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P H Y S I C A L  R E V I E W  V O L U M E  1 7 7 ,  N U M B E R  3 1 5  J A N U A R Y  1 9 6 9  

Application of the Method of Lattice Statics to Vacancies 
in Na, K, Rb, and Cs* 

J. W. FLOCKEN? J. R. HARDY$ 
Lawrence Radiation Laboratory, Vniversity of California, Livermore, California 94550 

(Received 5 August 1968) 

We have calculated the lattice distortion produced by a single vacancy in Na, K, Rb, and Cs. The cal- 
culations have been carried out using the technique of lattice statics, which is based on the Fourier trans- 
formation of the direct-space equilibrium equations, making consistent use of discrete lattice theory. Three 
distinct types of potential have been used to describe the interactions between the host atoms. The first of 
these applies only to sodium, and contains an ion-electron-ion term derived from the measured phonon dis- 
persion curves. The second applies only to potassium, and has been similarly obtained. The third is based on 
a model pseudopotential and applies to all four metals. Comparison has been made between our displace- 
ments due to a single vacancy in Na, using the first of these potentials, and analogous results obtained by a 
semidiscrete method in which only the atoms in the first five shells are allowed to relax. The agreement is 
reasonable for atoms in the first two neighbor shells about the vacancy, but poor for atoms farther away. 
The calculated displacements have been used to calculate the dilatations and relaxation energies associated 
with single vacancies in alkali metals. There is a large discrepancy between the magnitudes of these quantities 
calculated using the first Na potential and those obtained using the second Na potential, and a similar dis- 
crepancy exists between the two sets of K results. We have also used the method of lattice statics to deter- 
mine the strain-field interaction energies between several types of vacancy pairs in these metals. In every 
case we find the next-nearest-neighbor configuration to be the most stable, whereas in the nearest-neighbor 
configuration, the two vacancies repel one another. The magnitudes of these binding energies depend strongly 
on which model potential is used. 

I. INTRODUCTION A recent calculation of the distortion produced by a 

P OINT defects can be introduced into a crystal lattice 
in two distinct ways; they can be generated by 

thermal activation or by fast particle irradiation. I n  
order to understand theoretically the behavior of defects 
generated by either method, it is of basic importance to 
be able to calculate accurately the formation energies 
of the various species of defect produced and also to be 
able to calculate the binding energies of various defect 
pairs. I n  the case of simple crystals such as the alkali 
metals, which are our concern in the present paper, the 
simplest type of defect is the lattice vacancy. 

The first stage in understanding the defect properties 
of these materials is understanding the properties of a 
single isolated vacancy in one of them. T o  do this, i t  is 
essential that we have some means of calculating pre- 
cisely the lattice configuration about such a vacancy. 
This is important both in its own right insofar as i t  plays 
an important role in such properties as the electrical 
resistivity induced by the defect, and also because it is 
essential to know the macroscopic volume change associ- 
ated with the formation since this plays a critical role 
in determining the actual formation energy of the defect. 

To  solve these problems one needs first a realistic in- 
teratomic potential for the atoms in the metal and 
second, given such a potential, a means of calculating 
rigorously the minimum energy configuration when a 
vacancy is introduced into the lattice. 

* Work performed in part under the auspices of the U. S. Atomic 
Energy Commission. 

Permanent address: Behlen Laboratory of Physics, University 
of Nebraska, Lincoln, Neb. 

$ Summer visiting Professor of Physics. Permanent address: 
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single vacancy in sodium has been by ~ h y u  
et a1.l using an interatomic potential due to Cochran.% 
The method of computation used was typical of the 
class of techniques which might be referred to as 
"semidiscrete" methods. This classification we apply 
to any approach in which the ions in a predefined region 
near the defect, which we will call Region I, are allowed 
to relax to new equilibrium positions without further 
constraint. The remaining atoms in the lattice are then 
either held fixed or forced to relax to positions deter- 
mined by continuum elasticity theory. If Region I can 
be made large enough, accurate displacements can be 
obtained for any host atom. However, the equations 
governing the displacements of the atoms of Region I 
increase rapidly in number and complexity as the 
volume of Region I increases; thus in practice, the size 
of this region is rather severely limited. 

In  a recent paper3 we demonstrated the inadequacy 
of the "semidiscrete" methods which have been ap- 
plied to the problem of the body-centered interstitial 
copper atom in a copper lattice, even though the forces 
exerted on the host atom by the defect extended only to 
nearest neighbors. I n  the case of the alkali metals such 
methods are likely to be even more inapplicable since 
in these metals the range of the interatomic potential is 
known from neutron scattering to extend a t  least to 
fifth neighbors. I t  is the purpose of the present work to 
determine the distortion produced by a single vacancy 
in the alkali metals Na, K, Rb, and Cs, by the consistent 
application of discrete lattice theory, without the neces- 

W. M. Shyu, D. Brust, and F. G. Fumi, J. Phys. Chem. Solids 
28, 717 (1967). 

W. Cochran, Proc. Roy. Soc. (London) A276, 308 (1963). 
J. W. Flocken and J. R. Hardy (to be published). 
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sity at  any stage of using continuum elasticity. This 
same technique of lattice statics also allows us to de- 
termine the strain-field interaction energy between pairs 
of vacancies. 

