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Radiative transfer of ultrasound 

Joseph A. Turner and Richard L. Weaver 
Department of Theoretical and Applied Mechanics, 216 Talbot Laborator 3 104 South Wright Street, 
University of Illinois at Urbana•Champaign, Urbana, Illinois 61801 

(Received 11 November 1993; accepted for publication 21 June 1994) 

A radiative transfer equation is used to model the diffuse multiple scattering of ultrasound in a 
medium containing discrete random scatterers. An assumption of uncorrelated phases allows one to 
write an equation of energy balance for the diffuse intensity. This ultrasonic radiative transfer 
equation contains single-scattering and propagation parameters that are calculated using the elastic 
wave equation. Polarization effects are included through the introduction of an elastodynamic 
Stokes vector which contains a longitudinal Stokes parameter and four shear Stokes parameters 
similar to the four Stokes parameters used in optical radiative transfer theory. The theory is applied 
to a statistically homogeneous, isotropic elastic half-space containing randomly distributed spherical 
voids illuminated by a harmonic plane wave. Results on the angular dependence of backscattered 
intensity are presented. It is anticipated that this approach may be applicable to materials 
characterization through the study of the time, space, ultrasonic frequency, and angular dependence 
of diffusely scattered ultrasound in elastic media with microstructure. 

PACS numbers: 43.20.Bi, 43.20.Gp, 43.35.Cg 

INTRODUCTION 

Ultrasonic materials characterization of solid media with 

random microstructures relies, in the literature, mostly upon 
the use of the coherent field, through measurements of either 
wave speed or attenuation] -5 The modern state of the theory 
relating microstructure to such wave properties may be 
found in Stanke and Kino, 6 and Hirsekom 7 for the case of 
polycrystalline media, and Twersky, 8 Tsang etal., 9 and 
Varadan et al. •ø for media consisting of discrete scatterers. 
The use of the incoherent, or speckle, field for purposes of 
materials characterization is less well developed. A number 
of researchers u46 discuss the use of the incoherently singly 
backscattered field for microstructural characterization. This 

literature shows that the singly backscattered waves domi- 
nate in the limit of sufficiently weak scattering. In the oppo- 
site limit, Guo et al. •7 and Weaver et al? ']9 have discussed 
and demonstrated the use of the speckle field in the limit in 
which typical rays have incoherently scattered sufficiently 
many times that the field may be modeled by a diffusion 
equation. 

The parameter range between these two limits of single 
and multiple scattering is, though, of great importance. The 
singly scattered field is sometimes difficult to access experi- 
mentally in media with strong scattering. The multiply scat- 
tered field is, additionally, sensitive to scattering amplitudes 
in arbitrary directions, and to absorption as well as to 
scattering •8'2ø and therefore contains information not avail- 
able in the singly scattered field. The few existent attempts to 
create theories which bridge the gap between these two lim- 
its are, to date, limited to rather ad-hoc efforts to model the 
twice scattered field. 2ø In this communication, we present a 
description of the diffuse ultrasonic field throughout the en- 
tire parameter range from single scattering to the diffusion 
limit. The approach is based upon the concepts from radia- 
tive transfer theory first developed for the treatment of mul- 

tiply scattered electromagnetic radiation in stellar and plan- 
etary atmospheres? -23 

In the following section we develop the ultrasonic radia- 
tive transfer equation (URTE) after an introduction of con- 
cepts relevant to its derivation. In Sec. II we discuss the 
derivation of the single scattering parameters needed in the 
URTE for the case of spherical scatterers in an elastic me- 
dium. In Sec. III we discuss the solution of the URTE and 

finally present sample results in Sec. IV. 

I. RADIATIVE TRANSFER THEORY 

When the time and/or length scales in an experiment 
become long compared with the time and length scales be- 
tween successive random scatterings of a wave, the modeler 
must account for multiple scattering of the wave. Radiative 
transfer theory is an approximate method for the modeling of 
that multiple scattering. It is based upon an assumption that 
randomly scattered waves have uncorrelated random phases. 
The superposition of such waves therefore may be effected 
incoherently, leading to a description of the wave field, not in 
terms of field quantities such as stress or material displace- 
ment, but in terms of the average intensities. As such it of 
course cannot be a complete description of the disturbance. 
One may hope that it is an accurate description, however, of 
ensemble averaged energy densities? 

The radiative transfer equation (RTE) may be derived in 
either of two ways. The simpler phenomenological method 
relies upon considerations of energy balance in representa- 
tive volume elements consisting of several scatterers. In this 
approach, the wave equation itself is used only for the deter- 
mination of propagation speeds and for the determination of 
the properties of the single scattering events which constitute 
the multiple scattering process. 

One may also derive RTE's directly from the wave equa- 
tion by consideration of the ensemble average of the covari- 
ance of the Green's function in the random medium. 
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FIG. 1. Propagation through the scanering volume in the J direction and 
emission into the • direction from scattering events Jue to energy entering 
from the g' direction. 

Barabanenkov z• used this method for the: case of a scalar 

medium. Weaver, is for purposes of derivi]•g the behavior of 
the field in the diffusion limit, indepe:•dently used this 
method for the derivation of an RTE for elastic wave scat- 

tering in a polycrystalline medium consi::ting of randomly 
oriented cubic crystallites. The generalization of that RTE 
and its solution will be the subject of a lat•:r communication. 

In this section, we adapt the phenomenological RTE 
derivation to the case of an elastic medium containing uncor- 
related discrete scatterers. A derivation of the scalar radiative 

transfer equation is presented in the first s •bsection in order 
to clarify the ultrasonic radiative transfer equation derived 
later. After Stokes parameters are introduced with which to 
describe diffuse elastic wave intensity, an analogous proce- 
dure is then followed for the derivation oF the URTE. This 

RTE has as a parameter a "Mueller" matrix describing the 
single scattering processna form for wh ch is derived for 
spherical scatterers in Sec. II. The section concludes with 
discussions of integrals of the URTE relat :d to energy con- 
setration, with the form of the URTE in :t common simple 
geometry, and with a discussion of the c osed form single 
scattering solution of the URTE. The reader may consult the 
works of Chandrasekhar, 2• Sobolev, 22 Is fimaru, 23 van de 
Hulst, 26 and many others for further insi ;ht into radiative 
transfeg equations and their derivation. 

a. Scalar radiative transfer equation 

Consider the elemental volume shown in Fig. 1 with 
cross section da and length ds containing :! da ds scatterers 
with r/the number density of scatterers. Let the spatially 
incoherent intensity be defined as the energy per area, per 
time, and per solid angle df• so that the energy emergent 
from this volume in the J direction is I(s, ')ds dt df•. The 
energy a distance ds away, moving at spe•'.d c also in the J 
direction at a time dt--ds/c later w ll be I(s+ds,t 
+ dt)da dt dfL The difference in energy can be attributed 
to a loss caused by absorption and scatterin; g, and an increase 
caused by emissions into the direction of )ropagation from 
other scattering events or from sources wi :hin the medium. 
This energy balance is written, 

[(s+ds,t+dt)da dt df•-l(s,t)da dt df• 

= - rlo'l(s,t)da ds dt df•+ rle(s,t)da ds dt d•, (1) 

where o'= eq-s: is the total extinction cross section per scat- 
terer, • is the absorption cross section per scatterer, t• is the 
scattering cross section per scatterer, and e(s,t) is the emis- 
sion coefficient per scatterer. The absorption cross section 
may include absorption within the scatterer as well as dissi- 
pation within the medium (which is zero for most applica- 
tions with electromagnetic waves). The emission coefficient 
may include emissions from scattering events and primary 
sources. Equation (1) implies that 

c•I(s,t) c91(s,t) 
c)----• ds+ • dr= - rlcrI(s,t)ds+ rle(s,t)ds. 

Since ds = cdt, Eq. (2) becomes 

c91(s,t) 1 M(s,t) 
t- -- - rl•rl(s,t) + rle(S,t). (3) 

8s c c)t 

Note that in the absence of emissions, 1 displaces and attenu- 
ates with time in the following manner: 

I(s,t) =f(s - ct)e- ,•ct, (4) 

which shows that the quantity r/a/2 may be identified with 
conventional ultrasonic attenuation. In three dimensions, the 
RTE becomes 

I M(r,t,•) 
•.•l(r,t,,•)+ -- - r/•/(r,t,,•)+ ve(r,t,k), 

c 

(5) 

where • is the direction of propagation, r is the space vector, 
and the extinction cross section has been assumed isotropic 
(i.e., independent of k). 

To find the emission coefficient, consider the same vol- 
ume of scatterers with radiation incident from the k' direc- 

tion within the solid angle df•' scattering into the • direction 
in solid angle df• also shown in Fig. 1. Let the angular 
distribution of the scattered portion of the radiation, scattered 
from the •' direction into the • direction, be defined by 

df• 

4r' (6) 
where p(•,J') is the scattering indicatrix • or phase 
function • and is 4• times the differential scattering cross 
section? The scattering indicatrix is normalized so that 

! f• •' _ 4•r =4/(S, 8 )df•-- •c, (7) 
which means that for isotropic scattering p(•,g')= •. This an- 
gular distribution multiplied by the intensity and integrated 
over all incoming directions is the emitted radiation per scat- 
terer. Thus in the absence of primary sources, the emission 
coefficient is 

e(r,t,•)-- •--• ,=4•P(S,S )l(r,t,s )df• , (8) 
and the full scalar RTE is written 
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z=0 
[.t= cos O 

ß 

FIG. 2. Geometry of a plane-parallel medium. 

0I(r,t,•) 
cV.•/(r,t,•)-t dt +c•lcrI(r,t,•) 

c,• fn •AA, •, , - (s,s)I(r,t,s )df• . (9) 
471' '=4. 

It is a first-order integro-partial differential equation in space, 
time, and propagation direction. Its solutions are in general 
nontrivial. 

One special case of the scalar R•, used to model many 
types of atmospheres, is that of a steady-state, plane-par•lel 
medium shown in Fig. 2. The intensity is assumed to be 
independent of the position coordinates x and y, as well as 
time, but not independent, in general, of propagation direc- 
tion. 

