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1. Introduction

NMR is an extremely versatile analytical tool where the 
utility of NMR has recently been expanded to include the 
analysis of the metabolome [1]. Metabolomics is a natu-
ral extension of genomics and proteomics where the par-
ticular state or activity of a cell is monitored through the 
quantization of the low-molecular weight molecules pres-
ent in the cell instead of directly following gene or pro-
tein expression levels [2]. Metabolomics has an intrinsic 
advantage over genomics and proteomics analysis since 
observed changes in the metabolome are directly cou-
pled with changes in protein activity and cell function. A 
simple change in the expression level of a gene or pro-
tein does not necessarily correlate directly with a change 
in the activity level of a protein [3].

NMR is routinely being applied to monitor changes 
in the composition and concentration of metabolites 
found in biofl uids and cell extracts to: (1) monitor drug 
toxicity [4], [5], [6] and [7], (2) identify disease markers 

[4], [8], [9], [10] and [11] and (3) explore in vivo protein 
function and activity [3], [12], [13] and [14]. 1H NMR 
spectrum collected on the entire metabolome obtained 
from whole cell lysis or biofl uids tend to be extremely 
complex due to the presence of hundreds of low-molec-
ular weight compounds. Visual inspection or a spectral 
difference to identify metabolite concentration changes 
is relatively cumbersome if not generally impractical for 
large sample sizes. Instead, principal component analy-
sis (PCA) is typically used to decipher changes in NMR 
based metabolomic data [15] and [16]. PCA is a well es-
tablished statistical technique that determines the direc-
tions of largest variations in the data set, where a metab-
olomic data set is composed of a series of NMR spectra 
collected from numerous cell extracts or biofl uid sam-
ples. The data are generally presented as a two or three-
dimensional plot (scores plot) where the coordinate axis 
correspond to the principal components (representing 
the directions of the two or three largest variations in the 
data set). Effectively, each NMR spectrum is reduced to 
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a single point in the PC coordinate axis, where similar 
spectra will cluster together and variations along any of 
the PC axes will highlight experimental differences be-
tween the spectra.

The success of the application of PCA in the analy-
sis of NMR metabolomic data is intrinsically dependent 
on the consistency of sample and data handling [17].  Any 
observed variations in the NMR data should be related to 
the state of the cell and organism, as opposed to subtle 
changes in chemical shifts, line-widths, baseline or arti-
facts from processing. To minimize these affects and to 
simplify data handling, NMR spectral data are usually di-
vided into buckets with widths of 0.01–0.04 ppm [18] and 
[19]. This tends to smooth out errors from fl uctuations 
in chemical shifts and line-shape between NMR spectra 
caused by sample handling or preparation. Another sim-
ilar concern is the impact of changes in abundant metab-
olites relative to changes in the majority of low-concen-
tration chemicals [20]. A relatively small random change 
in the concentration of an abundant metabolite would still 
result in an apparent large intensity change that may po-
tentially mask a functionally relevant change in a low-
concentration metabolite. The negative impact on the 
PCA scores plot would be an undesirable clustering of the 
NMR data that emphasized the irrelevant random changes 
of the abundant metabolite instead of the changes associ-
ated with the functionally relevant low-concentration me-
tabolites. To minimize this issue, a transformation of the 
original data is performed that enhances the intensity of 
weak peaks relative to strong peaks and generates a con-
stant variance in the data [10] and [21].

In this article, we describe the observation of another 
potential source of error in PCA of NMR metabolomic 
data that resulted in poor clustering of “ideal” NMR data 
with high similarity. The source of this error is the con-
ceptual opposite of the random fl uctuations of intense sig-
nals from abundant metabolites described above and as a 
result was completely unexpected. Extremely small varia-
tions within the noise of high signal-to-noise NMR spec-
tra had a signifi cantly and surprisingly negative impact in 
the quality of the clustering in PCA scores plot.

2. Materials and methods

2.1. NMR data collection

The NMR metabolomics test data sets consisted of three 
individual samples composed of either 500 mM or 1 mM 
of (i) ATP, (ii) glucose, and (iii) ATP and glucose. The 
compounds were dissolved in 99.8% D2O with 50 mM 
phosphate buffer at pH 7.2 (uncorrected) and 5 mM of 
TMSP. The NMR spectra were collected on a Bruker 
500 MHz Avance spectrometer equipped with a triple-res-
onance, z-axis gradient cryoprobe. 1H NMR spectra were 
collected with 128 transients at 298 K with solvent presat-

uration of the residual HDO, a sweep-width of 5482 Hz 
and 32 K data points. Ten duplicate 1H NMR spectra were 
collected sequentially for each of the three samples for a 
data set consisting of 30 NMR spectra for both the 1 and 
500 mM set of samples.

