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P H Y S I C A L  R E V I E W  B V O L U M E  1,  N U M B E R  6 1 5  M A R C H  1 9 7 0  

Asymptotic Lattice Displacements about Point Defects in Cubic Metals* 

JOHN W. FLOCK EN^ AND JOHN R.  HARDY$ 
Lawrence Radiation Laboratory, University of Calijornia, Livermore, California 94550 

(Received 5 May 1969) 

We have calculated the asymptotic displacements (a) about a single vacancy in Al, Na, K, and Li, (b) 
about a single interstitial Cu atom in a Cu host lattice, and (c) about a unit single double force along a (100) 
direction in A1 and Cu. These calculations were made using the asymptotic equations of the method of lattice 
statics which, in its full form, is based on the Fourier transformation of the direct-space force equations 
between the detect and the host atoms in a large "supercell" of the lattice. Results were also obtained for 
each of the defect types in A1 and Cu by means of an alternative approach proposed by Lie and Koehler. The 
asymptotic displacements around the spherical defects in Al, Cu, Na, and K were compared with correspond- 
ing results obtained using the exact method of lattice statics. From this comparison i t  appears that elas- 
ticity theory cannot be justifiably applied closer than the (4,4,4) neighbor to the defect in Al, the (5,4,4) 
neighbor in Cu, and the 26th or the 27th neighbors in Na and K. We also find large displacements along 
(110) in A1 and along (11 1) in Cu, Na, and K. The displacements obtained using a Green's-function technique 
developed by Lie and Koehler agree well with our results for the spherical detect in A1 and for the unit single 
double-force defects in A1 and Cu. There are significant differences in the (100) directions between the two 
sets of results for a spherical detect in Cu. In general, the asymptotic method of lattice statics appears to be 
more exact and to involve fewer computational manipulations than the method of Lie and Koehler. 

I. INTRODUCTION matrix inversion, and the Fourier amplitudes can be 

W HEN prevailing techniques are used to calculate 
atomic displacements in the vicinity of a defect, 

the crystal is generally divided into two regions. In re- 
gion I, near the defect, the host atoms are treated on a 
discrete basis, while in region 11, the crystal is assumed 
to be an elastic continuum. However, it has recently 
been pointed that when such semidiscrete meth- 
ods are applied, the boundary between the two regions 
is generally assumed to be close to the defect. The re- 
sultant displacement field computed in this way is a 
very poor representation of the lattice distortion field 
far from the defect. 

In 1937, Kanzaki4 presented a strictly atomistic 
method for calculating the displacements due to a de- 
fect. This method, which we refer to as the "method of 
lattice statics," is based on Fourier transforming the 
direct-space equilibrium equations. This transformation 
to reciprocal space decouples the 3 N X 3 M  equilibrium 
equations to hT3X3 equations which may be solved ex- 
plicitly for the reciprocal-space Fourier amplitudes. To 
define the wave vectors in the Fourier series one imposes 
periodic boundary conditions across the faces of a super- 
cell having the same symmetry as the primitive lattice 
cell. This is equivalent to solving the problem of a lattice 
with one defect per supercell. This constraint leads in 
turn to the existence of only N independent wave vec- 
tors, q, contained within the first Brillouin zone. Each 
of the 3x3 equations then can be solved by specific 

obtained by back-transforming the ~ o & i e r  series. 
Not only is the method of lattice statics inherently 

free from the shortcomings of the semidiscrete methods, 
but in the long-wavelength limit, the lattice-statics 
equations for the Fourier amplitudes of the displace- 
ment field are exactly analogous to the corresponding 
equations obtained from continuum elasticity. Since, as 
we shall show, the lattice displacements at  large dis- 
tances from the defect are entirely determined by these 
long-wave Fourier amplitudes, it is evident that in this 
limit, lattice statics and continuum elasticity become 
identical. Hence, in the method of lattice statics, elas- 
ticity theory can be used in an independent calculation 
to reveal the way in which the strain field displacements 
approach the elastic limit with increasing distance from 
the defect. 