Under these assumptions, the scalar intensity is a hnc- 
tion of position coordinate z only, and the an•lar variables 
• and •, where • is measured •om the x axis in a right-hand 
sense. Under these conditions, Eq. (9) simpl•es to 

a/(z,•,•) 
• e•(z,•, •) 

= • •o J-•P(•'4'• '• )•(z,• ,• )a• a4'. 
00) 

If we consider a plane wave wi•h flux F 0 incident on the 
upper surface (z=0) in the (•,•) direction and consider no 
incident radiation on the lower suffa• (z=%), the co•e- 
sportdine bounda• •nditions are •3 

•(z= 0,•>0,•) =F0•(•- •0)•(•- •o), 

l(z=zo,•<O,•)=O. (H) 
For a semi-infinit• medium, we let 

For a general scattering indicatrix there are no an•yticai 
solutions • to Eq. (10). Numerical procedures are, however, 
well developed. The most popular are the method of spheri- 
cal harmonics •]'•7 and the discrete ordinates method? '•3'e7 

•e sc•ar radiative transfer •quation is adequate for 
many applications where polarization effects can be ne- 
glected such as those dealing with natural light. • However, 
sin• mode conversiou and •!ar•ation are important in the 
elastic •se, an examination of the inclusion of •l•ization 
through the Stokes vector is necessary. 

B. Elastic Stokes parameters 

Characterization of the diffuse ultrasonic intensity re- 
quires descriptions of the single longitudinal and both trans- 
verse intensities. It is not widely appreciated, however, that a 
complete characterization will also require description of the 
degree of phase correlation between the transverse compo- 
nents. Stokes •8 discovered in 1852 that 4 parameters, all with 
units of intensity, were needed to characterize beams of dif- 
fuse light completely. These Stokes parameters each propa- 
gate independently of the others so that a composite stream 
of light has Stokes parameters that are the sum of the Stokes 
parameters of the individual streams. Therefore, a radiative 
transfer equation can be written for each Stokes parameter. 
Mode conversion scattering between Stokes parameters may 
be accounted for within the emission term. For a more de- 

tailed explanation of the Stokes parameters see for example 
Chandrasekhar, 21 Sobolev, •2 Ishimaru, 23 van de Hulst, • and 
Stokes. 28 In this subsection, we examine intensity in an elas- 
tic solid and introduce five elastic Stokes parameters, four 
for the transverse waves and one for the longitudinal wave. 

We consider a time-harmonic wave (e iøst) traveling in 
the z direction defined by displacement components, 

itL = aLe-ikLz-iezeiø•t = [_]'L eiø", 

u x = axe -ikrz-iexeiøJt = Uxe iø•t, (12) 

Uy= aye-ikTz-ieyei•øt= eye iø•t, 
where k• and k r are the longitudinal and transverse wave 
numbers, e•, e•,, % are the respective phases of the waves, 
and U•, U x, Uy are the complex displacement amplitudes. 
The intensity in the z direction is 

p•o3 ( I 1 1 ) IuJ+ lul+ Ivd* ' (13) 
From the definitions of the electromagnetic Stokes 

parameters 23 in terms of ensemble averages of plane-wave 
intensities we gain some insight into the choice of the elastic 
Stokes parameters. For a beam propagating in the z direction, 
they are defined as 

\ = \ ' 

I P •ø3 lu.l:)=/ P'O3 a• ) 
= 2kv •/ (14) 

v= Re(V. vp \ cos a . 

V= \ •r \ kr axay sin , 
where •=e•-e x, and the brackets, (), denote an ensemble 
average. The first three elastic Stokes parameters have an 
obvious interpretation. Here, U and V have less but are re- 
lated to coherent interference between the two orthogonally 
polarized but randomly phased shear waves. Also, U and V 
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x 

FIG. 3. Rotation of coordinat, s. 

may be manifested in an experiment measuring the shear 
intensity associated with a polarization i a a direction other 
than the x and y directions. The intereste t reader is directed 
to the electromagnetic literature. 2•-23 

The absence of interference terms b•.tween the longitu- 
dinal and transverse waves is worth notin 1•. The difference in 
the two wave speeds destroys coherent in terference between 
these two modes after short distances of propagation. A 
phase relation between shear waves of different polarizations 
but traveling at the same speed is, how :yet, retained over 
large distances. 

For later convenience a Stokes reel or, containing five 
components, is defined as 

= -5- IULI2/kL ) I%l=/T - 
[2 
[2 Im(UxU•)]/kTJ 

The average intensity of any beam t,f diffuse radiation 
may be fully characterized by its Stoke, parameters. It is 
important to note, though, that for a given propagation direc- 
tion (here •), there is a degree of arbitrariness in the choice 
of the • direction used for the resolution of polarization. 
There is, however, a transformation whict allows one to cal- 
culate the Stokes parameters for one ct oice of resolution 
direction in terms of the Stokes paramete's for another. 

Consider a set of material displaceme its u defined in the 
xyz coordinate system as shown in Fig. • with the z direc- 
tion into the page. From these the Stoke; vector, -/t can be 
constructed. These same displacements c:n be resolved into 
the x'y'z coordinates where the x'y' ares are oriented an 
angle 4` rotated dockwise from the xy ax• s when viewing in 
the z direction. In these new coordinates, a new Stokes vec- 
tor, -/2, can also be constructed. It can be s ]own that _/] and -/2 
are related through the linear transformation 

-/2=L(4`)_/•, 

where the rotation matrix, L_(&), is (see shimaru, 23 for the 
electromagnetic case) 

1 0 

0 cos 2 4' 

L_(4')= 0 sin • 4' 

0 - sin 24' 

0 0 

0 0 

sin 2 4' • sin 24' 

cos 24' -«sin24' 

sin 2 4' cos 2 4' 

0 0 

o 

o 

o 

(17) 

This rotation matrix allows one to see the rotational invari- 

ance of the longitudinal component as well as that of the V 
component which is related to the degree of circular polar- 
ization of the transverse waves. 

C. Ultrasonic radiative transfer equation 

The vector radiative transfer equation for electromag- 
netic waves is derived using the principle of addition of 
Stokes parameters. Since the individual Stokes parameters 
were found to propagate independently, one can essentially 
write a transfer equation for each Stokes parameter while 
accounting for the polarization and scattering effects within 
the emission term. This has been done in a number of 

texts 2L23 for the electromagnetic case. Derivation of the ul- 
trasonic radiative transfer equation (URTE) is done in an 
analogous fashion. 

Let us begin as before by writing an energy balance 
within a small volume dads, with rlda ds scatterers. Since 
the longitudinal and transverse waves propagate without in- 
terference we can write separate equations for their respec- 
tive Stokes parameters. The longitudinal part is governed by 
the scalar equation: 

(15) I al•.(r,t,•) 
V '•lL(r,t,•) + + •]( K L + VL)lL(r,t,•) 

c i o•t 

= r/eL(r,t,b), (18) 

where I L is the longitudinal Stokes parameter propagating in 
the • direction, •L is the longitudinal scattering coefficient, 
*t is the longitudinal absorption coefficient, and e L is the 
longitudinal emission coefficient which includes transverse- 
to-longitudinal mode conversion effects as well as the non- 
mode conversion scattering. True internal sources are ne- 
glected here but could easily be included. 

A transverse vector RTE can also be written using the 
transverse elastic Stokes parameters I•, ly, U, and V. This 
equation is 

1 O-/r(r,t,•,q) 
V-fi/r(r,t,fi, q) + 

c r Ot 

+ r/( gr+ ur)-/r(r,t,•,6) = r/_•r(r,t,fi,q), (19) 

where /-r is the four-component transverse portion of the 
Stokes vector propagating in the • direction, K r and o r are 
the transverse scattering and absorption coefficients, respec- 
tively, gr is the transverse emission vector which includes all 

(16) mode conversions into the transverse Stokes parameters, and 
•i is the direction chosen for the resolution of polarization 
(perpendicular to •). In general the scattering coefficient is a 
scattering matrix? However, if the scatterers are spherical or 
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oriented with statistical isotropy the scattering matrix re- 
duces to a scalar coefficient. 

Equations (18) and (19), one scalar and one vector, are 
combined into a single Stokes vector equation: 

V .•l(r,t,•,q) + c-1 8_/(r,t,•,q) + r/(4+ __v)_/(r,t,•},q) - = 8t 

-- •_e(r,t,•,q), (20) 

V'•l(r't'•)+c- 1 8I(r,t,•) - •- r/(q+ _v)/(r,t,•}) - = •gt - 

- 4z' • --P(•'•')!(r't'•')d2 •" (25) 
The Mueller or scattering matrix, P__, occurring within the 
integral is determined by examining the scattering from a 
single particle. This is the subject of Sees. I D and E. 

where [ is the Stokes vector from Eq. (15) and 

C • 

c L 0 0 0 0 

0 c r 0 0 0 

0 0 cr 0 0 

0 0 0 c r 0 

0 0 0 0 c 

KL 0 0 0 

0 t• r 0 0 

0 0 gr 0 

0 0 0 gr 

0 0 0 0 

0 

0 

(21) 

v L 0 0 0 

0 v r 0 0 

0 0 vr 0 

0 0 0 v r 

0 0 0 0 

0 

0 

and _e is the emission vector for both wave types. As in the 
scalar case, we define 

dfi 

P• (b,q;0',q') •--•, (22) 

as the angular distribution of radiation in the •}' direction 
with polarization defined relative to the •1' direction scatter- 
ing into the • direction with polarization defined relative to 
direction q. The emission vector is 

1 f4•p(•,q;•,,q,)!(r,t,O,,q,)d2 = _ 
(23) 

and the full ultrasonic radiative transfer equation is then 

3/(r,t,•},q) 
V'•/(r't'•'q) + c---• 8t •- r/(•+ __v)/(r,t,•},q) 

_ r/ f4 ^ A.A, A, A, •, 2•'. (24) 4Z' •P---- (P'q'P 'q )_/(r,t,p ,q )d 

After invoking a convention, to be described below, for glo- 
bal resolution of polarization, we may rewrite Eq. (24) in a 
form without the explicit dependencies on q: 

D. Scattering by a single particle 

Both the scalar scattering indicatrix p and the Mueller 
matrix _P_ are related to the scattering by a single particle. 
This problem is discussed at great length by a number of 
authors for electromagnetic waves 23'26'3ø and elastic 
waves. 3•'32 The single scattering of a general vector plane 
wave is depicted in Fig. 4. The z and Z directions, being the 
propagation directions of incident and scattered waves, re- 
spectively, define the plane of scattering with the longitudi- 
nal displacements U•i and Uz• along each of these axes, 
respectively. The displacements U•i and U•s are perpendicu- 
lar to this plane while Uy i and Urs both lie in the plane. The 
scattered Stokes vector is a linear combination of the inci- 

dent Stokes vector with a 1/r 2 dependence? This transfor- 
mation is written, 23 

_/•(r,t,•,•) = (1/r2)F__(•,•;•.,•)l_i(r,t,•.,•), (26) 
where the third variable of ! is the propagation direction and 
the fourth variable is the direction • chosen for the resolution 

of polarization. It is the same for the incident and scattered 
waves. If the particle has a plane of symmetry normal to the 
z axis then F__ depends only on cos •. Here, F__ describes the 
scattering of the Stokes parameters. A derivation of F__ based 
upon existing descriptions for the scattering of field quanti- 
ties from spheres is presented in Sec. II. 

