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Application of the Method of Lattice Statics to 
Interstitial-Cu Atoms in Cu* 

JOHN W. FLOCKEN 
Behlen Laboratory of Physics, University of Nebraska, Lincoln, Nebraska 68508 

AND 

JOHN R. HARDY? 
Lawrence Radietion Laboratory, University of California, Livermore, California 94551 

(Received 25 April 1968) 

We have calculated the lattice distortion produced by a body-centered interstitial Cu atom in a Cu host 
lattice. The calculations have been carried out consistently on the basis of discrete lattice theory, using the 
technique of lattice statics which is based on the Fourier transformation of the direct-space equilibrium 
equations. The force constants for the perfect lattice have been taken from measured phonon-dispersion 
curves, and we have used Huntington's Born-Mayer potential to describe the interaction between the inter- 
stitial atom and the atoms of the host lattice. The comparison of our results with those obtained by earlier 
workers, using semidiscrete matching techniques in which a continuum displacement solution is matched to 
the displacements of a few close neighbors of the defect, indicates that this latter technique is very unreliable. 
Similarly, the activation volumes estimated by semidiscrete techniques are also unreliable. We have also 
used the technique of lattice statics to calculate the strain-field interaction between two body-centered 
interstitial Cu atoms as a function of their separation. As in the case of the displacement fields, we have 
made these calculations for two different models which differ in the input elastic constants. For what we 
believe to be the most realistic of our models, we find a repulsive energy of 0.40 eV for two nearest-neighbor 
interstitials and a repulsive interaction of 0.0975 eV between two second-neighbor interstitials, For the 
same model, the calculated formation volume per interstitial is 1.12 atomic volumes. 

I. INTRODUCTION defect. For certain purposes, e.g., calculations of defect- 
induced electrical resistivity, an explicit knowledge of WHEN a point defect is into an other- these displacements is necessary. They also determine 

wise perfect crysta17 the atoms that part of the defect formation energy which depends from their equilibrium positions in the absence of the on the lattice relaxation. Furthermore, in the case of 
* Work performed in part under the auspices of the U. S. Atomic 

Energy Commission. Behlen Laboratory of Physics, University of Nebraska, Lincoln, 
f Summer visiting Professor of Physics, permanent address: Neb. 
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metals, where the total energy of the crystal contains a 
volume-dependent term, it is extremely important to be 
able to determine the volume change produced by a 
point defect, since the associated change in the volume- 
dependent part of the energy may make a large contri- 
bution to the total defect formation energy. 

In the past, calculations of the atomic displacements 
about a point defect have almost all been made by 
using what may be described as a semidiscrete ap- 
proach.' In this approach one divides the crystal into 
two regions: region I, consisting of the defect and a 
few close neighbors; and region 11, which consists of 
the remainder of the crystal. The atoms in region I 
are then treated as discrete, while the remainder of the 
crystal is regarded as a continuum. Thus, while one 
carries out an explicit minimization of the total energy 
with respect to the displacements of the atoms in region 
I, it is nonetheless a constrained minimization since the 
atoms in region I1 are not permitted to relax indepen- 
dently, but are forced to adopt the continuum configura- 
tion. This "semidiscrete" approach is unsatisfactory in 
a t  least two respects: (1) For the approach to be 
realistic, region I has to be reasonably large, but as the 
size of the region increases, the equations governing 
the displacements increase rapidly both in number and 
complexity; and (2) as we shall show in detail later, it 
is extremely difficult to obtain any satisfactory match- 
ing of the unconstrained displacements in region I to 
the constrained displacements in region 11. The effect 
of these limitations on the relaxation energies calculated 
by the semidiscrete method may not be too serious; 
however, the limitations on the calculated displacement 
field are very much more serious2 

In 1957, Kanzaki3 presented an approach to the 
problem which eliminated the necessity for the con- 
tinuum approximation and treated all the atoms in the 
lattice on a discrete basis. This approach, which we 
refer to as the method of lattice statics, enables us to 
calculate the actual displacements from normal coor. 
dinates which are essentially the Fourier inverses of 
the direct space displacements. 

