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An Analysis of MCMC Sampling Methods for Estimating
Weighted Sums in Winnow∗

Qingping Tao (qtao@cse.unl.edu ) and Stephen D. Scott
(sscott@cse.unl.edu )
Department of Computer Science & Engineering, University of Nebraska, Lincoln, NE
68588-0115 USA

April 1, 2004

Abstract. Chawla et al. introduced a way to use the Markov chain Monte Carlo method to
estimate weighted sums in multiplicative weight update algorithms when the number of inputs
is exponential. But their algorithm still required extensive simulation of the Markov chain
in order to get accurate estimates of the weighted sums. We propose an optimized version
of Chawla et al.’s algorithm, which produces exactly the same classifications while often
using fewer Markov chain simulations. We also apply three other sampling techniques and
empirically compare them with Chawla et al.’s Metropolis sampler to determine how effective
each is in drawing good samples in the least amount of time, interms of accuracy of weighted
sum estimates and in terms of Winnow’s prediction accuracy.

Keywords: DNF, Winnow, Markov Chain Monte Carlo

1. Introduction

Chawla et al. (2004) introduced the use of the Markov chain Monte Carlo
(MCMC) method to estimate weighted sums in multiplicative weight update
(MWU) algorithms when the number of inputs is exponential. One of their
applications was using Littlestone’s (1988) Winnow algorithm to learn DNF
formulas. Although their preliminary empirical results are much stronger than
what their theoretical results implied, they still required extensive simulation
of the Markov chain to draw “good” samples (i.e. from close tothe chain’s
stationary distribution) in order to get accurate estimates of the weighted
sums. This significantly slowed their algorithm.

We propose an optimized version of Chawla et al.’s algorithm, which often
uses less computation time without any loss in classification accuracy. We
give two theorems to prove the correctness of our algorithm.We also give
lower bounds on how much computation time our algorithm willsave.

In our experiments, we empirically compare three MCMC sampling tech-
niques (Gibbs, Metropolized Gibbs and parallel tempering)to Chawla et
al.’s Metropolis sampler to determine how effective each isin quickly draw-
ing good samples, in terms of accuracy of weighted sum estimates and in
terms of Winnow’s prediction accuracy. The experimental results show that

∗ An early version of this paper appeared as Tao and Scott (2003).
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2 Qingping Tao and Stephen D. Scott

Metropolis sampler has worse performance than Gibbs and Metropolized
Gibbs on estimating weighted sums. Gibbs shows better performance than
Metropolized Gibbs when the number of variables is large, though there is
little difference between them when the number of variablesis small. For
prediction errors, there is little difference between any MCMC techniques.
Also, on the data sets we experimented with, we discovered that all approxi-
mations of Winnow have no disadvantage over brute force Winnow (i.e. when
weighted sums are computed exactly). Thus generalization accuracy is not
compromised by the approximation.

We also extend Chawla et al.’s algorithm to handle generalized (non-boolean)
inputs and multi-class outputs. These results are criticalin applying MCMC
methods to other applications of MWU algorithms with exponentially large
feature spaces. For example, the Winnow-based algorithm ofTao and Scott (2004)
(adapted from Goldman et al. (2001)) for learning concepts from a general-
ization of the multiple-instance model (Dietterich et al.,1997)) is efficient
for low dimensions, but does not scale well. It is possible that Chawla et
al.’s MCMC-based approach can be very useful to make this algorithm (and
others) more scalable, but first a thorough empirical analysis of the sampling
method is required.

The rest of our paper is as follows. In Section 2 we discuss related work.
Section 3 describes Chawla et al.’s MCMC approach for estimating weighted
sums and presents our optimized version. Section 4 gives four different MCMC
sampling techniques. Section 5 gives several extensions ofthe basic Winnow
algorithm. We then report our experimental results in Section 6 and conclude
in Section 7.

2. Related Work

2.1. LEARNING DNF FORMULAS USING WINNOW

Letf = P1∨P2∨. . .∨PK be the target function, wherePi = ci1∧ci2∧. . .∧cin

is a term andcij is a constraint on the value of attributej. If we let attribute
j take on values from{1, . . . , kj}, thencij = ` ∈ {1, . . . , kj} means that for
an examplex to satisfy constraintcij , xj = `. If cij = 0, thenxj can be any
value from{1, . . . , kj} and still satisfy the constraint. Ifxj = 0, then this
attribute value is unspecified and only satisfies a “don’t care” constraint of
cij = 0. In other words,x satisfiesPi iff for all j, eitherxj = cij or cij = 0.
Thus the set of possible terms available forf and the instance space are both
Ω =

∏n−1
j=0 {0, . . . , kj}. It is easily seen that if examplex hasnx specified

values (i.e.nx values> 0), then there are exactly2nx terms satisfied by
it. The problem of learning conventional DNF formulas (i.e.kj = 2 for all
j) has been heavily studied in a learning-theoretic framework, e.g. Bshouty
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An Analysis of MCMC Sampling Methods for Estimating Weighted Sums in Winnow 3

et al. 1999; Khardon et al. 2001, but positive results exist only in restricted
cases, and the general DNF problem remains open1.

The algorithm Winnow of Littlestone (1988) is a linear threshold learner
that uses multiplicative updates to change its weights. Winnow is anon-line
learning algorithm, which means that learning proceeds intrials. At trial t,
Winnow receives an input vectorx′

t and makes its prediction̂yt = 1 if Wt =
wt · x

′

t ≥ θ and 0 otherwise, wherewt is its weight vector at trialt andθ is
the threshold. Then Winnow is told the true labelyt and updates its weight
vector as follows:wt+1,i = wt,iα

x′

t,i
(yt−ŷt) for some learning rateα > 1.

If wt+1,i > wt,i, we call it apromotionand if wt+1,i < wt,i, we call it a
demotion. Littlestone showed that if the target concept labelling the examples
can be represented as a monotone disjunction ofK of the N total inputs
to Winnow (i.e. a disjunction where none of theK inputs are negated in
the target function), then Winnow can exactly learn the target concept while
making at mostO(K log N) prediction mistakes. Hence Winnow can be used
to learn DNF formulas by using all possible terms as its inputs: E.g. ifki = 2
for all i, there will beN = 3n possible terms, wheren is the number of
variables in original input vectorx. For a particular instancex, input x′

i to
Winnow is 1 if x satisfies termi and 0 otherwise. The number of mistakes
that Winnow will make on any sequence of examples is thenO(Kn), where
K is the number of terms in the target disjunction.

Of course, the algorithm as described above is not efficient,since brute
force computation ofWt = wt · x

′

t takes timeΩ(N), which is exponential2

in n. Thus another approach is needed to computeWt. One possibility is to
use kernels, as illustrated by Khardon et al. (2001) for the Perceptron algo-
rithm (i.e. using additive weight updates). However, whilethey showed that
it is possible to efficiently compute the weighted sum for Perceptron when
learning DNF, they also showed that in the worst case, their kernel-based
algorithm makes2Ω(n) prediction mistakes. They also argued that unless P
= #P, it is impossible to efficiently exactly simulate Winnowfor learning
DNF. Thus we look to Chawla et al. (2004), who use MCMC methodsto
estimateWt for Winnowwith high probability, as opposed to Khardon et al.’s
hardness result that says nodeterministicsimulation of Winnow is possible
for DNF. While Chawla et al. do not guarantee an efficient DNF algorithm
in the learning-theoretic sense, their results yield an effective heuristic for
learning DNF. This is in part due to the fact that in order to correctly simulate
Winnow, it is not required that the estimatêWt be close toWt, but only that
it beon the same side of the thresholdθ asWt.