This method was originally developed by Kanzaki4 
and has been further applied and extended by  hard^.^ 
This approach is based on calculating the real space 
displacements of the various atoms in the imperfect 
lattice by Fourier transforming these displacements and 
first determining their Fourier components from the 
Fourier transformed equilibrium equations. 

We determine the allowed wave vectors by applying 
periodic boundary conditions across a supercell con- 
sisting of A7 primitive unit cells. This is equivalent to 
treating a superlattice of defects, one in each supercell. 
The Fourier transformation reduces the 3NX3N array 
of linear equations which determines the direct space 
displacements to a system of N 3 x 3  equations which 
are explicitly soluble. 

We will first apply the method of lattice statics to 
the problem of the single vacancy in Na, using the 
force constants derived from the potential of Shyu 
et al.,' which will allow us to compare our final displace- 
ments with theirs. These calculations will be repeated 
for Na  and extended to K,  Rb, and Cs also, using the 
force constants calculated by Shyu and Gaspari8 de- 
rived from the results of Heine and co-worker~~-~  on 
model pseudopotential form factors. In  this work, a 
modified Hartree dielectric function is used to allow for 
the screening of the bare pseudopotential by the con- 
duction electrons. Finally, we will repeat our calcula- 
tions for K using force constants given by Cowley 
et ~ 1 . ~  obtained by a least-squares fit to their experi- 
mental phonon dispersion curves. 

I n  Sec. I1 we present the basic equations of lattice 
statics appropriate to the calculation of the displace- 
ment field due to a single defect, as well as the equations 
governing the interaction between pairs of defects. In 
Sec. I11 we present detailed calculations of the displace- 
ment field about a single vacancy in Na, K, Rb, and 
Cs and the analogous calculations of the strain field 
interaction energies between pairs of vacancies. In  Sec. 
IV we calculate the dilatations produced by single va- 
cancies and their associated relaxation energies. Section 
V will be devoted to a comparison of our results with 
those of Shyu et al.' and to a general discussion of all 
of our calculations. 

11. METHOD OF LATTICE STATICS 

The complete derivation of the equations necessary 
to the solution of a problem by the method of lattice 

H. Kanzaki, J. Phys. Chem. Solids 2, 24 (1957). 
J. R, Hardy, J. Phys. Chem. Solids 15, 39 (1960). 
W. M. Shyu and G. D. Gaspari, Phys. Rev. 163, 667 (1967). 
V. Heine and I. Abarenkov, Phil. Mag. 9, 451 (1964). 
A. 0. E. -4nimalu and V. Heine, Phil. Mag. 12, 1249 (1965). 
R. A. Cowley, A. D. B. Woods, and G. Dolling, Phys. Rev. 

150, 487 (1966). 

TABLE I. Force constant matrix forms for bcc metals. 

Neighbor Force constant matrix 

statics has been given.3 We will not repeat this discus- 
sion in detail, but will simply present a brief outline of 
the principles upon which the method is based, along 
with the equations necessary to perform the present 
calculations. 

Let al,az, and as be the basis vectors of an infinite 
lattice which we suppose to be built up from equivalent 
volumes containing N  unit cells. The boundaries of 
these volumes, called supercells, may be taken as being 
L times the basic vectors where L3= N. 

At the center of each supercell we imagine a defect to 
be introduced. Symmetry will then require that the dis- 
placements of the atoms around any one defect will be 
identical to those of the corresponding atoms about any 
other defect. Hence we need only treat the atoms of a 
single supercell in order to find the displacement of any 
other atom in the crystal. 

The solution of the displacement problem is obtained 
by expressing the displacement of the lth atom from 
the origin in terms of normal coordinates Qq using the 
Fourier series 

where q is an allowed wave vector in the first Brillouin 
zone and rcZ) is the position vector of the lth atom from 
the origin in direct space in the undistorted lattice. The 
parameter a denotes the Cartesian component of or 
Qq along one of the three orthogonal (100) directions in 
the cubic crystal and may therefore take on values 1, 2, 
3. The value of Qq is found from the equation 

where V-4 is the Fourier-transformed dynamical matrix 
and Fq is the generalized force array associated with the 
defect. In  terms of direct space quantities, these are 
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TABLE 11. Force constants for Na, K, Rb, Cs, used for displacement and interaction energy calculations. 