E. Mueller matrix 

The Mueller matrix P in the URTE describes scattering 
in a global coordinate system. The scattering matrix _F_, de- 
scribing scattering from a single particle, is defined relative 
to a local coordinate system. An abstract derivation of the 
relation between _F_ and __P is given by Ishimaru 23 for a gen- 
eral coordinate system. Since we will use a rectilinear coor- 
dinate system, the derivation of .P for electromagnetic waves 

Uyi 

x 

0 z 

z 

FIG. 4. Geometry for single scattering in the local coordinate system. 
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FIG.. 5. Geometry for scattering in the global o •ordinate system. 

given by Chandrasekhar 2• and Sekera 34 is 
vation of the Mueller matrix for elastic wa 

Consider the scattering process define 
linear coordinate system with the scatterer 
gin as shown in Fig. 5. The incident inten 
the fi' direction defined by/x' =cos 0' and 
tered intensity is in the fi direction deftnet 
th. The fi and fi' directions separated by 
the plane of scattering shown shaded in Fi 

Due to the arbitrary nature of the di• 
the resolution of polarization, a reference 
Let Isv define the intensity in the transven 
in the direction of increasing 0. Here, Is} 
intensity in the transverse mode polarized 
increasiing tfi. With this choice of polari: 
shear-vertical intensity and Is. is the 
intensity? The variables Ix and Iy are res, 
the transverse Stokes parameters referred t, 
nate system characterized by F•. 

The single scattering matrix F__ was de 
cident and scattered x and y polarizations 
parallel, respectively, to the plane of scatt 
plex scattering scenarios with incident and 
ties of arbitrary polarization need to be cot 
single scattering development, we know tl: 

1 

W=7 Ucos 
where the ps superscripts imply that both 
scattered Stokes vectors are defined with r• 

of scattering. Both _//ps and _/•ps have their x 
portents perpendicular to the plane of scatt½ 
polarization components are in the plane 
incident Stokes vector with reference po 
must be rotated an angle of fi+ •r/2 (clockv 
in the direction of propagation) to align th, 
ties with the plane of scattering. In other • 

lollowed for deft- 

,,es in terms of F. 

:1 in an xyz recti- 
located at the off- 

sity propagates in 
&' while the scat- 
by/z=cos 0 and 

•.n angle © define 
g. 5. 
ection chosen for 

must be chosen. 

,e mode polarized 
r then defines the 
n the direction of 

:ations Isv is the 
shear-horizontal 

•rved for defining 
• the local coordi- 

fined with the in- 

•erpendicular and 
ß.ring. More com- 
scattered intensi- 

sidered. From the 

at 

(27) 

the incident and 

spect to the plane 
polarization com- 
ring while their y 
of scattering. An 
.arization (/•,•b') 
4se when looking 
: incident intensi- 

•ords, 

(28) 

using [he rotation matrix given in Eq. (17). Similarly, the 
scattered Stokes vector with reference polarization (/z,•b) is 

related to the plane of scattering Stokes vector through the 
rotation 

/•=L__ ( 3z'\ • 
so that 

v - 

(29) 

(30) 

By examining the spherical triangle with corners defined by 
n, and the z axis, one can determine y and fi in terms of 

/x,/•', '3, and 4•' so that P is given in terms of the reference 
polarization. The dependence of _P_ on 4• and &' is seen when 
this is done. From spherical trigonometry we see that 

1 

cos fi= • [/zx/1 --/1'2--• ' •1 --/12 COS(•' -- •)], 
• 1•/x2 

sin fi = ¾ i•X•X2 sin(•b'- 4•), 
(31) 

cos •= • [/z' x/1 -/z2-/z lx/•-/x '2 cos(•b'- 4•)], 
x/1 -/-t'2 sin y = • 1 _-•Z•- sin( •' - 4•), 

where X=cos O. Since cos O =/z/x' + x/1 - ]./,2 
X X/1-/X' 2 COS •b' - d•, it follows that __F is even in &'-&. 
The components of the rotation matrices depend only on 
combinations of cos fi, sin fi, cos y, and sin y and thus only 
on $' - •b. These facts tell us that __P is also a function only of 
the combination •b'-•. One also finds that the upper left 
3)<3 and lower right 2X2 of P are even in th'-4• while the 
rest of __P is odd in d•'-4'. Thus any particle that is described 
by an __F that depends only on cos O has a Mueller matrix of 
this form. These results will be useful when computations are 
considered. 

F. Integrated intensity and conservation of energy 

The scattering cross sections must be in some sense in- 
tegrals of the angular scattering distribution, __P, over all out- 
going angles. This relation is derived using conservation of 
energy. We define the integrated intensity / as the integral of 
the Stokes vector over all solid angles and space, 

i(t)= f f4J(r,t,•)d2• d3r. (32) 
From this, the time-dependent total energy is 

E(t) = _eT_/(t), (33) 

where the vector e x is given by 

.... 0,0 , (34) 
eL CT CT 

and the superscript T signifies a transpose. Equation (25) is 
multiplied on the left by =c and then by _e T and integrated over 
all angles • and space to give 
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d 

• (_eT/(t))+ r/_eT__c( __g+ __v)/(t)= r/_eT__c __A/(t), (35) 

where use has been made of the divergence theorem. The 
matrix A is defined as 

_A_ = •--• __P(b,b')d2•} ' , (36) 
which is independent of • if the scattering is statistically 
isotropic. If the absorption matrix v is zero the change in 
energy with respect to time is zero which implies 

_eT•c ff_/(t) = _eT_c_ __A/(t). (37) 
This must be true for all/. Recalling the components of __g, 
one concludes 

1 

gL=•--• •4•[P]l + P21+ P31]d2• ', 

gr=4- • •.[P12+P22+P32]d2•} ' , (38) 

1 

gr= •-• •4,r[P13+P23+P33]d2•" 
We find it convenient to calculate gr by 

114 gr--• 4-• • [P]2+P13+P22+P23+P32 
+P33]d2• ' . 

The ordinary differential equation given in Eq. 
without _e x may also be examined. It is 

(39) 

(35) 

d_i(t) 
dt - r/(b- -g- V)-/(t)' (40) 

The eigenvalues and eigenvectors of the matrix on the right- 
hand side of Eq. (40) tell us about the time dependence of the 
integrated intensity. Without absorption, one would expect to 
find one solution with zero eigenvalue representing an equi- 
partition amongst the energies in different modes. But four 
other solutions also exist. These solutions contain informa- 

tion about the scattering between modes of the integrated 
intensity. Writing out the nonabsorptive eigenmatrix gives 

Inserting the values of the g's from Eq. (38) gives 
(41) 

-A2]--A31 A12 A13 A14 A15 

A21 -A12--A32 A23 A24 A25 

A31 A32 -A13-A23 A34 A35 

A41 A42 A43 A44- A12- A22-A32 A45 

AS1 A52 A53 A54 A55- A12-- A22-- A32 

(42) 

If •P is constructed as described in Eq. (30) and •F depends only on cos O then some simplification to this eigenmatrix can be 
obtained. In this case, the 10 components that are odd in qb'-qb, namely A•4, A]5, A24, A25, A34, A35, A41, 3.42, A43, AS1, 3-52, 
and 3-53 are all zero leaving the eigenmatrix, 

--3-21--3-31 3.12 A•3 0 0 

A21 --3-12-3-32 A23 0 0 

A31 A32 --3-13--3-23 0 0 

0 0 0 3-44-- A12-- 3-22-- A32 A45 

0 0 0 A54 A55- 3-12- 3-22- 3-32 

(43) 

The integrated intensity related to the U and V parameters 
decouples from the others. The upper left 3X3 matrix is 
further simplified if we assume, again, that the medium is 
statistically isotropic. In this case, 
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Solving for the eigensystem gives us the eigenvalues a and 
their eigenvectors ½: 
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Otl=O, {1/ •bi= (cL/cr) 2 ; a2=- (Au+2A23), 
(cL/cr)•J 

•p2= 1 ; ot3=-A12[l+2(cL/cr)Z], (45) 

The first eigensolution is the steady-st• te equipartition as 
expected. It has an eigenvector correspon½ing to an equipar- 
titioning of energy? The second eigensolution describes a 
decay due to mode conversion between the two transverse 
modes while the third eigensolution appan :ntly describes the 
decay in time due to mode conversion be' ween the longitu- 
dinal and transverse modes. 

G. Nondimensionalization in a semi-infinite, plane- 
parallel medium 

Consider now a medium which extem Is infinitely in the 
+z direction and -x and -y directions mtd has a boundary 
at z=0 as shown previously for the scalar case in Fig. 2 with 
z•,•o. Let the intensity be invariant unde• translation in the 
x and y directions. The time dependence L, retained for now. 
Thus the intensity varies only with z,t, it =cos 0, and • as 
measured from the x axis toward the y axi ;. The URTE then 
reduces to 

e9l(z,t,it,qS) c•l(z,t,it,qS) 
it 8z •-c-t - + •l(•'-v)l(z't'la'4) - 

=-- J Jo 
(46) 

The depth dependence is nondimensi.nalized by defin- 
ing the transverse ultrasonic depth (analogous to optical 
depth in the classical theory) as 

ß = rpc r dz. (47) 
o 

For a homogeneous medium sr r is constan• so that r= rprrz. 
Thus the depth is measured in units of ir verse shear-wave 
attenuation. For a homogeneous medium a dimensionless 
time variable is similarly defined as •= rlc:.•rt. Time is now 
measured in units of the mean time betwe m shear ray scat- 
terings. These dimensionless variables gi,'e the nondimen- 
sional URTE 

ø3-1(T'•'it'•) {-e -1 a!(f'•'/•'•) '{-(•4' 0)!(T,•,it,•j• ) 
1 f+l f2•r 

4•.• r -] •P(/z,•6;it',4')/(r, e ' 
(48) 

where 

c• 0 0 0 0 

0 Cr 0 0 0 

0 0 c r 0 0 

0 0 0 c r 0 
0 0 0 0 c 

1 

• 0 0 0 

0 •r 0 0 

0 0 •r 0 

0 0 0 •r 
0 0 0 0 

0 

0 

(49) 

o 
1 

b=-- 0 
KT 

The total 

o o o o 

•r o o o 

o •r o 0 

0 0 0 vr o 

o o o o •r 

extinction coefficient o', which is the sum of 
the scattering and absorption coefficients is now defined for 
later use. This coefficient also has a nondimensional counter- 

part 6'. These new variables are 

•rL/r = •L/r+ vur , &L/r =•rL/r/•r, (50) 

where the LIT implies that this relation holds for either mode 
but the nondimensionalizafion is done with respect to the 
transverse scattering coefficient t( r. If we now concentrate 
on the steady-state problem, the time derivative term may be 
neglected. For a harmonic plane-wave incident at the surface 
the boundary conditions are 

/0'= o,it > o, 4,)= a(4- 4,o), 
(51) 

= 0, 

where _F 0 is the amplitude vector of the incident fluxes in the 
(it0,d0) direction. The second boundary condition is the ra- 
diation boundary condition at infinity. Note that the boundary 
conditions are split in their it dependence. 

