
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

CSE Technical reports Computer Science and Engineering, Department
of

2-27-2007

Real-Time Divisible Load Scheduling with Different Processor Real-Time Divisible Load Scheduling with Different Processor

Available Times Available Times

Xuan Lin
University of Nebraska-Lincoln

Steve Goddard
University of Nebraska-Lincoln, goddard@cse.unl.edu

Ying Lu
University of Nebraska-Lincoln, ying@unl.edu

Jitender Deogun
University of Nebraska-Lincoln, jdeogun1@unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/csetechreports

 Part of the Computer Sciences Commons

Lin, Xuan; Goddard, Steve; Lu, Ying; and Deogun, Jitender, "Real-Time Divisible Load Scheduling with
Different Processor Available Times" (2007). CSE Technical reports. 41.
https://digitalcommons.unl.edu/csetechreports/41

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Technical reports by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/17213789?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/csetechreports
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/csetechreports?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/csetechreports/41?utm_source=digitalcommons.unl.edu%2Fcsetechreports%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages

Technical Report UNL-CSE-2007-0013
Real-Time Divisible Load Scheduling with Different Processor

Available Times

Xuan Lin, Ying Lu, Jitender Deogun, Steve Goddard
Department of Computer Science and Engineering

University of Nebraska - Lincoln
Lincoln, NE 68588

{lxuan, ylu, deogun, goddard}@cse.unl.edu

Abstract
Providing QoS and performance guarantees to arbitrarily divisible loads has become a significant

problem for many cluster-based research computing facilities. While progress is being made in schedul-

ing arbitrarily divisible loads, some of proposed approaches may cause Inserted Idle Times (IITs) that

are detrimental to system performance. In this paper we propose a new approach that utilizes IITs and

thus enhances the system performance. The novelty of our approach is that, to simplify the analysis,

a homogenous system with IITs is transformed to an equivalent heterogeneous system, and that our

algorithms can schedule real-time divisible loads with different processor available times. Intensive

simulations show that the new approach outperforms the previous approach in all configurations. We

also compare the performance of our algorithm to the currentpractice of manually splitting workloads

by users. Simulation results validate the advantages of ourapproach.

Keyword: Real-Time Scheduling; Inserted Idle Time; Cluster Computing; Divisible Load.

1 Introduction

Arbitrarily divisible or embarrassingly parallel workloads, can be partitioned into an arbitrarily large

number of independent load fractions, and are quite common in bioinformatics as well as high energy

and particle physics. For example, the CMS (Compact Muon Solenoid) [14] and ATLAS (AToroidal

LHC Apparatus) [6] projects, associated with the Large Hadron Collider (LHC) at CERN (European

Laboratory for Particle Physics), execute cluster-based applications with arbitrarily divisible loads.

Development of commodity-based clusters has recently gained considerable momentum. By linking

a large number of computers together, a cluster provides a cost-effective facility for solving complex

problems. In a large-scale cluster, the resource management system (RMS), which provides real-time

guarantees or QoS, is central to its operation.

1

University of Nebraska–Lincoln, Computer Science and Engineering
Technical Report TR-UNL-CSE-2007-0013
Issued Feb. 27, 2007

As a result, the real-time scheduling of arbitrarily divisible loads is becoming a significant problem for

cluster-based research computing facilities like the U.S.CMS Tier-2 sites [33]. One of the management

goals at the University of Nebraska-Lincoln (UNL) ResearchComputing Facility (RCF) is to provide

a multi-tiered QoS scheduling framework in which applications “pay” according to the response time

requested for each job [33]. Due to the increasing importance [28], a few efforts [18, 20, 22] have been

made in real-time divisible load scheduling, with significant initial progress in important theories and

novel approaches.

However, an important classic problem of scheduling parallel jobs has not yet been adequately ad-

dressed for real-time divisible load scheduling. For executing a parallel job, if a sufficient number of

processors are available then the processors are allocatedand the job is started. But if the required

number of processors are not available, the job waits for some currently running jobs to finish and free

additional processors. This essentially causes a waste of processing power as some processors are idle

when the system is waiting for enough processors to become available to start the waiting job. This

drawback is a system inefficiency that we refer to as the Inserted Idle Times (IITs) problem. To alle-

viate this limitation, backfilling algorithms [21, 24, 29] have been proposed, where small jobs could

be moved ahead and run on processors that would otherwise remain idle. Leveraging characteristics of

arbitrarily divisible loads, we propose in this paper a new real-time divisible load scheduling approach

that utilizes IITs. The novelty that distinguishes our workfrom conventional approaches is thatour al-

gorithms can schedule real-time divisible loads with different processor available times. Our approach

is complementary to the backfilling mechanism.

Divisible load theory (DLT) provides insight into distribution strategies for arbitrarily divisible com-

putations and has been demonstrated to lead to significantlybetter approaches for real-time divisible

load scheduling [22]. Two contributions are made in this paper. First, wecast a homogenous cluster

with different processor available times to a heterogeneous cluster model. A DLT heterogeneous model

is then applied to guide task partitioning, to derive a task execution time function and to approximate the

minimum number of processors required to meet a task deadline. Second, weprove that executing the

partitioned subtasks in the homogenous cluster at different processor available times leads to completion

times no later than the estimates. This result is then applied to develop a new divisible load scheduling

algorithm that uses IITs and provides real-time guarantees. Intensive simulation results show that the

new approach outperforms the previous approach [22] where IITs are not utilized. We also compare the

algorithm with a current practice where users manually split their workloads. Results demonstrate the

obvious advantages of the proposed approach.

The remainder of this paper is organized as follows. Relatedwork is presented in Section 2. We

describe both task and system models in Section 3. In Section4, real-time scheduling algorithms inves-

2

tigated in this paper are discussed. We evaluate the performance of algorithms in Section 5 and conclude

the paper in Section 6.

2 Related Work

Utility-driven cluster computing has been well researched[31, 35] to improve the utility delivered to

users. Proposed cluster RMSs [3, 12] have addressed the scheduling of both sequential and parallel

loads. The goal of those schemes is similar to ours:to harness the power of resources based on user

objectives.

The scheduling models investigated for real-time distributed systems most often (e.g., [1, 5, 17, 19, 26,

27]) assume periodic or aperiodic sequential jobs that mustbe allocated to a single resource and executed

by their deadlines. With the evolution of cluster computing, researchers have begun to investigate real-

time scheduling of parallel applications [2, 4, 16, 25, 36].However, most of these studies assume the

existence of some form of task graph to describe communication and precedence relations between

computational units called subtasks (i.e., nodes in the task graph). Despite the increasing importance of

arbitrarily divisible applications [28], to the best of ourknowledge, only a few researchers [18, 20, 22]

have investigated the real-time scheduling of arbitrarilydivisible loads.

The most closely related work to ours is the scheduling of “scalable tasks” [20] or “moldable jobs”

[7, 13, 18, 30, 32], where only very few of them [18, 20] have considered QoS support. In [22] we investi-

gated real-time cluster-based divisible load scheduling and proposed several algorithms for homogenous

clusters. Following our previous work, in this paper, we develop a real-time scheduling approach that

utilizes Inserted Idle Times. A mechanism to utilize processor idle-times, also called fragments, was

investigated in [20]. However, that approach is different from ours. They try to utilize more processing

power by assigning a task to a larger number of nodes. Complementary to their approach, our algorithm

enables a task to utilize a processor as soon as it becomes available. Results shown in [20] depict that

the performance improvement of the approach in [20] is negligible. In contrast, our algorithm leads to

significantly better performance.

DLT provides an in-depth study of distribution strategies for arbitrarily divisible loads [10, 28, 34].

