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Estimation of Genetic (Co)Variances for Milk Yield in First Three Lactations 
Using an Animal Model and Restricted Maximum Likelihood 

A B S T R A C T  

Genetic relationships among lactation 
records are of interest because most 
selection of  bulls is on first lactations. 
Selection also complicates estimation of 
genetic parameters. Techniques unbiased 
by selection should be used. Estimation 
of genetic and environmental (co)vari- 
ances was done using restricted maximum 
likelihood with an expectation-maximiza- 
t ion algorithm for an animal model. The 
algorithm involved solving mixed model  
equations by direct inversion of  coef- 
ficient matr ix  that became feasible by 
neglecting relationships across herds. 
From data consisting of  first to third 
lactation milk records of  New York 
Holsteins, two computat ional ly man- 
ageable subsets were selected of  15 herds 
each totaling 3070 and 2900 cows. Each 
cow had a recorded first lactat ion and a 
recorded second lactation if she had a 
recorded third record. Herds were chosen 
according to frequency of  related animals 
and about 200 cows per herd. After  18 
rounds of iteration, changes in estimates 
between successive rounds were con- 
Stantly decreasing and small. Estimates 
averaged from both subsets gave heri- 
tabilities of  h~ = .33, h~ = .33, h~ = .34, 
genetic correlations of  rg12 = .86, rgls = 
.85, rg23 = .87, and phenotypic cor- 
relations of  rpi2 = .57, rp13 = .52, rp23 = 
.65. 

I N T R O D U C T I O N  

Development and realization of animal 
breeding plans require knowledge of the heft- 
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tabilities and phenotypic  and genetic cor- 
relations of  the traits considered. These param- 
eters are needed to evaluate the breeding plan 
itself as well as to predict breeding values. In 
contrast to animal breeding plans for meat 
production,  breeding plans for dairy catt le 
have to consider repetitive performance of  the 
animal, i.e., the potential  for more than one 
lactation per cow. Lifetime product ion is an 
important  economic parameter when defining 
the breeding objective. The importance raises 
the question of  whether the performance of  a 
cow in subsequent lactations is repetitive 
enough genetically so that  performance in first 
lactation can contribute useful information also 
about later lactations. A further question is 
how to combine records for evaluation purposes 
if information on more than one lactation is 
available. Often performance in later lactations 
is assumed to be genetically due to the same 
genes that  influence performance in first 
lactation. The majori ty  of procedures for 
prediction of  breeding values in dairy cattle, 
therefore, either consider only first lacta- 
tions or imply a genetic correlation of 1.0 
between all lactations. With data usually 
available, the validity of  this assumption is 
difficult to evaluate because selection has 
occurred based on knowledge of  part of  the 
data. In such cases, estimators of  variances and 
covariances by methods such as Henderson's 
Method 3 are likely to  be biased (11, 15, 16), 
and methods such as minimum variance qua- 
dratic unbiased estimation (MIVQUE), maxi- 
mum likelhood (ML), and restricted maximum 
likelihood (REML) should be used (4). All 
three methods are computat ional ly  demanding 
for the multivariate case, especially for REML 
if no simplifying assumptions such as zero 
residual covariances (17) are made. Despite the 
computat ional  difficulty, REML was chosen for 
the analysis presented in this paper because 
REML estimators, in contrast  to  ML estimators, 
are not biased by  the estimation of fixed effects 
included in the model  (2) and in contrast to 
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MIVQUE are not  greatly dependent on the use 
of appropriate prior values for variances and 
covariances (16). 

The purpose of the study was to estimate 
the variances and covariances needed for 
multiple trait evaluation of production in 
different lactations and which also can be used 
to determine the urgency of using other than 
first lactation records for selection. 

MATERIALS AND METHODS 

Simulation studies by Meyer and Thompson 
(11) and Sorensen and Kennedy (16) have 
shown that ML estimators of variance com- 
ponents unbiased from selection can be achieved 
onty if all available data are used. An animal 
model with complete relationship matrix makes 
use of all data. For muhitrai t  analysis con- 
sidering milk yield in first three lactations to be 
different traits, the following model was used: 

y = Xb + Za + e [1] 

where y is a vector of observations of milk 
records in the first three lactations, b is a vector 
of fixed effects (herd-year-seasons), a is a 
vector of additive genetic values of individual 
animals for the three traits (lactation milk 
yields), e is a vector of residual effects, and 
X and Z are known incidence matrices for 
fixed and random effects. 
Expectations and variances are defined as: 