The above homogeneous boundary-value problem 
(BVP) with nonhomogeneous boundary conditions is turned 
into a nonhomogeneous B VP with homogeneous boundary 
conditions by the following method (see Ishimaru, z3 for the 
scalar case and lshimaru, z9 for the electromagnetic vector 
case). Consider the intensity vector to be composed of two 
parts--the original pulse attenuated (reduced incident inten- 
sity in the radiative transfer literature), -/•i and the diffuse 
intensity,/-d which has been scattered at least once. The re- 
duced incident intensity is 

e-b• r/tz_l_ 
01 Fsvo 

Fsi•o[ 

x ,5(it- ito) $( qo- Cko), (52) 
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where the 0 subscript indicates the incident intensity. The 
incident Stokes vector given by Eq. (52) is just a combina- 
tion of incident longitudinal and transverse waves in the 
(/-•0,•) direction attenuating through the depth due to both 
scattering and absorption. Then if _/=_/riq-_/a is substituted 
into the steady-state version of Eq. (48), we find 

( + z, ) 

X/_a ( r,/.t', 'b' )d/x 'd•b' + _SL (/-t, •b;/x0, •b0)e - aL`r/ix0 

+ S-r(•, &; •0, qbo)e - Or`r/ix0 (53) 

to be the equation governing the diffuse intensity, where 

1 

S-œ(/•'•;/•ø'•bø) = 4rrK• --P(/z'•b;/•ø'•ø) 

(54) 

0 

1 Fsvø 
- 4.rrKr --P(/'t,•b;/Xo,•bo) FsHo , Uo 

V0 

represent sources of diffuse intensity. The diffuse intensity 
has the homogeneous boundary conditions 

(55) 

The d subscript on the diffuse intensity is now dropped. 
The two source terms, S_ L and _S r, in Eq. (53) represent the 
incident intensity that has been scattered once, while the in- 
tegral in Eq. (53) represents all scatterings of two or more. 
The singly scattered solution is of interest for comparison 
with the full multiply scattered intensity and is discussed in 
the next subsection. 

H. Singly scaRered solution 

The equation governing the singly scattered intensity is 
Eq. (53) with the integral term removed: 

+ - (•+ •)l(r, lx, O) 

1 
= - S_L(/x, 4•;/x0, •bo)e- •`r/ixo 

1 
q- -- S- T( Idb, q•; /'gO, Oho)e-at`r/ixø. (56) 

This vector equation has the same form as the scalar equa- 
tion, 

dl(r) 
+ = g(r), (57) 

where g(r) represents the source function. Equation (57) has 
a general solution of the form, 37 

I(r)=ce-•`r+e -• e a`r g(r')dr', (58) 

with c determined by the boundary conditions. It is conve- 
nient to distinguish the upward moving intensity, I- (for 
/x<0) from the downward intensity, I + (for/x>0). The sin- 
gly scattered intensity, I-, in the upward direction at any 
depth r comes solely from the medium below it. The down- 
ward intensity I + comes from the medium above r. Thus 

/x<0, 

(59) 

I+=c+ e-I•l`r+e-I•l`rfo•e+l•l`r'g(r')dr', /x>0, 
where c and c + are determined from the boundary condi- 
tions. Because the downward intensity I + is zero at the upper 
surface and the upward intensity I- is zero at infinity, both of 
these coefficients vanish. 

Equations (59) describe the singly scattered field in a 
scalar RTE. Because, in the URTE, "a" depends on wave 
type, it is convenient to decompose the solution into longi- 
tudinal and transverse types. Thus the following definitions 
are in order. The forcing terms, S_t and S_ r, are decomposed 
into their longitudinal and transverse parts as 

[S_•rJ' - [s-rrJ' (60) 
where the scalars Srr and Srœ are the longitudinal compo- 
nents and the vectors S-LT and S-TT are the four transverse 
components of the forcing terms. The intensity is similarly 
decomposed as 

I= _i r . 
From Eqs. (59), we write 

+ e -grLr/Ix for, © - _ lœ(r'lz'ck)= ̀ r e+*•`r'/ix[Sœœe-*œ`r'/ixø 
+ Srœe-ar`r' /ixo]dr ', (62) 

where the limits of integration are (0, r) for I•- and (r,•) for 
I[. The integrations are performed giving the singly scat- 
tered longitudinal intensity, 

1 ( e - b•`r/Ixo 
- ) 

½-(rrr/ix o 

q-STt (•.T/i. gO_•.L/i• ) ' 
(63) 

1 ( e-b•`r/ix--e -bœ`r/Ixø l•(r,/•>0,&)=• S•r (6'r/go-6'r/g) 

e - •L 'r/Ix 
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The transverse part of the singly scattere:l intensities !r is 
similarly 

I ( e-•L r -/r(•"P<O'•)=-• S-LT 

- 
½ - O•T•./p. o 

+S_rr (br/txo- br/4)' ' 

+ 1 ( e-br•/P--e -bL•/po 
e- 6r•lg-- e b .•1• o • (64) 

•e total singly scattered intensity is the supe•osition 
of the longitudinal and transverse compom :nts and is a func- 
tion of the Mueller matrix and the scattcri •g and absorption 
coefficients. Comparison of the singly •atl ered solution with 
the full solution provides a measure of th: amount of mul- 
tiple scattering •ur•ng. One could formally write out other 
terms defining the double scatter, triple sc• ttcr, etc., bul only 
the singly •attercd intensity can be expressed in simple 
closed fo• for a general •. 

II. SCATTERING BY A SPHERICAL OB •TACLE IN AN 
ISOTROPIC SOLID 

In order to solve the URTE, the Mucl cr matrix P must 
be specified in accordance with the scatte'ing nature of the 
medium. This section is devoted to derivin ,• the Mueller ma- 
trix for spherical obstacles contained in • n isotropic solid. 
The derivation of F is first presented in t :rms of Legendre 
polynomial expansions representing the s zattered displace- 
ments. Then the Mueller matrix is constructed from •F using 
Eq. (30) with the two rotation matrices. 

An exact solution for the scattered d splacements of a 
linearly polarized electromagnetic wave im ident on a spheri- 
cal scatterer was found by Mie N in 1908. The Mie theory has 
since been used by many authors 23'26'33 to :lefine the scatter- 
ing from a sphere in terms of the Stokes p:trameters. A simi- 
lar solution for an arbitrary elastic wave incident on a sphere 
can be found by decomposing the inciden• wave into a lon- 
gitudinal wave and a transverse wave, each scattering sepa- 
rately. The scattered Stokes vector can be ft,und for each case 
and the two solutions superposed to give the general case. 
Mathematically, this decomposition is exp• essed as 

1 1 

Is = • F[i = r--'l [F-LILi + _Fr!n] 

1 lxi 
+G ty. , (65) 

Ui 
Vi ,• 

where ._F L and __F r are the scattering mattic :s due to incident 
longitudinal and transverse waves, respecti,,ely, and ILi, l,a, 
lvi, Ui and V• are the incident Stokes part meters defined in 
the local coordinate system. Since the elastic Stokes param- 
eters depend on the complex displacement amplitudes, one 

x 

FIG. 6. Geometry for the scattering of an incident longitudinal or transverse 
wave?om a spherical scatterer. The scattered waves are defined in the •, •), 
and 4' directions. 

needs to calculate the scattered displacement fields given an 
incident displacement field. The longitudinal scattering ma- 
trix is found with help from Ying and Truel131 and the trans- 
verse scattering matrix is found using the article by Eins- 
pruch et al. 32 

A. Scattering of an incident longitudinal wave 

The scattering of an elastic longitudinal wave from a 
spherical scatterer was solved by Ying and Truell 3• to find 
the scattering cross section defined as the ratio of the scat- 
tered energy to the incident energy. Their work is now recast 
into a radiative transfer form involving Stokes parameters for 
substitution into the URTE. They considered a unit displace- 
ment amplitude incident plane longitudinal wave propagat- 
ing in the z direction and impinging on a sphere located at 
the origin as shown in Fig. 6. The scattered field's, 

%=V•b•+Vx\ 30 1' (66) 
displacement potentials were expanded as 

•b•= • A•h,•(krr)P,,(cos 0), 
m=0 

(67) 

[Is= • Bmh,n(krr)P,.(cos 

where kL=to/cr and kr=to/c r are the longitudinal and 
transrede wavenumbers, respectively, h• the mth order, 
spherical Hankel function, and P• is the mth degree •g- 
endre •iynomial, with the angle • defined as the angle 
bc•een the incident wave's propagation direction and that 
of the obse•ation position in the direction of the scattered 
wave. •e A•'s and Bm'S have units of length and are found 
by considering the appropriate boundary conditions at •e 
surface of the sphere at r=a. Ying and Truell calculated 
these coefficients for an isotropically elastic sphere, a spheri- 
cal cavity, and a rigid sphere; they are treated here as known 
quantities. 