The goal of DLT is to exploit parallelism in computational data so that the workload can be partitioned

and assigned to several processors such that execution completes in the shortest possible time [10]. In our

previous work [22], we demonstrated that the application ofDLT leads to significantly better approaches

for real-time divisible load scheduling. Encouraged by itsperformance benefits, we again apply DLT

to develop new algorithms. Specifically, a DLT heterogeneous model is applied in the partitioning of

applications, such as CMS [14] and ATLAS [6], that execute ona large homogenous cluster.

3

3 Task and System Models

In this paper, we adopt the same task and system models as our previous work [22]. For completeness,

we briefly present these below.

Task Model. We assume a real-time aperiodic task model in which each aperiodic taskTi consists

of a single invocation specified by the tuple(Ai, σi, Di), whereAi is the task arrival time,σi is the total

data size of the task, andDi is its relative deadline. The task absolute deadline is given by Ai + Di.

Section 4.1 presents, in detail, how task execution time is dynamically computed based on total data

sizeσi, resources allocated (i.e., processing nodes and bandwidth) and the partitioning method applied

to parallelize the computation.

System Model. A cluster consists of a head node, denoted byP0, connected via a switch toN

processing nodes, denoted byP1, P2, . . . , PN . We assume that all processing nodes have the same

computational power and all links from the switch to the processing nodes have the same bandwidth.

The system model assumes a typical cluster environment in which the head node does not participate

in computation. The role of the head node is to accept or reject incoming tasks, execute the scheduling

algorithm, divide the workload and distribute data chunks to processing nodes. Since different nodes

process different data chunks, the head node sequentially sends every data chunk to its corresponding

processing node via the switch. We assume that data transmission does not occur in parallel, although it

is straightforward to generalize our model and include the case where some pipelining of communication

may occur. For the arbitrarily divisible loads, tasks and subtasks are independent. Therefore, there is no

need for processing nodes to communicate with each other.

According to divisible load theory, linear models are used to represent processing and transmission

times [34]. In the simplest scenario, the computation time of a loadσ is calculated by a cost function

Cp(σ) = σCps, whereCps represents the time to compute a unit of workload on a single processing

node. The transmission time of a loadσ is calculated by a cost functionCm(σ) = σCms, whereCms is

the time to transmit a unit of workload from the head node to a processing node. For many applications

the output data is just a short message and is negligible, particularly considering the very large size of

the input data. Therefore, in this paper we only model the transfer of application input data but not that

of output data. The extension to consider the transfer of output data using DLT is straightforward.

The following notations, partially adopted from [34], are used in this paper,

• T = (A, σ, D): A divisible task, whereA is arrival time,σ is data size, andD is relative deadline;

• α = (α1, α2, ..., αn): Data distribution vector, wheren is the number of processing nodes allocated

to the task,αj is the data fraction allocated to thejth node, i.e.,αjσ, is the amount of data that is

to be transmitted to thejth node for processing,0 < αj ≤ 1 andΣn
j=1αj = 1;

4

• Cms: Cost of transmitting a unit workload;

• Cps: Cost of processing a unit workload.

4 Algorithms

This section presents real-time divisible load schedulingalgorithms that utilize Inserted Idle Times (IITs)

in a cluster. Many parallel job scheduling algorithms [21, 22] face the IITs problem. It occurs when the

number of processors available is less than that required bythe next job. In that case, the job has to

wait until enough processors become available, which leadsto a waste of processing power as some

processors are idle, the so-called Inserted Idle Times (IITs) problem. Backfilling [21, 24, 29] is an

approach proposed in the literature to alleviate this problem. It is a general approach applicable to all

types of parallel jobs — whether modularly divisible or arbitrarily divisible.

An arbitrarily divisible load, however, has a very unique property, that is, it can be arbitrarily parti-

tioned into a large number of independent subtasks of arbitrary size. Thus, the subtasks can be scheduled

flexibly and independently. Exploiting this property of arbitrarily divisible loads, we propose new algo-

rithms that schedule divisible loads with different processor available times and utilize IITs in a cluster.

In [22], we encapsulated the logic of a real-time divisible load scheduling algorithm in three modules.

The first module determines the task execution order, which could be based on policies like FIFO (first

in first out) or EDF (earliest deadline first). The second taskpartitioning module chooses a strategy to

divide loads while the third module decides the node assignment for each task. In this paper, to utilize

IITs we focus on the second module, that is, designing a new task partitioning module for real-time

divisible load scheduling.

To allocate resources to meet a divisible task deadline, a scheduling algorithm must know the min-

imum amount of resources required by the task, which is determined by the task data size and the

partitioning method applied. For a homogenous cluster, that amounts to computing the task execution

time and the minimumnmin number of nodes required. Our previous work [22] addressed this issue

when processors are simultaneously allocated to a task (Figure 1a). To tackle the IITs problem, our new

approach is designed to handle the scenario where processors can be allocated to a task at different times

(Figure 1b). This makes task partitioning, execution time analysis, and derivation ofnmin difficult.

4.1 Task Partitioning and Analysis

We investigate two partitioning methods:DLT-Based Partitioning(Section 4.1.1), andUser-Split Par-

titioning (Section 4.1.2). The first method is based on divisible load theory (DLT), which states the

optimal execution time is obtained when all nodes allocatedto a task finish their computation at the

5

same time [34]. For comparison, we propose the User-Split Partitioning method, based on a common

practice of the user dividing a task inton equal-sized subtasks whenn nodes are requested for the task.

4.1.1 DLT-Based Partitioning

Although divisible load theory has been extensively studied in recent years, most of the developed mod-

els assume that all nodes are allocated at the same time. To the best of our knowledge, very little work

[9, 8, 11] addresses the load partitioning problem with different processor available times. However,

their solutions are not applicable to typical clusters because they assume that when a processor is com-

puting the current task, the system could deliver the data ofthe next task to it. Without special hardware

and software support this assumption does not hold in commoncluster environments.

Following the principle of DLT, our heuristic approach aimsto partition a task so that the allocated

processors could start at different times but finish computation almost simultaneously.

To achieve the aforementioned objective, we first cast a homogenous cluster with different processor

available times into a heterogeneous model where all assigned nodes are allocated simultaneously (A:

Heterogeneous Model Construction). Constructing such a model enables us to apply DLT to guide task

partitioning, execution time analysis, andnmin nodes derivation (B: Applying DLT). Then we prove if

we partition the task following the model and execute the subtasks in the homogenous cluster, the actual

task completion time is no later than its estimate (C: Analysis of Completion Time Estimate) — a

necessary condition to guarantee the correctness of our real-time scheduling algorithm (Section 4.2).

A: Heterogeneous Model Construction

Givenn homogenous processors to start the execution of a divisibletaskT at different available times,

we transform them to a model ofn heterogeneous nodes allocated simultaneously to the task.

Let P1, P2, . . . , Pn denote then homogenous processors. Assume nodePi could start processing task

T at timeri, for i = 1, 2, . . . n. We callri the available time ofPi. It is either the timePi is released by

a previous task or the time task T arrives, whichever is latest. Then nodes are ordered by their available

times:P1 is the earliest at timer1 andPn the latest at timern (Figure 1b). Next we construct a model of

n heterogeneous nodes with the same allocation timern (Figure 1c).