Our major concern in the present paper is with the 
computation of the displacements in the elastic limit. 
Within this limit, it is adequate to replace the exact 
Fourier amplitudes of the displacement field by their 
limiting expressions for small q. One can then convert 
the Fourier series for the displacement field into a 
Fourier integral and extend the limits of integration to 
infinity. For an isotropic material, the Fourier integral 
can be evaluated explicitly3ts to yield the familiar result 
that the displacement field is everywhere radial and falls 
off as l/r2, where r is the distance from the defect. Al- 
though, as will be shown, the displacement field for 
anistropic materials still falls off as l/r2 along any given 
crystaliographic direction, one cannot evaluate thecom- 

* Work performed in part under the auspices of the U. S. Atomic ponents of ,.he displacement field analytically for any Energy Commission. 
t Permanent address: Behlen Laboratory of Physics, University general direction. Thus, our concern in this paper is 

of Nebraska, Lincoln, Nebr. with the application of the asymptotic theory to aniso- 
f J. R. Hardy is a Professor of Physics at  the University of 

Nebraska. tropic niaterials; in particular, those illaterials in which 
J. R. Hardy and R. Bullough, Phil. Mag. 17, 833 (1968). the anisotropy is so large that one cannot hope to use 
J. R. Hardy, J. Phys. Chem. Solids 29, 2009 (1968). 

a J. W. Flocken and J. R. Hardy, Phys. Rev. 175, 919 (1968). 
H. Kanzaki, J. Phys. Chem. Solids 2, 24 (1957). 5 J. D. Eshelby, Solid State Phys. 3, 79 (1956). 
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a perturbation approach (see Seeger et ~ 1 . ~ ) .  Therefore, 
we have developed the equations for the components of 
the asymptotic displacements in such a way that the 
integrals for any desired direction can be evaluated 
numerically on a computer. In this way we have calcu- 
lated the asymptotic displacements about an interstitial 
Cu atom in a Cu lattice and about isolated vacancies in 
Al, Na, K, and Li. 

The resultant displacements along certain symmetry 
directions can be compared with those in previous 
 paper^.'^^^^ To make this comparison for the two alkali 
metals we have found it necessary to compute the exact 
displacements for neighbors more distant than those 
considered in our previous work7; while for the vacancy 
in Al, we are able to make direct comparison with the 
results obtained in a previous paper.' 

I t  is possible to compare directly the present asymp- 
totic results with those of an alternative method by 
Lie and K ~ e h l e r , ~  although it should be stressed that 
our results are exact, whereas theirs are approximate. 
One of the purposes of this comparison is to assess the 
reliability of their approximation for defects in Cu and 
Al. As might be expected in view of its low anisotropy, 
the comparison in the case of A1 is good, but the agree- 
ment between the two sets of results for Cu is con- 
siderably worse. 

In  Sec. I1 we give a more detailed development of the 
asymptotic lattice-statics formalism. I n  Sec. I11 we dis- 
cuss the application of this method to point defects in 
the materials mentioned above and give the appropriate 
results. In Sec. IV we discuss the comparison of the 
asymptotic results with those obtained by lattice-statics 
theory and with the results of Lie and Koehler. Section 
V will be devoted to a final summary of our calculations 
and results. 

11. METHOD OF LATTICE STATICS IN 
ASYMPTOTIC LIMIT 

The derivation of the equations of lattice statics has 
been presented in detail elsewhere,314 and we will sum- 
marize the important results a t  this point. We consider 
a point defect to be introduced a t  the center of a "super- 
cell" containing AT host atoms and take as our reference 
system a set of Cartesian coordinates along the (100) 
directions of the crystal with the defect situated a t  the 
origin. If the defect exerts a force, Fz, on its lth neighbor- 
ing atom, we define the reciprocal-space generalized 
force array Faq as 

where rz is the position vector of the lth atom, q is a 
wave vector in the first Brillouin zone (FBZ), and a re- 
fers to one of the coordinate axes and ranges from 1-3. 

B A .  Seener. E. Mann, and R. von Jan, J. Phys. Chem. Solids - . -  
23, 639 (1562). 

7 J. W. Flocken and J. R. Hardy, Phys. Rev. 177, 1054 (1969). 
K. N. C. Lie and J. S. Koehler, Advan. Phys. 17, 421 (1968). 

