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Potassium channels function in eukary-
otes and prokaryotes as selective trans-
port proteins for passive K+ movement 
across membranes (1). Common to vir-
tually all known K+ channels is a pore 
domain with eight highly conserved 

amino acids, TXXTXG(Y/F)G (2, 3). 
In a functional channel, four subunits 
surround a pore in which these res-
idues form the selectivity filter (4).

Sequence analysis of the 330-kb dsDNA 
genome of the plaque-forming chlorella 

virus PBCV-1 (family Phycodnaviridae) (5) 
identified a short amino acid sequence in 
a small ORF (ORF A250R) which resem-
bles the pore domain of K+ channel pro-
teins. ORF A250R is predicted to encode 
a peptide of 94 amino acids (referred to as 
Kcv) with an isoelectric point of 8.7 and a 
molecular weight of 10.6 kD (Figure 1A). 
Hydropathy analysis of Kcv reveals two 
putative transmembrane domains (Figure 
1B) separated by 44 amino acids that con-
tain the K+ channel signature sequence 
TXXTXGFG (Figure 1A, amino acids 60 
through 67) (2). The 26 amino acids sur-
rounding this motif display, on average, 
61% similarity and 38% identity to the 
pore domains of many K+ channel pro-
teins (Figure 1C). Two structurally impor-
tant aromatic amino acids are also con-
served in the NH2-terminal portion of the 
Kcv pore domain. In the bacterial chan-
nel KcsA, two W residues (amino acids 67 
and 68 in Figure 1C) are part of a structure 
that acts as a cuff, keeping the pore open 
at the appropriate diameter for K+ pas-
sage (6). In Kcv as well as in several other 
K+ channel proteins, aromatic Y or F resi-
dues replace these residues (Figure 1C).

In contrast to the putative pore do-
main, the amino acid sequences of the 
two Kcv transmembrane domains dif-
fer markedly from other K+ channels. A 
phylogenetic comparison with eukary-
otic Kir, Kv, and tandem K+ channels, 
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Abstract: The large chlorella virus PBCV-1, which contains double-stranded DNA (dsDNA), en-
codes a 94-codon open reading frame (ORF) that contains a motif resembling the signature se-
quence of the pore domain of potassium channel proteins. Phylogenetic analyses of the encoded 
protein, Kcv, indicate a previously unidentified type of potassium channel. The messenger RNA 
encoded by the ORF leads to functional expression of a potassium-selective conductance in Xen-
opus laevis oocytes. The channel blockers amantadine and barium, but not cesium, inhibit this 
conductance, in addition to virus plaque formation. Thus, PBCV-1 encodes the first known viral 
protein that functions as a potassium-selective channel and is essential in the virus life cycle.
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Figure 1. (A) Predicted amino acid sequence of chlorella virus PBCV-
1 Kcv protein (GenBank accession AAC96618). Transmembrane re-
gions ( TM1, TM2) are underlined; pore region (P) is boldface; K+ 
channel signature sequence is double underlined; positively charged 
amino acids are marked by (+); a putative phosphorylation site ( TRTE) 
is boxed. (B) Hydrophobicity profile (ordinate) was calculated accord-
ing to Kyte and Doolittle (24) with a moving window of 19 amino ac-
ids and plotted against amino acid number (abscissa). (C) Alignment 
of the Kcv P domain with other K+ channel proteins (25). Amino acids 
similar or identical to Kcv are boldface. Following each sequence, the 
position of the last residue and the percent amino acid similarity and 
identity to Kcv (in brackets) are indicated. (D) Phylogenetic compari-
son of Kcv with eukaryotic and prokaryotic (denoted by asterisk) K+ 
channels calculated by CLUSTAL/CLUSTREE algorithms (26).
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and two prokaryotic K+ channel families 
(7), places Kcv as an independent clus-
ter, indicating significant sequence devi-
ation (Figure 1D). Another unusual fea-
ture of Kcv is its short (12 amino acids) 
cytoplasmic NH2-terminus containing a 
consensus protein kinase ck2 phosphor-
ylation site (Figure 1A, amino acids 9 
through 12). The COOH-terminus of the 
Kcv protein is part of the second trans-
membrane region; Kcv thus appears to 
lack a COOH-terminal cytoplasmic tail. 
These structural data and the phyloge-
netic analysis suggest that Kcv represents 
a very primitive K+ channel. This no-
tion is supported by phylogenetic analy-
ses of another viral protein that place the 
DNA polymerases from Phycodnaviridae 
near the root of all eukaryotic DNA poly-
merase delta proteins (5). This indicates 
that at least some PBCV-1–encoded pro-
teins have long evolutionary histories.