As demonstrated by Figures 1b and 1c, the earlier the homogenous node becomes available, the more

powerful is its corresponding node in the heterogeneous model. In Figure 1c, a different height of a dark

rectangular bar is used to represent a different node processing power. The greater the height of the bar,

the more powerful the node. In the new model (Figure 1c) alln nodes are considered to be allocated at

the same timern. The effect of the Inserted Idle Time (IIT) of a homogenous node,rn − ri, is accounted

for by assuming its corresponding heterogeneous nodeP
′

i has a higher processing power. Specifically,

in the constructed model, while the link speed is consideredthe same as the original cluster, the node

6

rnr1 r2

P1

P2

P3

Pn

ε

P4

P5

(a) Task Execution with Processors Allocated Si-
multaneously (ri: nodePi’s available time,E : task
execution time).

rnr1 r2

P1

P2

P3

Pn

ε

P4

P5

(b) Task Execution with Processors Allocated at
Different Times (ri: node Pi’s available time,
rn + E : task completion time).

>rnr1 r2

P1

P2

P3

Pn

ε

P'1

P'5

P'n

P4

P5

P'2

P'3

P'4

ε

(c) Heterogeneous Cluster Model (ri: nodePi’s
available time,E : task execution time without uti-
lizing IITs, Ê : task execution time in the heteroge-
neous model).

ασ1 Cms Cmsαα

α

α

α

σ

σ

σ

σ

n

n

Cps2

Cps1

σ

1

2

P0

P'1

P'2

P'n

.

.

.

.

.

.

Cpsn

Cms2 . . .

rn ε >

(d) Time Diagram for the Heterogeneous Model
(rn: the time all n nodes become available for task
T, rn + Ê : task completion time).

Figure 1: Heterogeneous Model Construction.

computational power is increased based on the length of the IIT and the task execution time when no

IIT is utilized. LetE (Figure 1a) denote the task execution time when no IIT is utilized (see [22] forE ’s

derivation).Cpsi represents the unit processing cost on nodeP
′

i andCmsi denotes the unit transmission

cost. Then, for the heterogeneous model, we have the following,

Cpsi =
E

E + rn − ri

Cps (1)

Cmsi = Cms (2)

Cpsi increases asi increases. Since the greater theCpsi the slower the node,P
′

1, P
′

2, . . . P
′

n have de-

creasing processing power in the heterogeneous model.

B: DLT-Based Analysis

We now explain how to apply a DLT heterogeneous model for taskpartitioning, execution time analysis,

andnmin derivation.

Task Partitioning and Execution Time Analysis. Figure 1d shows an example task execution time

diagram following the optimum partition rule of DLT [34] when n heterogeneous nodes are allocated to

process taskT = (A, σ, D) at the same timern. Let Ê denote the task execution time. It is a function of

7

σ andn. That is,

Ê(σ, n) = α1σCms + α1σCps1

= (α1 + α2)σCms + α2σCps2

= (α1 + α2 + α3)σCms + α3σCps3

= ...

=
n∑

i=1

αiσCms + αnσCpsn (3)

Thus we have, α2 =
Cps1

Cms + Cps2
α1

α3 =
Cps2

Cms + Cps3
α2

...

αn =
Cpsn−1

Cms + Cpsn

αn−1

Let Xi =
Cpsi−1

Cms + Cpsi

, for i = 2, 3 . . . , n

Then αi = Xiαi−1 = XiXi−1αi−2 = · · ·

=
i∏

j=2

Xjα1, for i = 2, 3 . . . , n

Since
∑n

i=1 αi = 1, we have,(1 +
∑n

i=2

∏i

j=2 Xj)α1 = 1

Thus,α1 = 1
1+

Pn
i=2

Qi
j=2

Xj
. Then the data chunk allocated to nodeP

′

1 is,

σ1 = α1σ =
σ

1 +
∑n

i=2

∏i

j=2 Xj

(4)

And the data chunks allocated to the other nodes are,

σi = αiσ =

i∏

j=2

Xjα1σ =

∏i
j=2 Xjσ

1 +
∑n

i=2

∏i
j=2 Xj

, for i = 2, 3 . . . , n (5)

Task execution time can therefore be calculated as follows,

Ê(σ, n) =

n∑

i=1

αiσCms + αnσCpsn = σCms + αnσCps

= σCms +

n∏

j=2

Xjα1σCps = σCms +

∏n

j=2 Xj

1 +
∑n

i=2

∏i
j=2 Xj

σCps (6)

Derivation of an Upper-Bound for nmin. Given the task execution time function̂E(σ, n), we can

calculate an upper-bound for the minimum numbernmin of nodes required to meet the task deadline.

8

Let C(n) denote the task completion time function. Assume taskT = (A, σ, D) has a start timern.

ThenC(n) = rn + Ê(σ, n), that is,

C(n) = rn + σCms +

∏n

j=2 Xj

1 +
∑n

i=2

∏i

j=2 Xj

σCps (7)

To meet the task deadline means constraintC(n) ≤ A + D must be satisfied. It follows that,

rn + σCms +

∏n
j=2 Xj

1 +
∑n

i=2

∏i
j=2 Xj

σCps ≤ A + D

Since it is difficult to solve the above inequality to get the exact minimum numbernmin, we derive a new

number̃nmin that is an upper bound fornmin (ñmin ≥ nmin). This way, if the scheduler allocates at least

ñmin processors to the task, the deadline will be guaranteed.

From Eq. (1) and the factrn ≥ ri ≥ ri−1, we knowCpsi−1 ≤ Cpsi andCpsi ≤ Cps. Therefore we

have,

Xi =
Cpsi−1

Cms + Cpsi

≤
Cps

Cms + Cps
, for i = 2, 3 . . . , n

Let

β =
Cps

Cms + Cps
(8)

FromXi ≤ β and Eq. (6), we can prove the following for the task executiontime,

Ê(σ, n) ≤ σCms + βn−1 1 − β

1 − βn
σCps

After algebraic simplification, we have,

Ê(σ, n) ≤
1 − β

1 − βn
σ(Cms + Cps), that is,

Ê(σ, n) ≤ E(σ, n) (9)

whereE(σ, n) (see [22]) is the task execution time when no IITs are utilized. This leads to,

C(n) = rn + Ê(σ, n) ≤ rn +
1 − β

1 − βn
σ(Cms + Cps) (10)

Thus by solving,

rn +
1 − β

1 − βn
σ(Cms + Cps) ≤ A + D (11)

we will get an upper bound numberñmin that also satisfies constraintC(n) ≤ A + D. Eq. (11) implies,

1 − β

1 − βn
σ(Cms + Cps) ≤ A + D − rn (12)

9

Since1 − βn > 0, we multiply both sides of (12) by1 − βnand get,

(1 − β)σ(Cms + Cps) ≤ (1 − βn)(A + D − rn) (13)

If A + D − rn ≤ 0, the task will miss its deadline no matter how many nodes we assign to it and how

we partition it. Such a task will be rejected1 since it fails the schedulability test of our algorithm (see

Section 4.2). ThusA + D − rn > 0, and by dividing both sides of (13) by(A + D − rn) we have,

(1 − βn) ≥
(1 − β)σ(Cms + Cps)

A + D − rn

, that is,

βn ≤ 1 −
(1 − β)σ(Cms + Cps)

A + D − rn

= 1 −
σCms

A + D − rn

Let γ = 1 −
σCms

A + D − rn

(14)

we haveβn ≤ γ. If γ ≤ 0, starting taskT at timern will not leave enough time even for its data

transmission. Therefore the task will be rejected as well. Thus,γ > 0. Since0 < β < 1, it follows

thatn ≥ lnγ

ln β
. The assigned numbern of nodes should be an integer. We haven ≥ ⌈ ln γ

lnβ
⌉. Therefore

ñmin = ⌈ ln γ

ln β
⌉, whereγ is defined in Eq. (14) andβ in Eq. (8). As long as the scheduler allocates at least

ñmin nodes to taskT at timern, the task deadline would be guaranteed.