Metal 
Force 

constant Na(1)' Na(2)b K(2)b Rbb Csb 
(dyn/cm) a=2.14 A a=2.14 A a=2.665 a=2.665 a=2.81 A a=3.025 A 

a Reference 1. b Reference 6. Reference 7. 

defined by 
~ ~ a z  FUlr4.r(l) 

1 
(3) 

and 

Once Fq and V-q have been calculated from Eqs. (3) 
and (4) we can compute the Fourier amplitudes Qq 
from Eq. (2) and perform the summation in Eq. (1) to 
obtain the direct space displacements. Similarly, i t  has 
been shown1° that the strain-field interaction energy be- 
tween a pair of defects is given by 

in which R is the distance between defect sites in the 
perfect lattice. 

Since we are considering only vacancies in the present 
work, we may construct the dynamical matrix V-9 and 
the force array Fq without using an explicit expression 
for the interatomic potential. As we will show shortly, 
i t  will be sufficient to know the force constants for the 
perfect lattice subject to the assumption that these are 
derivable from some central pairwise potential, as is 
the case for each of the potentials used in the numerical 
calculations. We shall express the elements of the matrix 
V-q in terms of the elements of the direct space inter- 
atomic force constant matrices which are presented in 
Table I. We assume in all cases that the atoms interact 
with each other as far as the fifth-neighbor positions. 
I t  has been shown6 that this assumption is adequate for 
Na, K, Rb, and Cs. For Li, however, a much longer 
range potential is needed, extending as far as the tenth- 
neighbor shell. Because of the additional computational 
difficulties which this long-range potential involves, we 
will not include Li in the present calculations. 

lo  5 .  R. Hardy and R. Bullough, Phil, Mag. 15, 237 (1967). 

We shall denote the magnitude of the force exerted by 
a single vacancy on the members of its nth-neighbor 
shell as F(n) where, as we have indicated, n may range 
from 1 through 5. 

With the notation we have outlined above, the com- 
ponents of the V-q matrix may be expressed as 

'[/II-~= 4/32f 2a2- 2Pz{cos2aq~f cos2ap3) - 2az cos2aql 
- 8a1{cosqla cosq~a Cosqaa- 1) f 8a3+ 4/33 
- 4a3 cos2qla(cos2q~a+ cos2q3a) - 463 C O S ~ ~ ~ U  cos2q2a 
+Sap-Sa4 cos3q1a cospza cosq3a+ 16/34 
- 804 cosqia(cosq3a cos3q2a+ cosqza cos3q3a) 

- 8as(cos2qla cos2qza cos2qsa- 1) (6) 
and 

V12-q= 801 sinqla sinqza cosq3a+@S sin2qla sin2qza 
+ 87 d(sin3qla cosqsa sinqzaf sin3qza cosqsa sinqla) 
- 864(cos3q3a sinqla sinqza) 

+8Ps sin2qla sin2q2a cos2qsa. (7) 

The remaining elements of Vq can be obtained by 
cyclic permutation of the q vector components. The 
Fq array can be shown to be given by 

F1q= - [SiF(1)/6] sinqla{cosqza cosq3a) 
- 4iF(2) sinqla cospla 
- 2fl iF (3) sin2qla(cos2pza+ cos2qaa) 
- [24iF(4)/2/11] sin3qla cosqza cosqaa 
- [8iF(4)/2/11] sinqla 
X { cosqza cos3aq3+ cosqaa cos3qza) 

- [8iF(5)/d] sin2qla{cos2qza cos2qta) , (8) 

and two similar equations for F 2 q  and F3q can be ob- 
tained by permuting the components of q. 

All that remains to be done is to find appropriate ex- 
pressions for the forces F(n) in terms of the direct 
space-force constants. In  practice it is easiest to work 
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TABLE 111. Displacement and interaction energy results for Na(l).a 

Is1 (L12+L22+Lsa} + indicates 
Interaction outward 

energy in eV relaxation 
between (0,0,0) Displacement components of neighbors - indicates 

Neighbor and (L1,L2,Ls) around a vacancy (units of 2a) inward 
(Ll,Lz,Ls) vacancies h lz 63 relaxation 

111 0.006282 -0.02935 -0.02935 -0.02935 -0.1525 
200 -0.01502 0.03180 0.0 0.0 $0.1272 
220 0.01471 - 0.009550 -0.009550 0.0 -0.1080 
222 0.007986 -0.01434 -0.01434 -0.01434 -0.2980 
311 -0.01262 0.004580 0.001854 0.001854 $0.05805 
33 1 0.007007 -0.004977 -0.004977 -0.000528 -0.1341 
333 0.004059 -0.007660 -0.007660 -0.007660 -0.3582 
400 0.003882 0.001954 0.0 0.0 $0.03127 
420 -0.003006 0.0005935 0.0002243 0.0 $0.01269 
422 -0.004393 0.001156 -0.0003015 -0.0003015 $0,02957 
440 0.002631 -0.003064 -0.003064 0.0 -0.1387 
442 0.002959 -0.002949 -0.002949 -0.0006096 -0.1517 
444 0.002311 -0.004261 -0.004261 -0.004261 -0.3542 
511 -0.0001439 0.001027 -0.00001615 -0.00001615 $0.02773 
531 -0.001022 -0.00006627 -0.0002428 -0.0001838 -0.01091 
533 -0.001809 -0.0001472 -0.0008395 -0.0008395 -0.05144 
551 0.001442 -0.001968 -0.001968 -0.0002138 -0.1424 
555 0.001288 -0.002492 -0.002492 -0.002492 $0.3237 
600 -0.0005302 0.0008190 0 .O 0.0 $0.02949 
620 -0.0002979 0.0005104 0.00009950 0.0 $0.02080 
622 -0.0002615 0.0004182 -0.0001857 -0.0001857 $0.02173 
640 -0,0004292 -0.0002477 -0.0003623 0.0 -0.02282 

a Using Ref. 1 force conetants. 

