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Abstract
Providing QoS and performance guarantees to arbitrarilyisible loads has become a significant

problem for many cluster-based research computing faeslitWhile progress is being made in schedul-
ing arbitrarily divisible loads, some of proposed approashmay cause Inserted Idle Times (IITs) that
are detrimental to system performance. In this paper we @sef new approach that utilizes IITs and
thus enhances the system performance. The novelty of owabpis that, to simplify the analysis,
a homogenous system with 1ITs is transformed to an equivaleterogeneous system, and that our
algorithms can schedule real-time divisible loads witHetgnt processor available times. Intensive
simulations show that the new approach outperforms theigusvapproach in all configurations. We
also compare the performance of our algorithm to the curggattice of manually splitting workloads
by users. Simulation results validate the advantages oapproach.

Keyword: Real-Time Scheduling; Inserted Idle Time; Cluster CommtDivisible Load.

1 Introduction

Arbitrarily divisible or embarrassingly parallel worklds, can be partitioned into an arbitrarily large
number of independent load fractions, and are quite commdaoinformatics as well as high energy
and particle physics. For example, the CMS (Compact Muoer&odl) [14] and ATLAS (AToroidal
LHC Apparatus) [6] projects, associated with the Large ldadCollider (LHC) at CERN (European
Laboratory for Particle Physics), execute cluster-baggti@ations with arbitrarily divisible loads.

Development of commodity-based clusters has recentlyegatonsiderable momentum. By linking
a large number of computers together, a cluster providestaetfective facility for solving complex
problems. In a large-scale cluster, the resource manadgesystem (RMS), which provides real-time
guarantees or QoS, is central to its operation.



As aresult, the real-time scheduling of arbitrarily dibigiloads is becoming a significant problem for
cluster-based research computing facilities like the @S Tier-2 sites [33]. One of the management
goals at the University of Nebraska-Lincoln (UNL) Resea@dmputing Facility (RCF) is to provide
a multi-tiered QoS scheduling framework in which applicas ‘pay’ according to the response time
requested for each job [33]. Due to the increasing impoe48], a few efforts [18, 20, 22] have been
made in real-time divisible load scheduling, with signifit@itial progress in important theories and
novel approaches.

However, an important classic problem of scheduling parglbs has not yet been adequately ad-
dressed for real-time divisible load scheduling. For etiegua parallel job, if a sufficient number of
processors are available then the processors are alloaatethe job is started. But if the required
number of processors are not available, the job waits forescmnrently running jobs to finish and free
additional processors. This essentially causes a wast@oégsing power as some processors are idle
when the system is waiting for enough processors to becowr&hble to start the waiting job. This
drawback is a system inefficiency that we refer to as the tedddle Times (lITs) problem. To alle-
viate this limitation, backfilling algorithms [21, 24, 29hte been proposed, where small jobs could
be moved ahead and run on processors that would otherwiserréite. Leveraging characteristics of
arbitrarily divisible loads, we propose in this paper a nealitime divisible load scheduling approach
that utilizes IITs. The novelty that distinguishes our windm conventional approaches is tloatr al-
gorithms can schedule real-time divisible loads with défé processor available time©ur approach
is complementary to the backfilling mechanism.

Divisible load theory (DLT) provides insight into distriban strategies for arbitrarily divisible com-
putations and has been demonstrated to lead to significhettgr approaches for real-time divisible
load scheduling [22]. Two contributions are made in thisgrag-irst, wecast a homogenous cluster
with different processor available times to a heterogeseruster modelA DLT heterogeneous model
is then applied to guide task partitioning, to derive a tasdcation time function and to approximate the
minimum number of processors required to meet a task deadacond, w@rove that executing the
partitioned subtasks in the homogenous cluster at diftgyetessor available times leads to completion
times no later than the estimateBbhis result is then applied to develop a new divisible loatkesiuling
algorithm that uses IITs and provides real-time guarantégensive simulation results show that the
new approach outperforms the previous approach [22] whEsealre not utilized. We also compare the
algorithm with a current practice where users manuallyt $pdir workloads. Results demonstrate the
obvious advantages of the proposed approach.

The remainder of this paper is organized as follows. Relatexk is presented in Section 2. We
describe both task and system models in Section 3. In Settigal-time scheduling algorithms inves-



tigated in this paper are discussed. We evaluate the peafarenof algorithms in Section 5 and conclude
the paper in Section 6.

2 Related Work

Utility-driven cluster computing has been well researcf#&d 35] to improve the utility delivered to
users. Proposed cluster RMSs [3, 12] have addressed thdudicigeof both sequential and parallel
loads. The goal of those schemes is similar to otwsharness the power of resources based on user
objectives

The scheduling models investigated for real-time distedisystems most often (e.g., [1, 5, 17, 19, 26,
27]) assume periodic or aperiodic sequential jobs that miatlocated to a single resource and executed
by their deadlines. With the evolution of cluster computiresearchers have begun to investigate real-
time scheduling of parallel applications [2, 4, 16, 25, 3@pwever, most of these studies assume the
existence of some form of task graph to describe commupitaind precedence relations between
computational units called subtasks (i.e., nodes in thedesph). Despite the increasing importance of
arbitrarily divisible applications [28], to the best of ckmowledge, only a few researchers [18, 20, 22]
have investigated the real-time scheduling of arbitratilysible loads.