The mixed model equations are: [x x 
Z'R--X Z'R--Z + G - 1  ~t 

Z'R--yJ [21 

Let n denote the number of animals and t = 
3 the number of traits. With data ordered lacta- 
tions within animals and missing lactations 
included as zero rows or columns, R is block 
diagonal having n blocks, Rk, or order t. 
Each block corresponds to the combination 
of traits recorded for a specific animal. If the 

data are restricted to allow later lactations 
only if the preceding records are also available, 
t different R k are possible. These are derived 
from R0, the t × t variance-covariance matrix 
of the residuals, by crossing out rows or columns 
associated with missing records. Instead of 
R~ -1 for animals with missing lactations, 
then Rk,  the "zeroed" type of a g inverse of 
R0, is used (6) with the notation R-- instead 
of R - 1 .  G -1  = A - 1 * G o  1 where * denotes 
the direct product operation, A is the numera- 
tor relationship matrix, and Go is the t × t 
variance-covariance matrix among additive 
genetic effects. 

The method applied was REML using the 
EM algorithm proposed by Henderson (4, 5). 
It consists of equating appropriate quadratics 
in ~ and ~ to their expectations where ~ and 

are the vectors of solutions for random and 
residual effects from the mixed model equa- 
tions with 6 calculated as ~ = y - Xb - Z~. 
This is done iteratively, and at each round of 
iteration, the expectations are taken under 
the pretense that G = G and R = R where 

and R are prior values of the additive genetic 
and residual variance-covariance matrices, re- 
spectively. 

Equating the quadratics to their expecta- 
tions under a general model gives the follow- 
ing equations. 

~'Q~ = tr Q(G - C22 ) [3 ] 

where C22 denotes the submatrix of a g inverse 
of the mixed model coef f ic ient  matrix pertain- 
ing to the random effects, and: 

A t  ^ 
e Qe = tr Q(R -- WCW') [4] 

where C is a g inverse of the mixed model 
coefficient matrix and W = [X : Z].  

For the model [11 given, Q in [31 and 
[41 can be specified by simplifying the equa- 
tion for quadratics in ~ and ~. 
Quadratics in ~: 

t r A - 1 G  =a~A -1  ~j + trA--1Cij  [51 

Elements of [5] correspond to mixed model 
equations set up by ordering animals within 
traits. C.i j is the submatrix of C associated 
with traits i and j. Because G = G0*A, further 
simplification leads to: 
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tr A - 1 A g i j  ^, --1 . A--1 =a iA  ~ j + t r  Cij 

so that  the ij th element of Go, gij, is estimated 
by:  

gij = (a~ A--1 a,j + tr A - 1  Cij)/n [61 

Computat ion of [6] can also be carried out 
under ordering of  traits in animals as in [2] 
by picking the proper  elements from a and C. 

Quadratics in ~: 

AI  A 
tr  QijR = e Qije + tr  QijWCW' [7] 

In contrast to [5],  where Qij was specified 
a s A  - 1  for all i, j ( i , j  = 1 . . . .  3), Q i n  [7] 
is different for each element, rij, of R0, which 
is to be estimated. For  t = 3, six different 
matrices Qij (j~>i) are necessary. All Qij are 
defined as follows: 

m 

qij = s~ij  
B2ij 

0 

0 

Bnij 

The blocks along the diagonal of Qij, Bkij, 

are derived from the t × t blocks R k  of R--. 
Let R ~  = [fl f2 f3],  then Bki i = fiffi and 
Bkij -- f i~ + ~fiCj)' for i~j. For the case of  
successive lactations there are three unique 
Bki j for each of the six Qij since there are 
three unique Rk .  Of these 18 Bkij, however, 
eight are null matrices so that  for computat ion 
of  [7] ,  only 10 different Bki j of  order t have 
to be stored. In [7] the trace of  a product  
of  two block diagonal matrices of equal design 
involving R0 is equated to the sum of  two 
scalars. If all t ( t+ l ) /2  elements to be estimated 
are considered simultaneously, a solution is 
possible if [7] is expressed a s :  

T r = q l  +q2 [8] 

so that  ~ = T - 1  q for q = ql + q2, where 
ql and q2 are vectors containing the t ( t+ l ) /2  = 

^ F  ^ 

6 scalars, e Qije and tr  QijWCW'. These can 
be accumulated animal by animal. 

T is symmetric of order t ( t+ l ) / 2  and can 
be set up directly after all animals are pro- 
cessed. For  each rij , one row of T is formed 
by multiplying all elements of  the appropriate 
half-stored matric Bki j by the number of  cows 
which show the specific combinat ion of traits 
corresponding to the three unique Bkij for 
all i, j = 1, 2, 3 (j~i).  All elements i¢j in Bkij 
are also multiplied by 2 and the products 
for the three combinations of  traits are added 
together. The nonsingular, symmetric matr ix 
T results upon completion so that [8] can 
be solved. 

