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real and developmental time scales
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2Iowa Center for Developmental and Learning Sciences, University of Iowa
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Abstract
Within cognitive neuroscience, computational models are designed to provide insights into the
organization of behavior while adhering to neural principles. These models should provide sufficient
specificity to generate novel predictions while maintaining the generality needed to capture behavior
across tasks and/or time scales. This paper presents one such model, the Dynamic Field Theory (DFT)
of spatial cognition, showing new simulations that provide a demonstration proof that the theory
generalizes across developmental changes in performance in four tasks—the Piagetian A-not-B task,
a sandbox version of the A-not-B task, a canonical spatial recall task, and a position discrimination
task. Model simulations demonstrate that the DFT can accomplish both specificity—generating
novel, testable predictions—and generality—spanning multiple tasks across development with a
relatively simple developmental hypothesis. Critically, the DFT achieves generality across tasks and
time scales with no modification to its basic structure and with a strong commitment to neural
principles. The only change necessary to capture development in the model was an increase in the
precision of the tuning of receptive fields as well as an increase in the precision of local excitatory
interactions among neurons in the model. These small quantitative changes were sufficient to move
the model through a set of quantitative and qualitative behavioral changes that span the age range
from 8 months to 6 years and into adulthood. We conclude by considering how the DFT is positioned
in the literature, the challenges on the horizon for our framework, and how a dynamic field approach
can yield new insights into development from a computational cognitive neuroscience perspective.
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1. Introduction
A central goal of computational cognitive neuroscience is to develop models of cognitive
processes that provide insight into the organization of behavior while adhering to neural
principles. As such, theorists strive to create models with sufficient specificity—both
behavioral and neural—to generate novel, testable predictions. It is also critical, however, that
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theories achieve a sufficient degree of generalizability across tasks. This is not a trivial
accomplishment: capturing the details of performance in even a single task can be difficult, let
alone generalizing across multiple tasks, multiple behaviors, and, perhaps even more
challenging, multiple time scales (e.g., extending into learning and development).

Several theories have confronted the challenges of achieving generality with specificity, with
varying levels of success (e.g., Cohen & Servan-Schreiber, 1992; Love, Medin & Gureckis,
2004; McClelland, McNaughton & O’Reilly, 1995; Morton & Munakata, 2002); here, we
present one such theory, the Dynamic Field Theory (DFT) of spatial cognition (Spencer,
Simmering, Schutte & Schöner, 2007). The dynamic field framework was originally developed
to capture the dynamics of neural activation in visual cortex (Amari, 1977). More recently, this
framework has been extended to account for the processes that underlie saccadic eye
movements (Kopecz & Schöner, 1995; Wilimzig, Schneider & Schöner, 2006), motor planning
(Erlhagen & Schöner, 2002; Schutte & Spencer, 2007b), infants’ performance in Piaget’s A-
not-B task (Thelen, Schöner, Scheier & Smith, 2001), the dynamics of neural activation in
motor and premotor cortex (Bastian, Riehle, Erlhagen & Schöner, 1998; Bastian, Schöner &
Riehle, 2003), and the behavior of autonomous robots (Bicho, Mallet & Schöner, 2000;
Iossifidis & Schöner, 2006; Steinhage & Schöner, 1998).

In the present report, we present new simulations of a dynamic field theory of spatial cognition
that demonstrate that this theory generalizes across developmental changes in performance in
four tasks—the Piagetian A-not-B task, a version of the A-not-B task conducted in a sandbox,
a canonical spatial recall task, and a position discrimination task. Moreover, simulations of our
theoretical model demonstrate that the DFT can span developmental changes in performance
in these tasks across a range of ages from 8 months to 6 years through adulthood with a relatively
simple developmental hypothesis. This highlights a novel developmental insight: because we
use a richly structured real-time neural system, we can get “more from less” over development,
that is, we can produce both quantitative and qualitative changes in performance via a simple
developmental mechanism. Critically, the same model can perform these different behaviors
with no modification to its basic structure and with a strong commitment to neural principles
(see Amari, 1977; Bastian, et al., 1998; Bastian, et al., 2003; Erlhagen, Bastian, Jancke, Riehle
& Schöner, 1999; Jancke, et al., 1999). These simulations demonstrate that the DFT can achieve
both generality and specificity.