2.2. Statistical analysis

The two sets of 30 NMR spectra were processed automat-
ically using a macro in the ACD/1D NMR manager (Ad-
vanced Chemistry Development, Toronto, Ontario). The 
NMR data were Fourier transformed, zero-fi lled, phased 
and baseline corrected. The NMR spectra were processed 
using multiple protocols to eliminate the possible contri-
bution of data processing to the observed spread in the 
PCA. The NMR spectra were processed with zero, one 
and four zero-fi llings. The baseline was corrected us-
ing spectrum averaging or a polynomial fi t of the noise. 
For spectrum averaging, the spectrum regions that do not 
contain signals are automatically defi ned by using a rect-
angular box (box half-width of 30 points). A peak is de-
fi ned as having intensity 5-times greater than the noise 
standard deviation, where noise is defi ned as the minimal 
Root Mean Square error. The baseline is constructed by 
averaging the spectrum curve over these regions. Simi-
larly, for polynomial fi t the spectrum is equally divided 
into 64 regions. A polynomial of order 4 is fi t to the re-
gions that only contain noise. The polynomial is then sub-
tracted from the entire spectrum.

The residual H2O NMR resonance between 4.87 and 
5.13 ppm was set to zero and excluded from the bucket-
ing and PCA analysis. Each spectrum was referenced with 
the TMSP peak set to 0.0 ppm. A table of integral intensi-
ties bucketed into bins with a width of 0.025 or 0.04 ppm 
using the ACD intelligent or standard bucketing schemes 
were then exported to MS Excel. Instead of using a uni-
form bucket size of 0.025 or 0.04 ppm throughout the 
spectrum, the ACD intelligent bucketing protocol places 
the bucket divisions at local minima within the spec-
trum to avoid the splitting of peaks between buckets. The 
smaller bucketing size of 0.025 ppm resulted in a slightly 
better clustering of the data (see Supplemental Figs. 1S 
and 2S). There is a 1.48% improvement along P1, and 
0.12% improvement along P2 in the variance using the 
0.025 ppm bucketing size. An MS Excel macro was then 
used to combine the 30 spectra into a single fi le to nor-
malize the binned intensities to a total integrated inten-
sity of 1.0. The Excel spreadsheet was then imported into 
SIMCA (UMETRICS, Kinnelon, NJ) for PCA. Exclusion 
of the noise regions of the 1H NMR spectra was accom-
plished by either limiting the bucket analysis in ACD/1D 
NMR manager to regions of the NMR spectrum that con-
tained manually defi ned peaks or by an Excel macro that 
set the value of every bin below a certain intensity thresh-
old to zero.
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3. Results and discussion

3.1. Principal component analysis of simulated metabo-
lomic data

As a starting point to familiarize ourselves with the ap-
plication of principal component analysis (PCA) of NMR 
based metabolomics data, we initiated a pilot study of 
simulated metabolomic data. The simulated metabolo-
mic data simply consisted of three NMR samples com-
posed of ATP, glucose and an ATP–glucose mixture. To 
optimize the similarity in the experimental data, dupli-
cate NMR spectra were collected using the same sam-
ple. This provided us with a data set that was expected 
to yield tight clustering among the repeat data sets and 
known variances between the three unique samples.

The fi rst comparison made was between the ATP and 
the ATP–glucose mixture samples. Again, we anticipated 
the major variance observed along PC1 would be attrib-
uted to the glucose NMR signals. Similarly, the variance 
along PC2 was expected to be attributed to instrument 
instability. We expected to see a relatively large vari-
ance along the PC1 axis and a tighter cluster along PC2. 
The PCA scores plot of the ATP and ATP–glucose mix-
ture samples is illustrated in Fig. 1.To our surprise, we 
observed a relatively large scattering along PC2, equiva-
lent in magnitude to the separation in PC1, but even more 
troubling was the observation that one of the ATP spec-
trum (#2) fell outside the 95% confi dence level in the PCA 
plot. This observation was clearly a point of confusion. If 
this was a “normal” experimental data set, the PCA would 
fl ag this data point as an outlier and raise concerns of the 
origin of this sample, but in our simulated data set this is 
not a possibility. The samples are all identical. An alterna-
tive explanation that may have lead to this outlier would 
be a failure in either the data collection or the processing 
of the NMR spectrum. 