Similarly, if VasO1 is the direct-space force-constant 
matrix, the Fourier-transformed force-constant matrix 
Vasq is defined by 

Then the displacement t;l of the lth atom can be shown 
to be given by 

where the Fourier amplitudes Qq are given by the 
matrix equation 

Q q = (v-q)-lFq (4) 

As rz becomes large, the sine term in Eq. (3) oscillates 
rapidly so that the dominant contribution to the sum 
arises from the region of q space about the origin. There- 
for we can replace Qq by its limiting value for small q 
and when we convert the sum in Eq. (3) to an integral, 
we have 

where v is the volume of the unit cell in direct space. 
(For a fcc cell of side 2a, v=2a3, and for a bcc lattice, 
v = 4a3.) 

For any cubic monatomic crystal, the generalized 
force array, expanded to first order in q, can be put into 
the form 

Fa" (-iG/a)ka, (6) 

where k =  qa. G is a constant which depends on the de- 
tailed structure of the defect. I t  can be evaluated ac- 
cording to the prescription given by Hardy2 

where Pa1 is the olth component of the direct-space force 
exerted by the defect on the lth atom. These forces are 
obtained as results of exact lattice-statics calculations. 
Although Gas is, in general, a tensor, it is diagonal for a 
defect of cubic symmetry and the diagonal elements are 
all equal. 

When the Vq matrix is expanded as a power series in 
q, the lowest nonvanishing terms are of second order in 
q. When these limiting forms of Vq and Fq are substi- 
tuted into Eq. (4), the ath component of the direct- 
space displacement for the lth atom can be written as 
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if a#P# y#a ;  and where k= qa, L= rz/a; and a, and ,B, 
y refer to the Cartesian axes. P (k) is the determinant of 
the inverse Vq matrix and is given by 

again, with the restriction a#f l#y#a. 
The constants which appear in Eq. (9) and under the 

integral in Eq. (8) can be expressed in terms of either 
the force constants or the elastic constants of the host 
lattice. I n  terms of the elastic constants, they are 
given by 

where the Cij are the independent elastic constants for a 
cubic l a t t i ~ e . ~  

The integral in Eq. (8) is evaluated by the method 
due to K a n ~ a k i . ~  The Cartesian coordinates in recipro- 
cal space are rotated about the origin so that the direct- 
space position vector r1 lies along the Z axis of the new 
set of coordinates, and the vector k is then expressed in 
polar coordinates in the new reference frame. Thus, in 
these coordinates, 

where g, is a function of only the cosines of the polar 
angle t?.9 Define f,(cost?,+) as 

where the subscripts, a, P, and y refer to the original 
Cartesian axes. Thus, Eq. (8) becomes 

which can be written 

X (cosO,C$) cos (kL cost?)dk d(cost?)dC$ . (14) 

We now argue that, since the major contribution to 
the integral will come from points near the origin, we 
may extend the k integral to infinity and introduce a 
convergence factor of the form e-'Ikl, r -+ 0, into the 
integral of Eq. (14). The k integration then produces a 
6 function with argument of cost?. Thus, 

Hence, integrating over cost?, we obtain 

The remaining C$ integral cannot, in general, be eval- 
uated analytically for an anisotropic crystal. Since the 
parameter + is not dependent on the direction of L, we 
may take the derivative inside the integral and differ- 
entiate the integrand. After a good deal of algebraic 
manipulation, one arrives a t  an analytic form for the 
integrand and the integral has then to be evaluated 
numerically. 