The main computat ional  problem in iter- 
ating on [6] and [7] is the need for the inverse 
of  the coefficient matrix of  [2] .  The number 
of  equations in [2] is equal to the number 
o f  levels for fixed effects plus the number of  
animals times the number of traits so that  
processing of  a reasonably sized data set be- 
comes impossible without  making further 
simplifications. To simplify computations,  
canonical t ransformation of [21 in some cases 
results in unrelated residuals (12). The mixed 
model equations [2] then simplify to those 
for single trait  analysis. This method,  however, 
requires that all observations on traits re- 
corded for a specific animal are assigned to the 
same classes of  fixed and random effects. 
Under an animal model  as given in [1],  this 
is certainly true for the animal 's additive 
genetic effects; all observations for a specific 
animal are assigned to this animal. For fixed 
effects the requirement is more difficult to 
fulfill. For  the herd effect, it would be possi- 
ble to restrict the data so that  cows do not  
change herds. For  year-seasons, however, 
obviously a later lactation is recorded for a 
different year-season as compared with the 
corresponding first lactation. However, under 
the assumption that  calving intervals do not 
differ considerably from 365 d, assignment 
of all lactations recorded for a cow to a single 
herd-year-season would still be feasible. After  
screening the data available with respect to 
calving intervals, however, such an assumption 
was found to be invalid. 

Other assumptions had to  be made. If 
relationships across herds were ignored, it 
was possible to solve [2] herd by herd and to 
accumulate the quadratics in [6] and [7].  
Now the order of  each of the blocks of  the 
coefficient matr ix for which inverses were 
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needed was dependent mainly on herd size 
and the number of years included. For further 
reduction of the number of equations to be 
solved, no equations for base animals were 
set up. Base animals were those without records 
that created relationships among animals with 
records and would be mostly sires and dams 
without records. After directly obtaining 
A +  1 with Henderson's rules, the inverse of the 
numerator relationship matrix including base 
animals without records, rows or columns 
for all base animals were absorbed into rows 
or columns for cows actually having records 
using rules for inversion of partitioned matrices 
as in (3). For: 

A+ 1 = [ 'Pll  P12q 

P22 is the submatrix of A~lcorresponding to 
relationships among cows actually having 
records, whereas Pll denotes the submatrix 
pertaining to relationships among base animals. 
A - 1 ,  the inverse of the numerator relation- 
ship matrix of cows actually having records, 
is then found as: 

A--a = P22 - P'12 P~Pt2 [9] 

Although computation of [9] is costly in 
computing time, the reduction in computing 
time for the entire analysis is substantial 
because [9] has to be carried out only once 
for each herd. 

The original data set consisted of mature 
equivalent lactation milk yields from 294,401 
New York Holstein cows first freshening 
between 1977 and 1984 and passing usual 
edits. All cows were required to have a recorded 
first lactation; later lactations were accepted 
if preceding lactations were recorded. Pro- 
cessing of the entire data set was impossible 
due to the enormous computing time that 
would have been necessary. Therefore, a 
computationally manageable data set had to 
be selected. One requirement was a high fre- 
quency of related animals per herd. A second 
requirement was to balance the need for large 
herds against computing time for the inver- 
sion of the coefficient matrix for each herd. 
Increase of data per herd was expected to 
lead to improved likelihood functions, i.e., 
to avoid very flat likelihood functions. 

The final data set was formed from two 
subsets. Each subset contained 15 herds. 
Herds were selected from the range of herd 
sizes of 170 to 230 for cows with first records. 
Frequency of related animals was monitored 
by inspection of the diagonal elements of 
A+  1 , which was set up for 43 herds preselect- 
ed arbitrarily by examination with the goals 
of a large number of daughter-dam pairs and 
a small number of sires per herd. A summary 
of the structure of the data is in Table 1. 

Computing time was almost entirely de- 
pendent on the time for inversion of the herd 
blocks of the coefficient matrix. Time for 
inversion of one matrix of order 650 was 12 
min central processing unit  (CPU) time on 
an IBM 4341 computer so that for each data 
set approximately 3 h were needed for one 
round of iteration. 

RESULTS AND DISCUSSION 

For each replicate, 18 rounds of iteration 
were done. Starting values were found by trying 
out considerably different values in the fol- 
lowing manner: two rounds of iteration used 
starting values far higher than what could be 
expected, and similarly two rounds used low 
values. Observed trends in these four rounds 
were combined into a final guess of starting 
values. However, it seemed that this way of 
finding starting values reduced only the magni- 
tude of differences between estimates in the 

TABLE 1. Structure of the data. 