The most closely related work to ours is the scheduling chfaale tasks” [20] or “moldable jobs”
[7,13, 18, 30, 32], where only very few of them [18, 20] havasidered QoS support. In [22] we investi-
gated real-time cluster-based divisible load schedulim@oposed several algorithms for homogenous
clusters. Following our previous work, in this paper, weealep a real-time scheduling approach that
utilizes Inserted Idle Times. A mechanism to utilize pramsdle-times, also called fragments, was
investigated in [20]. However, that approach is differeotri ours. They try to utilize more processing
power by assigning a task to a larger number of nodes. Congpitary to their approach, our algorithm
enables a task to utilize a processor as soon as it becomitbé/aResults shown in [20] depict that
the performance improvement of the approach in [20] is gégk. In contrast, our algorithm leads to
significantly better performance.

DLT provides an in-depth study of distribution strategiesdrbitrarily divisible loads [10, 28, 34].
The goal of DLT is to exploit parallelism in computationakaao that the workload can be partitioned
and assigned to several processors such that executionetemin the shortest possible time [10]. In our
previous work [22], we demonstrated that the applicatioDIOF leads to significantly better approaches
for real-time divisible load scheduling. Encouraged bypgsformance benefits, we again apply DLT
to develop new algorithms. Specifically, a DLT heterogesemodel is applied in the partitioning of
applications, such as CMS [14] and ATLAS [6], that executadawrge homogenous cluster.



3 Task and System Models

In this paper, we adopt the same task and system models asemioys work [22]. For completeness,
we briefly present these below.

Task Model. We assume a real-time aperiodic task model in which eachagjetask; consists
of a single invocation specified by the tuglé;, o;, D;), whereA; is the task arrival timeg; is the total
data size of the task, and; is its relative deadline. The task absolute deadline ismgiwe A; + D;.
Section 4.1 presents, in detail, how task execution timeymathically computed based on total data
sizeo;, resources allocated (i.e., processing nodes and bargveiddl the partitioning method applied
to parallelize the computation.

System Model. A cluster consists of a head node, denotedHyy connected via a switch to/
processing nodes, denoted By, P, ..., Py. We assume that all processing nodes have the same
computational power and all links from the switch to the @sging nodes have the same bandwidth.
The system model assumes a typical cluster environment ichwhe head node does not participate
in computation. The role of the head node is to accept ortréeoming tasks, execute the scheduling
algorithm, divide the workload and distribute data churnkgtocessing nodes. Since different nodes
process different data chunks, the head node sequentadtyssevery data chunk to its corresponding
processing node via the switch. We assume that data trasismboes not occur in parallel, although it
is straightforward to generalize our model and include #eeavhere some pipelining of communication
may occur. For the arbitrarily divisible loads, tasks anbitasks are independent. Therefore, there is no
need for processing nodes to communicate with each other.

According to divisible load theory, linear models are usedepresent processing and transmission
times [34]. In the simplest scenario, the computation tirha mado is calculated by a cost function
Cp(o) = oC,s, WhereC,, represents the time to compute a unit of workload on a singlegssing
node. The transmission time of a loads calculated by a cost functiatim (o) = ¢C,,.s, WwhereC,,; is
the time to transmit a unit of workload from the head node toae@ssing node. For many applications
the output data is just a short message and is negligiblacplarly considering the very large size of
the input data. Therefore, in this paper we only model thesfiexr of application input data but not that
of output data. The extension to consider the transfer gfdwtata using DLT is straightforward.

The following notations, partially adopted from [34], arged in this paper,

e T = (A, 0,D): Adivisible task, whered is arrival time o is data size, and is relative deadline;

e o= (a1, an, ..., ). Data distribution vector, whereis the number of processing nodes allocated
to the taskyy; is the data fraction allocated to thi& node, i.e.q;0, is the amount of data that is
to be transmitted to thg" node for processing, < a; < 1 and¥?_ o = 1;



e (U'ms: Cost of transmitting a unit workload;

e ('ps: Cost of processing a unit workload.

4 Algorithms

This section presents real-time divisible load schedwdiggrithms that utilize Inserted Idle Times (IITs)
in a cluster. Many parallel job scheduling algorithms [22] face the IITs problem. It occurs when the
number of processors available is less than that requiretthdoyext job. In that case, the job has to
wait until enough processors become available, which |éadswaste of processing power as some
processors are idle, the so-called Inserted Idle Timess)IpFfoblem. Backfilling [21, 24, 29] is an
approach proposed in the literature to alleviate this mnobl It is a general approach applicable to all
types of parallel jobs — whether modularly divisible or ardiily divisible.