The generalized force array for a double force along 
the a: direction is obtained by the same prescription as 
that used for the cubic defect; but Eq. (6) then has 
the form <. -, 

where G' is obtained from Eq. ( 7 )  exactly as for G. After 
substituting the asymptotic forms for the double-force 
generalized force array Fq and the force-constant matrix 
V-4 into Eq. (3), we arrive at  the following equations 
for the three components of displacement along the 
Cartesian coordinate axes : 

One must realize that the g,(cosO,+) are not unique in that 
their exact form depends on the transformation matrix used in Xsin(k.L)d%, (18) 
aligning r h i t h  the z axis. In the present case, we rotated the 
original coordinate system about the z axis until r1 was in the xz where a: is the LIOO1 axis, parallel to the 
plane, then rotated about the "new" y axis until rz lay along z .  force, 
The point is that however one accomplishes the transformation, 
he will arrive at  a set of equations identical to those in Eq. (ll), 
where g,(cose,+) is some function, the only variables of which are 
co* and 4. The final asymptotic results must, of course, be inde- Eel = ~ / / / k b ( ~ k z k a 2 + ~ k e 2 k Y 2 )  
pendent of the transformation matrix and the exact form of the (2rl3a2 FBz 
ga (co*,+). Xsin(k.L)d3k, (19) 
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and the equation for .$,I is the same as Eq. (19), with These integrals are evaluated in the same way as in Eq. 
the indices p and y interchanged, and P and y are per- (8). At present there are no existing calculations for 
pendicular to the [loo] axis. double-force defects in cubic materials. We choose to 

The constants in the numerator of the integrand are leave the strength parameter G' as an arbitrary con- 
given by stant; and we have, therefore, made our calculations 

E1= CllC44 assuming a unit double force. As the strength parameter 
F 1 =  Cu(C4q-Ci1) , G' is simply a multiplicative factor in Eqs. (18) and (19) H ' = C I I ~ - C I ~ ~ -  2C44(Cii+C12) , 
M =  - (244 (C12+C44) , 

(20) we can obtain the displacement field for any specific 

N =  (Cl2S C44) (C12-C11+ 2C44) . defect of this class by appropriately scaling the displace- 
ments produced by the unit double force. 

TABLE I. Comparison of asymptotic displacements about 
an interstitial Cu atom in Cu; (001) plane. 

TABLE 11. Comparison of asymptotic displacements 
Results about a vacancy in Al; (001) plane. 

Asymptotic lattice- 
e statics method Lie-Koehler method Asymptotic Displacement 

swept in 0 e lattice from 
(011) Displace- (deviation Displace- (deviation E statics Lie-Koehler 
plane ment from ment from swept in (001) Displacements method 
(deg) (10-9 cm) radial) (10-8 cm) radial) plane (lo-$ cm) (10-8 cm) 

(Oil) plane (Oil) plane 
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FIG. 2. (a) Displacement profile in the first quadrant of the (001) plane about a vacancy in Al; 
(b) displacement profile in the first quadrant of the (Oil) plane about a vacancy in Al. 

111. APPLICATIONS 

We have calculated the asymptotic displacements due 
to an interstitial Cu atom in Cu and due to isolated 
vacancies in Al, Na, K, and Li. We have also computed 
the displacements about a single double-force in Cu and 
'41. For comparison, we have used the approximate pre- 
scription given by Lie and Koehler8 for the calculation 
of elastic displacements due to unit triple double-forces 
(spherical defects) and unit single double-forces in Cu 
and Al. 

Since the displacements in a given direction fall off 
inversely as the square of the distance from the defect, 
we have chosen to represent our results as displacements 
of points originally on a sphere of radius '(a" from the 

defect. However, it is a simple matter to compute the 
displacement field of the crystal on any sphere of arbi- 
trary radius r, since one simply scales by  ( ~ / r ) ~ .  

The displacement profile has been computed a t  2.5- 
deg intervals in the (0,0,1) and (O,i,l) planes, and only 
the first quadrant of each profile is shown, since the 
entire profile can be generated by mirror reflection of 
this quadrant in the x and y axes. 

The calculations were done on a CDC 3600. The nu- 
merical integrations were evaluated using Simpson's 
rule with 100 increments in 4. 