Our goal is to find the scalered elastic Stokes par•- 
eters in terms of the incident Stokes parameters. Using the 
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potentials given by Eq. (67), and approximating the Hankel 
function 26 for kr>>l we calculate the scattered displace- 
ments, 

where X=cos O and Eqs. (68) serve to define the functions 
f00 in terms of the field scattering coefficients A and B. 
Note that S,s is zero because of the symmetry of both the 
scatterer and the incident wave. Inasmuch as we have as- 

sumed kr>>l, we have limited the applicability of the results 
of this section to cases in which successive scattering events 
are separated by distances large compared with 1/k. Similar 
restrictions, in the form a/kml, have been noted elsewhereff 

Using the definitions of the elastic Stokes parameters in 
Eq. (14), we find that the scattered Stokes parameters are 

p0)3 2 10(03 
IL--•-[ Isr•l =2--•r 2 IfL(x)l 2, 

(69) 
100)3 2 /2}0)3 

Iy=5 r [sol IfLy(x)12' 
Thus the scattered Stokes vector is 

p0)3 

Ifr(x)[ 2 
0 

0 

0 

(70) 

The incident Stokes vector for a unit amplitude longitudinal 
wave is 

•O0)3 00 (71) 

The longitudinal portion of the scattering matrix from Eq. 
(65) is therefore 

If•(x)l 2 o o o o' 
0 0 0 0 0 

kr 

_F_r= •rrlfry(X)12 0 0 0 0 (72) 
0 0 0 0 0 

0 0 0 0 0 

B. Scattering of an incident transverse wave 

Einspruch et al. 32 (EWT) calculated the scattering cross 
section for a unit amplitude plane transverse wave, polarized 

in the x direction, incident on a sphere. The scattering geom- 
etry is shown in Fig. 6. Because of the polarization of the 
incident shear wave there is no longer azimuthal symmetry 
and the three displacement components of the vector Helm- 
holtz equation do not decouple. Following Morse and 
Feshbach, 38 they obtain scattered displacements of the form 

Srs= E COS •bplm[bmAl(r)+dmA2(r)], 
m=l 

o• cos •b [ ( rn 1 SOs= E • amelmBl(r) + •---•'Pm+l rn=l 

m+l 

m 
m-1 [bmB2(r)+dmB3(r)], (73) 

• sinqb[ (m • $(bs = E • tim • Pm+l m=l 

rn+l p• )Dl(r)+ P•[bmD2(r ) m m-1 

+dmD3(r)]], 
where P} is the first-order mth degree Legendre polynomial 
of X=cos {9, and a•n, bin, and dm are coefficients found from 
considering boundary conditions at the surface of the sphere 
r = a. These coefficients are dimensionless and are given ex- 
plicitly by EWT for a rigid sphere, a spherical cavity, an 
elastic sphere, and a fluid-filled cavity and will be considered 
knowns throughout this work. The functions A, B, and D are 
given by EWT in terms of spherical Hankel functions and are 
not repeated here. 

Again, we approximate the Hankel function for kr>>l to 
obtain the far-field displacements, 

I 1 • (2m+ 1) 
Srs= COS • -- e ikLr E •L dmPm r m(m+l) m=l 

=COS qb 1• eik•rfyL(X) ' 

SOs=COS 

+bin( 
= COS 

o, i [ (2re+l) 1 eikrrE mr sin © ampere rn(m+l) 

• Pm+l m m-1 
1 

-- eit•rrfy(x), (74) 

sin •b 1 eikr r E i m 1 r kr sin • am •- Pm+l m=l 

(2m+l)] _ m +•l p• -• OmVlm rn m-1 

1 ei&rrf•(x) ' = sin •b 7 
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wherein the f functions are defined. It sl•ould be noted that 
f•(x) and fy(X) have the same angular tependencies as S• 
and S?. given by van de Hulst 28 for Mie scattering. This is 
expected due the transverse nature of both elastic shear 
waves and electromagnetic waves. 

The case considered by EWT is no the most general 
case for incident shear waves. To fully fi•rmulate the trans- 
verse scattering matrix for the ultrasonk radiative transfer 
equation, we need to consider two orth(.gonally polarized, 
out-of.-phase shear-waves incident on the scatterer from the 
same direction. This more complex case is calculated from 
the single wave case by superposition. First consider an in- 
comin.g shear wave polarized in the x direction with ampli- 
tude a,,. This is essentially the case considered by EWT so 
the scattered displacements are 

! eilC•rfyL(X) ' Srsx=ax COS • r 

p•03 9 ,0(03 
I•:•-•-• IS.[-=2-•r 2 IfyL(x)l:(a: cos 2 ,3 

2 sin 2 qb+axay sin 2q5 cos +ay 

p•03 2 Q•3 
Ifx(X)12(a•2 sin2 4' 

+ ay 2 cos 2 qS-axay sin 2 q5 cos $), 

Ptø3 2 
tys=ST; :25rr2 Ify(x)12(a 2 cos 2 

1 

- ei•rrfy(?(), (75) Sosx=ax cos q5 r 
2 sin e ck+axay sin 2q5 cos $), (78) +ay 

1 

s,5•=ax sin q3 r ei•rrf•(x)' 

We can also examine an incoming sh ear wave polarized 
in the y direction with amplitude ay and a phase lag t• with 
respect to the x-polarized wave. The scatt •red displacements 
are shifted by the same phase and are gi• en by 

/9013 
Us='•- T Re(- s4,•s;•) 

pro 3 
_ 2 sin 2 q5 2kr• [Re(f•f;)(ax2 sin 2•b-ay 

-2a•ay cos $ cos 2rk)-Im(f•f•)(2a•ay sin 8)], 

1 

Srsy=ay sin q5-; eikLr-iSfyL(X) , 

1 

sosy=ay sin & •- e itczr i8fy(X), (76) 

1 

S•Ssy: --ay Cos •b 7 eikrr-iSfx(x)' 

pro 3 
V•:'•-37 T 2 

pro 3 
_ , 2 2&-ay 2 sin 2•b 2kr• [Im(fxf; )(a x sin 

-2axay cos 8 cos 2q3)+Re(fff•)(2a•ay sin t•)]. 

The two sets of displacements given in Eq ;. (75) and (76) are 
now added giving the total displaceinert field due to the 
incoming waves, 

Srs: Srs x -'[- Srsy 

1 

=7 eilcœrfyL(X)(ax COS q•+ay sin c•e-i8), 

Sos= Sosxq- Sosy 

1 

r ei•rrfy(X)(ax cos ,•+ay sin ,;be i*), (77) 

S ,;5s = S q3sx -Jr S cksy 

1 

r eilcrrfx(x)(ax sin t3--ay cos 75e-i•5). 

The scattered Stokes parameters are co•tstructed from the 
definitions in Eq. (14), 

The incident Stokes vector _/• in the coordinate system used 
by EWT is 

/3603 
2 

a x 
2 

ay . 
2axay cos 
2axay sin 

(79) 

The transverse scattering matrix __F r was defined with both 
incident and scattered x polarizations perpendicular to the 
plane of scattering and the y polarizations in the plane of 
scattering. However, the incident Stokes vector, _/[, given in 
Eq. (79) does not have the appropriate polarization as the 
scattered Stokes parameters given in Eqs. (78). Therefore the 
Stokes vector _/• given in Eq. (79) must be rotated an angie •b 
clockwise when viewed in the direction of increasing z. Thus 
L = ((k)l; or 
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1 0 0 0 O' 

0 cos 2 , sin 2 , « sin 2. 0 
/:)oJ 3 

[i='•-• 0 sin2 4' cos 2 4' - « sin 2. 0 
0 -sin2* sin2* cos2* 0 

0 0 0 0 1 

2 
a x 

2 (80) X ay . 
2axay cos 
2axay sin 

This gives the incident Stokes vector with I x perpendicular 
and Iy parallel to the plane of scattering as 

{ a•2sin2*+ay2cos2•-axaysin2*cos$ 1 pO3 ax 2 cos 2 *+ay 2 sin 2 *+axay sin 24 cos $ •. l-i=•-•r ax 2 sin 2*--ay 2 sin 2*--2axay cos 24 cos $l 
2axay sin $ J 

•(x) = 

(81) 

Finally, the decomposition in Eq. (65) gives us the transverse 
scattering matrix, 

o o • IhL(x)l 2 o o 
o Ih(x)l 2 o o o 

o o Ih(x)l 2 o o 
0 0 0 Re(fxf•) - Im(fxf•) 
0 0 0 Im(fxf;) Re(fxf;) 

(82)' 

C. Total scattering matrix 

The solutions from the two cases considered above are 

now superposed to give the general solution of elastic wave 
scattering from a sphere. For any incident Stokes vector _li, 
the scattered Stokes vector -/s is given by Eq. (65) where F. is 
given by the sum of F__ L and F__r, 

Ih(x)l 2 o (kr/kDlh•(x)l 2 0 0 
0 Ifx(x)l • o o o 

(kL/kr)lfLy(X)l 2 0 Ih(x)l 2 o o 
0 0 0 Re(fxf•) -Im(fxf•) 
0 0 0 Im(fxf•) Re(fxf•) 

where the scattering functions are given by the following 
expansions: 

fL(X) = Z Am(-i)mem, 
m=O 

h•(x) = 5• Bin(-' m • t) Pro, 
m=l 

1 ] (2m+ 1) 
fyL(X) = Z •LdrnPrn m(m+l)' m=l 

i [ ] (2m+l) kr s•n 0 bmPm m(m+l) fx(x) = 5• 
m=l 

+am • Pm+l m m-1 , 

(84) 

(83) 

•o i [ (2re+l) /Y(X)= • kr sin 0 amPlm m(m+l) tn•l 

-- -- Pm-1 ß +bm Pm+l m 

The scattering matrix has the form expected due to the sym- 
metry of the scatterer. 23 

D. Mueller matrix for a spherical scatterer 

The relationship between P• and F was given in Eq. (30) 
where it was stated that 9/and/• could be put in terms of/.t, 
/x', 4, and *' by examining the spherical triangle (Fig. 5) 
defined by the incident and scattered intensities and the z 
axis. Doing this and defining the four variables (r,d), (l,d), 
(d,r), and (d,l), we find 

(r,d) 1 

cos = 4i-z- 
-/•' x/1 _p•2 cos(*'- *)], 
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( l,d) • lfi-• l.t 2 
sin/3= • = ¾ l_--L- • sin(0'- •b), 

(d,r) 1 

cos v= 7rr- x 2 - 7rz'7-x 
-u,/1 _u,2 cos(,t,' - ,3)], 

(85) 

(kL/kT)lf2112 
= (kL/kT)lf3112 

2( kz /kr)Re(f 21f•) 
0 

(kr/kL)[f: 212 (k:r/kL)lfx312 
If2212 lf2312 
If3212 lf33[ 2 

2 Re(f22./•2 ) 2 Re(f23f•3) 
2 [m(f22./•2 ) 2 Im(f23f•3) 

where using the functions defined in Eq. 185) and some ad- 
ditional notation introduced by Cha •drasekhar 21 and 
Sekera, 34 we have 

fll=fœ, f12=:(r,d)fyL, f13=(l,,l)fyœ, 

f21=(d,r)fLy, f31=(d,l)fœy 

f22=(l,l)Tl +(r,r)T2, f23=-(r,l)T• +(l,r)T2 

f32=-(l,r)T• +(r,l)T2, f33=(r,r)T• +(l,l)T2 

h-xh - h-xL 

(1,l) = l`/•L'--•, 1/•2+/.z/.*' cos( 4' - qb), 

(r,r) = cos(•b' - •b) 

(/,r)=-/z' sin(O'-O), (r,l)=/z sin(O'-O) (87) 

f•(x) = E Am(-i)mpøm(X), 
m=O 

(--i)m Brnplm(X), fLy(X) = E '•1--• m=X 

d m (2rn+ 1) 

fyL(X) = E kLx/'• m(m+ l-•- 3 P•,,(X) m=l 

m=l i [ (:;m+l) 
+am Pm+i(X) rn ,,,-l(X , 

-(d,l) _ x/1-/z '2 sin y= ,/-• _• v i_--Z•- sin(0' - qS). 

