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Application of Coulomb wave function discrete variable representation
to atomic systems in strong laser fields

Liang-You Penga� and Anthony F. Starace
Department of Physics and Astronomy, The University of Nebraska-Lincoln, Nebraska 68588-0111

�Received 20 July 2006; accepted 5 September 2006; published online 19 October 2006�

We present an efficient and accurate grid method for solving the time-dependent Schrödinger
equation for an atomic system interacting with an intense laser pulse. Instead of the usual finite
difference �FD� method, the radial coordinate is discretized using the discrete variable
representation �DVR� constructed from Coulomb wave functions. For an accurate description of the
ionization dynamics of atomic systems, the Coulomb wave function discrete variable representation
�CWDVR� method needs three to ten times fewer grid points than the FD method. The resultant grid
points of the CWDVR are distributed unevenly so that one has a finer grid near the origin and a
coarser one at larger distances. The other important advantage of the CWDVR method is that it
treats the Coulomb singularity accurately and gives a good representation of continuum wave
functions. The time propagation of the wave function is implemented using the well-known Arnoldi
method. As examples, the present method is applied to multiphoton ionization of both the H atom
and the H− ion in intense laser fields. The short-time excitation and ionization dynamics of H by an
abruptly introduced static electric field is also investigated. For a wide range of field parameters,
ionization rates calculated using the present method are in excellent agreement with those from
other accurate theoretical calculations. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2358351�

I. INTRODUCTION

With the rapid advance of modern laser technologies,
lasers of various frequencies and different intensities are rou-
tinely available in many laboratories.1 Studies of the highly
nonlinear interaction of matter with strong laser pulses have
revealed many interesting features of physical and chemical
processes.2 New technologies based on these features are un-
der rapid development and new frontiers of science have
been opened.3 Newly developed light sources have, for the
first time, enabled physicists and chemists to trace and image
the electronic motion within atoms and molecules on an at-
tosecond time scale.4

However, the multiple reaction paths and the many-body
nature of these highly nonlinear and ultrafast processes con-
tribute to the complexities of theoretical interpretations of
experimental observations. The high intensities of the ap-
plied lasers make perturbation theory no longer applicable. It
is necessary to treat the Coulomb interaction and the inter-
action with the laser field on an equal footing. Many theo-
retical methods have been designed to describe different
kinds of phenomena. To mention just a few, these methods
range from the strong field approximation,5 the intense-field
many-body S-matrix theory,6 the R-matrix Floquet method,7

the generalized Floquet theory,8 the time-dependent density
functional theory,9 and the direct numerical integration of the
time-dependent Schrödinger equation.10–13 Compared to
other methods, the direct solution of the time-dependent
Schrödinger equation �TDSE� has proved to be very versatile

and fruitful in explaining and predicting many experimental
measurements for a wide range of laser parameters. Espe-
cially when the laser pulse length approaches the few-cycle
or subfemtosecond regime, the numerical solution of the
TDSE becomes even more appropriate and efficient.

Nevertheless, the accurate integration of the multidimen-
sional TDSE is very computationally demanding. Even the
most powerful supercomputer nowadays has only made the
ab initio integration of the two-electron atom possible.14

Therefore, many approximate theoretical models �such as
reduced-dimension models and soft Coulomb potential mod-
els� have played an important role in understanding some of
the main physical mechanisms underlying strong field
phenomena.15 On the other hand, it is questionable to use
these models to simulate experiments quantitatively. In par-
ticular, the dynamical motion in three dimensions is not
merely a trivial extension of what happens in two
dimensions.16 Also, the physics of model systems using the
soft Coulomb potential is very sensitive to the softening
parameters.17 Therefore, in order to produce quantitatively
correct results, it is necessary to solve the TDSE in its full
dimensionality and to use the real Coulomb potential, with
its singularity treated properly.18 This is especially crucial
when the singularity plays an important role in the problem
at hand.16,19

In the present paper, we present an accurate and efficient
method to solve the TDSE for multiphoton ionization of a
hydrogenic atom or ion. Unlike the usual finite difference
�FD� discretization of the radial coordinate,10,11 the present
method discretizes the radial coordinate using the discrete
variable representation �DVR� constructed from the positivea�Electronic mail: lypeng@unlserve.unl.edu
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energy Coulomb wave function. We show that the Coulomb
wave function DVR �CWDVR� is able to treat the Coulomb
singularity naturally and provide a good representation of
continuum wave functions. The other advantage of the
CWDVR is that it needs three to ten times fewer grid points
than the FD method because of the uneven distribution of the
grid points: one has a coarser grid at larger distances, where
the Coulomb potential plays a less important role and the
wave functions oscillate less rapidly. Because the CWDVR
is economical, it is a promising step towards a more efficient
treatment of many-electron systems, which are extremely
computationally demanding.14 In addition, many strong field
processes, such as above threshold ionization �ATI�, high-
order harmonic generation �HHG�, dynamical stabilization,
etc., can be well understood within a single active electron
�SAE� picture. Therefore, the hydrogenic atom or ion system
serves as a prototype for spherically symmetric atomic sys-
tems interacting with intense laser fields.

The rest of this paper is organized as follows. In Sec. II,
after a brief introduction to the general DVR method, we
provide details of the CWDVR. In Sec. III we apply the
CWDVR to discretize the TDSE for one-electron atomic sys-
tems in intense laser fields. In Sec. IV, we present some
results for multiphoton ionization of H and H− as well as for
the short-time dynamics of H in a static electric field. We
show that ionization rates calculated by the present economi-
cal and accurate method are in excellent agreement with
other accurate theoretical calculations. Finally, in Sec. V, we
present some conclusions. Atomic units �a.u.� are used
throughout this paper unless otherwise specified.

II. COULOMB WAVE FUNCTION DVR

The DVR method has its origin in the transformation
method devised by Harris et al.20 for calculating matrix ele-
ments of complicated potential functions within a truncated
basis set. It was further developed by Dickinson and
Certain,21 who showed the relationship between the transfor-
mation method and the Gaussian quadrature rule for orthogo-
nal polynomials. Light and co-workers22 first explicitly used
the DVR method as a basis representation for quantum prob-
lems rather than as just a means of evaluating Hamiltonian
matrix elements. Ever since then, different types of DVR
methods have found wide applications in different fields of
physical and chemical problems.23 There continue to be
many efforts to construct new types of DVRs and to apply
DVRs in combination with other numerical methods.24

Essentially, the DVR method is a representation whose
associated basis functions are localized about discrete values
of the coordinate under consideration. The DVR greatly sim-
plifies the evaluation of Hamiltonian matrix elements. The
potential matrix elements involve merely the evaluation of
the interaction potential at the DVR grid points; no integra-
tion is needed. The kinetic energy matrix elements can also
be calculated very simply �and analytically in most cases�.25

In this section, we first give a short introduction to the DVR
constructed from orthogonal polynomials. Then we present

how one constructs the DVR from Coulomb wave functions,
which will be used to solve the TDSE of atomic systems in
intense laser fields in Sec. III.