In order to determine these Fourier amplitudes, the 
lattice equilibrium equations are solved in reciprocal 
space and the results are back-transformed to direct 
space by summing over the allowed wave vectors within 
the first Brillouin zone. These wave vectors are deter- 
mined by applying periodic boundary conditions across 
a supercell containing N primitive unit cells. By this 
approach, we are able to reduce the 3NX3N array of 
linear equations, which determine the direct space 
displacements, to N 3x3 arrays, one for each Fourier 
amplitude, which are explicitly soluble. This is the 
crux of the method. In addition, it is also possible 
by this technique to evaluate the strain-field inter- 

1 R. A. Johnson and E. Brown, Phys. Rev. 127,446 (1962). 
a A. B. Lidiard, Natl. Bur. Std. Misc. Publ. 287, 61 (1966). 
W. Kanzaki, J. Phys. Chem. Solids 2, 24 (1957). 

action between pairs of defects as a function of their 
~eparation.~ 

Recently, the first application of this technique to 
defects in metals has beenmade*&, leading to a calculation 
of the displacement fields about single vacancies in Cu 
and A1 and the interaction energy between pairs of such 
vacancies. In the present pap& it is our intention to 
present analogous calculations for interstitial Cu atoms 
in a Cu host lattice. These calculations have been 
carried out on the assum~tion that an interstitial Cu 
atom occupies the body ceiter of the face-centered unit 
cell. This assumption is probably invalid1 since it is 
generally believed that the stable position is the (100) 
split or "dumb bell" interstitial, and it is our intention 
a t  a later stage to investigate this more complex 
configuration. However, we believe that the present 
results are meaningful since the body-centered inter- 
stitial is the simplest type of interstitial in a face- 
centered lattice, and it is logical to apply the new 
technique to the simplest defect first. Moreover, since 
there has been earlier theoretical work on this defect by 
a number of authors6-' who have applied the semi- 
discrete method, it is therefore possible to make direct 
comparison of their results and ours, and thus assess 
the value of the new technique. 

In Sec. I1 we present a detailed derivation of the 
equations of lattice statics appropriate to the present 
problem as far as the calculation of the displacement 
field about the defect is concerned. In Sec. I11 this work 
is extended to cover the formal calculation of the 
interaction between pairs of defects. In Sec. IV, we 
present detailed calculations of the displacement field 
about a single interstitial and the analogous calculations 
of the interaction energies between pairs of interstitials. 
In Sec. V we give an over-all discussion of our present 
results and a comparison with the earlier results 
obtained by semidiscrete theory. 

11. METHOD OF LATTICE STATICS 

Let all a2, and as be the basic vectors of an infinite 
lattice. This lattice can be built up from equivalent 
volumes, each containing N unit cells, with boundaries 
Lal+Laz+Las, where L3=N. At the center of each 
supercell we imagine a defect to be introduced. This 
automatically implies that the resultant displacements 
of the atoms will have the same periodicity as the 
supercells, and is thus equivalent to considering one 
defect a t  the center of an isolated supercell and imposing 
periodic boundary conditions across that supercell. 

In the following discussion, it is assumed that a defect 
introduced into a crystal will interact with the host 

4 T. R. Hardv and R. Bullough, Phil. Mag. 15, 237 (1967). - ,  - .  
4 l ~ e e  Ref. 9 
6 A. Seeger and E. Mann, J. Phys. Chem. Solids 12,326 (1959). 
6 K. H. Bennemann and L. Tewordt, Z. Naturforsch. 15a, 772 

(1960). 
7 A. Seeger, E. Mann, and R. von Jan, J. Phys. Chem. Solids 23, 

639 (1962). 
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atoms by means of an effective pairwise potential, J/(r). wave vector q' 
We take the defect itself as the origin of coordinates and 
with respect to this origin, the position of the Zth atom F,{=- 1 
of the host lattice is represented by a vector rl+[' in 

C C c$aa"Q'Qs" exp[iq'. rE'] . 
N Eta P 

( 7 )  

which rz is the position vector of the Zth atom in the 
perfect lattice in the same coordinate system, and $ We now multiply both sides by exp[-iq rE] and sum 
is the displacement of that atom due to the presence of over I ;  thus, 
the defect. 