1 It is unlikely that an efficient distribution-free (PAC) DNF-learning algorithm ex-
ists (Blum et al., 1994; Blum et al., 1993).

2 Note that storing all weights takesΩ(N) space, but we can compute the weight of a
particular termP by evaluating it on the training set, eliminating the need tostore the weights.
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4 Qingping Tao and Stephen D. Scott

2.2. MARKOV CHAIN MONTE CARLO METHODS

The Markov chain Monte Carlo method uses a Markov chain to simulate
Monte Carlo experiments that provide approximations to quantities by per-
forming statistical sampling experiments. Starting with the work of Metropo-
lis et al. (1953) and Geman and Geman (1984), MCMC methods have been
widely used to solve problems in statistical physics and Bayesian statistical
inference. One major class of these problems is approximatesummation,
whose goal is to approximate the sumW =

∑

x∈Ω w(x), wherew is a
positive function defined onΩ that is a large but finite set of combinatorial
structures.

Generally a Markov chainM with state spaceΩ and stationary distribution
π is designed to beergodic, that is, the probability distribution overΩ con-
verges asymptotically toπ regardless of the initial state. ThenM is repeatedly
simulated forT steps and generates samples almost according toπ. TheseS
samples are then used to estimate the quantity of interest. Usually we discard
states in the firstT0 steps and assume there would be a rapid convergence to
π during these steps. ThisT0-step procedure is calledburn-in.

After burn-in,M then would return the element at the state as a sample
from the empirical distribution̂π at the end of the simulation. Then this
process would be restartedS times, which meansT = ST0. Rather than
repeatedly restarting the whole process, the more common technique is to
sample from a single run of the process, which means the Markov chain
would be simulated for anotherS steps after burn-in, each additional step
generating a new sample. Thus the total number of steps isT = T0 + S. One
benefit of multiple runs is that samples are completely independent, but this
requires more computation. Instead, a single run only needsa single burn-in
procedure and the samples drawn from it would be good enough if the chain
converged toπ rapidly. Since efficiency is essential in our experiments, we
use a single run rather than multiple runs.

Two well-studied problems with MCMC solutions are the approximate
knapsack problem and the problem of approximating the sum ofthe weights
of a weighted matching in a graph (e.g. Jerrum and Sinclair (1996)). Chawla
et al. (2004) combined these two sloultions and gave a Metropolis sampler
(Metropolis et al., 1953) to approximate the weighted sum inWinnow for
learning DNF3. Then they evaluated this algorithm on simple simulated data
sets. We extend their work by adding optimizations (Section3.3) and apply-
ing three other sampling techniques: Gibbs, Metropolized Gibbs and parallel
tempering.

3 They also used a similar technique to approximate weighted sums in Weighted Majority
(Littlestone and Warmuth, 1994) of classifiers created by boosting (Schapire and Singer, 1999)
for predicting nearly as well as the best pruning of an ensemble.
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An Analysis of MCMC Sampling Methods for Estimating Weighted Sums in Winnow 5

3. Estimating Weighted Sums with MCMC

3.1. CHAWLA ET AL .’S MCMC SOLUTION FOR WINNOW

We now describe Chawla et al.’s (2004) MCMC solution for estimatingWt(α),
whereWt(α) =

∑

P∈Ωt
wt,P (α), wt,P (α) = α$t(P ) is termP ’s weight of

training4 Winnow with learning rateα, and$t(P ) = ut(P )− vt(P ), where
ut(P ) is the total number of promotions of termP at timet andvt(P ) is the
total number of demotions.

LetΩ′

t ⊆ Ω be the set of2nt terms that are satisfied by examplext (nt ≤ n
is the number of non-zero values inxt). For each termP ′ = (p′1, . . . , p

′

n) ∈
Ω′

t, let P = (p1, . . . , pnt) ∈ Ωt be defined as follows:

1. deletep′i from P ′ for all i such thatxi = 0 and call the new termP ′′;

2. setpi = 1 if p′′i > 0 andpi = 0 if p′′i = 0.

Chawla et al. then build a set of Markov chainsMt on the state spaceΩt

that are based on Metropolis sampler (see Section 4.1). EachchainMt(α
′) ∈

Mt has a specific learning rateα′ and a stationary distributionπα′,t(P ) =
wt,P (α′)/Wt(α

′).
They then definefi,t(P ) = wt,P (αi−1,t)/wt,P (αi,t), whereαi,t = (1 +

1
mt

)i−1 for 1 ≤ i ≤ rt, rt is the smallest integer such that(1 + 1
mt

)rt−1 ≥ α,
andmt = ut(Pe) + vt(Pe) wherePe = (0, 0, . . . , 0). Then they get

E[fi,t(P )] =
∑

P∈Ωt

παi,t,t(P )fi,t(P ) =
Wt(αi−1,t)

Wt(αi,t)
.

SoWt(αi−1,t)/Wt(αi,t) can be estimated by computing the sample mean of
fi,t(P ), which allowsWt(α) to be computed since

Wt(α) =

(

Wt(αr,t)

Wt(αr−1,t)

)

· · ·

(

Wt(α2,t)

Wt(α1,t)

)

Wt(α1,t)

andWt(α1,t) = W (1) = |Ωt| = 2nt . Therefore, for each valueα2,t, . . . , αr,t,
St samples are drawn fromMt(αi,t) after discarding the firstTi,t steps. IfXi,t

is the sample mean offi,t(P ) and|Mt| = rt−1, then Chawla et al.’s estimate
of Wt(α) is

Ŵt(α) = 2nt

rt
∏

i=2

1/Xi,t .

The following results hold for this estimation procedure.
4 Wt is a function ofα since Chawla et al. define their approximation method using several

different values ofαi ∈ [1, α]. Note that, however, the actual sequence of updates made (i.e.
the values of$t(P )) will be the same regardless ofαi. This single sequence of updates
is determined by running the learning algorithm with the original learning rateα. Hence
wt,P (αi)/wt,P (αj) = (αi/αj)

$t(P ).

v6.tex; 1/04/2004; 9:52; p.5



6 Qingping Tao and Stephen D. Scott

THEOREM 1. (Chawla et al., 2004) Let the sample sizeSt =
⌈

130rte
2/ε2

⌉

and Mt be simulated long enough for each sample such that the variation
distance between the empirical distribution andπαi,t

is at mostε/(5e2rt).

Then for anyδ > 0, Ŵt(α) satisfies

Pr
[

(1− ε)Wt(α) ≤ Ŵt(α) ≤ (1 + ε)Wt(α)
]

≥ 1− δ .