To determine if Kcv functions as an 
ion channel, we expressed the protein 
in Xenopus oocytes (8). At 36 hours after 
Kcv mRNA injection, oocytes exhibited 

distinct currents in voltage clamp assays 
(9) which differed quantitatively and 
qualitatively from control oocytes (Fig-
ure 2, A and B) (10). At voltages of +60 
and –140 mV, average steady-state cur-
rents of Kcv mRNA-injected oocytes ex-
ceeded those of water-injected ones by 
factors of 8.6 and 8.2, respectively (11). 
The conductance introduced by Kcv 
mRNA injection consisted of an instanta-
neous and a time-dependent component 
(Figure 2A). The instantaneous I/V rela-
tion deviated from linearity by decreas-
ing at extreme hyperpolarizing and de-
polarizing voltages. The time-dependent 
current activated and deactivated at neg-
ative and positive voltages, respectively. 
Figure 2B shows the instantaneous (Ii) 
and steady state-current (Iss) from Kcv 
mRNA-injected oocytes and the steady-
state component of water-injected oo-
cytes as a function of voltage.

The selectivity of Kcv-mediated con-
ductance was determined by obtaining 
Ii/V relationships at 2, 20, and 50 mM 
KCl (Figure 2C). Lowering the external 

K+ concentration (K+
0) caused the cur-

rent reversal voltage (Vr) to shift to more 
negative voltages and the inward cur-
rent to decrease. Plotting Vr versus K+

0 in 
a Nernst plot yielded a slope of 60.0 mV 
per decade (Figure 2E). Figure 2D shows 
the time-dependent deactivation of the 
current following activation at a condi-
tioning voltage of –160 mV. The current 
reversed at –20 mV, a value close to the 
reversal of Ii. This result was confirmed 
at all K+

0 values investigated (Figure 2E). 
Taken together, these analyses show that 
Kcv is a channel that conducts K+ ions.

The cation selectivity of Kcv-mediated 
conductance was examined by replacing 
KCl with NaCl in the bath solution. Both 
the time-dependent and instantaneous 
currents were strongly depressed (Fig-
ure 3). Furthermore, Vr shifted negative 
by 68 mV, indicating that the Kcv-medi-
ated conductance prefers K+ over Na+ 
ions. The PK/PNa permeability ratio from 
n = 10 I/V relations was 9.32 (12). Cur-
rent reduction at positive voltages sug-
gests an inhibitory effect of Na+ on the 
K+ outward current.

These results indicate that Kcv forms 
a K+-selective channel in oocytes (13). 
Kcv is the smallest K+ channel protein 
known, primarily because of its short 
NH2- and COOH-termini. The NH2- and 
COOH-terminal domains of other K+ 

Figure 2. Heterologous expression of the 
PBCV-1 encoded K+ channel homolog Kcv in 
Xenopus oocytes. (A) Currents recorded in 50 
mM KCl from oocytes injected with water or 
Kcv mRNA were induced by voltage steps from 

Figure 3. Selectivity of the Kcv-mediated con-
ductance. Currents were elicited in response 
to voltage steps from resting voltage to test 
voltages in the ranges indicated. The bath so-
lution in (A) contained 50 mM KCl or 50 mM 
NaCl. (B) Ii/V relation of data in (A).