C: Analysis of Completion Time Estimate

In the above, we have explained how our heuristic partitionsa divisible task (Eq. (4) & (5)) following a

DLT heterogeneous model. In addition, the task completion timern + Ê(σ, n) is derived.

As explained, the heterogeneous model is constructed to guide task partitioning, execution time anal-

ysis and̃nmin derivation. In reality, these ensuing subtasks are assigned and executed at the homogenous

cluster. The derived completion timern + Ê(σ, n) is therefore an estimate of the actual value.

Next we prove that the actual completion time is no worse thanits estimate. Thus, if we use estimated

completion times to schedule real-time divisible tasks, wecan guarantee their temporal correctness.

Assertion 1 αi < α1, for i = 2, 3 . . . , n

Proof FromCms > 0 andCpsi−1 ≤ Cpsi, we know,

Xi =
Cpsi−1

Cms + Cpsi

< 1, i = 2, 3 . . . , n.

Thus, αi =

i∏

j=2

Xjα1 < α1, for i = 2, 3 . . . , n.

1Rejection in the cluster environment means that the system administrator (or a program proxy) will negotiate with the
client for a feasible task deadline and the job will be rescheduled with modified parameters.

10

Lemma 2 αi < Cps1

Cpsi
α1, for i = 2, 3 . . . , n

Proof

αi =
i∏

j=2

Xjα1 =

∏i−1
j=1 Cpsj

∏i

j=2(Cms + Cpsj)
α1

<

∏i−1
j=1 Cpsj

∏i
j=2 Cpsj

α1 =
Cps1

Cpsi

α1

Assertion 3 rn − ri ≥
Cps

Cpsi
Ê − Ê

Proof From Eq. (1), we havern − ri = Cps

Cpsi
E − E and Cps

Cpsi
≥ 1. In addition, Eq. (9) saysE ≥ Ê .

Therefore,

rn − ri =
Cps

Cpsi

E − E ≥
Cps

Cpsi

Ê − Ê

Theorem 4 The actual time for nodePi, ∀i ∈ {1, 2, · · · , n}, to finish its computation is no later than

the estimated task completion time.

Proof According to the constructed model (Figure 1c), the estimated completion timet est for all nodes

are the same,t est = Ê + rn. While the actual completion time for nodePi is t acti = αiσ(Cms +

Cps) + ri + λi, where the first term is the communication and computation times for data assigned

to Pi and the second term is the node available time. Since the cluster sequentially sends data chunks

to corresponding nodes, the data transmission for nodePi cannot start until the cluster has finished

transmitting data to nodesP1, P2, · · · , Pi−1. The delay caused is represented by the third term of the

above equation. From Figure 1d, we can see that the longest delay is caused when nodePi is available

at the same time as nodeP1. If we useλ̃i to denote this upper-bound forλi (λi ≤ λ̃i), we have,

λ̃i =

i−1∑

j=1

αjσCms

It implies the following upper-bound ˜t acti for the actual completion timet acti,

˜t acti =
i∑

j=1

αjσCms + αiσCps + ri

Thus, we have,

t est − ˜t acti = Ê + rn − (
i∑

j=1

αjσCms + αiσCps + ri)

= (rn − ri) + Ê − (
i∑

j=1

αjσCms + αiσCps)

11

By applying Assertion 3, we get,

t est − ˜t acti ≥ (
Cps

Cpsi

Ê − Ê) + Ê − (
i∑

j=1

αjσCms + αiσCps)

=
Cps

Cpsi

Ê − (

i∑

j=1

αjσCms + αiσCps)

SinceÊ = α1σ(Cms + Cps1), it follows,

t est − ˜t acti ≥
Cps

Cpsi

α1σ(Cms + Cps1) − (

i∑

j=1

αjσCms + αiσCps)

Let A = (Cps

Cpsi
α1 − α1)σCms and letB = Cps

Cpsi
α1σCps1 − (

∑i

j=2 αiσCms + αiσCps). After simple

algebraic manipulation, we have,t est− ˜t acti ≥ A + B. So, to prove the Theorem, i.e.t est ≥ t acti,

it is sufficient to proveA ≥ 0 andB ≥ 0. Cps

Cpsi
≥ 1 directly leads toA ≥ 0. From Eq. (3), it follows,

α1σ(Cms + Cps1) =

i∑

j=1

αjσCms + αiσCpsi.

That is, α1σCps1 =

i∑

j=2

αjσCms + αiσCpsi.

Thus,
Cps

Cpsi

α1σCps1 =
Cps

Cpsi

(

i∑

j=2

αjσCms + αiσCpsi)

=
Cps

Cpsi

i∑

j=2

αjσCms + αiσCps

≥
i∑

j=2

αjσCms + αiσCps.

It follows that,
Cps

Cpsi

α1σCps1 − (
i∑

j=2

αiσCms + αiσCps) ≥ 0

That is,B ≥ 0. With A ≥ 0 andB ≥ 0, we havet est ≥ ˜t acti. Since ˜t acti ≥ t acti, we conclude that

t est ≥ t acti.

4.1.2 User-Split Partitioning

In this section, we present a common task partitioning method adopted by users of cluster-based research

computing facilities like the U.S. CMS Tier-2 sites. Currently, a large CMS task is manually split by a

user and the subtasks are then submitted to a cluster.

12

Based on the current practice, a User-Split algorithm is proposed. To emulate user behavior, the

algorithm partitions a task inton equal-sized subtasks, wheren is a user-specified number for requested

nodes. The assumption is that a user will requestn nodes that he or she thinks might be enough to

satisfy the task deadline. It will fall in [Nmin, N] range, whereNmin is the minimum number of nodes

the task needs to meet its deadline if it starts execution immediately upon its arrival andN is the size of

the cluster. Next, we analyze the algorithm for task completion time andNmin derivation.

Task Completion Time Analysis. Assume taskT = (A, σ, D) is split inton subtasks and each of

them is assigned to a node. Then, the time nodePi completes its computation is,

Ci(σ, n) = si +
σCms

n
+

σCps

n
, for i = 1, 2 . . . , n

wheresi is the task start time for nodePi and the other two terms represent the transmission and com-

putation times. Note thatsi may not be equal tori, the available time of nodePi, because the start time,

si for data transmission to nodePi may be delayed by the transmission of data to nodeP1, P2 . . . , Pi−1.

Thus, we haves1 = r1 andsi = max(ri, si−1 + σCms
i

), for i = 2, . . . , n. And the completion time

C(σ, n) for taskT is the maximum ofCi(σ, n) for i = 1, 2 . . . , n.

That is, C(σ, n) = sn +
σCms

n
+

σCps

n
(15)

Derivation of Nmin. Nmin denotes the minimum number of nodes taskT = (A, σ, D) needs to meet

its deadline. The following constraint should be satisfied,

σCms +
σCps

Nmin

≤ D

Thus, σCps

D−σCms
≤ Nmin. That is,Nmin = ⌈ σCps

D−σCms
⌉.

4.2 Algorithm Framework

As is typical for dynamic real-time scheduling algorithms [15, 23, 26], when a task arrives, the scheduler

dynamically determines if it is feasible to schedule the newtask without compromising the guarantees

for previously admitted tasks. In [22] we have designed a general framework for a schedulability test,

which can be configured to support various real-time divisible load scheduling algorithms by providing

design decisions on: 1) scheduling policy (EDF or FIFO), 2) task partitioning rule (DLT-Based or User-

Split partitioning), and 3) node assignment method (assigning a task̃nmin or user-specifiedn nodes).