The potential energy of the distorted lattice can be C Fa1 eXP[-iq.rll 
written 1 

, 

where a and 8, which run from 1 through 3, refer to the 
Cartesian components of the atomic displacements 
along the three orthogonal (100) directions of our cubic 
crystal, and Uo is the energy of the undistorted perfect 
lattice. In  this equation, 

is the 3NX3N force-constant matrix for the perfect 
lattice (the subscript 0 indicates that the derivative is 
evaluated in the undistorted configuration). 

The equilibrium configuration is determined by 
minimizing U with respect to the  displacement^,^ which 
implies that 

d U/draE = 0 ,  (3) 

which may be expressed as 

Fa1= C C + a ~ " ' t ~ "  t 
1' 8 

(4) 

where 

Fa& - a+ (4r1+ C14) 

ata1 
(5  

In order to perform the actual calculations, the dis- 
placements are expanded in terms of normal coor- 
dinates. Since we are considering a periodic superlattice 
of defects, the wave vectors q must satisfy periodic 
boundary conditions, and all such physically distinct q 
vectors will be contained within the first Brillouin 
zone. Thus we write 

1 
= - C C +aall'Qa~' exp( - iq' . [rl-- rl']) 

N 11' B s  

Xexp{-i[q- q'l. r" . (8) 

Since the expression exp{ -iq'. [rE--rE']) depends only 
on the difference I-Z', we take I as the zeroth cell, hence 

The sum exp{-i[q- q'] .rl) must vanish unless 
q-q' is a reciprocal lattice vector, in which case each 
term in the sum is unity; thus, since q and q' both lie 
within the first Brillouin zone, q= q' and (9) becomes 

C 1 pa"xp[-iq r l ]=C C Qoq~asO1' exp[iq rl']. (lo) 
1'8 s 

We now define 

Faq=X 1 Fa1 ex?[-iq. rl], (11) 

and 
VaaQ= Z +aaO1' exp[iq rl'] ; 

1' 
(12) 

then Eq. (10) can be written 

or, in matrix form, 
FP= V-qQq; 

thus, 
Q q =  (V-q)-lFq. (14) 

Substituting from Eq. (6) into Eq. (4) we obtain for a Once we have used Eqs. (11) and (12) to find the 

This minimization, we would like to em hasize, is carried out 
Fourier transforms of the direct space forces and the 

a t  constant volume. Subsequently one calcurates the macroscopic d ~ a m i c a l  matrix, the normal coordinates may be 
volume change due to the defect according to the prescription given found from Eq. (14) and the direct-space displacements 
in Ref. 12; the fact that the effective painvise interaction between are then given by E ~ .  (6). ~ h ~ ~ ,  the displacement of atoms in the perfect lattice is not in equilibrium because the 
presence of a volume-dependent term in the totai energy in no any given atom may be obtained without any need to 
way affects the validity of the present constant volume minimiza- relax the whole lattice explicitly, 
tion. Subsequently, when the lattice is allowed to dilate uniformly, 
there will be a slight change in the displacements we calculate, In practice it is necessary Eq. (I4) numer- 
but this will be of order 1 / N .  ically and also to perform the Fourier inversion numer- 
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ically. Since we cannot deal with an infinitely dense 
sample of q vectors, we are compelled to deal with 
finite regular samples. Physically this is equivalent to 
solving the problem for an infinite superlattice in which 
the number of atoms in each supercell is exactly equal 
to our total number of sample wave vectors. However, 
it is possible to obtain sample densities sufficiently high 
to enable us to determine the displacements of the first 
22 neighbors of the defect in an infinite crystal (the 
criterion of this fact is that the calculated displacements 
become independent of the sample density). 

In  the case of a vacancy4g9 the appropriate direct- 
space forces can be determined without any explicit 
knowledge of the interatomic potential. But in the 
present paper we wish to consider the case of an 
interstitial Cu atom in a Cu lattice. For this problem it 
is necessarv that we have some knowledge of the " 
interatomic potential between the interstitial atom and 
those of the host lattice. 