Data Data 
set 1 set 2 

Lactation 1 
No. 3070 2900 
Mean, kg 9037 8552 

Lactation 2 
No. 1943 1828 
Mean, kg 9127 8769 

Lactation 3 
No. 1080 1082 
Mean, kg 8943 8682 

Average cows per herd 205 194 
Average equations per herd 655 620 
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first two rounds and did not necessarily re- 
duce the number of iterations needed. 

Tables 2 and 3 show starting values and 
estimates of additive genetic and residual 
variances and covariances to round 18 for both 
data sets. All records were scaled by dividing 
by the overall standard deviation of first 
lactation milk yield to avoid round-off prob- 
lems. In both data sets estimates for residual 
variances and covariances seemed to converge 
earlier than for additive genetic ones. This 
pattern is analogous to results of Rothschild 
and Henderson (14) who used an ML pro- 
cedure for a sire model. 

In data set 1, estimates for R0 were con- 
stantly increasing with each round of itera- 
tion but were constantly decreasing in data 
set 2. In each data set, changes between esti- 
mates for R 0 in successive rounds were con- 
stantly decreasing. Estimates for Go were 
steadily decreasing after the third round of 
iteration in data set 1 and steadily increasing 
after round 7 in data set 2. Changes in esti- 
mates for Go between successive rounds were 
constantly decreasing after round 8 for data 
set 1 and after round 12 for data set 2. Mono- 
tonically decreasing changes between rounds 
were also found by Rothschild et al. (15) 
when applying an ML algorithm for 30 rounds 
of iteration for a data set simulated for a 
random effects model. As can be seen from 
Tables 2 and 3, convergence was not reached 
after 18 rounds of iteration. Changes, however, 
were very small. 

Estimated parameters obtained from round 
18 solutions are in Table 4. Similar trends 
can be seen in estimates from both data sets. 
In general, the estimates are somewhat in 
agreement with estimates by other authors 
for different Holstein populations. However, 
heritabilities are higher, especially for second 
and third lactations, than those commonly 
reported, which may be due to using an animal 
model that may be less affected by selection 
than sire models. Phenotypic correlations 
for both data sets are more similar than genetic 
correlations where the estimates show slightly 
different trends. As compared with given 
estimates (1, 7), the estimate rg23 = .860 
appears to be slightly small for data set 1, 
and the estimate rg12 = .833 from data set 2 
also seems to be somewhat small, whereas 
rg13 = .866 from the same data set may be too 

"FABLE 4. Estimated heritabilities (h 2 ) and genetic 
(rg) and phenotypic (rp) correlations for milk yield 
in-first three lactations fiom two data sets. 

Data Data 
Estimate set 1 set 2 Averaged 

h~ .328 .335 .332 

hi .320 .345 .333 

hi .334 .349 .342 

rg12 .877 .833 .857 

rg13 .828 .866 .847 

rg23 .860 .886 .873 

rp~ 2 .587 .553 .570 

rpl s .530 .510 .520 

rp23 .648 .642 .645 

large. Pooling estimates across the data sets 
results in general agreement with the pattern 
found in the literature. When considering only 
studies that used ML procedures, estimates 
of genetic correlations are in good agreement 
with results by Tong et al. (17) and slightly 
smaller than in Rothschild and Henderson 
(14) and Meyer (8, 9, 10). Phenotypic cor- 
relations, and especially the estimate rp23 = 
.645, are somewhat larger than usually reported 
for repeatability, which may be due to using 
an animal model. 

CONCLUSIONS 

Estimation of genetic variances and covari- 
anees for first three lactations using REML 
for an animal model is computationally feasible. 
However, extensive computing time was re- 
quired for the present analysis. Further research 
should concentrate on finding computing 
techniques that reduce the computing time 
needed so that larger data sets can be processed. 
One approach would be the derivation of a 
REML algorithm for a reduced animal model, 
which was presented by Quaas and Pollak 
(13) for genetic evaluation of animals. An- 
other way to reduce computing time may 
be the use of supercomputers, which use 
vector mode to perform the extensive arith- 
metic needed in matrix inversion. 

Estimated genetic parameters show a strong 
relationship between milk yield performance 
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in first th ree  lacta t ions .  The es t imates  indicate  
t ha t  the  expec t ed  response  for  l i fe t ime pro- 
duc t ion  f rom select ion and evaluation based 
on first lac ta t ions  only  or  evaluat ion based 
on a cons t an t  repeatabi l i ty  the re fo re  are justi-  
f ied especially when  genera t ion  intervals (18) 
and present  c o m p u t i n g  costs  are cons idered .  
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