/MLRepository.html
University of California, Department of Information and i@puter Science, Irvine, CA

Blum, A., P. Chalasani, and J. Jackson: 1993, ‘On learninigesitled symmetric concepts’.
In: Proceedings of the Sixth Annual Workshop on Computatioratring Theory pp.
337-346, ACM Press, New York, NY.

Blum, A., M. Furst, J. Jackson, M. Kearns, Y. Mansour, and 8diéh: 1994, ‘Weakly
Learning DNF and Characterizing Statistical Query Leayrlifsing Fourier Analysis’.
In: Proceedings of Twenty-sixth ACM Symposium on Theory of Gimgppp. 253-262.

Bshouty, N. H., J. Jackson, and C. Tamon: 1999, ‘More efftdR&C-learning of DNF with
membership queries under the uniform distribution’.Rroceedings of the Twelfth Annual
Conference on Computational Learning Thegrg. 286—295.

Chawla, D., L. Li,and S. D. Scott: 2004, ‘On approximatinggtted sums with exponentially
many terms’. In:Journal of Computer and System Sciendesappear. Early version in
COLT '01.

Dietterich, T. G., R. H. Lathrop, and T. Lozano-Perez: 1980jving the Multiple-Instance
Problem with Axis-Parallel Rectangledrtificial Intelligence89(1-2), 31-71.

v6.tex; 1/04/2004; 9:52; p.23

24 Qingping Tao and Stephen D. Scott

Elomaa, T. and F. Rousu: 1999, ‘General and Efficient Mdittapg of Numerical Attributes’.
Machine Learning36(3), 201-244.

Geman, S. and D. Geman: 1984, ‘Stochastic relaxation, Gilghsbutions and the Bayesian
restoration of images’lEEE Transactions on Pattern Analysis and Machine Intelige
6, 721-741.

Geyer, C.: 1991, ‘Markov chain Monte Carlo maximum likelittb. In: Computing Science
and Statistics: Proc. of the 23rd Symposium on the Interfapel56—-163.

Goldman, S. A., S. K. Kwek, and S. D. Scott: 2001, ‘Agnostarieng of geometric patterns’.
Journal of Computer and System Scieng@g, 123—-151.

Jerrum, M. and A. Sinclair: 1996, ‘The Markov chain Monte I[Banethod: An approach to
approximate counting and integration’. In: D. Hochbaume&pproximation Algorithms
for NP-Hard ProblemsPWS Pub., Chapt. 12, pp. 482-520.

Khardon, R., D. Roth, and R. Servedio: 2001, ‘Efficiency usr€onvergence of Boolean
Kernels for Online Learning Algorithms’. IrAdvances in Neural Information Processing
Systems 14p. 423-430.

Littlestone, N.: 1988, ‘Learning Quickly When Irrelevanttdbutes Abound: A New Linear-
threshold Algorithm’.Machine Learning?, 285-318.

Littlestone, N. and M. K. Warmuth: 1994, ‘The weighted mé&joalgorithm’. Information
and Computatiori08(2), 212-261.

Liu, J.: 1996, ‘Peskun’s Theorem and A Modified Discretet&tibbs Sampler'Biometrika
83, 681-682.

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. [&e] and E. Teller: 1953,
‘Equation of state calculation by fast computing machinek’of Chemical Physicg1,
1087-1092.

Neal, R. M.: 1995, ‘Suppressing random walks in Markov chdonte Carlo using ordered
overrelaxation’. Technical Report 9508, Dept. of StatistiUniversity of Toronto.

Schapire, R. E. and Y. Singer: 1999, ‘Improved boosting ilgms using confidence-rated
predictions’.Machine Learning37(3), 297-336.

Tao, Q. and S. Scott: 2003, ‘An analysis of MCMC sampling rodghfor estimating weighted
sums in Winnow'. In:Artificial Neural Networks in Engineeringp. 15-20.

Tao, Q. and S. Scott: 2004, ‘A faster algorithm for geneealimultiple-instance learning’. In:
Proceedings of the Seventeenth Annual FLAIRS Conferéoappear.

v6.tex; 1/04/2004; 9:52; p.24

	An Analysis of MCMC Sampling Methods for Estimating Weighted Sums in Winnow
	

	v6.dvi