with radial and tangential force constants A(n) and tion of the nth-neighbor shell. We can avoid any need 
B(n) defined by to know $(r) explicitly by linearizing the F(n) in the 

lattice displacements. Thus 
A (n) = 2(d2\Lldr2) = 2$"(n) , 
B(n)= 2((1/r)(d+/.lar)),(n,= C2/r(n)%'(n) , (9) 

F(n> = +'(4+t(n>$"(n) = ir(n)B(n)+t(n)*A ( 4  , (12) 
where $(r) is the interatomic potential acting between 
host atoms, so that -$(r) is the potential acting be- 
tween a vacancy and the host atoms. The term r(n) is 
the radius of the nth-neighbor shell in direct space, in 
the perfect lattice. 

Our method of determining the forces F(n) makes it  
unnecessary to know +(r) explicitly, but only requires 
a knowledge of the direct-space force constants shown 
in Table I. Then A(n) and B(n) are related to these 
constants by the following equations: 

in which C(n) is the magnitude of the displacements of 
the atoms in the nth shell. These may be expressed as 
follows: 

T(n) = C p(n,m)F(m) . 
rn 

(13) 

The coefficients p(n,m) are the elements of a response 
matrix obtained by the inversion of the Fourier series 
(I), i.e., p(n,m) is the magnitude of the displacement of 
an atom in the nth shell when the mth force is unity and 
all other forces are zero. Since we are allowing for up to 
fifth-neighbor interactions, m and n range from 1 

A(3)=2(aa+~s) B(3)=2@, (10) through 5. Once the p(n,nz) are known, one-may solve 
Eqs. (12) and (13) for the displacements [(n) which 

A (4)= (6a4+4y4)/3 B(4)= 2(aa- 3y4) may then be used in (12) to find the forces F(n). Using 
A(5)=2(as+2@6) B(5)= -2@5-a6). these values for the forces F(n), one can compute the 

corresponding generalized forces Fq from Eq. (8). 
In terms of the notation just developed Since the displacements of the fourth- and fifth- 

F(n) =*'( l r(n)+ {(a) I ), (11) neighbor shells are not expected to be large, we will 
approximate the forces F(4) and F(5) by their values at 

where the derivative +' is evaluated at the relaxed posi- the undisplaced positions. 
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TABLE IV. Displacement and interaction energy results for Na(2).8 

lbl {Lla+Lza+Ls2} + indicates 
Interaction outward 

energy in eV relaxation 
between (0,0,0) Displacement components of neighbors - indicates 

Neighbor and (LI,Lz,L~) around a vacancy (units of 2a) inward 
(LI ,L~,L~)  vacancies b 1 bz f a  relaxation 

111 0.01535 -0.05536 -0.05536 -0.05536 -0.2877 
200 -0.09935 0.05402 0 .O 0.0 +0.2161 
220 0.07420 -0.01596 -0.01596 0.0 -0.1806 
222 0.04176 -0.02992 -0.02992 -0.02992 -0.6219 
311 -0.05420 0.007334 0.002605 0.002605 +0.09029 
331 0.02778 -0.009074 -0.009074 -0.0003475 -0.2440 
333 0.02614 -0.01711 -0.01711 -0.01711 -0.8002 
400 0.01005 0.006850 0 .O 0.0 +0.1096 
420 -0.007106 0.0006615 0.0002765 0.0 +0.01435 
42 2 -0.02306 0.001964 -0.001135 -0.001135 +0.06088 
440 0.01110 -0.006183 -0.006183 0.0 -0.2798 
442 0.01231 -0.005769 -0.005769 -0.0007287 -0.2949 
444 -0.01544 -0.01007 -0.01007 -0.01007 -0.8369 
511 -0.002690 0.002659 0.0001093 0.0001093 +O 07191 
531 -0.003057 -0.0002236 -0.0004190 -0.0002624 -0.01899 
533 -0.01025 -0.0003968 -0.002076 -0.002076 -0.1274 
551 0.006827 -0.004180 -0.004180 -0.0003472 -0.3020 
555 0.008915 -0.006149 -0.006149 -0.006149 -0.7988 
600 -0.002725 0.002216 0.0 0 .O +0.07979 
620 -0.001129 0.001133 0.0003535 0.0 t0.04746 
622 -0.002177 0.001287 -0.0003556 -0.0003556 $0,06079 
640 -0.001862 -0.0005497 -0.0006650 0.0 -0.04487 

a Using Ref. 6 force constants. 