COROLLARY 2. (Chawla et al., 2004) Using the assumptions of Theorem 1,
if Wt(α) 6∈ [ θ

(1+ε) ,
θ

(1−ε) ] for all t, then with probability at least1 − δ, the
number of mistakes made by Winnow on any sequence of examplesis at most
8 + 14Kn ln(k + 1).

3.2. WHAT IS THE BEST CHOICE OFrt?

According to Chawla et al.’s MCMC solution, the computationtime of esti-
matingWt(α) depends on the number of chainsrt−1, the number of burn-in
stepsT0 and the sample sizeS. To reduce the computation time, we need
to reduce eitherT0 andS, or rt. We could choose relatively smallT0 and
S if all of the chains inMt converged to their stationary distributions fast
enough. This could be achieved by using a good sampler, whichis discussed
in Section 4. In this section, we analyze if we could choose a smallerrt than
Chawla et al.’s proposition.

Definef
′

i,t(P ) = wt,P (α
′

i−1,t)/wt,P (α
′

i,t), whereα
′

i,t =
(

1 + κ/m
′

t

)i−1

for 1 ≤ i ≤ r
′

t, r
′

t is the smallest integer such that
(

1 + κ/m
′

t

)r
′

t−1
≥ α,

andκ andm
′

t are positive constants. Obviously,fi,t(P ) is a special case of
f

′

i,t(P ) whenκ = 1 andm
′

t = mt. If we increaseκ or use a smallerm
′

t, we

would decreaser
′

t. In Theorem 4 below, we extend Theorem 1.

LEMMA 3. For any distributionπ of Ωt, if m
′

t ≥ max{ut(Pe), vt(Pe)}, for
all i andP , e−κ ≤ f

′

i,t(P ) ≤ eκ.
Proof.Let℘max

t = maxP∈Ωt{ut(P )−vt(P )} and℘min
t = minP∈Ωt{ut(P )−

vt(P )}, i.e. the maximum and minimum number of net promotions. SincePe

is satisfied by any term andut(Pe), vt(Pe) ≥ 0, ut(Pe) ≥ ℘max
t ≥ ℘min

t ≥
−vt(Pe). Therefore,m̂t ≥ max{|℘max

t |, |℘min
t |}.

For allP ∈ Ωt,

f
′

i,t(P ) =
wt,P (α

′

i−1,t)

wt,P (α
′

i,t)
=

(

α
′

i−1,t

α
′

i,t

)$(P )

=

(

1 +
κ

m
′

t

)$(P )

,

where$(P ) = ut(P )− vt(P ). Therefore,

f
′

i,t(P ) =

(

1 +
κ

m
′

t

)$(P )

≤

(

1 +
κ

m
′

t

)℘max
t

≤

(

1 +
κ

m
′

t

)m
′

t

≤ eκ,
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An Analysis of MCMC Sampling Methods for Estimating Weighted Sums in Winnow 7

and

f
′

i,t(P ) =

(

1 +
κ

m
′

t

)$(P )

≥

(

1 +
κ

m
′

t

)℘min
t

≥

(

1 +
κ

m
′

t

)

−m
′

t

≥ e−κ .

By substituting Lemma 3’s bounds into Theorem 1, we get the following.

THEOREM 4. If m
′

t ≥ max{ut(Pe), vt(Pe)}, let the sample sizeSt =
⌈

130e2κ r̂t/ε
2
⌉

andMt be simulated long enough for each sample such that
the variation distance between the empirical distributionandπα̂i,t

is at most

ε/(5e2κr̂t). Then for anyδ > 0, Ŵt(α) satisfies

Pr
[

(1− ε)Wt(α) ≤ Ŵt(α) ≤ (1 + ε)Wt(α)
]

≥ 1− δ.

According to Theorem 4, we can setm
′

t = max{ut(Pe), vt(Pe)}, which
is often less than Chawla et al.’s proposal ofmt = ut(Pe) + vt(Pe) (see
Section 3.1). But Theorem 4 tells us that if we increaseκ by 1 , we would
need almoste2 times the sample size ande2 times smaller variation distance.
This means that the result of our MCMC solution would become worse if we
reduce the number of chains without drawing more samples. Thus it seems we
could not expect to get as good a result as before with less computation time
by increasingκ. But Theorem 4 only gives the worst-case theoretic bounds.
In practice, increasingκ might reduce computation time without dramatically
affecting the performance of estimations. Also, in the nextsection we de-
scribe ways to use fewer chains without reducing the accuracy of our Winnow
simulations.

3.3. OUR OPTIMIZED MCMC SOLUTION

In Chawla et al.’s MCMC solution,rt−1 Markov chains need to be simulated.
Here we give an optimized solution that is based on the idea that to exactly
simulate Winnow, we only need to know what Winnow’s prediction is going
to be (i.e. on what side of the thresholdθ thatW will fall on), not what the
weighted sum exactly is. So it is possible that we could stop computing our
estimate after only a subset of the chains inMt has been run.

Let ℘max
t = maxP∈Ωt{ut(P ) − vt(P )}, ℘min

t = minP∈Ωt{ut(P ) −
vt(P )} (i.e. the maximum and minimum number of net promotions), and
Ψt = {2, . . . , rt}. Given someΨ′ ⊆ Ψt, we can define the following two
conditions:

C
∏

i∈Ψ′

Wt(αi,t)

Wt(αi−1,t)

(

αi,t

αi−1,t

)

−℘min
t

≥ θ, (1)

D
∏

i∈Ψ′

Wt(αi,t)

Wt(αi−1,t)

(

αi,t

αi−1,t

)

−℘max
t

< θ, (2)
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8 Qingping Tao and Stephen D. Scott

whereC = 2nt
∏rt

i=2

(

αi,t

αi−1,t

)℘min
t

andD = 2nt
∏rt

i=2

(

αi,t

αi−1,t

)℘max
t

. Now we
can prove the following theorem.

THEOREM 5. If ∃Ψ′ ⊆ Ψt that satisfies condition (1) , thenWt(α) ≥ θ; If
∃Ψ′ ⊆ Ψt that satisfies condition (2), thenWt(α) < θ.

Proof.Becauseαi,t > αi−1,t > 0 and$t(P )− ℘min
t ≥ 0 for all P ∈ Ωt,

∑

P∈Ωt

α
$t(P )−℘min

t

i,t ≥
∑

P∈Ωt

α
$t(P )−℘min

t

i−1,t .

So Wt(αi,t)
Wt(αi−1,t)

(

αi,t

αi−1,t

)

−℘min
t
≥ 1. Then

Wt(α) = C
rt
∏

i=2

Wt(αi,t)

Wt(αi−1,t)

(

αi,t

αi−1,t

)

−℘min
t

≥ C
∏

i∈Ψ′

Wt(αi,t)

Wt(αi−1,t)

(

αi,t

αi−1,t

)

−℘min
t

≥ θ.

Similarly we can prove the second statement.

Theorem 5 tells us that it would not always be necessary to runall rt − 1
Markov chains if we were only interested in Winnow’s predictions. Instead,
we can sometimes limit our simulations to a subset of Markov chains. So
what we want is to find such a subset with the smallest size.