In the section that follows, we provide an overview of the DFT including its foundations in
neural principles and our central developmental hypothesis. Next, we describe behavioral
signatures in four spatial cognition tasks that have previously been simulated with earlier
versions of the framework presented here—but never within a single model with a single
parameter setting scaled systematically over development. Simulation results show that the
current instantiation of the model can capture development within and across these tasks by
scaling a small set of parameters. Thus, the exact same model with slight modification in
parameters can show the complex pattern of developmental change observed across these four
tasks. We conclude by placing our theoretical framework in the broader literature, considering
the challenges on the horizon for our theory, and discussing the novel insights into
developmental process offered by the simulations presented here, in particular, how one can
get “more from less” over development.

2. Overview of the Dynamic Field Theory
A growing number of researchers have argued that we should take inspiration from the densely
interconnected and dynamic nature of the brain to re-think cognition (e.g., Barsalou, 1999;
Skarda & Freeman, 1987; Spencer & Schöner, 2003). A centerpiece of this approach is to
embrace the use of complex, dynamic neural networks to capture brain-behavior relations.
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Although neural networks have architectures that can be depicted as separate systems, they are
at their core complex, reentrant, densely interconnected systems that violate core assumptions
of encapsulation and separability (for discussion, see Spencer, et al., 2007).

We have contributed to this broader agenda using continuous dynamic neural fields first
proposed to capture neural dynamics within the topographic organization of visual cortex
(Amari, 1977; Amari & Arbib, 1977). More recently, this approach has been extended to
capture the dynamics of neural activity in cortical areas with a non-topographic organization
(e.g., motor cortex). For instance, time-dependent changes in neural activation in a dynamic
field model of motor planning were compared to single-unit neural activity in motor cortex
measured in a precue paradigm using population coding techniques (Bastian, et al., 1998;
Bastian, et al., 2003; Erlhagen, et al., 1999). The first step in making this comparison was to
map the responses of neurons to basic stimuli and create a continuous field by ordering the
neurons based on their “preferred” stimulus. This was followed by a behavioral precuing task
that probed predictions of a dynamic field theory of movement preparation (Bastian, et al.,
1998; Bastian, et al., 2003; Erlhagen & Schöner, 2002). Note that this same theory has also
been tested using ERP techniques (McDowell, Jeka, Schöner & Hatfield, 2002). These studies
have reported a robust relationship between predictions of dynamic field models and neural
measures, suggesting that this particular marriage between theoretical and behavioral
neuroscience is quite promising.

The theory we present here uses additional insights gained from studies of the layered structure
of cortex. In particular, we use a multi-layered architecture inspired by the cytoarchitecture of
visual cortex (Douglas & Martin, 1998). This has given us an entry point into the dynamics
that emerge from interactions among cortical layers. Moreover, our approach to long-term
memory is grounded in established neural principles: we use long-term memory fields
(described below) that capture a form of Hebbian learning (see Schöner, 2007; Wilimzig &
Schöner, 2005; Wilimzig & Schöner, 2007).

2.1 A 5-layer Dynamic Field Model of Spatial Cognition
Our focus in the present report is on a process-based theory of spatial cognition instantiated in
a 7-layer dynamic neural field model that captures children’s and adults’ performance in a host
of spatial tasks (for a complete description of the theory, see Spencer, et al., 2007). Here, we
focus on the dynamics of five layers of the model, shown in Fig. 1 (for equations and parameter
details, see Appendix A): a perceptual field (PF; Fig. 1B), a spatial working memory field
(SWM; Fig. 1E), a shared inhibitory field (Fig. 1D), and two long-term memory fields coupled
to PF (LTMPF; Fig. 1C) and SWM (LTMSWM; Fig. 1F). In each field, the x-axis consists of a
collection of spatially-tuned neurons; the y-axis shows each neuron’s activation level; lastly,
time is captured along the z-axis, beginning at the front of the figure. These layers pass
excitation and inhibition as indicated by solid and dashed arrows, respectively.

Inputs to the full 7-layer model described in Spencer et al. (2007) come from two additional
layers not used in the simulations presented here: a perceptual field that receives input in an
egocentric frame of reference (e.g., retinal coordinates) and a system that translates spatial
information from this egocentric frame into an allocentric frame grounded in perceptual cues
in the task space (e.g., the edges of a tabletop). These two layers keep our spatial system
calibrated with the world despite, for instance, intervening movements of the head and/or body.
To simplify discussion of the model here, we have replaced these two layers with the input
layer shown in Fig. 1A. This layer simply presents inputs (i.e., Gaussian activation profiles)
to PF and SWM in an allocentric frame with a time structure dictated by events in the task. For
instance, the simulation shown in Fig. 1 shows performance in a single spatial recall trial where
the target was presented at -40° in the task space (see Target in Fig. 1A) and there were
perceptual cues in the task space marking the midline axis of the table (i.e., 0°; see Midline in
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Fig. 1A). Note that input from the midline axis is relatively weak compared to input from the
target; this reflects the increased salience of the target item due to task instructions to remember
its location. We also note here that inputs to SWM were considerably weaker that inputs to PF
(multiplied by 0.2 in all simulations).