A. DVR using orthogonal polynomials

The DVR basis functions can be constructed from any
complete set of orthogonal polynomials, PN�x�,25 defined in
the domain �a ,b� with the corresponding weight function
��x�. Let

PN�x� = ���x�/hNPN�x� , �1�

where hN is a normalization constant chosen so that

�
a

b

dxPM�x�PN�x� = �MN. �2�

Then the cardinal function Ci�x� of PN�x� is given by26

Ci�x� =
1

PN� �xi�

PN�x�
x − xi

, �3�

where the points xi �i=1,2 , . . . ,N� are the zeros of PN�x�,
and PN� �xi� stands for the first derivative of PN�x� at xi.
Clearly, Ci�x� satisfies the cardinality condition

Ci�xj� = �ij . �4�

The DVR basis function f i�x� is constructed from the cardi-
nal function Ci�x� as follows:

f i�x� =
1

��i

Ci�x� , �5�

which, at the point xj, gives

f i�xj� =
1

��i

�ij . �6�

We know that the integration of any function F�x� can be
calculated using an appropriate quadrature rule associated
with the zeros of the orthogonal polynomial, i.e.,

�
a

b

dxF�x� � �
i=1

N

�iF�xi� , �7�

where �i is the corresponding weight at the point xi. From
the theory of classical orthogonal polynomials, the integra-
tion formula �7� is exact as long as the function F�x� can be
expressed as a polynomial of order 2N−1 �or lower� times
the weight function ��x� �cf. Theorem 3.4.1 of Ref. 27�.
With the help of Eqs. �1�, �3�, and �5�, it is easy to show that
the function f i

*�x�f j�x� satisfies this condition. Therefore, the
following integration can be carried out exactly:

�
a

b

dxfi
*�x�f j�x� = �

k=1

N

�kf i
*�xk�f j�xk� = �ij . �8�

As a result of Eqs. �6� and �7�, any local operator V�x�
has a diagonal representation in the DVR basis set,

154311-2 L.-Y. Peng and A. F. Starace J. Chem. Phys. 125, 154311 �2006�

Downloaded 09 Mar 2007 to 129.93.16.206. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



�
a

b

dxfi
*�x�V�x�f j�x� � �

k=1

N

�kf i
*�xk�V�xk�f j�xk� = V�xi��ij .

�9�

On the contrary, the representation of a differential operator
in the DVR basis is usually a full matrix. Nevertheless, in
most cases, the matrix elements of the first and second dif-
ferential operators,

�
a

b

dxfi
*�x�

d

dx
f j�x� �10�

and

�
a

b

dxfi
*�x�

d2

dx2 f j�x� , �11�

can be evaluated analytically using the quadrature rule �7�.
Usually, the final results are very simple expressions of the
zeros xi and the number of zeros N.25

B. DVR constructed from Coulomb wave functions

It is well known that a Gaussian quadrature can also be
constructed using nonclassical polynomials28 and even ratio-
nal functions29 by means of the standard three-term recursion
relations.27 A general method for constructing different types
of DVRs in this way has been given in Ref. 30. A new type
of DVR derived from the usual Legendre DVR has been
shown by Machtoub and Zhang31 to provide very accurate
results for the metastable states of the exotic helium atom,
p̄He+.

An appropriate quadrature rule for the Coulomb wave
function was given by Dunseath et al.32 with explicit expres-
sions for the weights �i. Therefore, the DVR basis function
f i�r� may be similarly constructed from a Coulomb wave
function, which satisfies the differential equation �see Eq.
�14.1.1� of Ref. 33�,

d2

dr̃2v�r̃� + 	1 −
2�

r̃
−

L�L + 1�
r̃2 
v�r̃� = 0, �12�

where � is real and L is a non-negative integer. Equation �12�
has a regular solution, FL�� , r̃�.

For our purposes, we consider the regular solution for
L=0 and ��0. Denoting

� = −
Z

�2E
�13�

and

r̃ = r�2E ,

we may write Eq. �12� alternatively as

d2

dr2v�r� = − 	2E +
2Z

r

v�r� � W�r�v�r� , �14�

whose solution is given by

v�r� = F0�− Z/�2E,r�2E� . �15�

For any given energy E and nuclear charge Z, the solu-
tion �15� has simple zeros over �0,�� �see Fig. 14.3 of Ref.
33�. Similarly to Eq. �3�, we can define the cardinal function
of v�r� as

Ci�r� =
1

v��ri�
v�r�
r − ri

, �16�

where ri is the ith zero of v�r� and v��ri� stands for its first
derivative at ri. In analogy to Eq. �5�, one can construct the
Coulomb wave function DVR basis function,

f i�r� =
1

��i

Ci�r� =
1

��i

1

v��ri�
v�r�
r − ri

, �17�

which, at the zero rj, becomes

f i�rj� =
1

��i

�ij . �18�

Following Schwartz,34 Dunseath et al.32 constructed an
appropriate quadrature rule associated with the zeros ri of the
Coulomb wave function in Eq. �15�. Using this quadrature
rule, one can evaluate the integration of a function F�r� over
�0,�� as follows:

�
0

�

drF�r� � �
i=1

N

�iF�ri� , �19�

where the weight �i is given by32

�i �
�

ai
2 , �20�

with

ai � v��ri� . �21�

Using the quadrature rule, Eq. �19�, one may show the
orthonormality of the CWDVR basis functions,

�
0

�

f i
*�r�f j�r�dr � �

k=1

N

�kf i
*�rk�f j�rk� = �ij . �22�

One may also evaluate matrix elements of the forms in Eqs.
�10� and �11� using the same quadrature rule,

Pij � �
0

�

f i
*�r�

d

dr
f j�r�dr , �23�

��
k=1

N

�kf i
*�rk�f j��rk� = �

k=1

N
�k

��i� j

�ikCj��rk� , �24�

and
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Tij � −
1

2
�

0

�

f i
*�r�

d2

dr2 f j�r�dr , �25�

�−
1

2�
k=1

N

�kf i
*�rk�f j��rk� = −

1

2�
k=1

N
�k

��i� j

�ikCj��rk� .

�26�

It is easy to show that, for the solution v�r� to Eq. �14�, the
first and second derivatives of the cardinal function, Eq. �16�,
are given, respectively, by32,34

Cj��rk� = �1 − � jk�
ak

aj

1

rk − rj
�27�

and

Cj��rk� = � jk
ck

3ak
− �1 − � jk�

ak

aj

2

�rk − rj�2 , �28�

where ak is given by Eq. �21� and ck is calculated using

ck = akW�rk� , �29�

where W�r�=−�2E+2Z /r� �cf. Eq. �14��. Finally, combining
Eqs. �23�–�28� and using Eq. �20� give us

Pij = �1 − �ij�
1

ri − rj
�30�

and

Tij = − �ij
ci

6ai
+ �1 − �ij�

1

�ri − rj�2 . �31�

Note that Eq. �22� is satisfied approximately for DVR
basis functions constructed from the Coulomb wave func-
tion, while Eq. �8� is satisfied exactly for the DVR basis
functions constructed from an orthogonal polynomial.