The success of PCA of NMR metabolomics data is 
intrinsically tied to the consistency in the handling, prep-
aration, collection, and processing of the NMR data [17]. 
Problems in phasing, referencing, baseline correction or 

instrument stability would easily lead to the observed 
scatter and the outlier seen along PC2. But, if any of these 
problems were present it would also result in a similar 
scatter along PC1. This is clearly not the case. It is also 
apparent that these processing or acquisition problems are 
not present by visually inspecting the NMR spectra. Fig. 
2 compares the outlier ATP spectrum (#2) against the ATP 
spectrum (#9), which has a minimal variation along PC2. 
There is no visual difference between these two spectra 
that would easily justify the large difference along PC2. 

Fig. 1. PCA scoring plots 
of the set of 10 ATP ( ) 
and ATP–glucose (•) NMR 
spectra. 

Fig. 2. 1H NMR spectra of the (A) outlier ATP (#2) spectrum 
and (B) ATP (#9) spectrum with minimal variation along 
PC2. 
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To further verify that the processing protocol did not 
contribute to the large variations along PC2, the data were 
processed by varying the type of baseline correction, the 
number of zero-fi llings, bucket width, and the method of 
binning (see Supplemental Figs. 1S–6S). Reducing the 
bucket width from 0.04 to 0.025 ppm did result in a small 
improvement in the scattering, with a 1.48% improvement 
along PC1 and a 0.12% improvement along PC2. Chang-
ing the baseline correction from a polynomial fi t to spec-
tral averaging or changing the number of zero-fi lling from 
zero to four or changing the binning method from intelli-
gent bucketing to standard bucketing either had no bene-
fi cial effect or increased the PC2 variation. Interestingly, 
the specifi c characteristics of the PCA scores plots (abso-
lute position of data points along the PC1 and PC2 axis) 
were sensitive to the details of the processing parameters 
even though the general appearance of each NMR spec-
trum was unchanged.

It is also conceivable that the relatively high sample 
concentration of 500 mM may have inadvertently contrib-
uted to the PC2 variation. To address this issue, the ex-
periments were repeated exactly as before where the ATP, 
glucose and ATP–glucose concentrations were reduced to 
1 mM. Essentially identical results were observed with 
the lower concentration samples (see Supplemental Figs. 
7S–10S). This clearly indicates that sample concentration 
is not the source of the PC2 variation.

It is also interesting to note that the relatively more 
complicated ATP–glucose NMR spectra experiences a 
signifi cantly smaller PC2 fl uctuation compared to the ATP 
NMR spectra. This suggests that the observed PC2 varia-
tion is not primarily related to instrument stability since 
an opposite result would be expected. Simply, the larger 
number of NMR peaks present in the ATP–glucose spec-
trum increases the probability that a random fl uctuation 
in peak intensity caused by instrument instability would 
occur between sequential data collection. Effectively, the 
ATP–glucose sample contains more probes to monitor in-
strument stability.

3.2. Difference loadings plot analysis of simulated metab-
olomic data

Comparison of the PC2 loading plots between the outlier 
ATP (#2) spectrum and the ATP spectrum (#9), which has 
a minimal variation along PC2, identifi es the surprising 
source of the spread along PC2 (Fig. 3). The NMR bins 
that are responsible for most of the differentiation along 
PC2 are primarily associated with noise regions in the 
spectrum. Even more startling is the fact that the relative 
fl uctuation in the intensity of these noise bins is extremely 
small compared to the intensity of real peaks in the spec-
trum. Fig. 4 illustrates an expanded view of one of the 
noise regions of the outlier ATP spectrum (#2) compared 
against the ATP spectrum (#9), which has a minimal vari-
ation along PC2. This expanded noise region of the NMR 
spectrum contains a large positive variation in the differ-
ence loadings plot (bin 363, 7.82–7.83 ppm), boxed area 
in Fig. 3. The expanded noise region does illustrate some 
random spikes in the noise that exhibit intensities greater 
than the average noise bands. These noise spikes are con-
sistent with normal and expected variations in the instru-
ment noise, and appear to correlate with the large varia-
tions observed in the PC2 loading plot. Nevertheless, the 
magnitude of the noise spikes and PC2 loadings do not 
appear to correlate. The largest PC2 loading for bin 363 
(7.82–7.83 ppm) is 15, but the noise spike is lower in in-
tensity compared to the spikes at 8.00 and 8.03 ppm, 
which have corresponding PC2 loadings that range from 