Thus, 
F(4)= ( 4 l l ) a  4B(4), 

F(5) = (412)a $B(5), 
while 

F( l )  =.\/?;&aB(l)+{(l) $A(l), 

F(2)=aB(2)+{(2) qA(2), (14) 
F(3)=daB(3)+{(3) 4A(3), 

where a is half the cubic unit cell side. 
Therefore, substituting from Eq. (14) into Eq. (12), 

we obtain 

{(I) = P(l, l) l(l)  
4~(1,2)P(2) &4(2)+~(1,3)l(3) 4A(3) 
S p ( l , l ) f l  iaB(l)+p(1,2)aB(2)+~(1,3)flaB(3) 
+~(1,4)(411)4aB(4)+~(1,5)(d12)$aB(5) , 

= P(2,l){(l) 3A (I)+ ~(2,2)t(2) 4-4 (2) 
+~(2,3)t(3) 3A (3)+~(2,1)$ 4aB(1) + ~(2,2)aB(2)+ p(2,3)flaB(3) (15) 

+ ~(2 ,4)  (411) iaB(4)+ ~ ( 2 , s )  (412) 3aB(5) , 
t(3) = ~ ( 3 , 1 )  4 ~ ( 1 ) ~ ( 1 ) + ~ ( 3 , 2 )  + r ( 2 ) ~ ( 2 )  

+~(3,3)  3c(3)A(3)+~(3,1)~4aB(l)+P(3,2)aB(2) 
+~(3,3)flaB(3)+ ~(3,4)(411)  W ( 4 )  

+ ~ ( 3 , s )  (412) W ( 5 )  

Once the displacements c(n) and the forces F(n) are 
known, the Fourier amplitudes of the displacements can 
be calculated from Eq. (2). Then the direct-space com- 

ponents of displacement can be calculated from Eq. 
(1). Finally, the strain-field interaction energy can be 
computed using (5) with the appropriate values of the 
generalized force array Fq calculated from Eq. (3). 

111. NUMERICAL CALCULATIONS 
AND RESULTS 

The present work is based upon interatomic potentials 
from three sources. The first potential used was that for 
K'a metal given by Shyu et a1.l and derived from the 
work of C o ~ h r a n . ~  It  consists of an overlap-repulsive 
term, a Coulombic ion-ion interaction, and an ion- 
electron-ion interaction which has been obtained from 
phonon dispersion curves. The second potential which 
we have used in our work is presented by Cowley et alS9 
and is obtained by a least-squares fitting to the phonon 
dispersion curves measured at  9OK. The third set of 
potentials is the result of theoretical calculations by 
Shyu and Gaspari carried out for Li, Na, K, Rb, and 
Cs. As stated earlier, we will not make use of their Li 
potential because its greater range increases the com- 
plexity of the problem beyond the scope of our present 
calculations. 

These authors derived their potentials from pseudo- 
potential form factors7r8 and a modified Hartree dielec- 
tric function. Since we will be treating Na and K using 
two distinct potentials for each metal, we will, for the 
sake of brevity, refer to the work using the potential of 
Ref. 1 as Na(1) and that using the potential of Ref. 6 as 
Na(2). Similarly, the K results obtained using the po- 
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TABLE V. Displacement and interaction energy results for K(l).* 

1 1 1  { L I ~ S + Z ~ + L ~ ~ }  + Indicates 
Interaction outward 

energy in eV relaxation 
between (0,0,0) Displacement components of neighbors - indicates 

Neighbor and (LlrL2,L3) around a vacancy (units of 2a) inward 
(Ll,Lz,Ld vacanc~es r l  fz relaxation 

111 0.007347 -0.02551 -0.02551 -0.02551 -0.1326 
200 -0.01833 0.02281 0.0 0.0 $0.09122 
220 0.01068 -0.005896 -0.005896 0.0 -0.06671 
222 0.007609 -0.01260 -0.01260 -0.01260 -0.2619 
311 -0.008440 0.002400 0.0007299 0.0007299 $0.02874 
331 0.002673 -0.003783 -0.003783 0.00004181 -0.1017 
333 0.004180 -0.006968 -0.006968 -0.006968 -0.3259 
400 0.001627 0.002072 0.0 0.0 +0.03316 
420 -0.0001429 0.0001858 0.00001645 0.0 $0.003730 
422 -0.002843 0.0007030 -0.0007538 -0.0007538 -0.03065 
440 0.001324 -0.002671 -0.002671 0.0 -0.1209 
442 0.001286 -0.002461 -0.002461 -0.0003672 -0.1260 
444 0.002193 -0.004010 -0.004010 -0.004010 -0.3334 
511 -0.0005115 0.0008795 -0.0001315 -0.0001315 $0.02427 
53 1 -0.0003331 -0.0001071 -0.0002534 -0.0001537 -0.01103 
533 -0.001164 -0.0002461 -0.0009817 -0.0009817 -0.06063 
551 0.0008796 -0.001787 -0.001787 -0.0001904 -0.1293 
555 0.001 174 -0.002423 -0.002423 -0.002423 -0.3147 
600 -0.0005711 0.0008520 0.0 0.0 +0.03067 
620 -0.0001328 0.0004091 0.00003843 0.0 $0.01643 
622 -0.0002636 0.0003890 -0.0002758 -0.0002758 +0.02424 
640 -0.0002645 -0.0002238 -0.0003387 0.0 -0.02111 

a Using Ref. 7 force constants. 