An arbitrarily divisible load, however, has a very uniquemerty, that is, it can be arbitrarily parti-
tioned into a large number of independent subtasks of arlgiize. Thus, the subtasks can be scheduled
flexibly and independently. Exploiting this property of arérily divisible loads, we propose new algo-
rithms that schedule divisible loads with different prasmsavailable times and utilize 1ITs in a cluster.

In [22], we encapsulated the logic of a real-time divisildad scheduling algorithm in three modules.
The first module determines the task execution order, whicitdche based on policies like FIFO (first
in first out) or EDF (earliest deadline first). The second taaKitioning module chooses a strategy to
divide loads while the third module decides the node assagrior each task. In this paper, to utilize
lITs we focus on the second module, that is, designing a nel pgartitioning module for real-time
divisible load scheduling.

To allocate resources to meet a divisible task deadlinehadsding algorithm must know the min-
imum amount of resources required by the task, which is detexd by the task data size and the
partitioning method applied. For a homogenous clustet,ah@unts to computing the task execution
time and the minimum™"™ number of nodes required. Our previous work [22] addreslisdigsue
when processors are simultaneously allocated to a taskr@-in). To tackle the 1ITs problem, our new
approach is designed to handle the scenario where prosessobe allocated to a task at different times
(Figure 1b). This makes task partitioning, execution timalgsis, and derivation of™" difficult.

4.1 Task Partitioning and Analysis

We investigate two partitioning methodBLT-Based PartitionindSection 4.1.1), antser-Split Par-
titioning (Section 4.1.2). The first method is based on divisible Idabty (DLT), which states the
optimal execution time is obtained when all nodes allocated task finish their computation at the



same time [34]. For comparison, we propose the User-Sptittidaing method, based on a common
practice of the user dividing a task intoequal-sized subtasks whemodes are requested for the task.

4.1.1 DLT-Based Partitioning

Although divisible load theory has been extensively stddnerecent years, most of the developed mod-
els assume that all nodes are allocated at the same timee Te#t of our knowledge, very little work
[9, 8, 11] addresses the load partitioning problem withedéht processor available times. However,
their solutions are not applicable to typical clusters lbeeahey assume that when a processor is com-
puting the current task, the system could deliver the datheohext task to it. Without special hardware
and software support this assumption does not hold in conuiuster environments.

Following the principle of DLT, our heuristic approach aitespartition a task so that the allocated
processors could start at different times but finish contpmrialmost simultaneously.

To achieve the aforementioned objective, we first cast a lg@maus cluster with different processor
available times into a heterogeneous model where all asgigndes are allocated simultaneou#ly (
Heterogeneous Model Constructioip Constructing such a model enables us to apply DLT to guaisle t
partitioning, execution time analysis, an®#" nodes derivationg: Applying DLT ). Then we prove if
we patrtition the task following the model and execute thdasks in the homogenous cluster, the actual
task completion time is no later than its estimafe Analysis of Completion Time Estimate — a
necessary condition to guarantee the correctness of duimesascheduling algorithm (Section 4.2).

A: Heterogeneous Model Construction

Givenn homogenous processors to start the execution of a divisblel” at different available times,
we transform them to a model efheterogeneous nodes allocated simultaneously to the task.

Let P, P, ..., P, denote thes homogenous processors. Assume ngdeould start processing task
T attimer;, fori = 1,2,...n. We callr; the available time of;. It is either the timeP; is released by
a previous task or the time task T arrives, whichever isfalidsen nodes are ordered by their available
times: P, is the earliest at time; and P, the latest at time,, (Figure 1b). Next we construct a model of
n heterogeneous nodes with the same allocation tijr{€igure 1c).

As demonstrated by Figures 1b and 1c, the earlier the honoogerode becomes available, the more
powerful is its corresponding node in the heterogeneousintdFigure 1c, a different height of a dark
rectangular bar is used to represent a different node mimgepower. The greater the height of the bar,
the more powerful the node. In the new model (Figure 1cyalbdes are considered to be allocated at
the same time,,. The effect of the Inserted Idle Time (1IT) of a homogenoud&o,, — r;, is accounted
for by assuming its corresponding heterogeneous ideas a higher processing power. Specifically,
in the constructed model, while the link speed is considénedsame as the original cluster, the node
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available tirpef,’: task execution time without uti- (rn: the Eime all n nodes become available for task
lizing lITs, &: task execution time in the heteroge- T, r, + &: task completion time).

neous model).

Figure 1: Heterogeneous Model Construction.

computational power is increased based on the length ofithand the task execution time when no
IIT is utilized. Let€ (Figure 1a) denote the task execution time when no T iszetl (see [22] fo€’s
derivation).Cps; represents the unit processing cost on nBdandC'm.s; denotes the unit transmission
cost. Then, for the heterogeneous model, we have the faitpwi

&

Cms; = Cms (2)

Cps; increases asincreases. Since the greater tfigs; the slower the node?, P,, ... P, have de-
creasing processing power in the heterogeneous model.