Let Γ1(Ψt) be the set of allΨ′ that satisfy (1), andΓ0(Ψt) be the set of all
Ψ′ that satisfy (2). We defineΨmin

1 ∈ Γ1(Ψt) as aminimum 1-prediction set
if |Ψmin

1 | ≤ |Ψ′| for all Ψ′ ∈ Γ1(Ψt), andΨmin
0 ∈ Γ0(Ψt) as aminimum

0-prediction setif |Ψmin
0 | ≤ |Ψ′| for all Ψ′ ∈ Γ0(Ψt). This leads us to

Theorem 6.

THEOREM 6. If Ψmin
1 exists,{rt, rt−1, . . . , rt−|Ψ

min
1 |+1} is a minimum

1-prediction set, and ifΨmin
0 exists,{2, 3, . . . , |Ψmin

0 | + 1} is a minimum
0-prediction set.

Proof.Let β = (1 + 1
mt

). Using Cauchy’s inequality, we can prove that

Wt(αi+1,t)Wt(αi−1,t) =
∑

P∈Ωt

α
$t(P )
i+1,t

∑

Q∈Ωt

α
$t(Q)
i−1,t

=
∑

P∈Ωt

βi·$t(P )
∑

Q∈Ωt

β(i−2)$t(Q)

=
∑

P∈Ωt

(

βi·$t(P )/2
)2 ∑

Q∈Ωt

(

β(i−2)$t(Q)/2
)2

≥





∑

P∈Ωt

β(i−1)·$t(P )





2

= Wt(αi,t)Wt(αi,t)
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An Analysis of MCMC Sampling Methods for Estimating Weighted Sums in Winnow 9

So Wt(αi+1,t)
Wt(αi,t)

≥
Wt(αi,t)

Wt(αi−1,t)
for all i ∈ {2, . . . , rt − 1}. Now let Ψ

′

=

{rt, rt − 1, . . . , rt − |Ψ
min
1 |+ 1}:

C
∏

i∈Ψ′

Wt(αi,t)

Wt(αi−1,t)

(

αi,t

αi−1,t

)

−℘min
t

≥ C
∏

i∈Ψmin
1

Wt(αi,t)

Wt(αi−1,t)

(

αi,t

αi−1,t

)

−℘min
t

≥ θ.

ThereforeΨ′ ∈ Γ1(Ψt). Since|Ψ′| = |Ψmin
1 |, thenΨ′ = {rt, rt−1, . . . , rt−

|Ψmin
1 |+1} is a minimum 1-prediction set. Similarly we can prove{2, 3, . . . , |Ψmin

0 |+
1} is a minimum 0-prediction set.

According to Theorem 6, ifWt(α) ≥ θ and we simulate Markov chains in
the order ofrt, rt − 1, . . . , 2, and halt when we find a minimum 1-prediction
set, we need no more computation than any other sequence of Markov chains.
Similarly to get a minimum 0-prediction set, we use no more chains than
any other sequence ifWt(α) < θ and we simulate them in the order of
2, 3, · · · , rt. Then we get an optimized MCMC solution for Winnow as in
Table I.

In Table I, we can estimate℘max
t and ℘min

t with ut(Pe) and−vt(Pe)
becauseut(Pe) ≥ ℘max

t ≥ ℘min
t ≥ −vt(Pe). Then we choose one of the

two orders ({rt, · · · , 2} or {2, · · · , rt}) by guessing the most likely prediction
y′t. When we use Winnow to predict an unlabeled example, we couldjust
assumey′t is 1. When we are training Winnow, we can sety′t as the class label
of training examplex. But a better way is that at thetth training iteration, let
y′t = ŷt−1(x), whereŷt−1 is the prediction ofx at the(t− 1)th iteration. The
heuristic is that the weighted sum ofx might not change too much after the
last time Winnow metx. At the beginning of training, all weights of Winnow
are1. SoW1(α) = 2n

t for all examples. If2n
t ≥ θ, y′1 = 1, otherwise0.

Another question is how smallΨmin
1 andΨmin

0 can be. We know that if
Wt(α) is very close to the thresholdθ, the chance for our algorithm to stop
early is small. Below we give the upper bounds of the sizes ofΨmin

1 and
Ψmin

0 .

THEOREM 7. If Wt(α) ≥ θ, let Wt(α) = (1 + ε)θ whereε ≥ 0. Then the
size ofΨmin

1 is at mostrt−1− ln(1+ε); If Wt(α) < θ, letWt(α) = (1−ε)θ
where0 < ε < 1. Then the size ofΨmin

0 is at mostrt − 1 + ln(1− ε).
Proof. If Wt(α) ≥ θ, thenΨmin

1 exists. LetΨk
1 = {rt, rt−1, . . . , rt−k+

1} (so |Ψk
1| = k). According to Theorem 6,Ψk

1 is a minimum 1-prediction
set ifk is the minimum value that makesΨk

1 satisfy (1).

NoticeWt(α) = Wt(αrt,t) = C
∏rt

i=2
Wt(αi,t)

Wt(αi−1,t)

(

αi,t

αi−1,t

)

−℘min
t

. Then (1)
can be written as

θ ≤ C
rt
∏

i=rt−k+1

Wt(αi,t)

Wt(αi−1,t)

(

αi,t

αi−1,t

)

−℘min
t
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10 Qingping Tao and Stephen D. Scott

Table I. Optimized MCMC solution for Winnow

1: Given an examplex, guess Winnow’s most possible prediction isy′

t,
as described in the text

2: if y′

t is 1 then

3: Ŵt(α)← 2nt
∏rt

i=2

(

αi,t

αi−1,t

)℘min
t

4: for i = rt to 2 do
5: compute the sample meanXi,t with Mt(αi,t)

6: Ŵt(α)←
(

αi,t

αi−1,t

)

−℘min
t

Ŵt(α)/Xi,t

7: if Ŵt(α) ≥ θ then
8: STOP and return̂yt(x)← 1.
9: end if

10: end for
11: returnŷt(x)← 0
12: else

13: Ŵt(α)← 2nt
∏rt

i=2

(

αi,t

αi−1,t

)℘max
t

14: for i = 2 to rt do
15: compute the sample meanXi,t with Mt(αi,t)

16: Ŵt(α)←
(

αi,t

αi−1,t

)

−℘max
t

Ŵt(α)/Xi,t

17: if Ŵt(α) < θ then
18: STOP and return̂yt(x)← 0.
19: end if
20: end for
21: returnŷt(x)← 1
22: end if

= Wt(α)/
rt−k
∏

i=2

Wt(αi,t)

Wt(αi−1,t)

(

αi,t

αi−1,t

)

−℘min
t

= (1 + ε)θ/





Wt(αrt−k,t)

Wt(α1,t)

(

αrt−k,t

α1,t

)

−℘min
t



 .