tential of Ref. 9 will be called K(l) and the results ob- 
tained using the potential of Ref. 6 as K(2). The force 
constants derived from the various potentials for all of 
the cases we shall consider are shown in Table 11. 

I n  all of our calculations, we have used a sample of 
64 000 evenly spaced wave vectors in the first Brillouin 
zone. Our previous work on interstitial atoms in Cu 
leads us to believe this sample density is adequate to 
provide reliable displacement values out as far as (5,4,1) 
and associated values of the strain-field interaction en- 
ergy out a t  least as far as (4,4,2). 

The computations were all carried out on a CDC 3600 
computer, and the resultant sets of displacements and 
defect interaction energies are presented in Tables 

I n  this expression, rR1 is the a conlponent of the direct 
space inter-defect spacing vector. 

I t  is also of interest to determine the relaxation energy 
defined as the difference between the energy of the im- 
perfect crystal before and after the atoms are allowed 
to relax to their equilibrium positions. This can be ex- 
pressed as 

where V is the force constant matrix for the metal in 
direct space. I t  can be shown that Eq. (18) reduces to 

111-VIII. provided one retains terms only up to second order in 
{. The subscript 0 indicates that the forces are to be 

IV. CALCULATION O F  DILATATIONS AND evaluated a.t the unrelaxed ion positions. The results of 
RELAXATION ENERGIES the calculations usinn Eqs. (16). (17). and (19) are 

,, . ,, 

shown in Table IX, where hl.' is the volume cha'ngk due We calculate the dilatation according to the expres- 
to taking one atom out of the crystal, Formation 

sion originally due to Eshelby," volumes are those shown in Table I X  plus one atomic 

AV=G/K, (16) volume. 
V. DISCUSSION 

in which K is the bulk modulus and G is the strength 
One of the important aspects of our calculations is parameter which has been shown12 to be given by that we may compare our results directly with those of 

a+ Shyu et al.'~hese-authors allowed the atoms in the first 
G= +C r,Z-$ / r(l)+ <(1) 1 )  = C rR1Fa2. (17) five shells around the vacancy to relax to new equi- 

1 alu 1 librium positions under the influence of the forces 

I 1  J. D. Eshelby, Solid State Phys. 3, 79 (1956). arising from a single vacancy. The forces contributed 
lZ J. R. Hardy, J. Phys. Chem. Solids (to be published). from atoms in shells six through 18, i.e., those atoms 



1060 J .  W .  F L O C K E N  A N D  J .  R .  H A R D Y  177 

TABLE VI. Displacement and interaction energy results for K(2).8 

Interaction 
energy in eV 

between (0,0,0) 
Neighbor and (LI,Lz.Ls) 

Displacement components of neighbors 
around a vacancy (units of 2a) 

I rl {L1?+Lz2+La2} + indicates 
outward 

relaxation - indicates 
inward . -. -, ~. 

( L I , ~ Z , L ~ )  vacancies I I  r 2 -  T s relaxation 

111 0.01820 -0.09013 -0.09013 -0.09013 -0.4684 
200 -0.2271 0.09355 0.0 0.0 $0,3742 
220 0.1642 -0.02678 -0.02678 0.0 -0.3030 
222 0.08182 -0.05186 -0.05186 -0.05186 - 1.078 
311 -0.1220 0.01200 0.005335 0.005335 +0.1559 
331 0.06419 -0.01532 -0.01532 -0.0007852 -0.4118 
333 0.05641 -0.03094 -0.03094 -0.03094 -1.447 
400 0.03249 0.01531 0.0 0.0 $0.2450 
420 -0.01371 0.001003 0.0004748 0.0 +0.02220 
422 -0.05564 0.003270 -0.001434 -0.001434 +0.09237 
440 0.02389 -0.01080 -0.01080 0.0 -0.4888 
442 0.02860 -0.01005 -0.01005 -0.001026 -0.5128 
444 0.03572 -0.01888 -0.01888 -0.01888 - 1.569 
511 -0.006659 0.05452 0.0008155 0.0008155 $0.1505 
531 -0.005499 -0.0003738 -0.0004552 -0.0003732 -0.02418 
533 -0.02660 -0.0006812 -0.003463 -0.003463 -0.2126 
551 0.01551 -0.007550 -0.007550 -0.0004523 -0.5450 
555 0.02162 -0.01188 -0.01188 -0.01188 -1.5435 
600 -0.003343 0.00455 0.0 0.0 $0.1638 
620 -0.002266 0.002211 0.0009362 0.0 $0.09603 
622 -0.005262 0.002904 -0.0001848 -0.0001848 $0.1283 
640 -0.004214 -0.0009978 -0.0008832 0.0 -0.06929 

a Using Ref. 6 force constants. 