holding voltage to test voltages as indicated. (B) Ii (solid symbols) and Iss (open symbols) as a func-
tion of applied test voltages. Currents were measured after 3 ms (Ii) and at the end of the test pulse 
(Iss). (C) Ii/V relations from a Kcv mRNA-injected oocyte in 2, 20, and 50 mM KCl measured as in 
(B). (D) Deactivation tail currents from a Kcv mRNA-injected oocyte in 50 mM KCl. Currents were 
elicited by clamping the oocyte to –160 mV for 1 s to activate time-dependent conductance. To fol-
low current relaxation, voltage steps were applied in the ranges indicated. (E) Reversal voltages (Vr) 
obtained from Ii/V relations (solid symbols, n = 9 oocytes) and tail currents (open symbols, n = 8 
oocytes) in Nernst plot against extracellular K+ concentration. Linear regression to mean Vr from 
both types of analysis has a slope of 60.0 mV/decade.
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channel proteins contribute to pore as-
sembly and voltage sensitivity (14). De-
spite lacking these domains, Kcv displays 
several distinct properties with moder-
ate voltage-sensitivity including (i) a de-
crease in Ii near both voltage extremes, 
(ii) a hyperpolarization-induced time-de-
pendent activation, and (iii) a depolariza-
tion-induced time-dependent decrease of 
the conductance (Figure 2, A and B).

Oocytes expressing Kcv were exposed 
to amantadine, an antiviral drug which at 
concentrations < 1 μM inhibits the influ-
enza virus M2 protein (15). Amantadine 
inhibited the Kcv-mediated conductance 
(Figure 4A). Inhibition of Ii was voltage-
independent (Figure 4A, lower panel). To 
quantify inhibition, we measured the ef-
fect of amantadine on the physiologically 
relevant steady-state current: At +60 and 
–140 mV, Iss was half-inhibited by 2 and 
0.8 mM amantadine, respectively (16). 
Thus, the effective concentration is about 
three orders of magnitude higher than 
required to inhibit M2. Amantadine inhi-
bition of Kcv-mediated conductance re-
versed within minutes after removal of 

the drug. In contrast, amantadine inhibi-
tion of M2 is essentially irreversible (15). 
These results, together with the fact that 
the two viral-encoded proteins have little 
or no structural similarity, suggest that 
amantadine inhibits the Kcv and M2 pro-
teins by different mechanisms (17).

Kcv-mediated conductance was also 
exposed to the typical K+ channel block-
ers Cs+ and Ba2+. Addition of 10 mM 
CsCl had only modest effects on the Kcv-
mediated conductance. The inward cur-
rent at –140 mV was inhibited by 9 ± 4%, 
whereas the outward current at +60 mV 
was unaffected (n = 4 oocytes). In con-
trast, Ba2+ reduced the Kcv-mediated 
conductance in a voltage-dependent 
manner (Figure 4B) (18). This behavior 
supports the hypothesis that Ba2+blocks 
inward current in K+ channels after be-
ing drawn into the pore by negative volt-
age (19).

A plaque reduction assay (20) was 
employed to determine the importance 
of Kcv to virus replication (21). Amanta-
dine inhibited PBCV-1 plaque formation 
by 50% at 2.8 ± 0.2 mM (n = 4) (16), that 

is, at approximately the same millimolar 
concentration that affected the Kcv-me-
diated conductance (Figure 4C). Plaque 
formation was also inhibited 50% by 2.6 
± 0.16 mM Ba2+ (n = 3), a concentration 
sufficient to abolish Kcv inward current. 
Cesium (10 mM) had no apparent effect 
on PBCV-1 replication. These results, to-
gether with the finding that the Kcv gene 
is expressed early after virus infection 
(22) indicate that PBCV-1 replication de-
pends, in a yet unknown manner, on a 
functional Kcv channel.

In conclusion, chlorella virus PBCV-1 
encodes a functional K+ channel protein, 
Kcv, which is important for virus replica-
tion. Prior to this study, only four virus-
encoded proteins were thought to have 
ion channel activities: influenza virus A 
M2 protein, influenza virus B NB protein, 
and the human immunodeficiency vi-
rus proteins Vpu and Vpr (23). PBCV-1 is 
the first virus known to encode a K+-se-
lective channel. Because of its exception-
ally small size, Kcv may become a useful 
tool to study basic principles of channel 
assembly and function.
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