Since5 θ > 0, Wt(αrt−k,t) =
∑

P∈Ωt
α

$t(P )
rt−k,t, α1,t = 1 andWt(α1,t) =

2nt ,

∑

P∈Ωt
α

$t(P )−℘min
t

rt−k,t ≤ (1 + ε)2nt (3)

5 Notice θ is always greater than 0 for standard versions of Winnow thatonly maintain
positive weights.
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An Analysis of MCMC Sampling Methods for Estimating Weighted Sums in Winnow 11

∑

P∈Ωt
(α

$t(P )−℘min
t

rt−k,t − (1 + ε)) ≤ 0, (4)

(4) is equivalent to (1). SoΨk
1 is a minimum 1-prediction set ifk is the

minimum solution of (4). If1 + ε ≥ α
$t(P )−℘min

t

rt−k,t for all P , then the above

inequality holds. Applyingαrt−k,t = (1 + 1
mt

)rt−k−1 yields

ln(1 + ε) ≥ (rt − k − 1) ln

(

(

1 +
1

mt

)$t(P )−℘min
t

)

k ≥ rt − 1− ln(1 + ε)/ ln

(

(

1 +
1

mt

)$t(P )−℘min
t

)

Notice(1+ 1
mt

)$t(P )−℘min
t < (1+ 1

mt
)mt < e. Sok′ = rt−1− ln(1+ ε)

is a solution of (4). Therefore the minimum solution of (4) must be at most
k′. Then we get an upper bound of|Ψmin

1 | asrt− 1− ln(1+ ε). Similarly we
can prove thatrt − 1 + ln(1− ε) is an upper bound of|Ψmin

0 |.

According to Theorem 7, our optimized MCMC solution uses at least
ln(1 + ε) fewer chains than that Chawla et al. (2004)’s solution if thepre-
diction is 1 and at leastln(1 − ε)−1 fewer chains if the prediction is 0. Also
we notice that out solution will use less chains ifWt is farther away fromθ,
which means it saves more computation time.

4. Sampling from πα,t

All that remains is efficiently drawing samples from the chains (lines 6 and 15
in Table I). Chawla et al. (2004) applied the Metropolis sampler, which is the
most popular MCMC method, to the state spaceΩt. Here we also look at three
other MCMC sampling techniques including Gibbs sampler, Metropolized
Gibbs sampler, and parallel tempering.

4.1. METROPOLISSAMPLER FORWINNOW

The Metropolis sampler (Metropolis et al., 1953) can be applied to problems
where the state is either continuous or discrete, as long as it is possible to
compute the ratio of the probabilities of two states. To drawsamples from the
stationary distribution, the Metropolis sampler repeatedly considers randomly
generated changes to the variables of the current stateP and accepts new state
Q with probabilitymin(1, π(Q)/π(P )).

Chawla et al. definedMt(α) based on the Metropolis sampler. Each tran-
sition in Mt(α) selects a single variablepi ∈ P at random and proposes a
new value1 − pi. Then the Metropolis acceptance probability forMt(α) is
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12 Qingping Tao and Stephen D. Scott

min(1, π(Q)/π(P )), whereQ = (p1, . . . , pi−1, 1 − pi, . . . , pnt). Then they
used the Metropolis sampler forMt(α) as in Table6 II.

Table II. The Metropolis sampler for Winnow

1: With probability1/nt let Q = P ; otherwise,
2: Select i uniformly at random from1, . . . , nt and let Q

′

=
(p1, . . . , pi−1, 1− pi, . . . , pnt

);

3: Let Q = Q
′

with probabilitymin{1, π(Q
′

)
π(P ) }, where

π(Q
′

)

π(P )
=

wt,Q
′

wt,P

= α$t(Q
′

)−$t(P ),

else letQ = P .

4.2. GIBBS SAMPLER FORWINNOW

The Gibbs sampler (Geman and Geman, 1984) is widely applicable to prob-
lems where the variables have conditional distributions ofa parametric form
that can easily be sampled from. In a single transition of theGibbs sampler,
each variable is replaced with a value picked from its distribution conditioned
on the current values of all other components.

For any stateP ∈ Ωt, each variablepi only has two possible values: 0 and
1. If P0 = (p1, · · · , pi = 0, · · · , pnt) andP1 = (p1, · · · , pi = 1, · · · , pnt), the
conditional distribution is

πα,t(pi | P \ {pi}) =
πα,t(P )

πα,t(P0) + πα,t(P1)
.

Then we define the Gibbs sampler forMt(α) as in Table III.
The Gibbs sampler has a number of distinct features. The conditional

distributions of the Gibbs sampler are constructed on priorknowledge of
π. Furthermore, the Gibbs sampler is, by construction, multidimensional. It
generates new values for all variables and only after that itoutputs a sample.
In the Metropolis sampler, the variable to be changed is selected totally at
random.

6 We compute the weights ofP and Q′ by evaluating them on the training set (see
Footnote 2).
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An Analysis of MCMC Sampling Methods for Estimating Weighted Sums in Winnow 13

Table III. The Gibbs sampler for Winnow

1: Q← P
2: for i = 1, · · · , nt do
3: let Q

′

= (q1, . . . , qi−1, 1− qi, . . . , qnt
);

4: Let Q = Q
′

with probabilityπα,t(Q
′

| P \ {pi}), where

πα,t(Q
′

| P \ {pi}) = wt,Q
′ /(wt,Q

′ + wt,P )

= 1/(1 + α$t(P )−$t(Q
′

));

5: end for

4.3. METROPOLIZED GIBBS SAMPLER FOR WINNOW

The Metropolized Gibbs sampler (Liu, 1996) is a modificationof the Gibbs
sampler. It has been proven to be statistically more efficient than the Gibbs
sampler. The sampler draws a new valuep′i with probability

πα,t(p
′

i | P \ {pi})

1− πα,t(pi | P \ {pi})
,

and accepts with the Metropolis-Hastings acceptance probability

min

{

1,
1− πα,t(pi | P \ {pi})

1− πα,t(p′i | P \ {pi})

}

.

As mentioned in Section 4.2, each component inΩt only has two possible
values. So the Metropolized Gibbs sampler becomes a Metropolis sampler
that repeatedly updates all components in a fixed order. We then build the
Metropolized Gibbs sampler forMt(α) by replacing the acceptance proba-
bility in line 4 of Table III with

min

{

1,
πα,t(Q

′

| Q \ {qi})

1− πα,t(Q
′ | Q \ {qi})

}

,

where
πα,t(Q

′

| Q \ {qi})

1− πα,t(Q
′

| Q \ {qi})
=

π(Q
′

)

π(Q)
= α$t(Q

′

)−$t(Q) .
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14 Qingping Tao and Stephen D. Scott

4.4. PARALLEL TEMPERING FORWINNOW

The idea of parallel tempering (Geyer, 1991) is to artificially ensemble a set of
Markov chains with different, but related stationary distributions. It involves
two sets of steps: local steps in each chain and swap steps between two chains.
Each local step is defined by each Markov chain, such as Metropolis sampler
or Gibbs sampler. In each swap step, two chains make an exchange of their
current states. For example, chaini is at statePi and chainj is at statePj .
After a swap step, chaini will be at statePj and chainj will be at statePi.
Swap steps are introduced to allow greater mobility and faster mixing. After
all of the chains make a local step, the sampler attempts to swap the current
states of two of the chains. The acceptance probability for swapping statesPi

andPj between two chainsi andj is min
{

1,
πi(Pj)πj(Pi)
πi(Pi)πj(Pj)

}

.