B: DLT-Based Analysis

We now explain how to apply a DLT heterogeneous model for pasitioning, execution time analysis,
andn™™" derivation.

Task Partitioning and Execution Time Analysis. Figure 1d shows an example task execution time
diagram following the optimum partition rule of DLT [34] whe: heterogeneous nodes are allocated to
process tasi’ = (A, o, D) at the same time,. Let£ denote the task execution time. It is a function of
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o andn. That s,

E(o,n) = aroCms+ a;0Cps;
= (a1 + az)oCms + asoCpssy
= (g +ag+ az)oCms + azaCpss

= Z a;oCms + a,0Cps, (3)
i=1
CpSl
Thus we have, = —
@2 Cms + Cpssy a
Cpsy
e} = —FFF
3 Cms + Cpss 2
o _ Cpsn—l o
" COms+ Cps, !
Cpsi_1 )
Let X, = ——"—— fori=2,3...,
Cms + Cps; ! "
Then o = Xy =X X109 =---

= HXjOél, fori:2,3...,n

j=2

Since}";" , oy =1, we have(1+ 37, [[._, Xj)on = 1

- 1 /.
Thus,o; = LIS Then the data chunk allocated to naéeis,
ag
01 = 00 = — - 4)
1+ Zi:Q Hj:2 Xj
And the data chunks allocated to the other nodes are,
7 i'_ X'O’
o; = oin:Honzla: Hjn_z JZ ,fori=23....,n (5)
Jj=2 L+ Zi:Z szz Xj
Task execution time can therefore be calculated as follows,
(‘:'(U, n) = Z a;oCms + a,0Cps,, = cCms + a,cCps
=1
n "X,
= oCms+ H XjonoCps =oCms + H]_2 ’ oCps (6)

j=2 1+ Z?:z Hé':z Xj

Derivation of an Upper-Bound for n™". Given the task execution time functicﬁ'(a, n), we can
calculate an upper-bound for the minimum numb&t* of nodes required to meet the task deadline.
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Let C'(n) denote the task completion time function. Assume tlsk (A, o, D) has a start time,,.
ThenC(n) = r, + £(o, n), that is,

H;L:Q XJ'
14+300, H;:Q X;
To meet the task deadline means constréifit) < A + D must be satisfied. It follows that,

H;'L:Q Xj
L+ I X

Since it is difficult to solve the above inequality to get thh@@& minimum number™", we derive a new

C(n)=r,+0cCms+ oCps (7

r, +oCms + oCps <A+ D

numbern™" that is an upper bound fer™" (™" > n™m), This way, if the scheduler allocates at least
n™n processors to the task, the deadline will be guaranteed.
From Eq. (1) and the faaet, > r; > r,_;, we knowCps;_; < Cps; andCps; < Cps. Therefore we

have, c c
Psi—1 ps .
' Cms+Cps; — Cms+ Cps’ ort 300 m
Let o
ps
— S 8
g Cms + Cps ®)
From X; <  and Eq. (6), we can prove the following for the task executiior,
5 n—1 1I- ﬁ
E(o,n) <oCms+ [ T ﬁna(]ps
After algebraic simplification, we have,
4 1-p ,
8(0', n) S mO(Cms + Cps), that IS,
E(o,n) < E(on) (9)
where& (o, n) (see [22]) is the task execution time when no IITs are utiliZEhis leads to,
Cn) =1y +E(o,n) <1, + - — gna(cms +Cy) (10)
Thus by solving,
1—
Tn + 1_§U(Cms+Cps) <A+D (11)
we will get an upper bound numbgf*" that also satisfies constraid{n) < A + D. Eq. (11) implies,
1-p
WU(CN@S + Cps) S A + D — T'n (12)



Sincel — " > 0, we multiply both sides of (12) by — 5"and get,
(1=08)0(Crs +Cps) < (1 =F")(A+ D —ryp) (13)

If A+ D —r, <0, the task will miss its deadline no matter how many nodes w&ado it and how
we partition it. Such a task will be rejectesince it fails the schedulability test of our algorithm (see
Section 4.2). Thusl + D — r, > 0, and by dividing both sides of (13) iy + D — r,,) we have,

(1 = B)o(Cims + Cps)

(1-p" = A1D > ., thatis,
g < 1_(1—6)0(Cm8+0p5):1_ 0Chns
- A+D—r, A+D—r,
0C s
Let 7:1_A+D—7“ (14)

we haveg™ < ~. If v < 0, starting taskl” at timer,, will not leave enough time even for its data
transmission. Therefore the task will be rejected as wetlusTy > 0. Since0 < § < 1, it follows
thatn > ﬁj—g. The assigned number of nodes should be an integer. We have> Hﬁ—g}. Therefore
pmin = Hﬁ—g}, wherey is defined in Eq. (14) and in Eq. (8). As long as the scheduler allocates at least
n™" nodes to task’ at timer,,, the task deadline would be guaranteed.