Nevertheless, the CWDVR provides a very accurate dis-
crete spectrum for the H atom as well as associated physical
quantities.32 We show later that the CWDVR can also be
applied to solve the time-dependent Schrödinger equation
very efficiently and accurately. Although the closely related
Laguerre DVR or Sturmian basis DVR has been shown by
Choi and Light35 to give very accurate bound and quasi-
bound states of the Ar–HCl complex, this type of DVR gives
very poor energies for some bound states of the H atom �see
the discussions in Refs. 18�a�, 25, and 32�. In order to de-
scribe the time-dependent dynamics of the laser-atom inter-
action, we have tested different kinds of Laguerre DVRs and
found that in many cases they give incorrect ionization rates.
The CWDVR is based on a continuum state Coulomb wave
function. This may explain its different performance from the
Laguerre DVR. We note that Peng et al.13,36 did succeed in
combining the Laguerre DVR with the FD method to de-
scribe a time-dependent laser-molecule interaction using cy-
lindrical coordinates. However, in that work the Laguerre
DVR was used to treat the � coordinate, which is less impor-
tant than the z coordinate along which the laser is linearly
polarized.

III. ONE-ELECTRON ATOMIC SYSTEM IN INTENSE
LASER FIELDS

Let us consider an effectively one-electron atomic sys-
tem in a laser field. In spherical coordinates, the time-
dependent Schrödinger equation is given by

i
�

�t
��r,t� = �H0�r� + HI�r,t����r,t� , �32�

in which the field-free Hamiltonian H0 is defined by

H0 = −
1

2
�2 + VC

l0�r� = −
1

2
	 1

r2

�

�r
�r2 �

�r

 −

1

r2 L̂2
 + VC
l0�r� ,

�33�

where VC
l0�r� is the effective Coulomb potential or any kind

of short range model potential, which can depend on a fixed
value of the angular-momentum quantum number l0. �Please
note that VC

l0�r� is still a spherically symmetric function.� The

orbital angular-momentum operator L̂2 is defined by

L̂2 = −
1

sin 	

�

�	
�sin 	

�

�	

 −

1

sin2 	

�2

�
2 , �34�

whose eigenstates are the spherical harmonics Ylm�	 ,
�.
In Eq. �32�, the interaction Hamiltonian HI�r , t� de-

scribes the interaction of the active electron with the applied
laser pulse. For the laser parameter ranges of interest in the
present work, the dipole approximation is valid. For a laser
field linearly polarized along the z axis, HI�r , t� is given in
the length gauge by

HI
�L��r,t� = d�r� · E�t� = d�r�cos 	E�t� , �35�

with d�r� being the dipole moment, and in the velocity gauge
by

HI
�V��r,t� = − i

1

c
A�t� · � = − i

1

c
A�t��0, �36�

where c is the speed of light in vacuum. Here �0 denotes the
zeroth spherical component of the gradient operator �,37

�0 =
�

�z
= cos 	

�

�r
−

sin 	

r

�

�	
. �37�

The electric field strength E�t� is related to the vector poten-
tial A�t� of the laser pulse by

E�t� = −
1

c

�

�t
A�t� . �38�

A. Discretization of the spatial coordinates

In order to solve the TDSE, we need to discretize Eq.
�32�. We expand the angular part of the wave function in
terms of spherical harmonics. The radial coordinate r can be
discretized in different ways. The most straightforward way
is to use the finite difference method, in which case the first
and second derivatives with respect to r in Eq. �33� are ap-
proximated by formulas involving only several neighboring
points. In the present work, however, we expand the radial
part of the wave function in the CWDVR basis functions. As
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may be seen from Eqs. �30� and �31�, CWDVR is a global
method, in which case the representations of the derivatives
involve all the grid points.38,39

1. Expansion of the angular part

Expanding the time-dependent wave function in spheri-
cal harmonics,

��r,t� � ��r,	,
,t� = �
l=0

L

�
m=−L

L
�lm�r,t�

r
Ylm�	,
� , �39�

substituting into Eq. �32�, multiplying the result by
rYl�m�

* �	 ,
�, and integrating both sides over angular coordi-
nates, we obtain

i
�

�t
�l�m��r,t� = −

1

2

d2

dr2�l�m��r,t� + Veff
l �r��l�m��r,t�

+ �HI�r,t��l�m�, �40�

in which we have defined an effective potential,

Veff
l �r� � VC

l0�r� +
l�l + 1�

2r2 , �41�

and the following laser-interaction term,

�HI�r,t��l�m� � �
l=0

L

�
m=−L

L �
0

�

sin 	d	�
0

2�

d


� rYl�m�
* �	,
�HI�r,t�

1

r
�lm�r,t�Ylm�	,
� .

�42�

The laser-interaction term in Eq. �42� is gauge dependent. In
the length gauge, substituting Eq. �35� into Eq. �42� and
making use of the following formula37

cos 	Ylm�	,
� = al+1mYl+1m�	,
� + almYl−1m�	,
� , �43�

where

alm =� �l − m��l + m�
�2l − 1��2l + 1�

, �44�

we arrive at

�HI
�L��r,t��l�m� = d�r�E�t��al�m��l�−1m��r,t�

+ al�+1m��l�+1m��r,t�� . �45�

In the velocity gauge, substituting Eq. �36� into Eq. �42� and
making use of the formula:37

�0	1

r
R�r�Ylm�	,
�
 = al+1mYl+1m�	,
�

�
1

r
� d

dr
−

l + 1

r

R�r�

+ almYl−1m�	,
�
1

r
� d

dr
+

l

r

R�r� ,

�46�

we arrive at

�HI
�V��r,t��l�m� = iA�t�

1

r
�l�al�m��l�−1m��r,t�

− �l� + 1�al�+1m��l�+1m��r,t��

− iA�t�
d

dr
�al�m��l�−1m��r,t�

+ al�+1m��l�+1m��r,t�� , �47�

with al�m� given by Eq. �44�.

2. Discretization of the radial coordinate

Having changed the TDSE �32� into Eq. �40� �with the
interaction term �HI�r , t��l�m� given by Eq. �45� in the length
gauge and by Eq. �47� in the velocity gauge�, we now ad-
dress the discretization of the radial coordinate. It is useful
for later comparison with the CWDVR method to first re-
view the FD method. In the FD method, the grid points are
chosen to be equally spaced,

ri = i
r, i = 1,2, . . . ,N . �48�

The five-point central finite difference approximation to the
first and second derivatives of �lm�r , t� are given by13

d

dr
�lm�r,t� =

1

12
r
��lm�r − 2
r,t� − 8�lm�r − 
r,t�

+ 8�lm�r + 
r,t� − �lm�r + 2
r,t�� �49�

and

d2

dr2�lm�r,t� = −
1

12�
r�2 ��lm�r − 2
r,t�

− 16�lm�r − 
r,t� + 30�lm�r,t�

− 16�lm�r + 
r,t� + �lm�r + 2
r,t�� . �50�

In order to obtain a better ground state energy, we have used
the following approximation for the second derivative at the
first grid point in order to properly account for the boundary
condition at r=0:40

�lm� �r1,t� = −
1

12�
r�2 �30�lm�r1,t� − 16�lm�r1 + 
r,t�

+ �lm�r1 + 2
r,t�� + C0�lm�r1,t� , �51�

where C0 is a constant that depends on the grid spacing 
r.
For example, taking C0=−1.489 86 and 
r=0.2 a.u., we ob-
tain a converged H ground state energy of
−0.500 000 065 a.u., whereas we must use C0=−1.814 116
for 
r=0.3 a.u. in order to get the same value of the ground
state energy.