In our MCMC solution, we buildrt − 1 parallel Markov chainsMt(αi)
with stationary distributions

παi,t(P ) =
α

$t(P )
i

Wt(αi)
=

(1 + 1/mt)
(i−1)$t(P )

Wt(αi)
.

Then we get the parallel tempering version of our samplers asin Table IV.
In Table IV, we simulate allrt − 1 Markov chains in parallel, while our
optimized MCMC solution needs to run these chains in a specific sequence
(see Section 3.3). In order to apply our optimized solution,we can partition
the sequence into small groups, use parallel tempering in each group and
run these groups sequentially. Then we can apply our optimized solution on
these groups. But we might not find the best subset of chains asindicated in
Theorem 6 since we will only check the constraints after the simulation of a
group of chains instead of a single chains.

Table IV. Parallel tempering for Winnow

1: for T = 1, · · · , S do
2: With probability ρswap, randomly choose a neighboring pair of

chains, sayi andi + 1, and swap current statesPi andPi+1 with
probability

min
{

1, (1 + 1/mt)
$t(Pi)−$t(Pi+1)

}

.

3: Simulate allrt − 1 Markov chains for a single step via their
samplers.

4: Save current states of allrt − 1 Markov chains as samples.
5: end for
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An Analysis of MCMC Sampling Methods for Estimating Weighted Sums in Winnow 15

5. Other Extensions

5.1. DISCRETIZING REAL-VALUED ATTRIBUTES

Since our algorithm can only handle discrete-valued attributes, we employ
the method of Elomaa and Rousu (1999) to discretize continuous-valued at-
tributes. For each attribute, we sort (in ascending order) its values over all
examples and then divide its value range into several intervals according to
some evaluation function that estimates the class coherence in a given set of
examples. Here we use the Average Class Entropy as the evaluation function.
Let

⊎

Si be a partition ofS, the Average Class Entropy of the partition is:

ACE(
⊎

i

Si) =
∑

i

Si

S
H(Si) =

1

|S|

∑

i

|Si|H(Si) ,

where the entropy functionH(S) = −
∑m

j=1 P (Cj , S) log2 P (Cj , S) , where
m is the number of classes andP (Cj, S) is the proportion of the examples
in S that belong to the classC. A good property of Average Class entropy
is cumulativity, i.e. the impurity of a partition can be obtained by a weighted
summation over the impurities of its subsets. Cumulativityfacilitates incre-
mental evaluation of impurity values. So we can apply a dynamic program-
ming scheme that is suggested by Elomaa and Rousu (1999) to discretize
real-valued attributes.

An advantage to partitioning a single continuous attributec into several
intervals (i.e. mappingc to a singlek-valued attribute) versus finding several
thresholds forc (i.e. mappingc to k − 1 boolean attributes) is that the state
spaceΩ is smaller, as isn. If k − 1 boolean attributes are used, then|Ω| =
3k−1∏

i∈other(ki + 1), whereother is the set of other attributes. In contrast,
a singlek-valued attribute yields|Ω| = (k +1)

∏

i∈other(ki +1). In addition,
reducingn makes exact computation ofWt (which requires enumerating up
to 2n terms) easier, so it is more likely that we can do exact computation of
Wt rather than an approximation, which increases accuracy.

5.2. HANDLING M ISSING DATA

There is an implicit means in our representation of examplesthat can be used
to handle missing data. If the values of some attributes of examplex are
missing in an example, we simply assign 0 to these attributesand define a
termP to not be satisfied byx unlesspi = 0 for all i such thatxi = 0 (see
Section 2.1). We also tried the popular approach of assigning to the missing
attribute the most common value in the same class.
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16 Qingping Tao and Stephen D. Scott

5.3. MULTI -CLASS CLASSIFICATION

Since Winnow only can only make binary predictions, we trainone Win-
now DNF learner for each class, i.e. a “one versus the rest” approach. So
given an examplex with a label of classj, x is presented to Winnowj as a
positive example and to all others as a negative example. After training all
Winnows, we take an unlabeled example, estimate the weighted sums of all
Winnows on that example , and predict the class with the Winnow that has the
maximum weighted sum. In our experiments, we observed that even if each
single Winnow has a high error rate, the Winnow of the class that an example
belongs to frequently is the one with the highest weighted sum. Therefore
our algorithm frequently had low prediction error even whenthe individual
binary classifiers did not.

6. Experimental Results

In our experiments, we evaluated three MCMC sampling techniques: Metropo-
lis, Gibbs and Metropolized Gibbs, each with and without parallel tempering
(PT). So we tested6 samplers. We compared their performance on estimating
weighted sums on two data sets: simulated data similar to that used by Chawla
et al. (2004) and Voting data from the UCI repository (Blake et al., 2004). We
then tested our optimized algorithm on the simulated data and five UCI data
sets to find what kind of impact these MCMC samplers have on Winnow’s
predictions. We also compared the computation costs of our optimized solu-
tion with Chawla et al.’s algorithm in terms of the total number of Markov
chains simulated.

We started out tests with data similar to Chawla et al.’s simulated data.
They used data withn ∈ {10, 15, 20}. In our experiment, we used their sim-
ulated data generator to generate random 5-term monotone DNF formulas,
using n ∈ {10, 15, 20, 25, 30, 35, 40}. For each value ofn there were10
training/testing sets, each with50 training examples and 50 testing examples.
In our experiments on UCI data, we partitioned each data set into k blocks,
wherek = 10 if the data set size was≥ 300. Otherwise the number of
blocks was reduced to ensure that each block was of size at least 30. Since
our algorithm can only handle discrete-valued attributes,we also discretized
continuous-valued attributes.

Neal (1995) pointed out that it takes aboutT 2 steps to move to a state
T steps away because of the random walk nature of MCMC samplers. The
farthest distance between two states inΩt is n, the number of variables. Thus
we set the burn-in timeT0 = n2. Our experiments showed that this burn-
in time worked very well. In each experiment, we counted eachupdate of a
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An Analysis of MCMC Sampling Methods for Estimating Weighted Sums in Winnow 17

single variable of current state as a single sampling step. We used the same
number of sampling steps7 Ts for all six samplers.

6.1. COMPARISONS OFWEIGHTED SUM ESTIMATES

Our first experiments were designed to evaluate how well the weight estima-
tion procedures with different samplers guessed the weighted sums. Since we
are interested in estimated weighted sums instead of just predictions in these
experiments, we turned off our optimized solution. During Winnow’s train-
ing, we computed the estimates with six samplers, while we updated weights
using the exact weighted sum computed via brute force (i.e. Winnow was
trained using the exact weighted sums). So all samplers worked on the same
distributions and state spaces. Then we compared them usingthe measure
Guess Errorgiven in Chawla et al. (2004), which is the average error of the
estimates (|Ŵ −W |/W ).

Figure 1 shows the results on Voting, which has16 variables and435
examples. We setT0 = 256 and variedTs ∈ {800, 1600, 3200, 6400, 9600,
12800, 16000}. We trained Winnow for 20 rounds on10 partitions. So Fig-
ure 1 represents averages over more than70000 estimates.