I n  Figs. l (a) and l (b) we show the appropriate dis- 
placement profiles for an  interstitial Cu atom in Cu. I n  
Table I we compare the displacements calculated from 
the series of Lie and Koehler8 with the asymptotic 

g ( l ~ - ~ c r n )  5. ( ~ o - ~ c r n )  

(a) (b) 

FIG. 3. (a) Displacement rofile in the first quadrant of the (001) plane about a vacancy in Na; 
(b) displacement pro&e in the first quadrant of the ( O i l )  plane about a vacancy in Na. 
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90" SOo 70' 60" 50" 40" 

Force constonis are t ose 

30' 

20° 

1 oo 

0 
-6 -4 -2 0 2 4 6 8 10 

FIG. 4. (a) Displacement profile in the first quadrant of the (001) plane about a vacancy in K;  (b) displacement 
profile in the first quadrant of the (Oil) plane about a vacancy in I(. 

lattice-statics values. Inward displacements are denoted 
by minus signs; 0 is measured from the outward drawn 
radial. A negative value of 0 indicates a clockwise devi- 
ation from the radial, and a positive value of 0 indicates 
a counterclockwise deviation. Displacements for which 
101 is greater than 90" are always inward. 

I n  Figs. 2 (a) and 2 (b) we show the corresponding dis- 
placement profiles for Al. I n  Table 11, we give a compari- 
son of our results to those obtained by Lie and Koehler. 
I n  both cases the displacements are so nearly radial that 
we make no comparison of the predicted orientations. 
Figures 3(a), 3 (b), 4(a), and 4(b) show the displacement 
profiles for vacancies in Na and K. [The strengths are 
for the lattice models Na(1) and K ( l )  of Ref. 7.1 

I n  Figs. 5 (a) and 5 (b) we show the displacement pro- 
files for a vacancy in Li. I n  the case of this material, 
we have no knowledge of the strength parameter and 
we have therefore assumed a unit inward force on the 
nearest neighbors of the vacancy. I t  is evidently a sim- 
ple matter to scale these displacements to those appro- 
priate to the true elastic strength of the Li vacancy 
when this strength becomes known. 

In  Figs. 6(a), 6(b), 7(a), and 7(b), we show the dis- 
placement profiles for unit double forces along the [lGO] 
direction in Cu and Al. In  Tables 111 and IV we compare 
our exactly computed displacements with those com- 
puted by the Fourier-series approximation of Lie and 
Koehler. 

E ( 10 -~c rn )  par u n i t  force f. ( 1 0 - ~ c r n )  per u n i t  force 

(a) (b) 

FIG. 5. (a) Displacement profile in the first quadrant of the  (001) plane about a vacancy in Li; 
(b) displacement profile in the first quadrant of the (011) plane about a vacancy in Li. 
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5 (10-~crn)  per unit force s' (10T5crn) per u n i t  force 

(a) (b) 

FIG. 6. (a) Displacement profile in the first quadrant of the (001) plane about a unit single double-force along [loo] in Cu; (b) 
displacement profile in the first quadrant of the (011) plane about a unit single double-force along [loo] in Cu. 

IV. DISCUSSION 

The strain field displacements calculated by exact 
lattice-statics may be compared to equivalent results 
from the asymptotic theory to get an indication of the 
distance from the defect a t  which elasticity theory may 
be justifiably applied. Values of 1 f Ir2 calculated by both 
the exact and asymptotic methods for lattice points 
about a vacancy in A1 are given in Ta.ble V. A similar 
comparison is made in Table VI for lattice points about 
an interstitial Cu atom in Cu. There are not enough 
points in most directions to demonstrate the approach 
of the displacements obtained from the exact theory to 
the elastic limit. Along (110) in A1 we find that the 
values of I / r2 remain well above the asymptotic value 

although along the (111) directions, there is much closer 
agreement between the asymptotic values of 1 f 1 r2 and 
those computed by lattice statics. However, in view of 
subsequent calculations it is apparent to us that it would 
be unwise to compare the asymptotic results to those 
given earlier by Hardy and Bulloughl since these are 
restricted to neighbors which are probably too close to 
the defect for the asymptotic theory to hold. Also, we 
believe there are certain problems associated with the 
use of a random sample of wave vectors for computing 
the displacements of very distant neighbors. 