A central component of the model are the neural interactions among the 5 layers depicted in
Fig. 1B-F. Neurons within PF (Fig. 1B) and SWM (Fig. 1E) have locally excitatory interactions
where activated neurons boost the activity of their local neighbors. In addition, neurons in PF
and SWM have reciprocal connections to the layer of interneurons (Fig. 1D): neurons in these
layers increase the activation of interneurons tuned to “prefer” similar locations, and these
interneurons, in turn, project broad inhibition back to PF and SWM. These combined
interactions among the PF, Inhib, and SWM layers lead to locally excitatory and laterally
inhibitory interactions within PF and SWM that enable these fields to form self-sustaining
“peaks” of activation that maintain themselves in the absence of input (Amari & Arbib,
1977). For example, Fig. 1E shows a self-sustaining peak in SWM near −40° that “remembers”
the target location after the target input was removed.

In addition to capturing working memory for a target on a given trial, this 5-layer structure also
allows the model to learn from its previous experience through a type of Hebbian learning,
incorporated using long-term memory (LTM) fields. Above-threshold activation in PF and
SWM passes excitation to associated sites in the respective LTM fields (see Fig. 1C and 1F),
leaving corresponding traces of activation. These activation traces gradually accumulate across
a slower time scale and decay in the face of competing activation. Importantly, these traces
pass excitation back into PF and SWM, which can bias the creation of activation peaks in these
layers as well as shift the spatial position of such peaks (an issue we discuss in greater detail
in the following sections). Note that each LTM field serves a unique and emergent behavioral
function. The LTM associated with PF tracks the use of reference frames in the environment.
For instance, the simulation in Fig. 1C has relatively strong activation at 0°, reflecting the
continual presence of perceptual cues at midline in the task space—the system comes to
remember that midline provides a salient reference axis in this task, which allows it to re-align
to the same object-centered frame of reference from trial to trial (see Spencer, et al., 2007, for
details). By contrast, the LTM field associated with SWM accumulates traces of previously-
remembered locations over trials. In Fig. 1F, the long-term memory shows traces of the targets
from the two previous trials at −20° and −50°, respectively, as well as traces built from
activation associated with the current target at −40°. Because these targets are relatively close
in space and have been presented only once each, the long-term memory traces are relatively
weak and blend together. It is this field that allows the model to accurately capture performance
in A-not-B-type tasks (see below), as well as effects of experience-dependent spatial categories
(see, e.g., Spencer & Hund, 2002).

2.2 Development in the DFT
We have previously captured behavioral changes across tasks and development within the
dynamic field framework using a relatively simple developmental hypothesis—the spatial
precision hypothesis (SPH, Schutte, Spencer & Schöner, 2003; Simmering & Spencer, 2007;
Spencer & Hund, 2003; Spencer, et al., 2007). The SPH posits that neural interactions become
stronger and more precise over development. The simulations presented here show how small,
quantitative changes in neural interaction are sufficient for the model to reproduce a complex
pattern of behavioral performance observed across four tasks, beginning with infancy and
spanning childhood into adulthood.

This general hypothesis is consistent with a host of neurophysiological evidence, particularly
during the age range that is the focus of the present report—8 month to 6 years (for a related
hypothesis about changes in neural processes over development, see Westermann & Mareschal,
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2004). For instance, it is likely that the development of the dorso-lateral prefrontal cortex plays
a central role in the tasks we discuss because this region of cortex is heavily involved in the
on-line maintenance of spatial information (Awh, et al., 1999; di Pellegrino & Wise, 1993;
Kessels, Postma, Wijnalda & de Haan, 2000; Nelson, et al., 2000). Moreover, the development
of the prefrontal cortex shows a protracted course that continues into the postadolescent years
(Gogtay, et al., 2004; Rakic, 1995; Sowell, Thompson, Tessner & Toga, 2001). Synaptic
density in the prefrontal cortex reaches its peak at about 2 years of age in humans (Huttenlocher,
1979), and then declines until it finally reaches adult levels at about 16 years of age
(Huttenlocher, 1990). Myelination is also still occurring in the frontal lobe between the 2 and
6 years of age (Sampaio & Truwit, 2001). To the extent that these neurophysiological changes
lead to stronger and more efficient neural processing in spatial tasks, they are, at least at a
qualitative level, consistent with the SPH.