In the figure, there are dramatic drops of Guess Error from800 to 6400
sampling steps. WhenTs ≥ 9600, Ts has much less effect on Guess Error.
This indicates that at that point Markov chains may be close to the station-
ary distributionπt. The parallel tempering version of each sampler showed
little effect. This is because the number of chainsrt for each estimation
increased quickly. It was more than50 after 8 training iterations and even-
tually more than150. So even setting the swap probability to0.9 did not
provide enough swap steps to make a big improvement. For allTs, Guess
Errors of Gibbs and Metropolized Gibbs are always lower thanMetropolis.
Although Metropolized Gibbs has a lower Guess Error than Gibbs, the dif-
ference between these two samplers is very small, especially when Ts =
9600, 12800, 16000.

To evaluate the effect of varying the number of attributesn, we measured
Guess Error of the six samplers on the simulated data8. In Figure 2,Ts is
fixed at10000 andT0 = n2. Gibbs and Metropolized Gibbs are still always
better than Metropolis. The Guess Error of Metropolized Gibbs is lower than
Gibbs whenn ≤ 25. But whenn > 25, Gibbs becomes the best sampler.

7 The number of samplesS drawn by the Metropolis sampler isTs. But S for the Gibbs
and Metropolized Gibbs samplers isTs/n because they only use states as samples after alln
variables have been updated (see Section 4).

8 It seems it is unpractical to run brute force Winnow whenn is bigger than 20. But the
simulated data is randomly generated from monotone DNF, so each variable can only be 1 or
0. Since we do not need to consider the variables with 0 value (see Section 3.1), the expected
number of variables used by brute force Winnow each trial isn/2. So we can run brute force
Winnow even whenn = 40.
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Figure 1. Guess Error vs. the number of sampling stepsTs on Voting.

As with Voting, parallel tempering only improved performance very slightly.
Considering results in Figures 1 and 2, we can say that Gibbs sampler is the
best choice on average in terms of the accuracy of estimatingweighted sums.

6.2. COMPARISONS OFPREDICTION ERROR

Now we describe experiments that examine the prediction error of MCMC-
based Winnow. In both training and testing, we ran the MCMC-based sim-
ulation instead of brute force. We performedk-fold cross-validation on six
data sets from the UCI repository and computed95% confidence intervals
(it is not practical to run brute force Winnow on auto and annealing). Since
Winnow can only make binary predictions, we train one WinnowDNF learner
for each class. After training, we take an unlabeled example, estimate the
weighted sums of all Winnows on that example, and predict theclass with
the Winnow that has the maximum weighted sum. Table V summarizes the
results. For each data set, all six samplers have similar performance. All
confidence intervals of each data set overlap. Although no sampler showed
a significant advantage over others, we notice that prediction errors of all
three samplers are often lower than their PT versions. Another interesting fact
is that MCMC-based Winnow has even better performance than brute force
Winnow on iris and car. On breast cancer and voting data, non-PT samplers
showed little difference from brute force Winnow. Thus for the data sets we
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Figure 2. Guess Error vs. the number of variablesn on simulated data.

tested, there does not seem to be any disadvantage to using anMCMC-based
approximation in place of brute force.

To further investigate these observations, we reran the experiments of Sec-
tion 6.1. There were7 experiments for simulated data and7 experiments for

Table V. Comparisons of prediction errors on UCI data sets (T0 = n2 andTs = 10n2).
M - Metropolis, G - Gibbs, MG - Metropolized Gibbs, PT - Parallel Tempering, BF - Brute Force.

Data

Sets iris car breast cancer voting auto annealing

n 4 6 9 16 25 38

M 5.3 ± 2.1 1.7 ± 0.8 31.5 ± 5.0 5.0 ± 2.1 12.8 ± 7.5 1.0 ± 0.7

G 6.7 ± 3.8 1.9 ± 0.8 30.9 ± 5.5 5.0 ± 2.4 15.6 ± 7.8 0.6 ± 0.5

MG 6.0 ± 1.7 1.5 ± 0.8 31.7 ± 5.0 5.0 ± 2.1 16.6 ± 5.5 0.4 ± 0.4

M+PT 6.0 ± 3.2 1.7 ± 0.9 32.7 ± 4.7 5.0 ± 1.6 18.6 ± 5.1 0.9 ± 0.7

G+PT 6.7 ± 2.7 1.5 ± 0.8 31.5 ± 3.8 5.9 ± 2.5 18.4 ± 4.7 1.3 ± 0.9

MG+PT 6.0 ± 3.2 1.6 ± 0.7 31.8 ± 5.8 5.4 ± 2.5 18.1 ± 4.3 0.7 ± 0.5

BF 7.3 ± 3.2 3.3 ± 1.1 33.3 ± 4.9 5.0 ± 2.0 - -
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Table VI. Comparisons of prediction errors on Voting (n = 16 andT0 = 256).
M - Metropolis, G - Gibbs, MG - Metropolized Gibbs, PT - Parallel Tempering, BF - Brute Force.

Ts 800 1600 3200 6400 9600 12800 16000

M 5.1±1.7 5.3±1.6 5.0 ± 2.1 5.3±1.8 5.0±1.3 4.8±1.6 5.5±2.4

G 4.6 ± 2.5 4.8 ± 1.5 5.0±2.4 4.8±2.1 6.0±2.5 4.6 ± 1.8 4.3 ± 2.0

MG 5.1±1.1 5.0±1.5 5.0 ± 2.1 4.6 ± 1.6 4.8 ± 1.8 5.0±2.7 5.9±2.5

M+PT 5.3±1.9 4.1±0.9 5.0 ± 1.6 5.5±1.5 5.0 ± 1.8 4.1 ± 2.0 3.6 ± 1.9

G+PT 5.3±1.4 4.8±1.8 5.9±2.8 5.9±2.5 5.4±1.8 4.6±2.2 4.3±2.0

MG+PT 5.1 ± 1.1 3.2 ± 0.9 5.4±2.5 4.8 ± 2.7 5.0±2.5 5.0±2.2 5.5±2.4

BF 5.0±2.0

Table VII. Comparisons of prediction errors on simulated data (T0 = n2 andTs = 10000).
M - Metropolis, G - Gibbs, MG - Metropolized Gibbs, PT - Parallel Tempering, BF - Brute Force.