C: Analysis of Completion Time Estimate

In the above, we have explained how our heuristic partitsod#visible task (Eq. (4) & (5)) following a
DLT heterogeneous model. In addition, the task completioet,, + £(o, n) is derived.

As explained, the heterogeneous model is constructed tie gask partitioning, execution time anal-
ysis andn™" derivation. In reality, these ensuing subtasks are asdigne executed at the homogenous
cluster. The derived completion timg + £(o, n) is therefore an estimate of the actual value.

Next we prove that the actual completion time is no worse itsagstimate. Thus, if we use estimated
completion times to schedule real-time divisible taskscase guarantee their temporal correctness.

Assertion1 a; < oy, fori=2,3...,n

Proof FromCms > 0 andCps;_1 < Cps;, we know,

Cpsi_1 .
X, = — 7L 1 i=23...n
Cms + Cps; ! "
Thus, o = [[Xjon <o, fori=23...n
=2

!Rejection in the cluster environment means that the systiminastrator (or a program proxy) will negotiate with the
client for a feasible task deadline and the job will be rescited with modified parameters.

10



Lemma 2 «; < g’;l fori =2,3.

Proof

N ﬁX - [T;,2 Cps; N
A jGe1 — 7
e ! HjZQ(CmS + Cps;)

H 1Cps; Cpsq
—_— (1 =
Hj:2 Cps; Cps;

aq

Assertion 3 r, —r; > S22 — &
Ps;

Proof From Eq. (1), we have, —r; = S22 — € and 7 Cps > 1. In addition, Eq. (9) say§ > &.

Cps;
Therefore, c c
ps ps 5
n—T; = E—E> E-¢
T Ops, — Cpsi
Theorem 4 The actual time for nod®;, Vi € {1,2,--- ,n}, to finish its computation is no later than

the estimated task completion time.

Proof According to the constructed model (Figure 1c), the estihabmpletion timeé_est for all nodes

are the same, est = € + r,,. While the actual completion time for nod® is t_act; = a;0(Cms +
Cps) + r; + \;, where the first term is the communication and computatioresi for data assigned
to P, and the second term is the node available time. Since théeclssquentially sends data chunks
to corresponding nodes, the data transmission for ngdeannot start until the cluster has finished
transmitting data to nodeB,, P, --- , P,_;. The delay caused is represented by the third term of the
above equation. From Figure 1d, we can see that the longlestidecaused when nod@ is available

at the same time as nodg. If we use), to denote this upper-bound far (\; < J;), we have,

i—1
5\2 = Z a;oCms
j=1
It implies the following upper-bountlact; for the actual completion timeact;,

t_act; = Z a;oCms + o;oCps +1;
j=1
Thus, we have,

test—tact; = E+r,— (Z ajoCms + o;0Cps +1;)
j=1

= (rp—m)+ £ — (Z a;joCms + o;0Cps)

J=1

11



By applying Assertion 3, we get,

t_est —t_act; > (g]fj E-E)+E- (Z ajoCms + o;0Cps)
i o
_ Ops £ - (ioz-aCms + a;0Cps)
= ot ioCp

Since€ = ayo(C'ms + Cpsy), it follows,

Cps

CpSiala(Cms + Cpsy) — (Z a;oCms + a;oCps)

J=1

t_est — t_act; >

Let A = (%al — a1)oCms and letB = g;’;alac'psl — (2322 a;0Cms + a;0Cps). After simple

algebraic manipulation, we havegst — t_act; > A+ B. So, to prove the Theorem, i.eest > t_act;,
it is sufficient to proved > 0 andB > 0. g;’; > 1 directly leads ta4 > 0. From Eq. (3), it follows,

ajo(Cms + Cpsy) = Z ajoCms + a;oCps;.
=1

That is, aroCps; = Z a;oCms + o;0Cps;.
j=2

Cps Cps

Thus, a10Cps; = (Z a;oCms + a;oCps;)
=2

Cps; Cps;

Cns <
= C]];j Z ajoCms + o;oCps
3 =2

Z a;oCms + a;oCps.

=2

v

Cps

It follows that,
Cps;

a10Cpsy — (Z a;cCms + a;oCps) > 0

j=2
Thatis,B > 0. With A > 0 andB > 0, we have_est > t_act;. Sincet_act; > t_act;, we conclude that
t_est > t_act;.