In general, the smaller the spacing, 
r, the better is the
approximation for the derivatives in Eqs. �49� and �50�. For
atomic systems interacting with intense laser pulses, the elec-
tronic wave function can be driven, in general, to hundreds
or even thousands of a.u. away from the nucleus. Therefore,
one needs a very large number of grid points. Another dis-
advantage of the FD method is that one needs to deal care-
fully with the Coulomb singularity at the origin.11,40
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Now let us discretize the coordinate r using the CWDVR
basis functions that we discussed in the previous section. As
we already mentioned, the CWDVR has several advantages:
first, it deals with the singularity of Coulomb-type potentials
at r=0 naturally and accurately; second, the grid points �i.e.,
the zeros of the Coulomb wave function� are dense near the
origin, where the Coulomb potential plays a crucial role, and
sparse at large distances, where it is not very important;
third, compared to the FD method, many fewer grid points
are needed over the same r range because of the uneven
distribution of the grid points.

The CWDVR basis functions f i�r� are given in Eqs. �17�,
�18�, and �22�. Let us start from Eq. �40� and expand �lm�r , t�
in terms of f i�r� as follows:

�lm�r,t� = �
i=1

N

Dilm�t�f i�r� , �52�

where the coefficient is given by

Dilm�t� = �
0

�

drfi
*�r��lm�r,t� � �

k=1

N

�kf i
*�rk��lm�rk,t�

= ��i�lm�ri,t� . �53�

Substituting Eq. �52� into Eq. �40�, multiplying both
sides by f i�

* �r�, and integrating r over �0,��, we obtain

i
�

�t
Di�l�m��t� = �

i=1

N

Ti�iDil�m��t� + Veff
l� �ri��Di�l�m��t�

+ �HI�r,t��i�l�m�, �54�

where we have made use of Eq. �25�. �HI�t��i�l�m� stands for
the matrix element of the interaction term, which may easily
be shown to be given by

�HI
�L��t��i�l�m� = �

i=1

N �
0

�

drfi��r�f i�r�E�t�d�r�

��al�m�Dil�−1m��t� + al�+1m�Dil�+1m��t��

= E�t�d�ri���al�m�Di�l�−1m��t�

+ al�+1m�Di�l�+1m��t�� , �55�

in the length gauge. In the velocity gauge, it takes a slightly
more complicated form,

�HI
�V��t��i�l�m� = iA�t��

i=1

N �
0

�

drfi��r�
1

r
f i�r��l�al�m�Dil�−1m��t� − �l� + 1�al�+1m�Dil�+1m��t�� − iA�t�

��
i=1

N �
0

�

drfi��r�
d

dr
fi�r��al�m�Dil�−1m��t� + al�+1m�Dil�+1m��t��

= iA�t�
1

ri�
�l�al�m�Di�l�−1m��t� − �l� + 1�al�+1m�Di�l�+1m��t�� − iA�t�

��
i=1

N

Pi�i�al�m�Dil�−1m��t� + al�+1m�Dil�+1m��t�� , �56�

where we have made use of Eq. �23�. The matrix elements of
Pi�i in Eq. �56� and Ti�i in Eq. �54� are calculated analytically
using Eqs. �30� and �31�, respectively. The zeros ri needed
for evaluating these matrix elements are calculated using
COULFG.41 Note that for the case of linear laser polarization
and the s-wave ground state that is considered in this work,
the subscript index m� is equal to 0. For this case, then, we
have only two dimensional matrices with indices i� and l�.

3. Distribution of the CWDVR grid points

The grid point ri of the CWDVR is the solution of
v�r�=0, where v�r� is defined by Eq. �15� for any given

energy E and nuclear charge Z. Therefore, the distribution of
the CWDVR grid points can be adjusted by the values of the
parameters Z and �, where � is defined by

� � �2E . �57�

In Table I, we compare the grid point distributions of the
CWDVR for the same maximum grid point value rmax

�150 a.u. and for different � values ranging from
0.5 to 5 a.u. The parameter Z is chosen to be either 12 or 20.
We list in this table the number of grid points N �up to the
first grid point that is greater than r=150 a.u.� and the values
of the first and the last grid points, r1 and rN. We also give
three grid spacings, 
r�0�, 
r�15�, and 
r�150�, which cor-
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respond to the spacing between the first two points near 0,
the two points around 15 a.u., and the two nearest grid points
in the neighborhood of 150 a.u.

One notices that the value of Z mainly determines the
value of the first grid point r1, i.e., the greater the Z is, the
smaller r1 becomes. However, increasing the value of � will
mainly decrease the spacing between the grid points at large
r and thus one needs more grid points for the same value of
rmax=150 a.u. At the same time, larger � values result in
much more even distributions at larger distances. For ex-
ample, 
r�15� and 
r�150� for �=5 differ much less than for
�=0.5.

For the same rmax=150 a.u., one observes that the num-
ber of the grid points for the CWDVR method is only 1/10
to 1/3 of that for the FD method if we choose 
r=0.2 a.u. in
the FD method �cf. Eq. �48��. As we will discuss below, most
of our results for atomic hydrogen are converged for the case
of �=1.0 and Z=20 using only 1/10 the number of grid
points required by the FD method �N=72 vs N=750�.

Some types of nonuniform FD methods, of course, have
been designed to solve the time-dependent Schrödinger
equation. Comparing the present CWDVR method with
these kinds of nonequal-spacing FD methods, the former
may not be so superior as it is compared to equal-spacing FD
methods. However, nonuniform FD methods may introduce
some problems with the Coulomb singularity and with popu-
lation norm conservation, as discussed by Kono et al. in the
conclusions of Ref. 18�b�. The present CWDVR is able to
overcome such Coulomb singularity problems naturally, and
the norm of the population is intrinsically conserved thanks
to the fact that the Hamiltonian that is constructed is Hermit-
ian �cf. Eqs. �30�, �31� and �54�–�56��.

B. Wave function propagation in time

After the discretization of the spatial coordinates, one
has to advance the initial wave function in discretized time.
If the initial wave function is the electronic ground state, it
can be computed by the propagation of any trial wave func-
tion in imaginary time. The Schrödinger equation in imagi-
nary time becomes a diffusion equation. In this case, any
excited state components contained in the trial wave function

will decay faster than the ground state. Once the energy is
adjusted to the true ground state energy �0, the asymptotic
solution is a steady-state solution. One will thus obtain a
converged ground state energy and wave function on the
spatial grid after a sufficiently long time of diffusion.