n 10 15 20 25 30 35 40

M 1.8±1.6 2.6±2.6 7.4±3.9 4.2±2.3 6.0 ± 3.0 7.2 ± 5.9 7.0±7.0

G 1.8±1.6 3.0±2.5 7.8±4.3 3.4 ± 3.0 8.0±3.5 7.4±4.9 6.2 ± 3.8

MG 1.8±1.4 2.6 ± 2.3 7.2 ± 3.5 3.8±2.9 6.4±3.9 8.8±5.2 7.0±3.9

M+PT 1.4 ± 1.5 4.4±2.4 7.4±3.7 3.2±2.8 6.4 ± 4.1 7.0 ± 3.8 5.8 ± 4.5

G+PT 1.6±2.0 3.0±1.8 5.6 ± 3.1 4.4±3.3 7.4±4.5 7.2±3.6 6.0±3.4

MG+PT 1.6±1.5 2.6 ± 2.6 7.0±4.3 3.2 ± 2.3 7.8±4.3 9.6±5.5 6.0±4.1

BF 2.8±2.6 4.6±3.8 7.2±4.2 4.4±4.4 6.2±3.9 7.4±3.5 5.6±4.0

Voting. For Voting, 10-fold cross-validation was done for each experiment.
Table VI reports the results. MCMC samplers with PT have higher prediction
error than non-PT versions whenTs is less than 9600, except forTs = 1600.
WhenTs is bigger than 9600, PT versions have equal or even better perfor-
mance compared to non-PT versions. We suspect this behaviorwas because
whenTs is small, Guess Error of all samplers is high. The estimated value
Ŵ varies a lot at different time simulations. Since parallel tempering allows
greater mobility (see Section 4.4), PT would introduce morevariation, which
makes it is hard for Winnow to learn. But when Guess Error is very low,
this variation does not change Winnow’s learning procedureaccording to
Theorem 1 and 4. Also we notice that in this experiment, Gibbshas the lowest
prediction error four times, which is best in non-PT version. But the best PT
sampler is Metropolis with PT. Finally, note that brute force does not have
any significant advantage over most approximations, and is often worse.
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Table VII reports results for simulated data. Here we fixedTs and var-
ied n. Each experiment involved10 training/testing sets. Samplers with PT
have better performance whenn is 10, 15 and 40, and show little difference
on othern. Because Guess Errors of PT and non-PT samplers are almost
same, the only reason is the randomness in samplers as we discussed before.
MCMC-based Winnow achieved lower error rates than brute force Winnow
whenn is smaller than 20. But they have higher error rates whenn = 40
since Guess Error is relatively high. Also we notice that in this experiment,
Gibbs has the lowest prediction error for three times, whichis best in non-PT
version. But the best PT sampler is Metropolis with PT. Again, we see that
brute force’s error is at least as large as several of the approximations.

From all above results, we found when Guess Error is small, MCMC-
based Winnow can get equal or even better performance than brute force
Winnow. Parallel Tempering introduces more random behavior in MCMC.
Its performance is hard to predict. In this sense, Gibbs sampler, which has
the best performance in terms of Guess Error, is a good choice, though its
advantage is less clear in terms of prediction error. We do not recommend
using its PT version.

6.3. COMPARISONS OFCOMPUTATION COST

Here we report speedups of our optimized algorithm (Section3.3) over Chawla
et al.’s solution in terms of the total numbers of Markov chains that are used.
In Tables VIII and IX, “MCMC” is the total number of chains used by Chawla
et al.’s solution. “Opt MCMC” is the total number of chains used by our
algorithm. SoMCMC =

∑τ
t=1(rt−1) andOpt MCMC =

∑τ
t=1 r′t, where

r′t is the number of chains used by our optimized algorithm at trial t andτ
is the number of trials. “Savings” is the percentage of chains our algorithm
saved, that is,Savings = 1 − Opt MCMC/MCMC. “Savingstheory”
is the percentage of chains our algorithm can save accordingto the worst-
case analysis of Theorem 7. To computeSavingstheory, we computed the
number of chains saved for each trial and add them up over all trials. So
Savingstheory = (

∑τ
t=1 | ln(Savθ(Wt))|) /MCMC, whereSavθ(Wt) =

1 + εt if Wt ≥ θ, Savθ(Wt) = 1 − εt if Wt < θ. Since it is not practical
to computeWt for auto and annealing, we cannot computeSavingstheory

for those data sets. In the tables,ε̄ is the average over all trialsεt = |(Wt −
θ)/θ|, which is the normalized distance between true weighted sumWt and
thresholdθ.

Results in Tables VIII and IX confirm that we do not need to run all chains
when estimating weighted sums. However, this widely varieswith the data
set. A possible reason is that the true weighted sums of Winnow are much less
or much greater than the threshold for some data sets, and closer for others.
When the true weighted sums diverge significantly from the threshold, there
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Table VIII. Comparisons of the total number of Markov chainson simulated data (in thousands).

n ε̄ MCMC Opt MCMC Savings (%) Savingstheory (%)

10 0.351 4.6 4.1 11.3 6.4

15 0.365 11.9 11.2 6.3 3.9

20 0.340 20.8 18.7 10.0 7.0

25 0.454 23.5 21.2 9.7 6.8

30 0.363 40.8 37.5 8.1 5.1

35 0.421 58.7 53.0 9.7 6.2

40 0.294 60.9 53.2 12.7 6.8

Table IX. Comparisons of the total number of Markov chains onUCI data sets (in thousands).

Data Sets ε̄ MCMC Opt MCMC Savings (%) Savingstheory (%)

iris 0.472 217.7 200.1 8.0 1.14

car 0.529 14272.7 14032.0 1.7 0.12

breast cancer 0.500 45176.2 45111.5 0.2 0.04

voting 0.587 1185.5 1132.0 4.5 0.48

auto - 13822.8 13751.7 0.5 -

annealing - 4855.2 3781.6 22.1 -

are more chances for our algorithm to stop early. As shown in Tables VIII
and IX, whenSavingstheory is big, the true savings is often big.

7. Conclusions and Future Work

We proposed an optimized MCMC solution for estimating weighted sums in
Winnow. We showed that it often uses less computation time than Chawla
et al.’s (2004) solution without any loss of classification accuracy. Our ex-
perimental results confirmed that our algorithm only needs to use a subset
of all Markov chains implied by the original solution. We also showed how
to get such a subset with the smallest size and gave lower bounds on how
many chains our solution can save. We also empirically compared three new
MCMC sampling techniques: Gibbs, Metropolized Gibbs and parallel tem-
pering. They all showed better performance than Chawla et al.’s Metropolis
sampler in terms of accuracy of weighted sum estimates. We also found that
the Gibbs sampler had good performance on average. Further,we found that
all approximation algorithms had prediction error that wasno worse (and
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often better than) a brute force version that exactly computed the weighted
sums.

Future work includes applying our algorithm to other algorithms (e.g. the
algorithms of Tao and Scott (2004) and Goldman et al. (2001) for multiple-
instance learning) and exploring other MCMC techniques such as blocking
and over-relaxation (Neal, 1995). In addition, we are investigating the effect
of pruning terms (i.e. using only heavy terms) on predictionaccuracy, found
via both the Markov chain and a genetic algorithm. We are alsodeveloping
other methods to reduce training time, e.g. by limiting eachterm (input to
Winnow) to be constraints on at mostk attributes (i.e. at mostk non-0s are
allowed per term). This reduces the state space size for exactly computing
Wt to |Ωt| = O(nk) as opposed to2n. Khardon et al. (2001) discuss this
idea in a slightly different context. Also, Khardon et al. give a negative re-
sult for exactly simulating Winnow for learning DNF (Section 2.1). Does a
similar result exist for randomized algorithms simulatingWinnow with high
probability?
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