4.1.2 User-Split Partitioning

In this section, we present a common task partitioning neetitmpted by users of cluster-based research
computing facilities like the U.S. CMS Tier-2 sites. Curtgna large CMS task is manually split by a
user and the subtasks are then submitted to a cluster.
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Based on the current practice, a User-Split algorithm igppsed. To emulate user behavior, the
algorithm partitions a task inte equal-sized subtasks, whetés a user-specified number for requested
nodes. The assumption is that a user will requesbdes that he or she thinks might be enough to
satisfy the task deadline. It will fall in¥,,.;.., N] range, whereV,,;,, is the minimum number of nodes
the task needs to meet its deadline if it starts executionathately upon its arrival andy’ is the size of
the cluster. Next, we analyze the algorithm for task connptetime andJ,,,;,, derivation.

Task Completion Time Analysis. Assume task’ = (A, o, D) is split inton subtasks and each of
them is assigned to a node. Then, the time nBdeompletes its computation is,

ocCms  oCps
+

Ci(o,n) = s; + , fori=1,2...,n

n

wheres; is the task start time for node and the other two terms represent the transmission and com-
putation times. Note that may not be equal te;, the available time of nodg;, because the start time,

s; for data transmission to node may be delayed by the transmission of data to nede>, ..., P,_;.
Thus, we haves; = r; ands; = max(r;, s;.1 + @), for: = 2,...,n. And the completion time
C(o,n) for task? is the maximum of”; (o, n) fori =1,2... n.

ocCms  oCps
_'_

Thatis, C(o,n)=s,+ (15)

n n
Derivation of N,,i,. Ny, denotes the minimum number of nodes tdsk (A, o, D) needs to meet

its deadline. The following constraint should be satisfied,

oCps

cCms + <D

min

oCps ) i R aCps
Thus’D—aCms < le”' That IS’Nmm o [D—JCms—l '

4.2 Algorithm Framework

As is typical for dynamic real-time scheduling algorithrh8[23, 26], when a task arrives, the scheduler
dynamically determines if it is feasible to schedule the m&sk without compromising the guarantees
for previously admitted tasks. In [22] we have designed aegadrframework for a schedulability test,
which can be configured to support various real-time dilésibad scheduling algorithms by providing
design decisions on: 1) scheduling policy (EDF or FIFO)a&ktpartitioning rule (DLT-Based or User-
Split partitioning), and 3) node assignment method (assipa taski™" or user-specified nodes).

In this paper, we configure this framework (Figure 2) to gatestwo sets of algorithms that utilize
[ITs in a cluster. The first set of algorithms uses an EDF aeds#tond set adopts a FIFO scheduling
policy, where the task execution order is determined by &hslolute deadlines or task arrival times. In
addition, we have two different scheduling algorithms icteaet: they are either 1) DLT-Based or 2)

13



Data Structure:
® AN(t) O the available number of idle processing nodes at time t.
® Release(hodey) O the time the k™ available node is released by a previous task.

Pseudocode:
boolean Schedulability-Test(NewTask)
TempTaskList — NewTask + TaskWaitingQueue

// EDF or FIFO scheduling policy (Decision #1)
order tasks in TempTaskList by their absolute deadlines or arrival times

while TempTaskList I= ¢
remove Ti(A;, 0;, D;) from TempTaskList

//Assign the task N ™" or a user-specified number of nodes (Decision #3)
n — N™" (1) or a random number from [Npi,, N] range

identify the earliest time t when the available nodes AN(t) > n
// Set processor available times
for k=1ton

rr < max(Release(nodey), A;)

end for

// According to the chosen partition rule DLT-Based or User-Split partitioning
(Decision #2), set expected completion time following Eq. (6) or Eq. (15)

e — £ (o, n) + r, or C(o;, n)

if e>A + Di
return false // Deadline misses

put Ti(A;, 0, Di, ry, rz, ..., Py, n, &) into TempSchedule
end while

/* All tasks in the cluster are schedulable */
Accept TempSchedule

return true
end Schedulability Test()

Figure 2: Schedulability Test for the Algorithms.
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User-Split based. According to the partitioning methodmdd, our schedulers estimate task completion
times following analysis in Section 4.1.1 or Section 4.ITRe number of nodes assigned to each task
is n™" for DLT-Based algorithm ana, a random number in the rang’}],,..N] for the User-Split
algorithm. Upon completion of the schedulability test,liftasks are schedulable a feasible schedule is
developed and the new task is accepted, otherwise, it istegje

By following the aforementioned framework, we generate tdgorithms: EDF-DLT, EDF-UserSplit,
FIFO-DLT, FIFO-UserSplit. The nomenclature for the al¢foms includes two parts. The first part de-
notes the adopted scheduling policy: EDF or FIFO, while #nead part represents the choice of the
partitioning rule: DLT-Based patrtitioning (Section 4.1t User-Split method (Section 4.1.2).