Concerning the propagation of the time-dependent
Schrödinger equation, there exist many different methods,
such as the split operator,42 the Chebyschev polynomial
expansion,43 the Taylor series,44 and the Arnoldi/Lanczos
methods.45 A number of authors have made detailed com-
parison studies of the efficiency and accuracy of different
propagation schemes.12,13,46 Although the choice of the
propagation scheme depends on the characteristics of the
physical problem at hand, it is generally accepted that for
most practical applications the Arnoldi/Lanczos method of-
fers an accurate and flexible approximation of the matrix
exponentials involved in the propagation of a wave function.
A general introduction to the Arnoldi/Lanczos method can be
found in Ref. 47. �Note that whereas the Lanczos method
only applies to symmetric or Hermitian matrices, the Arnoldi
method applies also to nonsymmetric matrices.�

For the Arnoldi/Lanczos method, an extensive software
package, “EXPOKIT,” for the computation of a matrix expo-
nential was developed by Sidje,48 who provided several al-
ternatives to compute the matrix etH for small, dense com-
plex matrices H. In addition, EXPOKIT has subroutines for
computing etH�0 for both small, dense matrices and large,
sparse matrices. In the present work, we have incorporated
this software into our code for the accurate propagation of
the wave function for atomic systems interacting with strong
laser pulses. The main subroutines we use are “ZGPADM.F”
and “ZGEXPV.F.” The details of the underlying algorithms and
how one uses these subroutines can be found in Ref. 48.

For all the results presented in this paper, we use the
Arnoldi order M =30 and the propagation time step 
t
=0.01 a.u. However, we find that for some of the laser pa-
rameters we consider, the results are already converged for a
much lower order �e.g., M =12� and much larger time step
�e.g., 
t=0.04 a.u.�.

TABLE I. Comparison of CWDVR grid point distributions for different values of Z and �. Note that 
r�r�
equals the difference of the two grid points closest to r.

�=0.5 �=1.0 �=2.0 �=3.0 �=4.0 �=5.0

Z=12 N 47 64 106 152 198 245
r1 0.152 9 0.152 6 0.151 7 0.150 1 0.148 0 0.145 5
rN 153.2 9 150.7 0 150.0 4 150.8 6 150.4 5 150.5 2


r�0� 0.358 9 0.356 5 0.347 2 0.333 5 0.317 1 0.299 4

r�15� 2.365 0 1.909 0 1.322 7 0.965 5 0.749 1 0.609 1


r�150� 4.911 6 2.915 8 1.540 2 1.038 1 0.781 5 0.626 3

Z=20 N 56 72 112 156 202 248
r1 0.091 74 0.091 69 0.091 48 0.091 14 0.090 66 0.090 07
rN 150.27 151.39 150.74 150.47 150.73 150.43


r�0� 0.215 7 0.215 1 0.213 0 0.209 7 0.205 3 0.200 1

r�15� 1.830 8 1.655 4 1.213 7 0.913 2 0.727 0 0.597 2


r�150� 4.356 1 2.791 4 1.520 9 1.032 0 0.778 9 0.625 0
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IV. RESULTS AND DISCUSSIONS

In this section, we apply the CWDVR method to the
ionization of atomic hydrogen by a strong static electric field
and by an intense laser field. In order to demonstrate that our
method can apply equally to any effectively one-electron
atomic system described by a SAE model potential, we also
present multiphoton detachment rates for the negative hydro-
gen ion for several laser frequencies and intensities. In all
cases our results are in excellent agreement with other accu-
rate theoretical calculations using different methods.

For an accurate evaluation of the ionization rate for a
particular laser intensity, the laser pulse should ramp on adia-
batically and remain constant for a sufficiently long time.
The laser pulse ramping-on time must be large compared to
the initial atomic orbital period of the bound electron so that
the electron energy can adjust adiabatically to the rising laser
intensity. The constant-intensity time should also be suffi-
ciently long so that the frequency bandwidth is small com-
pared with the laser frequency. Only in this case can one treat
the laser field as monochromatic. We assume the vector po-
tential A�t� of a linearly polarized laser to have the following
form:

A�t� = A0f�t�cos��t�k̂ , �58�

where the polarization vector k̂ is along the z axis and the
pulse envelope, f�t�, is given by

f�t� = �1

2
	1 − cos��t

�1


 , 0 � t � �1

1, �1 � t � �1 + �2,
� �59�

where �1 and �2 are taken to be 5–10 and 10–40 laser cycles,
respectively, depending on the laser frequency under consid-
eration. The peak value of the vector potential A0 is con-
nected to the peak laser intensity I0 by

A0 =
E0

�
=

1

�
� I0

Iau
, �60�

where E0 is the maximum electric field strength of the laser
field and the atomic unit of laser intensity Iau equals
3.5094�1016 W/cm2. The electric field strength E�t� is cal-
culated using Eq. �38�.

In order to avoid reflection of the wave function at the
outer boundary of the r grid, the wave function is multiplied
by an absorbing function at each propagation step, as fol-
lows:

�abs�r,t� = M�r���r,t� , �61�

in which �abs is the wave function after the application of
the absorption function M�r� given by

M�r� = � 1, r � r�

exp	− � r − r�

r�

2
 , r � r�, � �62�

where r�=�rmax and r�=�rmax with rmax being the maximum
value of the grid. It is very important to carefully choose the
absorbing parameters � and � such that the function M�r� is
sufficiently smooth and that the wave function near the edge

is completely absorbed without any reflection in order to
avoid any unphysical effects induced by the absorbing
potential.49 Based on our experience, we take 0.3���0.6
and 0.5���5.0 depending on the value of rmax and the
laser parameters. Our criterion is that the time-dependent
physical quantities, such as the population decay of the
ground state, should be converged against any small varia-
tions of these parameters about their chosen values. Of
course, convergence must be achieved also with respect to
variations of other parameters, such as the maximum value
of the angular momentum L, the number of grid points N in
the r coordinate, the propagation time step 
t, the Arnoldi
propagator order M, etc.