In this paper, we configure this framework (Figure 2) to generate two sets of algorithms that utilize

IITs in a cluster. The first set of algorithms uses an EDF and the second set adopts a FIFO scheduling

policy, where the task execution order is determined by taskabsolute deadlines or task arrival times. In

addition, we have two different scheduling algorithms in each set: they are either 1) DLT-Based or 2)

13

Data Structure:

� AN(t) the available number of idle processing nodes at time t.

� Release(nodek) the time the kth available node is released by a previous task.

Pseudocode:

boolean Schedulability-Test(NewTask)

TempTaskList ← NewTask + TaskWaitingQueue

// EDF or FIFO scheduling policy (Decision #1)

order tasks in TempTaskList by their absolute deadlines or arrival times

while TempTaskList != φ
remove Ti(Ai, σi, Di) from TempTaskList

//Assign the task n~ i
min or a user-specified number of nodes (Decision #3)

n ← n~ i
min (t) or a random number from [Nmin, N] range

identify the earliest time t when the available nodes AN(t) ≥ n

// Set processor available times

for k=1 to n

rk
← max(Release(nodek), Ai)

 end for

// According to the chosen partition rule DLT-Based or User-Split partitioning

(Decision #2), set expected completion time following Eq. (6) or Eq. (15)

ei
← ε̂ (σi, n) + rn or C(σi, n)

if ei > Ai + Di

return false // Deadline misses

put Ti(Ai, σi, Di, r1, r2, ..., rn, n, ei) into TempSchedule

end while

/* All tasks in the cluster are schedulable */

Accept TempSchedule

return true

end Schedulability Test()

Figure 2: Schedulability Test for the Algorithms.

14

User-Split based. According to the partitioning method adopted, our schedulers estimate task completion

times following analysis in Section 4.1.1 or Section 4.1.2.The number of nodes assigned to each task

is ñmin for DLT-Based algorithm andn, a random number in the range [Nmin..N] for the User-Split

algorithm. Upon completion of the schedulability test, if all tasks are schedulable a feasible schedule is

developed and the new task is accepted, otherwise, it is rejected.

By following the aforementioned framework, we generate four algorithms: EDF-DLT, EDF-UserSplit,

FIFO-DLT, FIFO-UserSplit. The nomenclature for the algorithms includes two parts. The first part de-

notes the adopted scheduling policy: EDF or FIFO, while the second part represents the choice of the

partitioning rule: DLT-Based partitioning (Section 4.1.1) or User-Split method (Section 4.1.2).

5 Performance Evaluation

In this section, we evaluate the proposed real-time scheduling algorithms: EDF-DLT and FIFO-DLT.

First, we compare these two algorithms with the corresponding approaches: EDF-OPR-MN and FIFO-

OPR-MN that we proposed in [22], which do not utilize IITs. EDF-OPR-MN was shown to be one of

the best performing algorithms in [22]. However, it does notdeal with the Inserted Idle Times prob-

lem. There are also other algorithms such as: EDF-OPR-AN andFIFO-OPR-AN that always execute

a task on allN nodes in a cluster. These algorithms do not have the IITs problem, yet these are rarely

adopted in real-life clusters due to obvious drawbacks and administration concerns. Second, we com-

pare new algorithms against algorithms utilizing IITs; theUser-Split algorithms: EDF-UserSplit and

FIFO-UserSplit that were analyzed in Section 4.1.2.

Cluster Configuration. We use a discrete simulator to simulate a range of clusters that are compliant

with the system model presented in Section 3. For every simulation, three parameters,N , Cms andCps

are specified for a cluster.

Workload Generation. To generate a set of tasksTi = (Ai, σi, Di), we assume that the interarrival

times follow an exponential distribution with a mean of1/λ, and task data sizesσi are assumed to be

normally distributed with a specified mean ofAvgσ and a standard deviation equal to the mean. Task

relative deadlines are assumed to be uniformly distributedin the range[AvgD

2
, 3AvgD

2
], whereAvgD is

the mean relative deadline. To specifyAvgD, we use the termDCRatio [22]. It is defined as the

ratio of mean deadline to mean minimum execution time (cost), that is AvgD

E(Avgσ,N)
, whereE(Avgσ, N) is

the execution time assuming the task has an average data sizeAvgσ and is allocated to run on allN

nodes simultaneously. Given aDCRatio, the cluster sizeN and the average data sizeAvgσ, AvgD

is implicitly specified asDCRatio × E(Avgσ, N). This way, byDCRatio, task relative deadlines are

specified relating to the average task execution time. In addition, a task relative deadlineDi is chosen

to be larger than its minimum execution timeE(σi, N). In summary, we could specify the following

15

parameters for a simulation: (N, Cms, Cps, 1/λ, Avgσ, DCRatio).

To analyze the cluster load for a simulation, we use the metric SystemLoad [22]. It is defined

as, SystemLoad = E(Avgσ,N)
λ

, which is same as,SystemLoad = TotalTaskNumber×E(N,Avgσ)
TotalSimulationT ime

. For a

simulation, we could specifySystemLoad instead of average interarrival time1/λ. Configuring (N,

Cms, Cps, SystemLoad, Avgσ, DCRatio) is equivalent to specifying (N, Cms, Cps, 1/λ, Avgσ, DCRatio),

because,1/λ = SystemLoad

E(Avgσ,N)
. To evaluate the performance of the real-time scheduling algorithms, we use

the metric,Task Reject Ratio, defined as the ratio of the number of task rejections to the number of task

arrivals. The smaller theTask Reject Ratio, the better the real-time scheduling algorithm.

For all figures in this paper, a point on a curve corresponds tothe average performance of ten simu-

lations.2 In the ten runs, the same parameters (N, Cms, Cps, SystemLoad, Avgσ, DCRatio) are specified

but different random numbers are generated for task arrivaltimesAi, data sizesσi, and deadlinesDi.

For each simulation, theTotalSimulationT ime is 10,000,000 time units, which is sufficiently long.

5.1 Benefits of Utilizing IITs

First we evaluate the performance of our new algorithms withrespect to our previous approaches [22]

where no IITs are utilized: EDF-DLT vs. EDF-OPR-MN and FIFO-DLT vs. FIFO-OPR-MN. In this

section, we only report the comparison of EDF-DLT vs. EDF-OPR-MN here. The performance results

for the other pair are similar and can be found in Appendix (Fig. 9 to 12).

For ourbaseline modelwe chose the following simulation parameters: number of processing nodes

in the cluster,N = 16; unit data transmission time,Cms = 1; unit data processing time,Cps = 100;

SystemLoad changes in the range [0.1, 0.2, · · · , 1.0]; Average data size,Avgσ = 200; and the ratio

of the average deadline to the average execution time,DCRatio = 2. Our simulation has a two-fold

objective. First, we want to verify our hypothesis that it is advantageous to utilize IITs in real-time

cluster-based scheduling.Second, we study the effects ofDCRatio.

To study the merits of utilizing IITs, we employ our baselinemodel. The two curves in Figure 3 show

theTask Reject Ratioof algorithms: EDF-DLT and EDF-OPR-MN. Note that EDF-DLT always leads to

a lowerTask Reject Ratiothan EDF-OPR-MN. Since EDF-OPR-MN has been one of the best performing

algorithms proposed so far [22], our simulation result confirms our hypothesis that it is beneficial to

utilize IITs in real-time cluster-based scheduling. By using IITs, the task execution time decreases and

as a result the cluster can accommodate more tasks and meet their deadlines. We carried out the same

type of simulations by changing, one at a time, the followingcluster or workload parameters:cluster

sizeN , unit transmission timeCms, unit computation timeCps andaverage data sizeAvgσ. Results

are similar to Figure 3, showing EDF-DLT, the algorithm thatutilizes IITs, always performs better (see

Fig. 6 to 8 in Appendix for details).
2We report curves with 95% confidence intervals of baseline experiment in Fig. 3b.