We therefore use, for this interaction, Huntington'slo 
Born-Mayer potential which has been used extensively 
by other authors,'s6-' 

with X and v constants characteristic of the metal which 
one is considering (for Cu, X=0.053 eV and v= 13.9), 
Y the interatomic separation, and ro the perfect lattice 
nearest-neighbor distance (ro=da,where 2a is the cubic 
unit cell side). However, in the calculation of the 
dynamical matrix, we follow the procedure given by 
Bullough and Hardyg and derive the elements of this 
matrix directly from measured phonon dispersion 
curves. In this derivation i t  is implicit that the lattice 
energy of the perfect crystal may be regarded a sum 
over pairwise potentials (of which we neglect all but the 
first- and second-neighbor components) and a volume- 
dependent term. The components of this pairwise 
potential contain contributions which are additional to 
the closed-shell Born-Mayer potential, and these 
components should also in principle contribute to the 
interaction between the interstitial atom and the atoms 
of the host lattice. However, there is at  present no way 
of determining them, and it seems reasonable to assume 
that the dominant contribution to this interaction 
comes from the rapidly varying Born-Mayer potential. 
Moreover, this assumption is consistent with that made 
by other workers, and we would therefore expect our 
results to be a t  least as good as theirs and probably 
significantly better in that we are using, for the 
remainder of the crystal, the correct interatomic force 
constants, whereas they assumed the Born-Mayer form 
for all interactions. 
E W e  are considering an interstitial atom a t  the body 
center of a cubic cell of side 2a. Since the Born-Mayer 
potential falls off rapidly, we consider it adequate to 

9 R. Bullough and J. R. Hardy, Phil. Mag. 17, 833 (1968). 
lo H. B. Huntington, Phys. Rev. 91, 1092 (1953). 

assume that the defect exerts an appreciable force only 
on its first neighbors, the magnitude of which we denote 
by F1. I t  can then be shown that the components of 
Fq are 

Flq= - 2iF1 sinqla , 

The dynamical matrix for a face-centered cubic lattice 
with central first- and second-neighbor interactions has 
elements 

Vli-q= 2Ai+4Bi+A2+2Bz- (A i+Bi) 
Xcosq~a(cosq~a+cosq~a) - A cos2qla 
- 2B1 cosq~a cosq3a 

- Bz (cos2qza+cos2q8a) (1 7) 
and 

V12-q= (A1- B1) sinqla sinqza . (18) 

The remaining elements can be obtained from Eqs. (17) 
and (18) by cyclic permutation of the indices of the 
components of q. Aa and Ba are, respectively, the axial 
and tangential force constants between ith neighbors. 

Since the forces in Eq. (5) are those evaluated a t  the 
relaxed positions of the atoms, and in the present 
problem it is likely that the first-neighbor relaxations 
will be significant, we must use the value of F1 in our 
equations, evaluated a t  the relaxed positions. Thus, 
from Eq. (IS), 

alt(r) 
~ l =  

r-a+E' I 

where l1 is the nearest-neighbor displacement. Then 

If we let yl= 1 <11/2a and use the fact that ro=fla, 
we have 

..- 
= - exp(0.293~) exp (- 2112vy~). 

f l a  
Let 

v x  

and 
? l = a v .  

Then 
FI= -KI exp(--yy,). 

Substituting Eq. (19) into Eqs. (16) we find that the 
generalized force Fq can be written 

Foq= Col exp (-gyl), (20) 
where 

Cal= 2iK1 sinq,a . (21) 
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Thus, Eqs. (14) can be written 

Define 
gal= C (V-q),glCs'. 

B 

Then 
Qaq=gal exp(--vyl). (22) 

To find the direct-space displacements, we use the 
expression 

which follows from Eq. (6) when we use the fact that 
Qq= (Q-q)*. Thus from Eqs. (22) and (23) we have 

If we let yal=raz/2a, we have 

y a 2 = p a Z  exp(-qyd, 
in which 

(25) 

i 
pa2= - C gal sin (q. rl) . 