A. Choice of gauge

Although the use of alternative gauges describing the
interaction Hamiltonian HI�t� should, in principle, lead to the
same physical results, it is not true in practice because of the
use of approximations and because of inaccuracies in the
numerical wave functions. For some approximate methods,
the length gauge proves to be superior to the velocity gauge
in some circumstances.50 However, as discussed by Cormier
and Lambropoulos,51 the velocity gauge is preferable for
some other numerical methods owing to the fact that the
canonical momentum in the velocity gauge can be reduced to
a slowly varying variable. In this case, one avoids having
widely varying variables. Especially in our present case in
which the wave function is expanded in terms of spherical
harmonics, we find that a much smaller maximum value of L
is needed for a converged result in the velocity gauge than
that needed in the length gauge.11

In the present work, we have employed the velocity
gauge for the case of atomic hydrogen in a laser field. How-
ever, we have employed the length gauge to treat the cases of
atomic hydrogen in a static electric field and the H− ion in a
laser field. One of the reasons for the latter choice is that it is
easier for us to compare our results with previous calcula-
tions that also use the length gauge. Another reason, for H−,
is that the angular-momentum-dependent model potential52

makes it impossible to obtain a simple expression for the
potential in the velocity gauge.53

B. Calculation of physical observables

In principle, once the time-dependent wave function is
computed at each time step, one can easily calculate any
physical observable. For instance, the population remaining
in the whole box, Ptot�t�, is given by

Ptot�t� = �
0

�

r2dr�
0

�

sin 	d	�
0

2�

d
���r,	,
,t��2

= �
ilm

�Dilm�t��2, �63�

where we have made use of Eqs. �39� and �52�. The popula-
tion remaining in a sphere of a certain radius is given simply
by summing over those r grid points within the sphere.
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Knowing the time-dependent population, P�t�, one can
estimate the ionization rate � by assuming that the popula-
tion decays exponentially,

P�t� = P�t0�exp�− �t − t0��� , �64�

which implies that

� = −
1

t − t0
log�P�t�/P�t0�� , �65�

where t0 is usually the starting time of the flat part of the
laser pulse.

C. Convergence of the CWDVR method

Since the CWDVR grid depends on the two parameters
Z and �, one must make sure that any calculation gives con-
verged results with respect to variations of these parameters.
As shown in Table I, the CWDVR grid for smaller � is much
coarser. At the same time, the first point of the grid is mainly
decided by the value of Z. It is expected that a much finer
CWDVR grid will give a better representation of the Cou-
lomb potential and of the laser-driven electronic wave func-
tion.

In order to illustrate the convergence of the CWDVR
wave function, multiphoton ionization of H by an infrared
laser having a moderate intensity serves as a good example.
For a hydrogenic atom, the potential is given by

VC
l0�r� = −

Zn

r
, �66�

where Zn is the nuclear charge, which equals unity for the H
atom. The dipole moment in this case is given by d�r�=r.
For all CWDVR grids considered in Table I, we obtain an H
atom ground state energy of −0.499 999 97 a.u. or better.

In Fig. 1, we present the natural logarithm of the popu-
lation within a sphere of radius r=25 a.u. calculated by the
FD method and by the CWDVR method corresponding to
different values of Z and �. We consider a laser pulse having
a wavelength �=780 nm, a peak intensity of I0=2
�1014 W/cm2, a five-cycle ramp-up time, and a ten-cycle
flat top. The maximum value of the angular momentum L is
taken to be 20 in order to obtain a converged result. In the
FD case, the grid spacing 
r is taken to be 0.2 a.u., and the
number of grid points N=750 for the maximum value of the
grid point, rmax=150 a.u. The corresponding numbers for the
r grid points used for the CWDVR cases are indicated in
Table I. From Fig. 1, we conclude that our results are indeed
converged to the FD difference results as � is increased from
0.5 to 2.0. Even for the coarsest case, �=0.5, where only 56
grid points are used, the result is reasonably good. The ion-
ization rate estimated from this latter curve is 4.63
�1013 s−1, which is close to the FD result of 5.07
�1013 s−1; for �=2 and Z=20 the CWDVR result is 5.05
�1013 s−1. We also observe that, for the present case, the
results are not very sensitive to variations of the value of Z
�for the same value of ��. However, we find that, in most
cases considered later, Z=20 is usually preferable for its bet-
ter representation of the Coulomb potential near r=0.

In practice, the ionization rate is fitted by an exponential
decay of the ground state population or the decay of the total
population within some sphere of radius r in the constant
value region of the laser pulse. In the present calculations,
we have defined an inner sphere and a middle sphere with
radii ra=25 and rb=50 a.u., respectively. The population re-
maining within these two spheres, Pa and Pb, respectively,
together with the population in the ground state, Pg, and the
total population in the entire box with r�150 a.u., Ptot, are
recorded in each time time step. As an example, we show in
Fig. 2 results for the ionization of H by a laser of frequency
of 0.6 a.u. and peak intensity of 4.375�1013 W/cm2. The
laser ramps on over 5 cycles and remains constant for
50 cycles. We observe that the populations within different
spheres of r exhibit exponential decays with time given by
straight lines parallel to the line for ground state decay. It
does not therefore matter in this case which curve is used to
estimate the ionization rate. Our calculated ionization rate is
1.5658�10−3 a.u., which is in very good agreement with
Chu and Cooper’s result of 1.5672�10−3 a.u. �Ref. 54�.

In a similar way, we have also estimated the multiphoton
ionization rate of H by a laser of wavelength of 1064 nm and
peak intensity of 1�1014 W/cm2. The result is 2.97
�1012 s−1, which is in good agreement with an independent
molecular code result of 2.85�1012 s−1 �Ref. 36� in cylin-
drical coordinates and the FD result of 2.92�1012 s−1 in
spherical coordinates.36

D. Multiphoton ionization of H by intense laser pulses

In this section, we provide more rigorous tests of the
present method by calculating the ionization rates of H for a

FIG. 1. �Color online� Convergence of the CWDVR method for different �
and Z values. The natural logarithm of the population as a function of time
�in units of the laser period TL=2� /�� is shown for a laser wavelength of
780 nm and a peak laser intensity of 2�1014 W/cm2. �a� Results for differ-
ent CWDVR grids �with � and Z as indicated� are compared to the result of
the FD method for time t in the range 0� t /TL�15. �b� A magnified version
of �a� for time t in the range 14� t /TL�15. Note that in both panels the
three curves representing the FD result and the two �=2 CWDVR results
are nearly indistinguishable on the scale of the figure and appear as the
lowest curve in each panel.
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large number of wavelengths from very low to very high
peak intensities. For all the calculations presented here, we
use the CWDVR grid corresponding to �=1.0 and Z=20.
The number of grid points is N=72 and rmax=151.39 a.u.
The maximum angular momentum, L=10, gives converged
results in all cases when the velocity gauge is employed for
the interaction Hamiltonian. The parameters � and � for the
absorbing function in Eq. �62� are taken to be �=0.4 and
�=4. In Table II, we compare ionization rates calculated
using the present method with other theoretical results. On
the whole our results agree best with those of Chu and
Cooper,54 who employed an ab initio Floquet method. How-
ever, the present time-dependent results are also in reason-
able agreement with those of the TDSE calculations of Ref.
55 using a complex Sturmian basis and those of Ref. 10
using a FD method. The results for �=0.2 a.u. for intensities
of 1.75�1014 and 3.94�1014 W/cm2 are in less favorable
agreement, because the high ionization rates lead to very fast
decay of the ground population and thus estimates of any
TDSE method become less accurate.

In Table III, we compare our results with the benchmark
calculations of Chu and Cooper54 using the ab initio nonper-
turbative L2 non-Hermitian Floquet method. The laser fre-
quency � varies from 0.6 to 0.26 a.u., which corresponds to
one-to two-photon ionization of the ground state of atomic
H. Note that E0 is related to Frms as follows:

E0 = �2Frms = �I0/Iau. �67�

As may be seen, there is very good agreement between the
present CWDVR results and those of Ref. 54 over these wide
ranges of laser parameters.