1 to 4. It is also important to keep the relative magnitude 
of these noise spikes in perspective with the remainder 
of the NMR spectrum. The relative intensity of the noise 
compared to real peaks, including 13C satellites, is effec-
tively zero (Fig. 3). On this scale, the relative intensity of 
the noise spikes compared to the typical noise band would 
be expected to be inconsequential and irrelevant. Table 1 
lists some of the intensity values in the NMR noise bins 
that are responsible for the outlier ATP spectrum (#2) with 
corresponding values for other ATP spectra. Again, the in-

Fig. 3. PCA loading plots dif-
ference from the comparison of 
the outlier ATP (#2) spectrum 
and an ATP (#9) spectrum with 
minimal variation along PC2. 
The boxed area corresponds to 
the expanded noise regions il-
lustrated in Fig. 4.
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tensity of these noise bins is effectively zero with small 
random fl uctuations about 10−5–10−7, where some values 
are exactly zero. A large PC2 loading value was observed 
for bin 363 in ATP spectrum #2, where the intensity of this 
bin is 1.04 e−5 in spectrum #2 but varies from 0 to 1.43 e−7. 
Apparently, since bin 363 for most of the ATP spectra is 0, 
a large PC2 loading value is attributed to ATP spectrum #2 
because of a large relative difference even though the ab-
solute difference is infi nitesimal. 

The contribution of noise to the difference loadings 
plot was not unique to the comparison of ATP spectra #2 
and #9. Similar results were observed when other spectra 
were compared (see Supplementary Fig. 11S). The major 
differences in the difference loading plots were associated 
with noise regions, but the specifi c characteristics of the 
difference loadings plots varied randomly. The position 
and intensity of the spikes varied between the difference 
loadings plots. Again, this is consistent with the variabil-
ity observed along PC2 in the PCA scores plot (Fig. 1) 
and the expected variability of noise. Clearly, these obser-
vations imply that the presence of noise may be detrimen-
tal to accurate clustering in NMR PCA scores plot.

3.3. Principal component analysis with a noise threshold

Assuming that the difference loadings plot analysis 
correctly identifi ed that the PC2 variation is due to these 
extremely small fl uctuations in noise regions of the spec-
trum and not another artifact of the PCA, the ATP and 
ATP–glucose NMR spectra were re-analyzed with the ex-
clusion of noise from the binning. This was accomplished 
by either binning regions of the NMR spectrum that only 
contained peaks or by setting all bins that are below a 
certain intensity threshold to exactly zero. The PCA im-
proved with the exclusion of the noise. None of the spec-
tra fall outside the 95% confi dence level and the relative 
range of variation along the PC2 axis have been reduced 
by a factor of 4–5 for the ATP spectra (Fig. 5). Simi-
larly, the percent variance signifi cantly increased for PC1 
from 33.12 ± 10.31 to 83.37 ± 7.44% with the exclusion 
of noise. The contribution of noise to the scores plot was 
also evident by comparing 1 mM ATP NMR spectra with 
500 mM ATP–glucose spectra. The same variance along 
PC2 was present for 1 mM ATP spectra that was similarly 
reduced by a 4- to 5-fold by the exclusion of the noise. 

Fig. 4. Expanded view of the 
1H NMR noise region for the 
(A) outlier ATP (#2) spectrum 
and (B) ATP (#9) spectrum with 
minimal variation along PC2. 

Table 1. Select intensity values of NMR noise after binning and normalization

a Subset of the noise displayed in Fig. 4. The list of binned noise is centered around the largest positive peak (bin 363, 7.82–7.83 ppm) in the boxed re-
gion of Fig. 3.

b Binned noise for the outlier ATP spectrum number 2.
c Binned noise for the ATP spectrum with minimal variation along PC2.



Negative impact of noise on the principal component analysis of NMR data  93

Conversely, 500 mM ATP–glucose spectra were tightly 
clustered even with the inclusion of noise because of the 
relatively high signal-to-noise of 500 mM ATP–glucose 
NMR spectra compared to 1 mM ATP spectra (see Sup-
plemental Figs. 12S–13S and Table 1S). Again, the vari-
ance along PC2 is directly correlated to the presence of 
noise in the NMR spectrum. 