2Na q 

In general, 

but for first neighbors, yzl= yS1=0. Hence yl= y2 and 
Eq. (25) may be written 

This transcendental equation can be solved for yl by 
iteration. Since we then know yl, we find the associated 
forces in the relaxed configuration from Eqs. (2) and 
(21). 

111. STRAIN-FIELD INTERACTION BETWEEN 
TWO INTERSTITIALS 

The general expression for the interaction energy 
between two defects has been given by Hardy and 
Bullough4 as 

in which the summation is:again taken over the N 
distinct q vectors in the first Brillouin zone (BZ) and 
R is the vector separating the defects. This expression is 
correct to first order in the displacement field of the 
first defect a t  the position of-the second-defect and vice 

versa, and all that is necessary to apply it to the 
calculation of the interaction between two interstitials 
is the substitution of the appropriate expressions for 
Fq and V-q. For small interdefect spacings, the energy 
E has to be evaluated by numerical integration, but 
for large values of I R 1 ,  the asymptotic form of E may 
be evaluated analytically, when the host lattice is 
elastically isotropic. This is possible because the integral 
over q is dominated by the contribution from small 
values of q when 1 R I is large. Thus one can expand the 
integrand, exclusive of the cos(q R) term, as a power 
series in q and retain only the lowest-order terms. Thus 
we find 

- .  

- F1q(V2-q)-2 V4-qF1q] cos (q - R)) (28) 

to the fourth order in q. The subscripts denote the order 
of q in the subscripted quantities. The expression is 
general, but to evaluate the integral explicitly, we need 
to assume elastic isotropy. Thus, for the first term we 
find 

By performing the integration in spherical coordinates 
with R taken along the pole, it can easily be shown 
that EcO) - 2a2V2(1/ / R / ) which vanishes identically. 
After a considerable amount of algebraic manipulation 
(see Ref. 4) we find that the remaining terms of Eq. (28) 
give 

in which 

in which C11 and C44 are the elastic constants of the 
host material, M is the mass of a host atom, and wt2 is 
the frequency of the transverse acoustic (TA) mode a t  
the (100) zone-face center. The manner in which these 
quantities enter into the computations will be explained 
in Sec. V. The energy given by Eq. (29) varies as I R 1-6 

and its angular average is zero (cf. the vacancy results 
of Hardy and Bullough4). 
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FIG. 1. (a) Variation of the displacement 3 of the neighbors of 
an interstitial Cu atom in Cu, using Voigt-averaged elastic 
constants and considering first-neighbor defect-lattice interactions. 
(b) Variation of displacement 3 of the neighbors of an interstitial 
Cu atom in Cu, using observed elastic constants and considering 
first-neighbor defect-lattice interactions. Inward displacements 
are indicated by a negative sign attached to the appropriate 
131 R2 point. 

IV. NUMERICAL CALCULATIONS OF THE 
DISPLACEMENTS AND INTERACTION 

ENERGIES 

In  this section we shall present numerical results of 
our calculations for interstitial Cu atoms in Cu. We have 
used two different models. In both cases we have 
assumed that the interstitial exerts forces only on its 
first neighbors. However, in the case of model I, the 

TABLE I. Elastic constants in 1012 dyn/cm2. 

Measured values,. Voigt-averaged 
Elastic constant anisotropic valuesb 

CII 1.70 2.112 
Cl z 1.23 1.024 
C44 0.75 0.544 

*Used for model I. 
b Used for model 11. Note: The isotropy condition Cn -Cxa -2Cu holds 

for these constants. 

force constants of the host lattice have been derived 
from the measured elastic constants together with the 
T A  frequency a t  the (100) zone-face center. In model I1 
we have instead used Voigt-averaged elastic constants 
which satisfy the isotropy condition. 