Using these definitions in the rotation matrices and •F given 
in Eq. (83) for a spherical scatterer, the Mueller matrix for a 
spherical scatterer is 

( k r / kœ ) Re(f• 2f•3 ) 

Re(f22f•3) 

Re(f32f•3) 

Re(f22f33 +f23f32) 

Im(f22f33 +f23f32) 

0 

- lm(f22f•'3) 

- Im(f32f•3) 

- Im(f22/•3 - f23f•2) 

Re(f22f33- f23f32) 

(86) 

m=l i [ (2re+l) k y f• amplm(x)m(m+l) 

+b• P•+i(X)- m •-•(X , 

/./.=COS O, /./.'=COS 

X=cos O=/z/.t'+ 1-•/•-•,/1-/x '2 cos(q5'-4, ). 

The definitions of fzy and fyL have been changed 
slightly to include all the X dependence. If the longitudinal 
portion (row 1 and column 1) is neglected, P is identical in 
form to that given by Ishimaru 29 based on tl•e Mie solution. 
The symmetry properties discussed by Hovenier 39 and van 
de Hulst 26 also hold for the elastic Mueller matrix with the 
added complication of mode conversion. The dependence on 
qb'-q5 discussed previously is explicitly seen as is the fact 
that the upper left 3X3 and lower right 2X2 submatrices of 
__P are even in qS' - q5 while all other terms are odd in qS' - 0. 

From the conservation of energy relation given in Eqs. 
(38) and (39), the scattering coefficients for spherical scatter- 
ers are 

K• = gL• + g• r= •ww + •ww P2• qT 

+P31 d2 •', 

KL= 5; 2m+l 
m=O 

kL 

(88) 

1 f4•P12+P13d2p' K T= KTL 4- KTT= • ^ + • •rP2 2 

+P23+P32+P33 d2 •', 
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2m+l 

2 1 1 -- • lamlm + k• Ibmlm 

+ k•m(m+l) Idmlm ' 
The •c's defined in Eqs. (88) are equal to the single scattering 
cross sections for spheres given by Ying and Truell 3• and 
Einspmch et al. 32 divided by 4,rr, as expected. 

III. SOLUTION OF THE UFITE 

For the scalar plane-parallel RTE a number of solution 
techniques exist, some analytical and some numerical. For an 
isotropic scatterer and for a Rayleigh scatterer Chan- 
drasekhar reduced this problem to finding the solution to 
simple nonlinear integral equations. However, for the more 
complex vector radiative transfer equations which include 
polarization effects no analytical tools exist for a general 
Mueller matrix. Instead, we must examine numerical ap- 
proaches. In this paper, we consider the simple case of a 
semi-infinite homogeneous medium with the intensity invari- 
ant under x and y translations. The time-dependent problem 
will be discussed briefly but the time-dependent case will not 
be solved. Any specifications to the form of the Mueller ma- 
trix will be made when needed. Within this context the non- 

homogeneous URTE is 

1 œ+] /'2= 

-4*rKr J_] Jo 
+ s_ 4,; 

+ S_ r(/•, 4,;/Zo, 4>0, •) e- ar*/uo, (89) 
with boundary conditions 

/(z= 0,/x>0,4,)= 0, _/(z•oo,/x<0, 4,) = 0. (90) 

The boundary reflection, although very important for elastic 
wave problems, is neglected in this paper in order to mini- 
mize the complications. 

A. Temporal Fourier transform 

The time derivative is removed by defining the Fourier 
transform pair 

!(r, fl,/x,4,)= -oo !(r'•'tz'4,)e-ia• 

lf+ !(r,•,tx,4,)= • !(r, fl,tz,4,)e iag dfl. 
The transformed URTE then becomes 

(91) 

-4'n'•cr -x z .(/z,4,;/z , )i(r, fl,lz',4,')dtx'd4,' 

+ S_-•(/z, 4,;/x0,4,, fl)e -6L•/•o 

+ S_-r(/.t, 4,;/Xo, 4,0 ,•l)e- •r'/uo. (92) 

Since we will be considering the steady-state case, 1• is 
set to zero at this time and the tilde above _/, _S•, S_ r dropped. 
If the time domain solution were needed, the transformed 
URTE could be solved in frequency space as outlined below 
for each 1• and the solution then transformed back to the 

time domain. 

B. Azimuthal Fourier decomposition 

For the Mueller matrix constructed for spherical scatter- 
ers it is easy to see that __P depends on 4' and 4,' only by 
means of the combination 4,'-4, as mentioned above. This 
dependence lends itself to a Fourier expansion in 4,'-4, and 
alecoupling of the Fourier components. This procedure is also 
valid whenever __P can be constructed using the rotation ma- 
trices and F is only a function of cos O. This property is 
expected for all statistically axisymmetric media. We first 
expand the Mueller matrix in a finite number of Fourier 
terms, 

+M 

__P(/z,/x',4,'-4,): •] __Pm(/Z,/X )e ,m(• qb), (93) 

so that 

__P m ( , ' ) -- . [ , ll, ,(]) --4,) 

The Stokes vector is also expanded 

+L 

_/(r,/x,4,)= • !t( r, tx)e i•(•'-4'ø), 
l=-L 

(94) 

(95) 

where 4,0 may be set to zero without loss of generality. 
Substitution into the transformed URTE gives for each 
m=-M...+M, 

o9_im( r,l.z) 
+ ( •+ t•)!m( r, la,) 

i f +11 - 2,r - 
+ S_Lm(tX,tXo)e-bœ r/3to+ S_Tm(l•,tzo)e -brr/•ø, (96) 

where the orthogonality of the Fourier series terms has been 
used and 
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1 

= 5--k7r , 

1 o 1 Fsv0 

Fsuø I ' 
U0 

(97) 

We are still left with an integro-differc ntial equation that 
cannot be solved analytically for a gener. d Mueller matrix. 
Therefore a numerical method is used for its solution. 

C. Discrete ordinates method 

A variety of numerical techniques are available for solv- 
ing this set of equations including the easily implemented 
discrete ordinates method. 2•'z• In essence, the Stokes vector, 
_/,, is discretized in the direction cootdim te/x and the inte- 
gral is approximated using Gaussian quadrature. 2•'23'27 A dif- 
ferent quadrature rule could also be used: nd there has been 
much debate over which is more accurate. "? Using Gaussian 
quadrature we find the discretized URTE f)r the rnth Fourier 
component and ith direction/x i as 

+N 

i& O-l•(r)+fli•(r) -1-•- • ai_P•_l•(r) 
a, -- 2tOT •=-N 

½i - •l. rlttO -1- C i . - fi'Tr//•a (98) = •Lra½ - -- •_ Tm•_. -, 

where 

(99) 
_S(uT),-- S_(rtr), . (/xi, 

and & = • + _b and the aj's and/xj's are tht weights and divi- 
sions, respectively, of the Gaussian quadr •ture. The bound- 
ary conditions are now 

/_/,n(•'=0)=0, i>0; _//,n(•'---'•ø)=•, i<0. (100) 

This discretization is put in a form more suited for com- 
putations by defining a new vector I comaining the Stokes 
vectors for each of the directional cornpot ents 

Ira(r) = l•+•(ri], (101) 
which allows Eq. (98) to be written 

aLe(r) 
dr + W,,I,"( r)=St,"e-&trl•o+ Sime -&r•l•o, (102) 

where 

and 

q 

}-L +N 

[ 
I•-N 

1 : 
2K T 

a_• p+N,-iq 

a+N 
tL-N 

a+N p+N,+N 
i.•+ N .m 

(103) 

+N +N 

Since we have discretized the intensity in 2N directions, 
W,, is a 10NX10N matrix and I,., SL,, and ST, . are 
10NX1 column vectors. Note that the upper half (i<0) of 
I,, SL,,, and St, ,is the upward propagating intensity while 
the lower half (i>0) is the downward propagating intensity. 
The original integro-differential URTE given in Eq. (89) has 
now been reduced to an ODE with the homogeneous bound- 
ary conditions 

L+(.=0)=0, 0, 

where I• is the lower half of I," and I• is the upper half of 

The solution of Eq. (102) consists of a particular solu- 
tion I• for the two source terms, and a homogeneous solu- 
tion I•. The particular solution is given by 

I•(r) = U•e - 3•,/•,0 + H•re- 6z,/•,o, (106) 
where 

(107) 

sm, 
with D defining the 10NX 10N identity matrix. 

The homogeneous part of the discretized intensity, I•m(r), 
is a solution to the equation 

dr + (108) 
Looking for solutions of the form, 

', (109) 
we obtain an eigenvalue problem for the ruth Fourier com- 
ponent, 

(110) 
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Once the i0N distinct eigensolutions, hmn and gmn (n 
= 1,2,3,..., 1 ON) of Wm are found, the homogeneous solu- 
tion is written as a linear combination of them, 

10N 

I•(r)= • Cmngmne -•'•"•, (111) 

and the full solution is 

10N 

Ira(r)= • Cmngm•e-X'•"• + lt[e -arm'ø 
n=l 

+ Hrm e- ar*/•o, (112) 
where the coefficients Cm• are determined from the bound- 
ary conditions given in Eq. (105). For the semi-infinite me- 
dium considered here there is no upward radiation incident at 
r=o•. From this radiation boundary condition, one concludes 
that 

Cmn=OV)kmn<O. (113) 

For the rest of the Cmn'S we must separate the upward and 
downward propagating intensities. At the surface r=0, we 
find 

I2 n = 1 
(H4) 

The remaining boundary condition implies that 
5N 

+ Cmngmn + Hm 
n=l 

(115) 

or 

+ttT+I GmCm =-[uLm + --m a, 

=-G m [It m +H m ], Cm -1 L+ r+ (116) 
where Eqs. (115) and (116) define the matrix G m and vector 
Cm. The eigenvalue problem given in Eq. (110) has some 
interesting properties due to the symmetries of W m as dis- 
cussed by Ishimaru 23 for the scalar case. For instance, all 
eigenvalues will occur in _+ pairs and without absorption one 
of these pairs will be identically zero corresponding to the 
diffusion limit. 