The noise component of an NMR spectrum does not 
convey any valuable information in the analysis of me-
tabolomic data, but it is routinely included to simplify the 
data handling. This was based on the reasonable assump-
tion that the inclusion of noise in the binning of NMR 
spectra would have a neutral impact on the PCA, where 
the binning process itself would minimize the noise inten-
sity and its variation. The largest variations expected to 
be identifi ed in PCA would be changes in the intensity of 
various metabolite NMR resonances. Unfortunately, our 
analysis indicates that small random changes in spectral 
noise may contribute to large incorrectly perceived varia-
tions in NMR spectra.

3.4. PCA including the glucose NMR data with and with-
out a noise threshold

To determine if the observed large variation along the PC2 
axis was an artifact created by comparing just two distinct 
and tightly clustered data sets, we added a third related 
NMR sample to the analysis. The third NMR sample only 
contains glucose and is expected to induce a signifi cant 
PC2 variation in the PCA score plot. The PCA scores plot 
of the ATP, glucose and ATP–glucose NMR samples is il-
lustrated in Fig. 6.As expected, large PC1 and PC2 vari-
ations result from the different composition of the three 
NMR spectra, effectively forming an equilateral trian-
gle in the scores plot. The separation along either PC1 
or PC2 is considerably larger than the variability among 
any members in the three distinct clusters. Nevertheless, 
the inclusion of the NMR noise region still results in a 
noticeable spread among the repeat NMR spectra within 
each cluster, especially for the ATP and glucose samples 
(Fig. 6A). The larger spread for the ATP and glucose sam-
ples is consistent with the fact that these NMR spectra 

Fig. 5. PCA scoring plots of the set of 10 ATP ( ) and ATP–glucose (•) NMR spectra after removal of the spectral noise by 
only binning NMR resonances. 

Fig. 6. PCA scoring plots of the 10 ATP ( ) ATP–glucose (•) and glucose ( ) NMR spectra with the (A) inclusion and (B) ex-
clusion of noise. 
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would have more noise regions relative to the ATP–glu-
cose spectra. Removal of the NMR noise regions results 
in a signifi cant improvement in the clustering pattern in 
the PCA scores plot (Fig. 6B). As initially expected, the 
repeat NMR spectra are essentially on top of each other in 
each of the three clusters. Clearly, the inclusion of NMR 
noise regions results in a signifi cant spread in the cluster-
ing of the PCA scores, where the noise does not correlate 
with any relevant sample characteristics. 

In this “ideal” NMR metabolomic data, the large sep-
aration present in PC1 and PC2 permits easy discrimina-
tion of the ATP, glucose and ATP–glucose spectra despite 
the observed spread within each cluster caused by the 
presence of noise. Generally, this would not be the case 
when dealing with “real” biological data obtained from 
numerous cell lysis or biofl uid samples. Thus, the level 
of discrimination expected from a set of typical NMR 
based metabolomic data may be compromised by the in-
clusion of NMR noise. The irrelevant spread in cluster-
ing induced by NMR noise may actually obscure the un-
derlying features in the data resulting in the loss of any 
informative clustering in the PCA scores plot. Therefore, 
the standard protocol for processing NMR data for PCA 
should include the exclusion of noise especially since the 
noise provides no valuable information while potentially 
distorting the proper analysis of the NMR data.

Since, biofl uid or cell extract data may contain weak 
NMR resonances that may be associated with functionally 
important metabolites, the choice of an appropriate noise 
threshold is critical to avoid the inadvertent elimination 
of these potentially valuable peaks. An iterative approach 
that adjusts the noise threshold to minimize the spread be-
tween repeat data points while simultaneously maximiz-
ing the separation between data collected under various 
cellular conditions may provide a mechanism to remove 
the negative impact of noise without compromising the 
data. A threshold corresponding to one standard devia-
tion of the noise would be a reasonable starting point for 
the iterative approach where an upper-limit less than 2–3 
times the noise would avoid eliminating peaks that can be 
reliably differentiated from the noise band.