The manner in which the force F1 is evaluated has 
been described in Sec. 11. In evaluating the Ai's and 
B2s we follow the procedure of Hardy and B~l lough .~  
Thus we obtain 

To provide the fourth equation necessary to define all 
four unknowns, we also use 

The appropriate values of the elastic constants are 
shown in Table I. As a check on the adequacy of the 
resultant Ai and Bi values, we have calculated the 
values of three other zone-boundary phonon frequencies, 
and these are compared with the measured values" in 
Table 11. It can be seen that the agreement between 
theory and experiment is reasonable for both sets of 
elastic constants. Three values of N were used in the 
displacement and interaction energy calculations : 1000, 
8000, and 64 000. 

The results for M =  1000 are not sufficiently accurate 
to be of interest, and even the sample of 8000 q vectors 
gives accurate results only out to a distance of about 
5a from the defect. Hence, the results quoted in the 
following tables are those for AT=64000. At a later 
stage we hope to refine our sampling technique to 
improve the accuracy by a factor of 2 or 3 for more 
distant neighbors and the largest interdefect spacings. 

TABLE 11. Comparison of experimental and theoretical 
values of MuZ (lo4 dyn/cm). 

Zone center; Theoretical Theoretical 
mode (model I) (model 11) Experimental 

S. K. Sinha, Phys. Rev. 143, 422 (1966). 
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TABLE 111. Dis lacements due to an interstitial defect in 
Cu-model I. ~is~racements  are in units of 2a; lCIR2 is in units 
of 2 s  ; a= 1.805 A. 

Neighbor 3; 6 2  6 3  lCiR2 

The computations were all carried out on an IBM 
360/50 computer. Table I11 gives the results for model 
I and Table IV gives those for model 11. For an elasti- 
cally isotropic crystal, one expects the displacements a t  
large distances from a single defect to be radial and to 
fall off inversely as R2 (where R is the distance from 
the defect). 

It can be shown,12 by comparison of the equations of 
lattice statics with those of elasticity theory, that the 

TABLE IV. Displacements in Cu due to an interstitial defect- 
model 11. Displacement are in units of 2a; 1 3 / RZis in units of 2aa; 
a= 1.805 A 

Neighbor rl 12 r a 131R2 

J. R. Hardy, Lawrence Radiation Laboratory, Livermore, 
Report No. UCRL-70834 (unpublished). 

FIG. 2. Interaction energy between two body-centered inter- 
stitial~ as a function of their separation R. (a) Using Voigt- 
averaged elastic constants (model 11) ; (b) using observed elastic 
constants (model I). (The signs of the interactions are indicated 
at each point.) 

elastic strength of the defect G is given by 

For our present case, Eq. (33) gives 

For an isotropic lattice, it can be shown that G =  4 z C ~  
x 131 R2; thus 

I {I R2= F J2nClla (in units of 2a3). 

Hence, for model 11, we find that 

In  Figs. l(a) and 1 (b) we have plotted the calculated 
values of 1 R2 for models I1 and I, respectively, as a 
function of I RI for the first 23 neighbors taking the 
values of I 1; 1 R2 from Tables I11 and IV. In the case of 
model 11, the horizontal line shows the asymptotic 
value. 

The interaction energies for the ten closest-neighbor 
defect pairs have also been calculated from Eq. (27) and 
are plotted in Figs. 2(a) and 2(b). The asymptotic 
values for the same pairs in an isotropic lattice have 
been found from Eq. (29). The results of all of these 
calculations are presented in Table V. 
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TABLE V. Interaction energies (eV). 

Neighbor 

200 
220 
222 
400 
420 
422 
440 
442 
414 
600 

Model IT 
CEq. (2711 

Model IT 
CEq. (291 

Model I 
CEq. (2711 

V. DISCUSSION 

A. Lattice Distortion 

Figure 1 (a) bears out the conclusion of Hardy13 and 
of Hardy and Bullough4 that elasticity theory cannot 
be trusted to give accurate displacements close to a 
lattice defect. The values of / 5 ( R2 for model I1 approach 
the required asymptotic form a t  large distances rather 
well [e.g., for the (6,4,1) neighbor 1 3 1 R2= 0.0584 which 
is close to the required asymptotic value of 0.05761. 
The one discrepancy appears to be in the value for the 
most distant neighbor (5,4,4) which is significantly 
below the required asymptotic value, but this deviation 
arises from the inadequacy of our q-vector sample 
density for computing the displacements of such distant 
neighbors for which, in any case, we can see that 
continuum theory is valid. Furthermore, increasing ilr 
from 8000 to 64 000 was found to change the displace- 
ments very little for neighbors closer than (3,3,3). Thus 
we can be sure of the displacement values for neighbors 
closer than -5a to the defect, and can trust the displace- 
ment values on out to (6,4,1) to one or two significant 
figures. 