In  the case of the interstitial Cu atom in Cu, which 
we have treated earlier.3 we show in Table VI a com- 
parison of the exact and asymptotic displacements. The 
former were calculated using a sample of 64 000 regu- 

90' 80" 70' 50' 40° 

30" 30' 

2 o0 zoo 

1 on 1 OD 

0 0 
- 2 - 1 0 1 2 3 4 5  - 2 - 1 0 1  2 3 4 5  

E ( 1 0 - ~ c r n / d ~ n e )  E ( 10-~crn)  per unit  iorce 

(a) (b) 

FIG. 7. (a) Displacement profile in the first quadrant of the (001) plane about a unit single double-force along [lOO] in Al; 
(b) displacement profile in the first quadrant of the (Oil) plane about a unit single double-force along [lOO] in Al. 
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TABLE 111. Comparison of asymptotic displacements about TABLE V. Comparison of actual and asymptotic lattice-statics 
a unit single double-force along [loo] in Cu; (001) plane. results for a vacancy in Al. 

Results Lattice statics sweit in Asymptotic lattice statics Lie-Koehler method 
(010) Displace- 0 (deviation Displace- 0 (deviation 
plane ments from ments from 
(deg) (10P cm) radial) (10-5 cm) radial) 

-126"37' -0.648 
- 144"O' -0.858 
-158"35' -0.652 
- 18O0O' -0.463 
(Oil) plane) 

larly spaced wave vectors within the FBZ. Again, 
we feel that, except for some of the most distant neigh- 
bors, the asymptotic regime has not been reached. This 
in itself is a significant result, since it emphasizes once 
again the lack of validity of the continuum solution a t  
what had previously been regarded as relatively large 
distances from the defect. I n  the case of the alkali metals 

TABLE IV. Comparison of asymptotic displacements about 
a unit single double-force in A1 along [100]; (001) plane. 

Results swedt in Asymptotic lattice statics Lie-Koihler method 
(001) Displace- 0 (deviation Displace- 0 (deviation 
plane ment from ment from 
(ded (10-5 cm) radial) (10-"m) radial) 

- ~ 

50 0.748 -34'48' 0.891 -31'12' 
60 -0.416 -115"58' -0.380 -97O10' 
70 -0.793 -160°15' -0.749 -132°15' 
80 -1.062 -172"33' -1,140 -171°54' 
90 -1.148 -180°0' -1.284 -180°0' 

(Oi 1) plane 

(exact) Asymptotic method 

Neighbor 
It/." 

(units of 2a3) 
1tir2 

(units of 2aS) 

where the interatomic forces we have used7 are of sig- 
nificantly long range, one would intuitively expect that 
the necessity to proceed to very large distances from the 
defect before one obtains a match between the lattice 
skatics and continuum displacement fields will be even 
greater. To examine whether or not this is the case, 
we have carried out a full lattice-statics calculation for 
K out to the 40th neighbors along the three symmetry 
directions (loo), (110), and ( I l l ) .  

I n  the cases of the first two directions, wave-vector 
samples corresponding to a supercell containing 64 000 
lattice cells was used and in Figs. 8 and 9, we show plots 
of f I r2 versus r for these two directions. In  neither case 
does this quantity settle down to the asymptotic limit. 
The reason for this is that the displacements we are 
computing are obviously those appropriate to a super- 
lattice of defects. Thus, when sufficiently far from a 

TABLE VI. Comparison of exact and asymptotic lattice-statics 
results for an interstitial Cu atom in Cu. 

Lattice statics 
(exact) Asymptotic method 

Neighbor 
1t1r2 

(units of 2a3) 
IEIr" 

(units of 2a3) 
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0.035 

... Asymptotic vnlue (0.024691 ; 0.020 
(32, 0, 0) 

1 0.015 

0.01 - 
(40, 0, 0) 

0 ' 1 1 1 ' 1 ' 1 1 1 1 1 ' 1 ' 1 1 1  
0 4 8 12 16 20 24 28 32 36 40 

r - units of 'a' 

(20, 20, 0) 