5 Performance Evaluation

In this section, we evaluate the proposed real-time scireglalgorithms: EDF-DLT and FIFO-DLT.
First, we compare these two algorithms with the correspuandpproaches: EDF-OPR-MN and FIFO-
OPR-MN that we proposed in [22], which do not utilize [ITs. E®PR-MN was shown to be one of
the best performing algorithms in [22]. However, it does deal with the Inserted Idle Times prob-
lem. There are also other algorithms such as: EDF-OPR-ANRIR@-OPR-AN that always execute
a task on allV nodes in a cluster. These algorithms do not have the IITsl@mbyet these are rarely
adopted in real-life clusters due to obvious drawbacks amiigistration concerns. Second, we com-
pare new algorithms against algorithms utilizing IITs; theer-Split algorithms: EDF-UserSplit and
FIFO-UserSplit that were analyzed in Section 4.1.2.

Cluster Configuration. We use a discrete simulator to simulate a range of clustatate compliant
with the system model presented in Section 3. For every sition, three parameterd], C,,; andC,
are specified for a cluster.

Workload Generation. To generate a set of tasits = (A;, 0;, D;), we assume that the interarrival
times follow an exponential distribution with a meanlgf\, and task data sizes are assumed to be

normally distributed with a specified mean 4t go and a standard deviation equal to the mean. Task

AvgD 3AvgD
2 0 2

the mean relative deadline. To specifygD, we use the ternDC Ratio [22]. It is defined as the

relative deadlines are assumed to be uniformly distributete range |, whereAvgD is

ratio of mean deadline to mean minimum execution time (ctsa) is%, where€(Avgo, N) is
the execution time assuming the task has an average datdsjzeand is allocated to run on alV
nodes simultaneously. GiveniaC Ratio, the cluster sizéV and the average data sizego, AvgD

is implicitly specified asdDC Ratio x £(Avgo, N). This way, byDC Ratio, task relative deadlines are
specified relating to the average task execution time. litiadd a task relative deadlin®; is chosen

to be larger than its minimum execution tild¢o;, N). In summary, we could specify the following
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parameters for a simulationN(C,,s, Cps, 1/A, Avgo, DCRatio.

To analyze the cluster load for a simulation, we use the métyistern Load [22]. 1t is defined

E(Avgo,N) TotalTaskNumber xE(N,Avgo)
A TotalSimulationTime

as, SystemLoad = , Which is same asSystemLoad = . For a

simulation, we could specifigystem Load instead of average interarrival timg\. Configuring {,
Chns, Cps, SystemLoadAvgo, DCRatig is equivalent to specifying\, C,.s, Cps, 1/A, Avgo, DCRatio),
becausel /\ = 22552l To evaluate the performance of the real-time scheduliggrithms, we use
the metric,Task Reject Ratialefined as the ratio of the number of task rejections to timelyau of task
arrivals. The smaller th€ask Reject Ratidhe better the real-time scheduling algorithm.
For all figures in this paper, a point on a curve correspondsd@verage performance of ten simu-

lations? In the ten runs, the same paramet&ts,,.., C,.., SystemLoad4dvgo, DCRatig are specified
but different random numbers are generated for task atiiveds A;, data sizew;, and deadline®,.

For each simulation, th€otalSimulationTime is 10,000,000 time units, which is sufficiently long.
5.1 Benefits of Utilizing lITs

First we evaluate the performance of our new algorithms végipect to our previous approaches [22]
where no IITs are utilized: EDF-DLT vs. EDF-OPR-MN and FIBRT vs. FIFO-OPR-MN. In this
section, we only report the comparison of EDF-DLT vs. EDFRA¥N here. The performance results
for the other pair are similar and can be found in Appendig.(Bito 12).

For ourbaseline modele chose the following simulation parameters: number of@ssing nodes
in the cluster,N' = 16; unit data transmission timé&/,,,, = 1; unit data processing tim&;,; = 100;
SystemLoad changes in the rang®.[1, 0.2, - - -, 1.0]; Average data sizedvgo = 200; and the ratio
of the average deadline to the average execution tintéRatio = 2. Our simulation has a two-fold
objective. First, we want to verify our hypothesis that it is advantageoustii@e Il Ts in real-time
cluster-based schedulin§econdwe study the effects dbC' Ratio.

To study the merits of utilizing IITs, we employ our baselmedel. The two curves in Figure 3 show
theTask Reject Ratiof algorithms: EDF-DLT and EDF-OPR-MN. Note that EDF-DLTvalys leads to
alowerTask Reject Ratithan EDF-OPR-MN. Since EDF-OPR-MN has been one of the befstrpeng
algorithms proposed so far [22], our simulation result qomsi our hypothesis that it is beneficial to
utilize IITs in real-time cluster-based scheduling. ByngslITs, the task execution time decreases and
as a result the cluster can accommodate more tasks and regatdhdlines. We carried out the same
type of simulations by changing, one at a time, the followshgster or workload parameterstuster
size N, unit transmission timé€'ms, unit computation tim&'ps andaverage data sizdlvgo. Results
are similar to Figure 3, showing EDF-DLT, the algorithm thétizes 1ITs, always performs better (see
Fig. 6 to 8 in Appendix for details).