Consequently, we are now in a position to test the 
validity of the approximate displacement fields used by 
other authors. The most recent attempts to calculate 
displacements due to an interstitial Cu atom in Cu 
have been those of Seeger and Mann,5 Bennemann and 
T e w ~ r d t , ~  and Seeger et aL7 In all cases, a semidiscrete 
method of calculation has been used (cf. Sec. I). The 
details of the computations vary from paper to paper, 
but in all cases displacement results are given for a 

model in which the interaction is confined to act only 
between nearest-neighbor atoms and is assumed to be 
given by a Born-Mayer potential identical to the one 
used in the present paper; thus direct comparison can 
be made between our results and those of the references 
cited. This is done in Table VI. 

The results of Refs. 6 and 7 have been computed for 
an anisotropic host medium, while those of Ref. 5 have 
been derived for an isotropic host medium. In Ref. 5 
only the first four neighbor shells were treated on a 
discrete basis, while in Ref. 7 only the first three shells 
were treated as discrete. The results of the present work 
show quite clearly that these last two matching pro- 
cedures are inadequate, since our calculated displace- 
ment fields do not begin to approach the asymptotic 
values until well beyond the fifth-neighbor shell. In the 
case of Ref. 6 it is rather more difficult to make a direct 
comparison, but it would appear that these authors also 
make the approximation of assuming the results of 
elasticity theory (in this case anisotropic) to be valid too 
close to the defect. Certainly there are very marked dis- 
crepancies between our results and those quoted in all 
three references, and it appears from the foregoing 
discussion that the validity of the matching techniques 
used by these authors is extremely dubious. However, 
it is probable that the most significant cause of these 
discrepancies is the failure of any of these workers to 
use the correct interatomic force constants for the 
host lattice. In  all three cases the Born-Mayer contribu- 
tion alone was considered, and this leads to Ai and Bi 
values significantly different from those derived from 
the measured phonon dispersion curves.ll 

IIowever, the most important discrepancy between 
our results and those of Refs. 5-7 is the difference in the 
predicted dilatations associated with a single inter- 
stitial. We calculate this dilatation using the relation- 
ship due originally to Eshelby, 

where K is the bulk modulus. Eshelby derived this 
result for an elastic continuum, but it can be shown12 
that it is a general result which can be derived rigorously 
from lattice theory, which also provides the precise 
prescription given previously [Eq. (33)] for calculating 
the strength parameter G from interatomic force 
constants. 

TABLE VT. Comparison of our displacements with those given by other authors (in units of 2a). 

Ref. 5 (isotropic) Ref. 6 (anisotropic) Ref. 7 (anisotropic) Present (isotropic) Present (anisotropic) 
Neighbor 5, 5, 5, 51 c2 rs 51 5, 5~ rl 52 r3 r 1 52 f 3 

Displacements taken in the (110) direction (radially from the nearest-neighbor sites). 

13 J. R. Hardy, J. Phys. Chem. Solids 15, 39 (1960). 
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Thus, using Eq. (33) and substituting the value of F1 
for each model we can immediately calculate the 
appropriate value of G. Then using Eq. (34) with the 
appropriate value of K, we arrive a t  the values of AV 
for each model presented in Table VII, in which the 
analogous values from Refs. 5-7 have also been quoted. 
Comparing these results with our value for model I1 
we see that there is a discrepancy of the order of 30y0. 
However, in the case of model I our value falls between 
those quoted in Refs. 6 and 7. 