(16, 16, 0 ) ~  
I -0.1 --- --- 

NL X(I2, 12, 0) 
- 
Un - 

(4, 4, 0) O) Asymptotic value (-0. 1042) 
-0.15 

-0.20 
0 4 8 12 16 20 24 28 32 36 40 48 56 

r - units o f  ' a  I 

FIG. 8. l t l r 2  calculated from exact lattice statics, as a function FIG. 9. j[lr2 calculated from exact lattice statics, as a function 
of distance r from the defect along (100) in K. A sample of of distance f from the defect along (110) in K. A sample of 64 000 
64 000 wave vectors Tvas used. The dotted line shows the elastic yavevectors was used. The dotted line shows the elastic limit pre- 
limit predicted by the asymptotic theory. dicted by the asymptotic theory. 

given by 

given defect, the influence of the other defects in the u ( r ) = / /  J ~ ( r - r / ) . ~ ( r l ) d 3 r ~ .  
su~erlat t ice becomes im~or tan t .  I n  these instances. we 
beiieve it is dominant be>ond the 26th neighbors. HOW- 

ever, our results do demonstrate that the displacement 
field about one defect has certainly not reached the 
asymptotic limit as far out as (22,0,0) along (100) and 
(20,20,0) along (110). 

For the displacements along the (111) directions we 
have made calculations for a sample of wave vectors 
corresponding to 512 000 lattice cells (see Fig. 10). By 
judicious comparison of these results with those for a 
supercell containing 64 000 lattice cells, we are able to 
estimate that the asymptotic regime is obtained a t  
about the 27th neighbor. The reason we are able to reach 
such a definitive conclusion for this class of directions is 
that the displacement field is particularly strong along 
the (1 11) directions ; thus the displacements produced 
by  a given vacancy are not masked by those produced 
by the remaining defects in the superlattice before the 
asymptotic region is attained. These results enable us 
to assert categorically that, to obtain a proper repre- 
sentation of the displacement fields about vacancies in 
the alkali metals, it is necessary that any theoretical 
calculation treat a very large number of atoms on a dis- 
crete basis. I t  seems to us that lattice statics offers the 
only acceptable way of doing this. 

'4n alternative method of calculating asymptotic dis- 
placements about a defect has recently been presented 
by Lie and K ~ e h l e r . ~  They start by using Fredholm's 
solution for the equations of elasticity in the absence of 
body forces. This reduces these sixth-order differential 
equations for the displacement components to sixth- 
degree polynomials. Using these polynomial solutions, 
they arrive a t  a Green's-function matrix G. The ele- 
ment Gtj  of this matrix determines the displacement of 
a point in the x, direction due to a unit force at  the 
origin in the x, direction. The solution of the equilibrium 
equations with a body force of density F(rl) is then 

The elements of the Green's-function matrix Gij must 
be evaluated for each material considered. This involves 
determining the roots of the sixth-order polynomial 
equations, the coefficients of which are functions of the 
elastic constants and the polar and azimuthal angles 
0 and 9 measured with respect to axes having the defect 
as their origin. I t  can then be shown that ! r 1 G,, is a func- 
tion of 0 and 4 only. This function can be expressed as a 
double Fourier series in 0 and 9, the form of the series 
being determined by symmetry. Values of r 1 Gij can 
then be computed numerically for Al, Cu, and Li over 
a range of % for several values of 4. Using this approach, 
these authors calculated stresses which they estimated 
were accurate to about 15yo for Cu and 8y0 for Al. 
Stresses were not calculated for Li which has so high an 

1 -0.20 (22, 22, 22) 
(14, 14, 14) . 

U" 

-0.25 (10, 10, 10) 

Asymptotic l imit  (-0.1735) 

FIG. 10. ItIra calculated from exact lattice statics as a func- 
tion of distance r from the defect along (111) in K. A sample of 
512 000 wave vectors was used. The dotted line shows the elastic 
limit predicted by the asymptotic theory. 
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anisot ro~v that the Fourier series would have to con- 
& ,  

tain a large number of terms to adequately represent the 
stresses. Fifteen terms were necessary in the stress series 
for Cu and six terms for Al. 

The displacements which we have computed using 
the series of Lie and Koehler are compared with our own 
results in Tables I-IV for various defect types.1° As 
can be seen from Table I1 the com~arison between the 
two sets of results is excellent-a1wa.y~ well within the 
8% accuracy quoted by Lie and Koehler. The results 
for the double force in Al, shown in Table IV  also agree 
with each other but vary in some instances by as much 
as 11%. 