16

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=100, average data size = 200, dcratio=2

EDF-OPR-MN
EDF-DLT

(a) Baseline Experiment.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=100, average data size = 200, dcratio=2

EDF-OPR-MN
EDF-DLT

(b) 95% Confidence Interval

Figure 3: Benefits of Utilizing IITs.

To study the effects ofDCRatio on our scheduling algorithms, we used the same configurationas the

baseline model except that we varied theDCRatio over [2,3,10,20,100] range. Results are presented in

Figures 3, 4a-4d. We again observe that the EDF-DLT algorithm always performs better. In addition,

we find that as theDCRatio increases, the performance of EDF-DLT and EDF-OPR-MN converges.

This is because the higher theDCRatio, the looser the task relative deadlines. Consequently, these two

algorithms tend to allocate less nodes to a task. In general,the smaller the number of nodes assigned to

a task the less the IITs. Thus, the benefits of utilizing IITs become less significant. In particular, when

theDCRatio is extremely high (equal to 100), the two algorithms performalmost the same (Figure 4d).

5.2 DLT-Based vs. User-Split Algorithms

This section evaluates the two partitioning methods:DLT-Based and User-Split partitioning. Both of

these utilize IITs to compute arbitrarily divisible loads.The performance of the following algorithms is

compared: EDF-DLT vs. EDF-UserSplit and FIFO-DLT vs. FIFO-UserSplit. Here we only show results

for comparing EDF-based algorithms. Similar results were obtained for the other pair (see Fig. 13 to 16

in Appendix).

First, we conducted the simulation using the baseline model(Section 5.1). The two curves in Figure

5a show theTask Reject Ratioof the two algorithms. Observe that EDF-DLT always leads to smaller

Task Reject Ratiosthan EDF-UserSplit, indicating our DLT-Based algorithm performs better.

The same type of simulations were carried out where we changed, one at a time, the following cluster

or workload parameters: cluster sizeN , unit transmission timeCms, unit computation timeCps and

average data sizeAvgσ. Results are similar to Figure 5a (refer to Fig. 13 to 16 in Appendix for details).

We also study the effects of changingDCRatio. When theDCRatio is large, i.e.DCRatio ≥ 10,

sometimes the algorithm EDF-UserSplit performs better than EDF-DLT (Figure 5b). We conducted a

total of 330 simulations with different system configurations. User-Split based algorithms perform better

than the corresponding DLT-Based algorithms 8.22% of time.In addition when a DLT-Based algorithm

17

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=100, average data size = 200, dcratio=3

EDF-OPR-MN
EDF-DLT

(a) Benefits of Utilizing IITsDCRatio = 3

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=100, average data size = 200, dcratio=10

EDF-OPR-MN
EDF-DLT

(b) Benefits of Utilizing IITsDCRatio = 10

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=100, average data size = 200, dcratio=20

EDF-OPR-MN
EDF-DLT

(c) Benefits of Utilizing IITsDCRatio = 20

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=100, average data size = 200, dcratio=100

EDF-OPR-MN
EDF-DLT

(d) Benefits of Utilizing IITsDCRatio = 100

Figure 4: Benefits of Utilizing IITs:DCRatio Effects.

performs better, itsTask Reject Ratiois significantly lower than that of a User-Split algorithm. The

average, maximum and minimum gains onTask Reject Ratioare 0.121, 0.224 and 0.003 respectively.

On the other hand, when a User-Split algorithm performs better, only negligible average, maximum and

minimumTask Reject Ratiogains are observed: 0.016, 0.028 and 0.003.

From the data, we can conclude that our DLT-Based approach has its advantages. Not only does it

require no manual work by users as it automatically divides atask, but it also provides better performance

most of the time. The reasons for its good performance are two-fold. First, our approach uses divisible

load theory to guide task partitioning. Second, based on system load and a task deadline it dynamically

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=100, average data size = 200, dcratio=2

EDF-DLT
EDF-UserSplit

(a) Baseline Experiment

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=100, average data size = 200, dcratio=10

EDF-DLT
EDF-UserSplit

(b) DCRatio = 10

Figure 5: DLT-Based vs. User-Split Algorithms.

18

determines the number of nodes assigned to a task. This adaptive capability further makes our approach

more appealing than the User-Split method.

6 Conclusion

In this paper, we address the classic Inserted Idle Times (IITs) problem in the context of real-time divis-

ible load scheduling [22]. Two contributions are made. First, we propose a new approach to model the

homogenous system with IITs as an equivalent heterogeneoussystem. Second, we prove that partition-

ing the task following the model and executing the subtasks in the homogenous cluster results in a task

completion time earlier or equal to the estimate. This theorem in turn leads to a new real-time scheduling

algorithm that utilizes the IITs. Intensive simulation results show that our approach does make use of the

IITs to a large extent and significantly improves the system performance. We also compare our algorithm

with the current practice of manually splitting a workload by the user. Simulation results demonstrate

the advantage of our algorithm as compared to the user-splitapproach. Currently, we are working on

expanding our approach to show, both theoretically and experimentally, that by adopting multi-round

scheduling [10], we can further improve the IITs utilization and the system performance.

References

[1] T. Abdelzaher and V. Sharma. A synthetic utilization bound for aperiodic tasks with resource requirements.
In Proc. of 15th Euromicro Conference on Real-Time Systems, pages 141–150, Portugal, July 2003.

[2] A. Amin, R. Ammar, and A. E. Dessouly. Scheduling real time parallel structure on cluster computing with
possible processor failures. InProc of 9th IEEE Intl. Symp. on Computers and Comm., pages 62–67, 2004.

[3] Y. Amir, B. Awerbuch, A. Barak, R. Borgstrom, and A. Keren. An opportunity cost approach for job
assignment in a scalable computing cluster.IEEE Trans. on Parallel and Distributed Systems, 11(7), 2000.

[4] R. A. Ammar and A. Alhamdan. Scheduling real time parallel structure on cluster computing. InProc. of
7th IEEE International Symposium on Computers and Communications, pages 69–74, Italy, July 2002.

[5] J. Anderson and A. Srinivasan. Pfair scheduling: Beyondperiodic task systems, 2000.
[6] ATLAS (AToroidal LHC Apparatus) Experiment, CERN (European Lab for Particle Physics).
[7] L. Barsanti and A. C. Sodan. Adaptive job scheduling strategies via predictive job resource allocation. In

Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP), in conjunction with ACM SIGMET-
RICS, Saint Malo, France, June 2006.

[8] V. Bharadwaj and G. Barlas. Scheduling divisible loads with processor release times and finite size buffer
capacity constraints.special issue of Cluster Computing on Divisible Load Scheduling, Kluwer Academic
Publishers, Vol. 6, No. 1, 2003.

[9] V. Bharadwaj, H. Li, and T. Radhakrishnan. Scheduling divisible loads in bus networks with arbitrary
processor release times.Computers and Math. with Applications, Pergamon Press, Vol. 32, No. 7, 1996.

[10] V. Bharadwaj, T. G. Robertazzi, and D. Ghose.Scheduling Divisible Loads in Parallel and Distributed
Systems. IEEE Computer Society Press, Los Alamitos, CA, 1996.

[11] V. Bharadwaj, B. Veeravalli, and W. Min. Scheduling divisible loads on heterogeneous linear daisy chain
networks with arbitrary processor release times.IEEE Trans. on Parallel and Dist. Systs., vol. 15, no. 3, 04.