4. Conclusion

The principal component analysis of NMR metabolomic 
data is proving to be a powerful tool for the evaluation 
of toxicity, protein function, and the identifi cation of dis-
ease markers. A fundamental benefi t of PCA is the iden-
tifi cation of distinct clusters in a scores plot that high-
lights discriminating characteristics refl ecting the source 
or treatment of the NMR samples. Essential to the suc-
cessful interpretation of NMR PCA data is a requirement 
that the observed variations identifi ed by PCA are re-
lated to features of the biological sample and not an ar-

tifact of data manipulation or sample handling. Process-
ing NMR data for PCA generally includes binning the 
entire spectrum, which also incorporates all the noise re-
gions. Our analysis of “ideal” metabolomic data indi-
cates that this inclusion of noise may result in signifi -
cant and irrelevant spreading of the PCA scores clusters 
that may inhibit proper interpretation of the data. A sim-
ple solution is a routine application of a fi lter to exclude 
the noise region below a defi ned peak intensity threshold. 
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Figure 1S: PCA scoring plot of set of ten 500mM ATP ( ) and 500mMATP-glucose (●) 
NMR spectra using intelligent bucketing with bin size of .025 ppm. 
 
 
 

 
 
Figure 2S:  PCA scoring plot of set of ten 500mM ATP ( ) and 500mM ATP-glucose (●) 
NMR spectra using intelligent bucketing with bin size of .040 ppm. 
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Figure 3S: PCA scoring plot of set of ten 500mM ATP ( ) and 500mM ATP-glucose (●) 
NMR spectra using standard bucketing with bin size of .025 ppm. 
 
 
 

 
 
Figure 4S: PCA scoring plot of set of ten 500mM ATP ( ) and 500mM ATP-glucose (●) 
NMR spectra with 1X zero filling. 
 
 
 
 



 
Figure 5S: PCA scoring plot of set of ten 500mM ATP ( ) and 500mM ATP-glucose (●) 
NMR spectra with 4X zero filling. 
 
 
 
 
 

 
Figure 6S:  PCA scoring plot of set of ten 500mM ATP ( ) and 500 mM ATP-glucose 
(●) NMR spectra with polynomial baseline correction 



 
Figure 7S: PCA scoring plot of set of ten 1mM ATP ( ) and 1mM ATP-glucose (●) 
NMR spectra using intelligent bucketing with bin size of .025 ppm. 
 
 
 
 
 
 

 
Figure 8S: PCA scoring plot of set of ten 1mM ATP ( ) and 1mM ATP-glucose (●) 
NMR, editing out the noise. 
 



 
Figure 9S: PCA scoring plot of set of ten 1mM ATP ( ), 1mM ATP-glucose (●), and 
1mM glucose (●) NMR spectra using intelligent bucketing with bin size of .025 ppm 
 
 
 
 
 

 
 
Figure 10S: PCA scoring plot of set of ten 1mM ATP ( ), 1mM ATP-glucose (●), and 
1mM glucose (●) NMR spectra, editing out the noise 



 
 
 

 
 
Figure 11S:  (a) PCA loading plots difference from the comparison of the ATP (#3) 
spectrum and the ATP (#9) spectrum with minimal variation along PC2. (b) PCA scoring 
plots of the set of ten ATP ( ) and ATP-glucose (●) NMR spectra. ATP spectra #3 and #9 
are labeled to indicated their relative positioning in the PCA scores plot. 

(a) 

(b) 



 
Figure 12S: PCA scoring plot of set of ten 1 mM ATP ( ) and 500 mM ATP-glucose (●). 
 

 
Figure 13S: PCA scoring plot of set of ten 1 mM ATP ( ) and 500 mM ATP-glucose (●), 
editing out the noise. 



Table 1S: Percent variance of the principal component analysis for the various NMR 
data with the inclusion or exclusion of noise regions. 
 
 Percent Variance 

NMR Sample Set PC1 PC2 
500mM ATP & ATP-Glucose with noise 42.89%   5.95% 
500mM ATP & ATP-Glucose signal only    90.64%   4.15% 
500mM ATP & Glucose & ATP-Glucose with noise 31.46%   13.84% 
500mM ATP & Glucose & ATP-Glucose signal only 74.41%   24.86% 
1mM ATP & ATP-Glucose with noise  38.74%   6.20% 
1mM ATP & ATP-Glucose signal only    88.19%   10.96% 
1mM ATP & Glucose & ATP-Glucose with noise 19.38%   7.73% 
1mM ATP & Glucose & ATP-Glucose signal only 80.24% 9.87% 
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