IV. RESULTS 

The above equations for the discretized, steady-state, 
x-y independent URTE were solved for the case of ran- 
domly distributed spherical voids. Results for two different 
normally incident waves are presented. Both of these prob- 
lems are axisymmetric. Results for a normally incident lon- 
gitudinal wave are presented first followed by results for two 
incoherent, orthogonally polarized shear waves at normal in- 
cidence. The medium is assumed to have a wave-speed ratio 
of CL/CT=2. The absorption rate per wavelength for the two 
modes is set equal: 

CL VL = CrY T . (117) 

(a) (b) 

FIG. 7. Polar plot ofP n [(a) kta =0.05, (b) kta =1.5]. The actual amplitude 
for (a) is 108 times smaller than the amplitude for (b). 

The intensity components are examined as functions of 
angle, depth into the medium, and absorption. Results will be 
presented in terms of the nondimensional transverse absorp- 
tion (absorption rate per scattering rate), br=vr/g r. 
Frequency-dependent absorption was not considered here but 
would be necessary for any comparison with real materials. 
High absorption corresponds to early times where single 
scattering dominates and multiple scattering effects are 
largely unimportant. For this reason, singly scattered results 
will be used for comparison in some cases. The equations 
were solved on a SUN Sparcstation using various IMSL sub- 
routines (Eigen solver, linear equation solver, etc.) with 
N=16. The number of terms used in the expansions [Eqs. 
(87)] of the scattering functions was frequency dependent, 
being increased until convergence was attained. 

To show that the model describes the full multiple scat- 
tering range, the approach to the diffusion limit deep within 
the medium also is presented. In this limit the field becomes 
very nearly isotropic and, due to equipartitioning of energy, 
the relationship between the intensity components should 
be 36 

Isv=Isn = (ct/Cr)2I•. (118) 

A. Longitudinal wave normally incident 

A longitudinal wave at normal incidence (/.to=l) corre- 
sponds to an axisymmetric disturbance. Thus only one Fou- 
rier series term is needed (m--0). In this case, the U and V 
components decouple due to the &'-4• dependence of P 
mentioned earlier. The transverse forcing term S_r0 is zero 
and the longitudinal one is (assuming unit flux of the inci- 
dent wave) 

Pll O(/'z,/'•o = 1)] 
I P•l',O(/•,•Zo = 1) ! 

S_œo = •--• r P31.0(•/-60 = 1) l , (119) 
where 

lfo" p t t t q,o(/•,/x )=•-• P q ( IZ , lZ , c/b - & ) d ( d/ - ck ) , 
(120) 

is the zeroth-order Fourier expansion of the ijth component 
of P. 

For an incident longitudinal wave, the L-L scattering 
plays a primary role. The angular dependence of Pn governs 
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x=l.O 

FIG. 8. Angular intensity variation as a function of •ondimensional depth 
for a normally incident longitudinal wave at two freq Jencies [(a)/era =0.1, 
(b) kra = 3.0] without absorption for the three mod, s 1L (solid line}, lsv 
(small dash), and is. (large dash}. 

this scattering. A polar plot of Pit is showr in Fig. 7 for two 
frequencies (kLa =0.05, 1.5) with the incident wave imping- 
ing on the spherical void from the left. The backward and 
forward scattering tendencies are obvious. Fhe actual ampli- 
tude of the low-frequency graph [Fig. 71a)] is 108 times 
smaller than the amplitude for the high-freqaency graph [Fig. 
7(b)] corresponding to the much smaller scattering cross sec- 
tion for long wavelength scattering. 

The approach to the isotropic diffusion limit is shown in 
Fig. 8. The fingular dependencies of the tt tee modes of in- 
tensity are shown at various nondimensional depths in this 
nonabsorbing medium. The homogeneous boundary condi- 
tion at the surface which allows for no dow award intensity is 
explicitly seen at r=0. The horizontal line at each depth is 
the/.t=0 reference line. It is included so that the backward or 
forward tendency of the intensity is appar,:nt. When a non- 
dimensional depth of 5 is reached the intensity fields are 
nearly isotropic and have the relation given in Eq. (118), thus 
verifying the numerics. For low frequencie.', the longitudinal 
wave scattering is predominantly backscatter (see Fig. 7). 
This backscatter dominance is also evidenc :d by the large ! L 
lobe above the/z=0 line in Fig. 8 for kra = 0.1. The forward 
scattering dominance at kra=3.0 is also seen at shallow 
depths. The numerical values of the intensities in the diffu- 
sion limit are quite different for the two frequencies. This 
difference is the result of the variation ir the ratio of the 

longitudinal scattering cross section to transverse scattering 
cross section with frequency. At lower frecuencies this ratio 
is smaller, allowing more of the incident ei ergy to penetrate 
deeper into the medium. 

When absorption is added to the med• um the approach 
to the singly scattered solution can be orserred. Figure 9 
shows the outward intensity at the surface as a function of 

06 

0.4 

Angle from vertical (Deg.) 

0 ' 0 ' $' C 
70 •o 90 

FIG. 9. Outward surface intensity without absorption for k•a =0.1. The full 
solution is denoted by the solid lines and the singly scattered solution by the 
dashed lines for the three modes IL (circle), Isv {square), Is. {diamond). 

direction for the full solution and for the singly scattered 
solution, both for the case of no absorption. In this case, the 
full solution differs markedly from that of the singly scat- 
tered, thus displaying the high amount of multiple scattering 
occurring. The intensity peak for Isv at 50 ø for the full so- 
lution does not coincide with that of the lsv peak in the 
singly scattered solution at 60 ø . Thus the multiple scattering 
has shifted this angular peak. When a moderate amount of 
absorption is added to the medium (br=0.111) the qualita- 
tive nature of the full solution is more similar to the singly 
scattered solution as shown in Fig. 10. However, the quanti- 
tative difference is still quite large. When a large amount of 
absorption is introduced (br=4) as shown in Fig. 11 the 
convergence of the two solutions is apparent. 

At higher frequencies (kra=3.0) the effect of the for- 
ward scattering can be seen. The outward surface intensity 
for this frequency can be seen in Figs. 12 and 13 for no 
absorption and moderate absorption (br=0.111), respec- 
tively. 

An experiment to measure the angular dependence of 
the intensity may not be convenient. Alternatively, we can 

O3 

0.2 < 

I I • '• . • r • • '0 I 0 , 0 I 
0 i 0 20 30 4o 30 eo 70 

Angle from verlical (Deg.) 

FIG. 10. Outward surface intensity with moderate absorption (br=0.111) 
for kr a =0.1. Line styles and symbols are as in Fig. 9. 
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Ansle from vertical (D•g.) 

9O 

0.4 

- - o .... _¾•._- o -- o -o- - -o 

• -' ' • ' C ' 0 • 0' 0 '0 • 0 ' 0 • O 

Angle from vertical (Deg.) 

FIG. 11. Outward surface intcnsity with high absorption (fir=4) for 
kr a =0.1. Linc styles and symbols are as in Fig. 9. 

examine the outward backscattered intensity normal to the 
surface as a function of ultrasonic frequency •o. This type of 
measurement is made quite frequently for polycrystalline mi- 
crostructural characterization. 14'•6 Figure 14 depicts the 
backscattered longitudinal intensity for 5 different nondi- 
mensional transverse absorption rates. A spline fit has been 
used to smooth the data over the frequency range. For the 
frequency band shown, kra =0.1-4.0, a peak in the longitu- 
dinal backscattered intensity is observed at around kra = 1.75 
for all nonzero absorption levels. This type of information 
could possibly be used for experimentally determining nomi- 
nal scatterer size. 

B. Two incoherent, orthogonally polarized, transverse 
waves normally incident 

Axisymmetric cases (m=0 only) for incident shear 
waves can also be examined. Electromagnetic researchers 
often examine normally incident circularly polarized light in 
which Fsv o =FsH o = 1/2, U=0, and V= +-1 with the sign de- 
pendent upon the sense of the circular polarization of the 
incident field. Another axisymmetric case is that of two or- 

FIG. 13. Outward surface intensity with moderate absorption (br=0.111) 
for kra =3.0. Line styles and symbols are as in Fig. 9. 

thogonal incoherent transverse waves at normal incidence in 
which Fsvo=Fst•o = 1/2, and U = V= 0. This case is analo- 
gous to that of "natural light" in electromagnetic waves. For 
this case S_Lo=0 and assuming unit flux of the incident field, 

P12,0(/•,/•o = 1) + P13,0(/.•,•o = 1)' 
P22.0(p.,/.to = 1 ) + P23,0(/.t,p•o = 1) 
P32,0(•,//,0 = 1)+P33,0(/•,•0 = 1) 

0 

0 

(121) 

where Pi/,o is given in Eq. (120). 
Polar plots can be made for the diffuse intensity in this 

case also. The depth-dependent nature of the intensity is seen 
in Fig. 15, drawn at the same scale as Fig. 8. The approach to 
the diffusion limit is also seen for this case. Again the low- 
frequency case has the expected backscatter dominance and 
the high-frequency case the forward scatter dominance. The 
lobed nature of the scattering for the shear-shear modes is 
apparent for the higher frequency. Also a much smaller back- 
scattered longitudinal intensity is seen for this type of inci- 
dent field. 

O9 

0.7 

0.4 

o2 I 

An•Ic from vertical (D•g.) 

FIG. 12. Outward surface intensity withoul absorption for kra=3.0. Line 
styles and symbols are as in Fig. 9. 