within the range of the potential bonds of atoms in the The results of the Na(1) displacements obtained in 
fifth shell, were taken into account but atoms beyond this fashion are compared with the analogous results of 
the fifth shell were not allowed to move from their lattice statics in Table X. 
perfect lattice positions. The displacements were ob- I t  is apparent from Table X that the two methods 
tained using an iterative procedure. give comparable results but the discrepancies that exist, 

TABLE VII. Displacement and interaction energy results for Rb.8 

Interaction 

It1 I L I ~ + L ~ ~ + L ~ ~ }  + indicates 
outward 

energy in eV relaxation 
between (0,0,0) Displacement components of neighbors - indicates 

Neighbor and (Ll,L*,Ls) around a vacancy (units of 2a) inward 
(LI,Lz,LI) vacancies rl i-2 T a relaxation 

111 0.05047 -0.1117 -0.1117 -0.1117 -0.5801 
7~ -0.2821 0.1259 0.0 0.0 +0.50.Z5 

s Using Ref. 6 force constants. 
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TABLE VIII. Displacement and interaction energy results for C S . ~  

Interaction 
energy in eV 

between (0,0,0) 
Neiehbor and (LI.L~.LsI 

Displacement components of neighbors 
around a vacancy (units of 2a) 

+ indicates 
outward 

relaxation - indicates 
inward 

, -' :' -' 

( L I , L , L ~ )  vacancies S 1 Sz Sa relaxation 

111 0.07847 -0.1202 -0.1202 -0.1202 -0.6248 
200 -0.3015 0.1409 0.0 0.0 $0.5637 
220 0.2505 -0.03601 -0.03601 0.0 -0.4074 
222 0.1083 -0.06998 -0.06998 -0.06998 - 1.4545 
311 -0.1939 0.01652 0.01016 0.01016 $0.2409 
33 1 0.1024 -0.01933 -0.01933 -0.001511 -0.5202 
333 0.07753 -0.04203 -0.04203 -0.04203 - 1.965 
400 0.08562 0.02435 0.0 0.0 $0.3896 
420 -0.02319 0.0006899 0.0001756 0.0 +0.01424 
422 -0.08928 0.004519 -0.0001448 -0.OOOI448 +0.1086 
440 0.03013 -0.01357 -0.01357 0.0 -0.6140 
442 0.04489 -0.01250 -0.01250 -0.001078 -0.6376 
444 0.05198 -0.02562 -0.02562 -0.02562 -2.130 
511 -0.007998 0.007751 0.002086 0.002086 $0.2239 
53 1 -0.006523 -0.0007836 -0.0004776 -0.0006252 -0.03886 
533 -0.04470 -0.0008001 -0.003715 -0.003715 -0.2285 
551 0.02048 -0.009496 -0.009496 -0.0005219 -0.6854 
555 0.03222 -0.01603 -0.01603 -0.01603 -2.0827 
600 0.003869 0.006269 0 .O 0.0 $0.2293 
620 -0.004142 0.002802 0.001303 0.0 f-0.1236 
622 -0.006496 0.004173 0,0005176 0.0005176 t-0.1864 
640 -0.006217 -0.001437 -0.0009823 0.0 -0.0905 

Using Ref. 6 force constants. 

particularly in the case of the first two neighbors, are 
somewhat disturbing. In view of the magnitudes of the 
displacements, it does not seem to us that (except pos- 
sibly in the case of the first neighbors) the anharmonic 
corrections will be very significant; thus we are unable 
to account for this discrepancy. However, given that 
anharmonic effects are indeed unimportant, the method 
of lattice statics is in principal exact and its results are 
thus more reliable than those of a truncated iterative 
procedure. 

No similar comparison can be made for the displace- 
ments calculated-using the force constants given in 
Refs. 6 and 7 since no displacement calculations were 
performed by these authors. Moreover, since none of 
the metals considered is isotropic, i t  is not possible to 
compare the displacements predicted by lattice statics 
with those required by isotropic elasticity. However, it 
is to be expected that in any given crystallographic di- 
r e c t i ~ n , ~ , ~  the displacements of atoms far from the defect 
will fall off inversely as the square of their distance from 
the defect. The direction along which we have results 
for the greatest number of lattice sites is the (111) 
direction and we indeed find that for each of the cases 

TABLE IX. Dilatations and relaxation energies associated with 
a single vacancy in Na, K, Rb, and Cs. (AV is given in atomic 
volumes, En in!eV.) 