2We report curves with 95% confidence intervals of baselinpegrment in Fig. 3b.
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Figure 3: Benefits of Utilizing IITs.

To study the effects abC Ratio on our scheduling algorithms, we used the same configuratidine
baseline model except that we varied ihé' Ratio over [2,3,10,20,100] range. Results are presented in
Figures 3, 4a-4d. We again observe that the EDF-DLT algoréiways performs better. In addition,
we find that as thé)C Ratio increases, the performance of EDF-DLT and EDF-OPR-MN caese
This is because the higher th&” Ratio, the looser the task relative deadlines. Consequentlgettveo
algorithms tend to allocate less nodes to a task. In gertbegmaller the number of nodes assigned to
a task the less the IITs. Thus, the benefits of utilizing I'€sdme less significant. In particular, when
the DC Ratio is extremely high (equal to 100), the two algorithms perfatmost the same (Figure 4d).

5.2 DLT-Based vs. User-Split Algorithms

This section evaluates the two partitioning methoB&T-Based and User-Split partitioningBoth of
these utilize 1ITs to compute arbitrarily divisible loadshe performance of the following algorithms is
compared: EDF-DLT vs. EDF-UserSplit and FIFO-DLT vs. FIERerSplit. Here we only show results
for comparing EDF-based algorithms. Similar results wéataimed for the other pair (see Fig. 13 to 16
in Appendix).

First, we conducted the simulation using the baseline m@kattion 5.1). The two curves in Figure
5a show theTask Reject Ratiof the two algorithms. Observe that EDF-DLT always leadsnalger
Task Reject Ratiahan EDF-UserSplit, indicating our DLT-Based algorithnifpems better.

The same type of simulations were carried out where we clthoge at a time, the following cluster
or workload parameters: cluster si2g unit transmission timé&'ms, unit computation time”'ps and
average data sizévgo. Results are similar to Figure 5a (refer to Fig. 13 to 16 in &qmqlix for details).

We also study the effects of changiaf”’ Ratio. When theDC Ratio is large, i.e.DC Ratio > 10,
sometimes the algorithm EDF-UserSplit performs betten tBBF-DLT (Figure 5b). We conducted a
total of 330 simulations with different system configuragsoUser-Split based algorithms perform better
than the corresponding DLT-Based algorithms 8.22% of timaddition when a DLT-Based algorithm
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Figure 4: Benefits of Utilizing ITsDC Ratio Effects.

performs better, itSask Reject Ratigs significantly lower than that of a User-Split algorithmher
average, maximum and minimum gains task Reject Ratiare 0.121, 0.224 and 0.003 respectively.
On the other hand, when a User-Split algorithm performsbeatnly negligible average, maximum and
minimumTask Reject Ratigains are observed: 0.016, 0.028 and 0.003.

From the data, we can conclude that our DLT-Based approagiitdiadvantages. Not only does it
require no manual work by users as it automatically dividiask, but it also provides better performance
most of the time. The reasons for its good performance ardaldo First, our approach uses divisible
load theory to guide task partitioning. Second, based otesy®ad and a task deadline it dynamically
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Figure 5: DLT-Based vs. User-Split Algorithms.



determines the number of nodes assigned to a task. This\aagpability further makes our approach
more appealing than the User-Split method.

6 Conclusion

In this paper, we address the classic Inserted Idle Tim&s)roblem in the context of real-time divis-
ible load scheduling [22]. Two contributions are made. tFing propose a new approach to model the
homogenous system with 1ITs as an equivalent heterogersystsm. Second, we prove that partition-
ing the task following the model and executing the subtaskbe homogenous cluster results in a task
completion time earlier or equal to the estimate. This theoin turn leads to a new real-time scheduling
algorithm that utilizes the IITs. Intensive simulationuitss show that our approach does make use of the
[ITs to a large extent and significantly improves the systemiggmance. We also compare our algorithm
with the current practice of manually splitting a workloagithe user. Simulation results demonstrate
the advantage of our algorithm as compared to the useragpitoach. Currently, we are working on
expanding our approach to show, both theoretically and raxjeatally, that by adopting multi-round
scheduling [10], we can further improve the [ITs utilizatiand the system performance.
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Figure 6: Benefits of Utilizing lITsAvgo Effects.
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Figure 7: Benefits of Utilizing IITsC'ms Effects.
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Figure 8: Benefits of Utilizing IITsCps Effects.
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Figure 9: Benefits of Utilizing ITSDC Ratio Effects.
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Figure 10: Benefits of Utilizing lITsAvgo Effects.
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Figure 11: Benefits of Utilizing IITsC'ms Effects.
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Figure 12: Benefits of Utilizing IITsCps Effects.
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Figure 13: DLT-Based vs. User-Splitvgo Effects
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Figure 14: DLT-Based vs. User-Split Algorithms
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Figure 15: DLT-Based vs. User-Splitvgo Effects
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Figure 16: DLT-Based vs. User-Split Algorithms
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