0.6 

0.5 

0.4 

0.3 

½2 

0.1 

FIG. 14. Longitudinal backscattered (/•=-1) intensity for a normally inci- 
dent longitudinal wave at five absorption rates: {a) no absorption, (b) 
br=O.00t, (c) fir=O.0IOl, (d) br=O.111 , and (e) br=l. 
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FIG. 15. Angular intensity variation as a function of [ ondimensional depth 
for two normally incident orthogonally polarized trat sverse waves at two 
frequencies [(a) kra=0.1, (b) kra=3.0 ] without abs)rption for the three 
modes ! L (solid line), lsv (small dash), and ls• (large dash). 

C. Discussion 

The results presented above serve mainly to illustrate the 
robustness and plausibility of simple URTE calculations. It 
may well be that practical applications of t]e URTE and its 
solutions will demand solutions in the time domain, and so- 
lutions for incident fields with significant x and y depen- 
dence. Toward that end, we note here that th: URTE given in 
Eq. (25) is invariant under translations in x y, and t and so 
Fourier transforms (or Hankel transforms in an axisymmetric 
case) provide potentially viable approaches One anticipates 
fairly smooth dependencies on x, y, and t and so a small 
number of Fourier components may suffice. In the case of a 
medium with statistical inhomogeneity, one •nay be forced to 
solve the URTE using finite elements. 

The current results are also confined to the case of 

mono-dispersed discrete spherical scatterers. The URTE is 
derived elsewhere for the more important NDE case of a 
polycrystal. nø We anticipate a polycrystalline URTE with es- 
sentially the same structure as Eq. (25). 

V. CONCLUSIONS 

A radiative transfer equation has been d :rived for elastic 
waves in a scattering and absorbing medium containing dis- 
crete uncorrelated scatterers. Results have b{ en presented for 
a semi-infinite medium containing rand(mly distributed 
spherical voids illuminated by steady-state plane waves at 
normal incidence. 

The ultrasonic radiative transfer equation governs the 
longitudinal and both transverse diffuse int msities over the 
entire multiple scattering regime from single scattering to the 
diffusion limit. It thus contains materials information un- 

available to previous single scattering the.ties. Therefore, 
this approach is expected to have much wider applicability to 

materials characterization of random media and increase our 

understanding of the ultrasonic multiple scattering process. 
Experimental corroboration of this theory is a next logi- 

cal step. Current experimental work with diffuse intensity, 
used to corroborate single scattering theories, is usually con- 
ducted at normal incidence in a water bath in either the time 

or frequency domain. One can envision similar experiments 
within the context of the present theory. Comparisons with 
such experiments will require solutions of the present equa- 
tions in more complicated geometries. One particularly notes 
the importance of modeling liquid-solid interface effects and 
obtaining solutions in the time domain. Such extensions are 
not likely to be difficult. 

Ultrasonic radiative transfer theory has potential appli- 
cations in a variety of materials characterization problems 
including ones in polycrystalline metals, concrete, geophys- 
ical media, composite materials, and other random media 
where scattering effects are important. 

ACKNOWLEDGMENT 

This work was sponsored by the National Science Foun- 
dation, Grant No. MSS-91-14360. 

t W. P. Mason and H. J. McSkimm, "Attenuation and scattering of high 
frequency sound waves in metals and glasses," 1. Acoust. Soc. Am. 19, 
464-473 (1947). 

2A. B. Bhatia. "Scattering of high-frequency sound waves in polycrystal- 
line materials," J. Acoust. Soc. Am. 19, 16-23 (1959). 

•E. P. Papadakis, "Scattering in polycrystalline media," Meth. Exp. Phys. 
19, 237-298 (1981). 

4D. W. Fitting and L. Adler, Ultrasonic Spectral Analysis for Nondestruc- 
tive Evaluation (Plenum, New York, 1981). 

SA. Vary, "Ultrasonic measurement of material properties," in Research 
Techniques in Nondestructive Testing V. IV, edited by R. S. Sharpe {Aca- 
demic, New York, 1980). 

6E E. Stanke and G. S. Kino, "A unified theory for elastic wave propaga- 
tion in polycrystalline materials," J. Acoust. Soc. Am. 75, 665-681 
(1984). 

?S. Hirsekom, "The scattering of ultrasonic waves by polycrystals," J. 
Acoust. Soc. Am. 72, 1021-1031 (1982). 

8V. Twersky, "Coherent scalar field in pair-correlated random distributions 
of aligned scatterers," J. Math. Phys. 18, 2468-2486 (1977). 

øL. Tsang, J. A. Kong, and T. Hubashy, "Multiple scattering of acoustic 
waves by random distribution of discrete spherical scatterers with the 
quasicrystalline and Percus-Yevick approximation," J. Acoust. Soc. Am. 
71, 552-558 (1982). 

Iøv. K. Varadan, Y. Ma, and V. V. Varadan "A multiple scattering theory for 
elastic wave propagation in discrete random media," J. Acoust. Soc. Am. 
77, 375-385 {1085}. 

uj. Sanlie and N.M. Bilgutay, "Quantitative grain size evaluation using 
ultrasonic backscattered echoes," J. Acoust. Soc. Am. 80, 1816-1824 
(1986). 

12B. Fay, "Theoretical considerations of ultrasound backscatter" (in Ger- 
man) Acusfica 28, 354-357 (1973}. 

13K. Goebbels, "Ultrasonics for microcrystalline structure examination," 
Phil. Trans. R. Soc. London Set. A 320, 161-169 (1986). 

14E J. Margetan, T. A. Gray, and R. B. Thompson, "A technique for quan- 
titatively measuring microstructurally induced ultrasonic noise," in Re- 
view of Progress in Quantitative NDE, edited by D. O. Thompson and D. 
E. Chimenti (Plenum, New York, 199l), Vol. 10, pp. 1721-1728. 

•sJ. H. Rose, "Ultrasonic backscatter from microstruclure," in Review of 
Progress in Quantitative NDE, edited by D. O. Thompson and D. E. 
Chimenti •Plenum, New York, 1992), Vol. 11, pp. 1677-1684. 

U'M. D. Russell and S. P. Neal, "Grain noise power spectrum estimation for 
weak scattering polycrystalline materials using experimentally estimated 
backscatter coefficients: normal incidence," Ultrasonics 32, 163-171 
(1994) and "Grain noise power spectrum estimation for weak scattering 
polycrystalline materials using experimentally estimated backscatter coef- 

3673 J. Acoust. Soc. Am., Vol. 96, No. 6, December 1994 d.A. Turner and R. L. Weaver: Radiative transfer of ultrasound 3673 



ficiems: oblique incidence," Ultrasonics 32, 173-180 (1994). 
]?C. B. Guo, E Holier, and K. Goebbels, "Scattering of ultrasonic waves in 

anisotropic polycrystalline metals," Acustica 59, 112-120 (1985). 
•SR. L. Weaver, "Diffusivity of ultrasound in polycrystals," 1. Mech. Phys. 

Solids 38, 55-86 (1990). 
]9R. L. Weaver, W. Sachsc, K. Green, and Y. Zhang, "Diffuse ultrasound in 

polycrystalline solids," Proceedings of UItrasonics International, Le Tou- 
quet, France, July, 1991. 

2OK. Goebbels, "Structure analysis by scattered ultrasonic radiation," in 
Research Techniques in Nondestructive Testing V. IV, edited by R. S. 
Sharpe (Academic, New York, 1980). 

2• S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960). 
2aV. V. Sobolev, A Treatise on Radiative Transfer (Van Nostrand, New Jer- 

sey, 1963). 
23 A. Ishimaru, Wave Propagation and Scattering in Random Media (Aca- 

demic, New York, 1978), Vol. 1. 
•ln the limit that scattering per wavelength is extremely strong, with at- 

tenuations per wavelength on the order of the wave number, it is interest- 
ing to note that residual phase coherence in the multiply scattered wave 
may lead to striking deviations •s from the predictions of radiative transfer 
theory. These deviations, however, are known to occur only at scattering 
strengths which are very hard to achieve in practice. 

2Sy. N. Barabanenkov and V. M. Finkel'berg, "Radiation transport equation 
for correlated scatterers," Zh. Eksp. Teor. Fiz. 53, 978-986 (1967) [Soy. 
Phys.--JETP 26, 587-591 (1968)]. 

• H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 
1981). 

27V. Kourganoff, Basic Methods in Transfer Problerrt•---Radiative Equilib- 
rium and Neutron Diffusion (Dover, New York, 1963). 

2SG. G. Stokes, "On the composition and resolution of streams of polarized 
light from different sources," Trans. Cambridge Philos. Soc. IX, 399 
(1852). 

•9A. Ishimaru and R. L. Cheung, "Transmission, backscattering, and depo- 
larization of waves in randomly distributed spherical particles," Appl. 
Opt. 21, 3792-3798 (1982). 

•øG. Mie, "Beitriige zur Optik tr/iber Meglien, speziell kolloidaler Metali6- 
sungert," Ann. Physik 330, 377-445 (1908}. 
C. F. Ying and R. Truell, "Scattering of a plane longitudinal wave by a 
spherical obstacle in an isotropically elastic solid," J. Appl. Phys. 27, 
1086-1097 (1956). 

32N. G. Einspmch, E. J. Witterholt, and R. Tinell, "Scattering of a plane 
transverse wave by a spherical obstacle in an elastic medium," J. Appl. 
Phys. 31, 806-818 (1960). 

33D. Deirmendjian, Electromagnetic Scattering on Spherical Polydisper- 
sions (American Elsevier, New York, 1969). 

•4Z. Sekera, "Scattering matrices and reciprocity relationships for various 
representations of the state of polarization," J. Opt. Soc. Am. 56, 1732- 
1740 (1966). 

35j. D. Achenbach, Wave Propagation in Elastic Solids (Elsevier, New York, 
1984). 

3•R. L. Weaver, "On diffuse waves in solid media," J. Acoust. Soc. Am. 71, 
1608-1609 (1982). 

37W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and 
Boundary Value Problems (Wiley, New York, 1977). 

3ap. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw 
Hill, New York, 1953). 

39j. W. Hovenier, "Symmetry relationships for scaReting of polarized light 
in a slab of randomly oriented particles," J. Atmos. Sci. 26, 488-499 
(1969). 

4oj. A. Turner and R. L Weaver, "Radiative transfer and multiple scattering 
of diffuse ultrasound in polycrystalline media," J. Acoust. Soc. Am. 96, 
3675-3683 (1994). 

3674 d. Acoust. Soc. Am., Vol. 96, No. 6, December 1994 J.A. Turner and R. L. Weaver: Radiative transfer of ultrasound 3674 


	Radiative transfer of ultrasound
	

	Radiative Transfer of Ultrasound