Na(1) Na(2) K(1) K(2) Rb Cs 

A V  -0.696 -1.82 -0.322 -1.61 -1.933 -2.12 
ER -0.045 -0.177 -0.031 -0.339 -0.409 -0.435 

treated, the values of S-R2 for (3,3,3), (4,4,4), and (5,5,5) 
are resonably close to each other, although not close 
enough to indicate that the true limiting value has been 
reached.12a I t  is of interest that, regardless of the 
potential used, the values of TR2 are much larger along 
(1 11) directions than along any other class of directions. 

The present calculated displacements about va- 
cancies in the bcc alkali metals are considerably larger 
than those calculated by the same method for vacancies 
in the fcc metals, Cu and Al. The much larger displace- 
ments found in the cases of Na(2) and K(2) relative to 
those obtained for Na(1) and K(l) can be attributed to 
the steeper potentials of Ref. 6 at first-, second-, and 
third-neighbor sites. 

Using the Method of Long UTaves, we have calcu- 
lated the theoretical values of CII and C44 for Xa(1) 
and Na(2) and they are essentially the same for both 

TABLE X. Comparison of Na(1) displacements 
(in % of normal separation distance). 

Neighbor Reference 1 Present work 
111 -4.77~ - 5  Xh 

*- sign ind/cates inward displacement. 
b+ sign indtcates outward displacement. 

Footnote added in proof. Subsequent work has shown that this 
is not the true asymptotic limit, which is only reached a t  a much 
greater distance from the defect. 
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models. Thus we can infer that the strength of the va- 
cancy is sensitive to the assumed interatomic potential 
in a manner very different from the way in which the 
dynamical matrix depends on this potential. In par- 
ticular, i t  appears that the strength of the vacancy is 
very strongly dependent on the form of the interatomic 
potential at  the first- and second-neighbor positions. 

It is also apparent that in the cases of Rb and Cs, the 
displacement of close neighbors of the vacancy are very 
large, as are the corresponding dilatations and relaxa- 
tion energies. Thus it is likely that anharmonic effects 
will be significant for the closest neighbors to the defect. 
A t  a later stage we hope to investigate the possibility 
of including such effects. This does not seem to us to be 
profitable -until the interatomic potential and its 
higher derivatives are more reliably defined. 

As regards the calculated strain-field interaction en- 
ergies, the most interesting result is certainly that the 
most stable configuration for the di-vacancy turns out 
to be the second-nearest-neighbor defect configuration. 
This conclusion is valid for all nlodels and for all four 
metals, although the actual magnitudes of the interac- 
tion energies vary widely. 

Finally, it should be noted that the vaIue of the re- 
laxation energy calculated for K'a(1) in the present work 
is only about two-thirds of the value of -0.071 eV 
reported in Ref. 1. As a check on the validity of Eq. 
(19) we have calculated the relaxation energy of Ka 
using the Morse potential and displacements due to 
Girifalco and Weizer13 and have obtained a value quite 
close to that calculated by Wynblatt and Gjostein14 
using the same potential. However, if we use the dis- 
placements given by Shyu et a1.l instead of our displace- 
ments in Eq. (19) we obtain a value of the relaxation 
energy which is almost exactly half that quoted by these 

la L. A. Girifalco and V. G. Weizer, J. Phys. Chem. Solids 12, 
260 (1960). 

'4 P. Wynbiatt and LV. A. Gjostein, J. Pi~ys.  Chem. Solids 28, 
2108 (1967). 

authors. This discrepancy could be accounted for if these 
authors neglected to perform the division by two indi- 
cated in Eq. (9) of their paper. 

VI. SUMMARY 

We have used the method of lattice statics to calcu- 
late the lattice distortion produced by single vacancies 
in Na, K, Rb, and Cs, and have used the same technique 
to find the strain-field interaction energies between 
various divacancies in these metals. We have used the 
displacements so obtained to find the dilatations and 
relaxation energies associated with single vacancies in 
each case. These calculations have been done using three 
distinct model interatomic p0tentia1s.l~~~~ 

We find a large variation in the distortions and relaxa- 
tion energies associated with the potentials of Refs. 1 
and 7 as compared with those resulting from the model 
potentials of Ref. 6. This would appear to imply that at  
least one of the two alternative potentials in each of the 
cases of Na and K is unphysical. 

The validity of the results in the present paper is 
limited by the accuracy of the potentials presently 
available. This fact does not detract in any way from 
the validity, accuracy and usefulness of the method of 
lattice statics upon which we have based all of our com- 
putations and which provides a logical and practical 
approach to the calculation of distortions produced by 
single defects under any assumed potential. When the 
true interatomic potentials in the alkali metals are 
reliably determined, a repetition of the present calcula- 
tions can be performed and will yield correspondingly 
accurate displacements, interaction energies, relaxation 
energies, and dilatations. 

Essentially the use of lattice statics removes any com- 
putational uncertainty from these quantities, and the 
residual uncertainty, at  present large, is entirely due to 
our present imperfect knowledge of the proper inter- 
atomic potentials to use. 
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