E. Ionization of H by static electric fields

Now we turn to ionization of H �in its ground state� by
an abruptly turned-on static electric field. The excitation and
ionization dynamics of atoms and molecules by static elec-
tric fields has been of great importance since the foundation
of quantum mechanics56 and continues to be of great current
interest.57–59 Although the long time behavior is dominated
by the exponential decay of the ground state, large deviations
from exponential decay are expected owing to the sudden
turn on of the static electric field. The Hamiltonian of this
system is unbounded from below. There are also many reso-
nances present. Deviations from exponential decay are ex-
pected to be large in the case of strong static fields.59 How-

TABLE II. Ionization rate � for ionization of H by a linearly polarized laser
of intensity I0 and frequency �. The present results are compared with the
results of Chu and Cooper, �Ref. 54�, Pont et al. �Ref. 55�, and Kulander
�Ref. 10�. Intensities and ionization rates are presented in the form p�q�
� p�10q.

�
�a.u.�

I0

�W/cm2�

� �s−1�

Present Ref. 54 Ref. 55 Ref. 10

0.55 7.00�12� 1.43�13� 1.43�13� 1.43�13� 1.4�13�
0.28 7.00�12� 3.73�11� 3.73�11� 4.0�11� 3.3�11�

4.38�13� 1.33�13� 1.33�13� 1.35�13� 1.2�13�
0.20 4.38�13� 3.74�12� 3.86�12� 4.0�12� 2.8�12�

1.75�14� 2.65�14� 2.89�14� 2.7�14� 4.0�14�
3.94�14� 6.14�14� 5.65�14� 6.0�14� 7.0�14�

FIG. 2. The natural logarithm of the decay of the ground state and of
populations within different spheres of radius r for ionization of atomic H
by a laser having frequency �=0.6 a.u., peak intensity I0=4.375
�1013 W/cm2, a 5-cycle ramp up, and a 50-cycle flat top �TL=2� /��. Pg

=population remaining in the ground state, Pa �Pb�=population remaining
within a sphere of radius ra=25 a.u. �rb=50 a.u.�, and Ptot=population re-
maining within the entire grid, r�150 a.u.

TABLE III. Multiphoton ionization rates for H for four different laser electric field strengths, Frms=E0 /�2, and seven photon energies �. Present results are
compared with those of Chu and Cooper �Ref. 54� �who used a nonperturbative L2 non-Hermitian Floquet method�.

�
�a.u.�

� /2 �a.u.�

Frms=0.01 a.u. Frms=0.025 a.u. Frms=0.05 a.u. Frms=0.075 a.u.

Present Ref 54 Present Ref 54 Present Ref 54 Present Ref 54

0.60 0.125�−3� 0.125�−3� 0.783�−3� 0.784�−3� 0.313�−2� 0.314�−2� 0.704�−2� 0.711�−2�
0.55 0.173�−3� 0.173�−3� 0.108�−2� 0.108�−2� 0.435�−2� 0.436�−2� 0.982�−2� 0.989�−2�
0.50 0.250�−3� 0.247�−3� 0.157�−2� 0.154�−2� 0.647�−2� 0.624�−2� 0.149�−1� 0.139�−1�
0.30 0.378�−5� 0.377�−5� 0.131�−3� 0.131�−3� 0.160�−2� 0.161�−2� 0.594�−2� 0.639�−2�
0.28 0.451�−5� 0.451�−5� 0.161�−3� 0.161�−3� 0.204�−2� 0.204�−2� 0.821�−2� 0.815�−2�
0.27 0.503�−5� 0.502�−5� 0.180�−3� 0.180�−3� 0.230�−2� 0.231�−2� 0.920�−2� 0.920�−2�
0.26 0.562�−5� 0.562�−5� 0.202�−3� 0.202�−3� 0.256�−2� 0.261�−2� 0.106�−1� 0.110�−1�
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ever, there is a substantially long transition time region for
weak and intermediate fields as well, whose length depends
on the particular field strength.

In order to investigate this transition regime, one has to
make sure that the nonexponential decay indeed comes from
physical dynamics rather than any numerical antifacts such
as nonconvergence of the results due to the choice of the grid
or reflection of the wave function from the edge of the grid.
These matters are extremely important for the static electric
field case because the wave packet is driven away in one
direction rather than in an oscillatory fashion, as in the case
of a laser pulse. In Fig. 3, we show the natural logarithm of
the ground state population of H in the presence of a static
electric field F=0.08 a.u. for different CWDVR grids and for

the FD method. Note that we use the length gauge in this
case for the dipole interaction. The maximum of the grid,
rmax, for all cases is taken to be around 150 a.u. and the
number of grid points in each case is listed in Table I. We
take Z=20 for every CWDVR grid. In addition, the absorb-
ing function parameters, � and �, are taken to have the ex-
treme values of 0.25 and 0.4, respectively, in order to avoid
reflection from the edge. For this field strength, we obtain
converged results only if ��4.0, in which case the grid is
dense enough to provide a good representation of the inter-
action term using the length gauge. Note that the perfor-
mance of the present CWDVR is much better than the DVR
method used by Dimitrovski et al.,60 who obtain converged
results only for t�40 a.u. Therefore, one has to be very care-
ful not to interpret the nonexponential decay for ��3.0 as
originating from any physical excitation or ionization
dynamics.58,59

Using the CWDVR method and parameters ��4.0 and
Z=20, we have studied short-time dynamics for other field
strengths. In Fig. 4, we present the population decay of the
ground state for different electric field strengths F. For the
lowest field strength, F=0.005 a.u., one observes oscillations
on both small- and large-time scales. For the case when F
becomes eight times that in Fig. 4�a� �cf. Fig. 4�b��, we ob-
serve a quadratic decay in time59 for 0� t�8 a.u., followed
by an irregular transition region before the system becomes
stable for t�90 a.u. As the field strength increases further in
Figs. 4�c� and 4�d�, the transition region becomes shorter and
shorter and is followed by purely exponential decay. The
transition regions are shown by Durand and Paidarova59 to
be directly related to 2s -2p resonances by inspecting the
spectral density line shape. Note that the fast quadratic decay
in time59 is present for �c� and �d� as well when the field is
turned on.

It is remarkable that the present time-dependent calcula-
tions for the entire region from very weak to very strong field
strengths are in complete agreement with the results obtained
using complex scaling methods.57,59 This is further con-
firmed by comparing our ionization rates fitted by an expo-

FIG. 3. �Color online� Depletion of the ground state of H by a static electric
field having field strength of 0.08 a.u. The natural logarithm of the ground
state probability Pg is shown as a function of the field duration. Results
calculated by different CWDVR grids for different � values �Z=20 in each
case� are compared against the result calculated by the FD method with

r=0.1 a.u. Note that the �=4 result is indistinguishable from the FD result
on the scale of this figure.