If one uses the first-neighbor displacements given by 
these other authors in the expression for F1 and then 
computes the elastic strengths according to Eq. (331, 
the values so obtained are little more than half the value 
which we obtain for the corresponding model 11. 
Since the dilatations they compute are -30% greater 
than ours, this must mean that the asymptotic elastic 
dis~lacement fields which these authors use are almost 
twice as great as the true value which would be predicted 
by Eq. (33) using their first-neighbor displacements. 

Therefore. for all these reasons. it would seem to us 
that the various semidiscrete approximations used by 
these authors and, for that matter, the technique in 
general cannot be used as a means of deriving informa- 
tion about the displacement field produced by a point 
defect. How far this affects derived quantities (e.g., 
formation energy) is not obvious, but since the forma- 
tion energy contains a volume-dependent term, it 
would appear to be essential to have a precise method 
for calculating the formation volume before a reliable 

.2 

calculation of the formation energy can be made, and 
our present approach offers a much more reliable way 
of doing this. 

B. Interaction Energy 

Certainly the most significant result of the present 
investigation into the strain-field interaction energy 
between two interstitials is the magnitude of this 
interaction for the (2,0,0) defect pair. In the case of 
model I, which is physically the most realistic of our 
models, we obtain a repulsive interaction energy of 
0.40 eV. Additional calculations done in the course of 
the present investigation indicate that this energy is 
sensitive to the ranne of the assumed defect lattice 

u 

interaction potential, and can in fact become negative 
if significant second-neighbor forces (-50% of the 
first-neighbor forces) are present. Another interesting 
result is that for model I the interaction energy between 
the (4,0,0) defect pair is attractive, having a magnitude 
of 0.035 eV. 

I t  should be remembered that the linearization 
procedure used in deriving Eq. (27) is only strictly 
applicable for widely separated defects, and higher-order 
effects are probably significant for close pairs. At a later 
stage we intend to investigate the importance of these, 

TABLE VII. Dilatations due to an interstitial defect 
(units of 1 atomic volume). 

Model I Model 11 

Present work 1.12 1.10 
Ref. 5 . . . 1.39 
Ref. 6 1.22 1.37 
Ref. 7 1.09 ... 

but we believe our present results to be a good approxi- 
mation. Certainly the strain-field interaction is many 
times greater than the Born-Mayer interaction between 
the members of the (2,0,0) interstitial pair. Thus, a 
precise knowledge of the lattice configuration about the 
di-interstitial is essential for the computation of its 
binding energy. As regards the validity of our results 
for more widely separated pairs, we believe them to be 
adequate as far as the (4,4,2) neighbor for model 11. 

Unfortunately, we have not been able to obtain a 
satisfactory match between the values calculated from 
Eq. (27) and those calculated from the asymptotic form 
for model 11. We hope to remedy this deficiency in later 
work by using a more refined wave vector sampling 
technique. However, i t  can be clearly seen from Table V 
that any attempt to use the asymptotic form for close 
neighbors of the defect leads to interaction energies 
which differ markedly from the exact numerical values. 

VI. CONCLUSIONS 

We have applied the method of lattice statics to the 
calculation of the lattice distortion produced by a 
body-centered interstitial Cu atom in a Cu host lattice, 
and by the same method we have also calculated the 
strain-field interaction between various pairs of such 
interstitials. Our results show quite clearly that earlier 
 calculation^&^ based on semidiscrete models of the 
crystal give a very inadequate representation of its 
true displacement field. Similarly, they are also un- 
reliable as a means of predicting the macroscopic volume 
change produced by an interstitial. 

Our present results are l i i t e d  in accuracy by the 
validity of the interatomic potentials we have assumed, 
and it  is probable that the use of more refined potential 
will change our numerical results. However, this does 
not affect the validity of the technique we have used 
which provides a logical and straightforward method of 
obtaining the exact displacement field consistent with 
any assumed potential. Similarly, the results we have 
derived for the defect pair interaction energies are 
subject to a subsequent modification. In  this case, 
the modifications will arise both from changes in the 
model force constants and also from the inclusion of 
higher-order terms (e.g., the "induced interaction"14) 
which are probably significant for interstitial close pairs. 

l4 J. R. Hardy and R. Bullough, Phil. Mag. 16, 405 (1967). 
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