[12] B. N. Chun and D. E. Culler. Market-based proportional resource sharing for clusters. Technical Report
UCB/CSD-00-1092, EECS Department, University of California, Berkeley, 2000.

[13] W. Cirne. Using moldability to improve the performanceof supercomputer jobs, 2001.

19

[14] Compact Muon Solenoid (CMS) Experiment for the Large Hadron Collider at CERN (European Lab for
Particle Physics). Cms web page. http://cmsinfo.cern.ch/Welcome.html/.

[15] M. L. Dertouzos and A. K. Mok. Multiprocessor online scheduling of hard-real-time tasks.IEEE Trans.
Softw. Eng., 15(12):1497–1506, 1989.

[16] M. Eltayeb, A. Dogan, and F.̈Ozgüner. A data scheduling algorithm for autonomous distributed real-time
applications in grid computing. InProc. of 33rd International Conference on Parallel Processing, pages
388–395, Montreal, Canada, Aug 2004.

[17] S. Funk and S. Baruah. Task assignment on uniform heterogeneous multiprocessors. InProc of 17th Eu-
romicro Conference on Real-Time Systems, pages 219–226, July 2005.

[18] L. He, S. A. Jarvis, D. P. Spooner, X. Chen, and G. R. Nudd.Hybrid performance-oriented scheduling of
moldable jobs with qos demands in multiclusters and grids. In GCC, pages 217–224, 2004.

[19] D. Isovic and G. Fohler. Efficient scheduling of sporadic, aperiodic, and periodic tasks with complex con-
straints. InProc. of 21st IEEE Real-Time Systems Symposium, Orlando, FL, Nov 2000.

[20] W. Y. Lee, S. J. Hong, and J. Kim. On-line scheduling of scalable real-time tasks on multiprocessor systems.
J. Parallel Distrib. Comput., 63(12):1315–1324, 2003.

[21] D. Lifka. The anl/ibm sp scheduling system.Job Scheduling Strategies for Parallel Processing, D. G.
Feitelson and L. Rudolph (eds.), pp. 295C 303, Springer-Verlag, Lect. Notes Comput. Sci. vol. 949., 1995.

[22] X. Lin, Y. Lu, J. Deogun, and S. Goddard. Real-time divisible load scheduling for cluster computing. In
13th IEEE Real-Time and Embedded Technology and Application Symposium, Bellevue, WA, April 2007.

[23] G. Manimaran and C. S. R. Murthy. An efficient dynamic scheduling algorithm for multiprocessor real-time
systems.IEEE Trans. on Parallel and Distributed Systems, 9(3):312–319, 1998.

[24] A. Mu’alem and D. Feitelson. Utilization, predictability, workloads, and user runtime estimates in schedul-
ing the ibm sp2 with backfilling, 2001.

[25] X. Qin and H. Jiang. Dynamic, reliability-driven scheduling of parallel real-time jobs in heterogeneous
systems. InProc. of 30th International Conf. on Parallel Processing, pages 113–122, Spain, Sep 2001.

[26] K. Ramamritham, J. A. Stankovic, and P. fei Shiah. Efficient scheduling algorithms for real-time multipro-
cessor systems.IEEE Trans. on Parallel and Distributed Systems, 1(2):184–194, Apr 1990.

[27] K. Ramamritham, J. A. Stankovic, and W. Zhao. Distributed scheduling of tasks with deadlines and resource
requirements.IEEE Trans. Comput., 38(8):1110–1123, 1989.

[28] T. G. Robertazzi. Ten reasons to use divisible load theory. Computer, 36(5):63–68, 2003.
[29] R. K. S. Srinivasan. Selective reservation strategiesfor backfill job scheduling.Job Scheduling Strategies

for Parallel Processing, D. G. Feitelson, L. Rudolph, and U.Schwiegelshohn (eds.), pp. 55C 71, Springer-
Verlag, 2002. Lect. Notes Comput. Sci. vol. 2537, 2002.

[30] G. Sabin, M. Lang, and P. Sadayappan. Moldable paralleljob scheduling using job efficiency: An iterative
approach. InWorkshop on Job Scheduling Strategies for Parallel Processing (JSSPP), in conjunction with
ACM SIGMETRICS, Saint Malo, France, June 2006.

[31] J. Sherwani, N. Ali, N. Lotia, Z. Hayat, and R. Buyya. Libra: a computational economy-based job scheduling
system for clusters.Software: Practice and Experience, 34(6):573–590, 2004.

[32] S. Srinivasan, S. Krishnamoorthy, and P. Sadayappan. Arobust scheduling strategy for moldable scheduling
of parallel jobs. InCLUSTER, pages 92–99, 2003.

[33] D. Swanson. Personal communication. Director, UNL Research Computing Facility (RCF) and UNL CMS
Tier-2 Site, Aug 2005.

[34] B. Veeravalli, D. Ghose, and T. G. Robertazzi. Divisible load theory: A new paradigm for load scheduling
in distributed systems.Cluster Computing, 6(1):7–17, 2003.

[35] C. S. Yeo and R. Buyya. A taxonomy of market-based resource management systems for utility-driven
cluster computing.Software: Practice and Experience, accepted in Sep 2005.

[36] L. Zhang. Scheduling algorithm for real-time applications in grid environment. InProc. of IEEE Interna-
tional Conference on Systems, Man and Cybernetics, Oct 2002.

20

APPENDIX

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=100, average data size = 100, dcratio=2

EDF-OPR-MN
EDF-DLT

(a) Benefits of Utilizing IITsAvgσ = 100

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=100, average data size = 200, dcratio=2

EDF-OPR-MN
EDF-DLT

(b) Benefits of Utilizing IITsAvgσ = 200

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=100, average data size = 400, dcratio=2

EDF-OPR-MN
EDF-DLT

(c) Benefits of Utilizing IITsAvgσ = 400

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=100, average data size = 800, dcratio=2

EDF-OPR-MN
EDF-DLT

(d) Benefits of Utilizing IITsAvgσ = 800

Figure 6: Benefits of Utilizing IITs:Avgσ Effects.

21

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=100, average data size = 200, dcratio=2

EDF-OPR-MN
EDF-DLT

(a) Benefits of Utilizing IITsCms = 1

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=2, Cps=100, average data size = 200, dcratio=2

EDF-OPR-MN
EDF-DLT

(b) Benefits of Utilizing IITsCms = 2

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=2, Cps=100, average data size = 200, dcratio=2

EDF-OPR-MN
EDF-DLT

(c) Benefits of Utilizing IITsCms = 4

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=8, Cps=100, average data size = 200, dcratio=2

EDF-OPR-MN
EDF-DLT

(d) Benefits of Utilizing IITsCms = 8

Figure 7: Benefits of Utilizing IITs:Cms Effects.

22

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=10, average data size = 200, dcratio=2

EDF-OPR-MN
EDF-DLT

(a) Benefits of Utilizing IITsCps = 10

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
T

as
k

R
ej

ec
t R

at
io

System Load

nodes=16, Cms=1, Cps=50, average data size = 200, dcratio=2

EDF-OPR-MN
EDF-DLT

(b) Benefits of Utilizing IITsCps = 50

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=500, average data size = 200, dcratio=2

EDF-OPR-MN
EDF-DLT

(c) Benefits of Utilizing IITsCps = 500

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=1000, average data size = 200, dcratio=2

EDF-OPR-MN
EDF-DLT

(d) Benefits of Utilizing IITsCps = 1000

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=5000, average data size = 200, dcratio=2

EDF-OPR-MN
EDF-DLT

(e) Benefits of Utilizing IITsCps = 5000

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=10000, average data size = 200, dcratio=2

EDF-OPR-MN
EDF-DLT

(f) Benefits of Utilizing IITsCps = 10000

Figure 8: Benefits of Utilizing IITs:Cps Effects.