FIG. 4. H ground state survival prob-
ability, Pg, as a function of time in a
static electric field. The field strength
F is taken to be �a� 0.005, �b� 0.04, �c�
0.06, and �d� 0.08 a.u. These results
are in perfect agreement with those by
Durand and Paidarova �Ref. 59� and
by Scrinzi �Ref. 57� �neither of which
are shown here because they are indis-
tinguishable from ours on the scale of
the figures�.
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nential decay in the region following the transition region, as
shown in Table IV. Also shown in this table are the results of
some other time-dependent calculations.13,61

F. Multiphoton detachment rates for H− by a strong
laser pulse

In order to show that the present method can apply
equally well to any atomic system described by an appropri-
ate SAE model potential, we study in this section multipho-
ton detachment of the negative ion of hydrogen. For H−, we
use the angular-momentum-dependent model potential pro-
posed by Laughlin and Chu,52

VC
l0�r� = �1 +

1

r

e−2r −

�d

2r4W6�r/rc� + ul0
�r� , �68�

where

Wj�x� = 1 − e−xj
, �69�

ul0
�r� = �c0 + c1r + c2r2�e−�r. �70�

In the present calculations, we use the same parameter values
�which depend on the value of l0� as listed in Table I of Ref.
52. The length gauge is used to describe the interaction term.
Note also that we employ a dipole operator that accounts for
polarization of the hydrogen-atom core by the outer, loosely

bound electron,52 i.e., d�r� in this case is given by

d�r� = 	1 −
�d

r3 W3�r/rc�
r . �71�

Using this model potential, we obtain a ground state en-
ergy of −0.027 730 a.u. for all CWDVR grids listed in Table
I; this is in very good agreement with the value of
−0.027 733 a.u. calculated by Telnov and Chu62 and with the
experimentally measured value of −0.027 716 a.u.. �Ref. 63�.

In Table V, we compare the total detachment rates of H−

calculated using the present method with results of other
theoretical calculations. We obtain converged results for
CWDVR grid parameters �=2 and Z=20. It is not surprising
that the required grid is less demanding for the H− detach-
ment case than for the H atom in a static electric field case,
since in the former case we have a short range potential. For
all laser parameters considered in Table V, we obtain very
good agreement with results of Refs. 64–66.

Note that, instead of Eq. �71�, Telnov and Chu use the
dipole moment d�r�=r, which may account for the slight
differences between their results and ours. We have calcu-
lated some results by our CWDVR method using the latter
dipole moment. For example, we obtain a detachment rate of
4.51�10−4 a.u. instead of 4.43�10−4 a.u. for 1064 nm at
1�1011 W/cm2, which is then much closer to the corre-
sponding result of Ref. 65. On the whole, however, our re-
sults are slightly closer to those of Haritos et al.,64 which are
calculated by solving the time-independent Schrödinger
equation by the nonperturbative many-electron, many-
photon theory �MEMPT�. This better agreement may be due
to the fact that the dipole moment we use takes the core
polarization effects into account.

V. CONCLUSIONS

We have presented an accurate and efficient method for
solving the time-dependent Schrödinger equation for the case
of an effective one-electron atomic system described by an
appropriate model potential. Compared to the usual FD dis-

TABLE IV. Ionization rate � �in a.u.� for ionization of the ground state of H
by a static electric field of strength F. Results are compared with those of
Scrinzi �Ref. 57�, Peng et al. �Ref. 13�, and Bauer and Mulser �Ref. 61�.

Calculations

F �a.u.�

0.06 0.08 0.1 0.5

Present 5.1509�−4� 4.5396�−3� 1.42�−2� 5.64�−1�
Ref. 57 5.1508�−4� 4.5397�−3� 1.45�−2� 5.60�−1�
Ref. 13 5.15�−4� 4.55�−3� ¯ ¯

Ref. 61 ¯ ¯ 1.2�−2� 5.4�−1�

TABLE V. Multiphoton detachment rates for H− for laser wavelengths �=1064, 1640, and 1908 nm and 11 intensities �ranging from 1�1010 to 1
�1012 W/cm2�. The present results using the CWDVR method are compared with results of Haritos et al. �Ref. 64� and of Telnov and Chu. �Refs. 65 and 66�.
The detachment rates are given in the form of p�q�� p�10q.

Intensity
�W/cm2�

Photodetachment Rate � �a.u.�

1064 nm 1640 nm 1908 nm

Present Ref 64 Ref 65 Present Ref 64 Ref 66 Present Ref 64 Ref 66

1�1010 4.56�−5� 4.50�−5� 4.65�−5� 6.5�−7� 5.05�−7� 2.98�−7� 4.90�−7� 4.33�−7� 4.80�−7�
5�1010 2.25�−4� 2.20�−4� ¯ 7.7�−6� 6.82�−6� ¯ 1.14�−5� 1.04�−5� ¯

8�1010 3.57�−4� 3.56�−4� ¯ 1.81�−5� 1.71�−5� ¯ 2.81�−5� 2.58�−5� ¯

1�1011 4.43�−4� 4.43�−4� 4.53�−4� 2.79�−5� 2.63�−5� 2.78�−5� 4.27�−5� 3.98�−5� 4.37�−5�
2�1011 8.58�−4� 8.70�−4� ¯ 1.01�−4� 0.99�−4� 1.05�−4� 1.55�−4� 1.46�−4� 1.58�−4�
3�1011 1.25�−3� 1.28�−3� ¯ 2.14�−4� 2.10�−4� ¯ 3.23�−4� 3.01�−4� ¯

4�1011 1.61�−3� 1.66�−3� ¯ 3.68�−4� 3.55�−4� 3.76�−4� 5.18�−4� 4.95�−4� 5.30�−4�
6�1011 2.24�−3� 2.38�−3� ¯ 7.62�−4� 7.19�−4� ¯ 9.52�−4� 9.78�−4� ¯

8�1011 2.66�−3� 2.98�−3� ¯ 1.16�−3� 1.15�−3� 1.23�−3� 1.48�−3� 1.55�−3� 1.52�−3�
9�1011 2.81�−3� 3.24�−3� ¯ 1.39�−3� 1.40�−3� ¯ 1.72�−3� 1.88�−3� ¯

1�1012 3.05�−3� 3.46�−3� 2.95�−3� 1.64�−3� 1.64�−3� 1.73�−3� 2.16�−3� 2.12�−3� 2.18�−3�
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cretization method of the radial coordinate, the present
CWDVR method requires three to ten times fewer grid
points and treats the Coulomb singularity naturally and ac-
curately. As examples, our method has been shown to pro-
vide accurate multiphoton ionization or detachment rates for
both H and H− for a variety of laser field parameters, as
evidenced by very good agreement with results of other ac-
curate theoretical calculations. We have also applied our
method to investigate the short-time excitation and ionization
dynamics of H in both weak and strong static electric fields.
The ground state survival probabilities and the ionization
rates calculated using the present method are in excellent
agreement with results obtained using complex rotation
methods. Since the CWDVR method treats the Coulomb po-
tential accurately and needs fewer points in the radial coor-
dinate r, the present method may open the way to more ef-
ficient treatments for time-dependent processes in many-
electron atomic systems.
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