I n  the case of the Cu interstitial in Cu, the difference 
between the two sets of results varies from about 50% 
in the [loo] direction to about 10% in the [I101 direc- 
tion. The displacements along [loo] are relatively small, 
however. so that  one mould e x ~ e c t  that more terms in 
the series of Lie and Koehler wiuld be necessary to ob- 
tain accurate values along this direction. The single 
double-force results for Cu, shown in Table I11 are quite 
close to each other, both in magnitude and in angular 
deviation from the radial. As might be expected, the 
greatest differences in both magnitude and angle occur 
where the distortion of the radius a sphere changes from 
an outward to an inward direction. 

I t  should be pointed out that for the spherical defect 
problems, the Fourier series of Lie and Koehler do not 
give the same values a t  (1,1,0) as a t  (0,1,1). (These 
points are given, respectively, by E= 45" and by e =  90' 
in Tables I and 11.) This discrepancy arises because 
the Fourier series for these two points involve different 
angles, and hence, different co&icients. Since the co- 
efficients are obtained by curve fitting along differ- 
ent crystal directions, it cannot be expected that 
the same number of terms in the series for two equiv- 
alent points will give identical results. A second dis- 
advantage to the curve-fitting techniques used by Lie 
and Koehler is that  for complex defects, sharp details 
of the distortions are likelv to be lost. 

The asymptotic displacenlent values obtained from 
the method of lattice statics are exact in the elastic 
limit. The calculations are general, in that the elastic 
constants or force constants for a material can be in- 

serted directly into the program without intermediate 
curve fitting which gives coefficients for only one ma- 
terial. I n  addition the method of lattice statics is inde- 
pendent of the anisotropy of the material used and is a 
natural extension of atomistic theory to continuum 
elasticity-a transition which is not contained in the 
method of Lie and Koehler. 

The curves showing displacements per unit force 
about spherical defects in Li are shown in Figs. 5(a) 
and 5(b). These results cannot be compared with nu- 
merical values calculated using exact lattice statics or 
with the alternative asymptotic method of Lie and 
Koehler. I t  is apparent, however, that the distortion in 
Li, follows much the same pattern as it does in the other 
alkali metals. 

V. SUMMARY 

We have applied the method of lattice statics to the 
calculation of asymptotic displacements a t  large dis- 
tances about various classes of defects in Al, Cu, Na, 
K ,  and Li. We have also calculated the distortions due 
to unit single double-forces along [loo] in A1 and Cu. 
I t  appears to us that the only consistent method for 
calculating the direct-space forces due to the defect and 
arriving a t  an accurate strength parameter G is to per- 
form these calculations using lattice statics and the pre- 
scription for G given by  hard^.^ Once this is done, the 
asymptotic distortions can be found by the method pre- 
sented in this paper. 

The distortions can also be calculated using the 
method due to Lie and Koehler if the crvstal is rea- 
sonably isotropic. However, for many materials of in- 
terest, this method does not give accurate results unless 
a large number of terms are included in their Green's- 
function expansions. I n  addition, the curve-fitting tech- 
niaues used to arrive a t  the coefficients of the Green's- 
function expansions are likely to obscure fine details of 
the distortion profiles. 

The most important result of the present work is that, 
in each case where the exact results could be compared 
with the results of the asymptotic theory, the former did 
not settle down to the elastic limit until one was con- 
sidering atoms that were many interatomic spacings 
from the defect. 

lo Lie and Koehler represent their cubic defect as three mutually I t  thus seems that the approach Mre have described in 
perpendicular double forces a t  the origin having unit elastic 
strength, i.e., G =  1. Our cubic-defect models can also be repre- this Paper, which is a logical extension of the method of 
sented as triple double-forces a t  the origin, but  with forces ad- lattice statics for the computation of displacements in 
justed to give the defect strengths shown in Figs. 1 and 2, derived the of the defect to the of long- for Cu and A1 from exact lattice-statics calculations. Hence, in 
order to compare our results with those of Lie and Koehler we have range displacements, offers the most precise and flexible 
multiplied their G =  1 results by our own elastic strengths. way of solving this problem. 
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