23

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=100, average data size = 200, dcratio=3

FIFO-OPR-MN
FIFO-DLT

(a) Benefits of Utilizing IITsDCRatio = 3

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=100, average data size = 200, dcratio=10

FIFO-OPR-MN
FIFO-DLT

(b) Benefits of Utilizing IITsDCRatio = 10

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=100, average data size = 200, dcratio=20

FIFO-OPR-MN
FIFO-DLT

(c) Benefits of Utilizing IITsDCRatio = 20

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=100, average data size = 200, dcratio=100

FIFO-OPR-MN
FIFO-DLT

(d) Benefits of Utilizing IITsDCRatio = 100

Figure 9: Benefits of Utilizing IITs:DCRatio Effects.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=100, average data size = 100, dcratio=2

FIFO-OPR-MN
FIFO-DLT

(a) Benefits of Utilizing IITsAvgσ = 100

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=100, average data size = 200, dcratio=2

FIFO-OPR-MN
FIFO-DLT

(b) Benefits of Utilizing IITsAvgσ = 200

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=100, average data size = 400, dcratio=2

FIFO-OPR-MN
FIFO-DLT

(c) Benefits of Utilizing IITsAvgσ = 400

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=100, average data size = 800, dcratio=2

FIFO-OPR-MN
FIFO-DLT

(d) Benefits of Utilizing IITsAvgσ = 800

Figure 10: Benefits of Utilizing IITs:Avgσ Effects.

24

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=100, average data size = 200, dcratio=2

FIFO-OPR-MN
FIFO-DLT

(a) Benefits of Utilizing IITsCms = 1

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=2, Cps=100, average data size = 200, dcratio=2

FIFO-OPR-MN
FIFO-DLT

(b) Benefits of Utilizing IITsCms = 2

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=2, Cps=100, average data size = 200, dcratio=2

FIFO-OPR-MN
FIFO-DLT

(c) Benefits of Utilizing IITsCms = 4

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=8, Cps=100, average data size = 200, dcratio=2

FIFO-OPR-MN
FIFO-DLT

(d) Benefits of Utilizing IITsCms = 8

Figure 11: Benefits of Utilizing IITs:Cms Effects.

25

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=10, average data size = 200, dcratio=2

FIFO-OPR-MN
FIFO-DLT

(a) Benefits of Utilizing IITsCps = 10

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
T

as
k

R
ej

ec
t R

at
io

System Load

nodes=16, Cms=1, Cps=50, average data size = 200, dcratio=2

FIFO-OPR-MN
FIFO-DLT

(b) Benefits of Utilizing IITsCps = 50

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=500, average data size = 200, dcratio=2

FIFO-OPR-MN
FIFO-DLT

(c) Benefits of Utilizing IITsCps = 500

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=1000, average data size = 200, dcratio=2

FIFO-OPR-MN
FIFO-DLT

(d) Benefits of Utilizing IITsCps = 1000

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=5000, average data size = 200, dcratio=2

FIFO-OPR-MN
FIFO-DLT

(e) Benefits of Utilizing IITsCps = 5000

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=10000, average data size = 200, dcratio=2

FIFO-OPR-MN
FIFO-DLT

(f) Benefits of Utilizing IITsCps = 10000

Figure 12: Benefits of Utilizing IITs:Cps Effects.

26

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=100, average data size = 100, dcratio=2

EDF-DLT
EDF-UserSplit

(a) DLT-Based vs. User-Split,Avgσ = 100

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=100, average data size = 200, dcratio=2

EDF-DLT
EDF-UserSplit

(b) DLT-Based vs. User-Split,Avgσ = 200

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=100, average data size = 400, dcratio=2

EDF-DLT
EDF-UserSplit

(c) DLT-Based vs. User-Split,Avgσ = 400

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=100, average data size = 800, dcratio=2

EDF-DLT
EDF-UserSplit

(d) DLT-Based vs. User-Split,Avgσ = 800

Figure 13: DLT-Based vs. User-Split:Avgσ Effects

27

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=10, average data size = 200, dcratio=2

EDF-DLT
EDF-UserSplit

(a) DLT-Based vs. User-Split,Cps = 10

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=50, average data size = 200, dcratio=2

EDF-DLT
EDF-UserSplit

(b) DLT-Based vs. User-Split,Cps = 50

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=500, average data size = 200, dcratio=2

EDF-DLT
EDF-UserSplit

(c) DLT-Based vs. User-Split,Cps = 500

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=1000, average data size = 200, dcratio=2

EDF-DLT
EDF-UserSplit

(d) DLT-Based vs. User-Split,Cps = 1000

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=5000, average data size = 200, dcratio=2

EDF-DLT
EDF-UserSplit

(e) DLT-Based vs. User-Split,Cps = 5000

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=10000, average data size = 200, dcratio=2

EDF-DLT
EDF-UserSplit

(f) DLT-Based vs. User-Split,Cps = 10000

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=100, average data size = 200, dcratio=3

EDF-DLT
EDF-UserSplit

(g) DLT-Based vs. User-Split,DCRatio = 3

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=100, average data size = 200, dcratio=10

EDF-DLT
EDF-UserSplit

(h) DLT-Based vs. User-Split,DCRatio = 10

Figure 14: DLT-Based vs. User-Split Algorithms

28

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=100, average data size = 100, dcratio=2

FIFO-DLT
FIFO-UserSplit

(a) DLT-Based vs. User-Split,Avgσ = 100

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=100, average data size = 200, dcratio=2

FIFO-DLT
FIFO-UserSplit

(b) DLT-Based vs. User-Split,Avgσ = 200

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=100, average data size = 400, dcratio=2

FIFO-DLT
FIFO-UserSplit

(c) DLT-Based vs. User-Split,Avgσ = 400

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=100, average data size = 800, dcratio=2

FIFO-DLT
FIFO-UserSplit

(d) DLT-Based vs. User-Split,Avgσ = 800

Figure 15: DLT-Based vs. User-Split:Avgσ Effects

29

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=10, average data size = 200, dcratio=2

FIFO-DLT
FIFO-UserSplit

(a) DLT-Based vs. User-Split,Cps = 10

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=50, average data size = 200, dcratio=2

FIFO-DLT
FIFO-UserSplit

(b) DLT-Based vs. User-Split,Cps = 50

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=500, average data size = 200, dcratio=2

FIFO-DLT
FIFO-UserSplit

(c) DLT-Based vs. User-Split,Cps = 500

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=1000, average data size = 200, dcratio=2

FIFO-DLT
FIFO-UserSplit

(d) DLT-Based vs. User-Split,Cps = 1000

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=5000, average data size = 200, dcratio=2

FIFO-DLT
FIFO-UserSplit

(e) DLT-Based vs. User-Split,Cps = 5000

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=10000, average data size = 200, dcratio=2

FIFO-DLT
FIFO-UserSplit

(f) DLT-Based vs. User-Split,Cps = 10000

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=100, average data size = 200, dcratio=3

FIFO-DLT
FIFO-UserSplit

(g) DLT-Based vs. User-Split,DCRatio = 3

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
as

k
R

ej
ec

t R
at

io

System Load

nodes=16, Cms=1, Cps=100, average data size = 200, dcratio=10

FIFO-DLT
FIFO-UserSplit

(h) DLT-Based vs. User-Split,DCRatio = 10

Figure 16: DLT-Based vs. User-Split Algorithms

30

	Real-Time Divisible Load Scheduling with Different Processor Available Times
	

	ICPP07_TR.dvi