Implementing the spatial precision hypothesis in our model has three components (see Model
Parameters in Appendix A and Table A1). First, we have made feed-forward inputs to the
model (i.e., activation from the input layer to PF and SWM) stronger and more precise over
development (see Scaling of Inputs in Appendix A and Table A1). This reflects both enhanced
tuning of feed-forward cortical projections over time due to, for instance, Hebbian processes
(Kohonen, 1982), as well as an improved ability to stably align and re-align egocentric and
allocentric reference frames (see Spencer, et al., 2007). Note that the values listed in Table A1
were multiplied by the “adult” parameters to arrive at the values used in the developmental
simulations. Second, we have made similar modifications to input to the LTM fields (see
Scaling of Long Term Memory Projections in Appendix A). For instance, peaks of activation
in SWM project activation into LTMSWM via a broader projection early in development relative
to the “adult” version of our model. Again, the narrowing of this projection over development
reflects improvements in neural precision via learning as well as an improved ability to re-
align current memories to past memories.

Third, we have altered the strength and precision of neural interactions among the PF, Inhib,
and SWM layers (see Scaling of Local Excitation / Lateral Inhibition in Appendix A and Table
A1). In particular, inhibitory projections from the layer of interneurons to both PF and SWM
were broad and weak in early development and became more precise to create adult patterns
of responding. We also modified local excitatory interactions within PF and SWM, with weaker
local excitation early in development and stronger local excitation later. These changes in local
excitation and lateral inhibition are depicted in Fig. 2, which shows the locally-excitatory
profile within SWM superimposed on the laterally-inhibitory projection from Inhib in early
childhood (Fig. 2A) and adulthood (Fig. 2B). In a similar architecture, this type of change in
the precision of neural interactions over development predicted developmental changes in
BOLD signals (measured with fMRI) during a working memory task (Edin, Macoveanu,
Olesen, Tegnér & Klingberg, 2007).

In summary, we implemented the SPH by scaling the spatial precision (i.e., widths) and strength
of three classes of neural interactions in the model: projections from the input layer into PF
and SWM; projections from PF and SWM into the associated LTM fields; and locally
excitatory / laterally inhibitory interactions among PF, Inhib, and SWM (see Table A1).
Importantly, to systematically move from simulations of infants’ performance in the Piagetian
A-not-B task to children’s performance in two types of spatial recall tasks to adults’
performance in spatial recall and position discrimination, we only changed a single scaling
parameter: we modulated the strength of local excitation from 0.3 for the young infants in the
A-not-B task to 0.4 for older infants in the A-not-B task to 0.5 for all other toddler/child
simulations (see Table A1). Critically, these quantitative changes in local excitation combined
with the more global shift from the “child” to “adult” parameter sets were sufficient to capture
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both quantitative and qualitative changes in performance across tasks and time scales without
any other modifications to model parameters.

Note that the four tasks we simulate here have not been explicitly linked in the behavioral
literature; rather, they are generally considered to be separate tasks that index separate
developing abilities. Concretely, developmental changes in infants’ performance in the
Piagetian A-not-B task has been used as a measure of the developing object concept (Piaget,
1954), improvements in infants’ representation of space (e.g., Acredolo, 1985; Bremner,
1978; Bremner & Bryant, 1977), maturational changes in pre-frontal cortex (e.g., Diamond,
1990a; Diamond, 1990b; Diamond & Goldman-Rakic, 1989), and improvements in infants’
memory for objects (e.g., Munakata, 1998; Munakata, McClelland, Johnson & Siegler,
1997), among others. By contrast, performance in the two spatial recall tasks we simulate has
been linked to how children use long-term spatial memories and geometric spatial categories
to remember locations (e.g., Huttenlocher, Newcombe & Sandberg, 1994; Schutte & Spencer,
2002; Spencer & Hund, 2003). Finally, the position discrimination task we simulate has
typically been viewed from a psychophysical perspective (Kinchla, 1971; Palmer, 1986a;
Palmer, 1986b) and has only recently been directly linked to phenomena discussed in the spatial
recall literature (Simmering, Spencer & Schöner, 2006; see also, Werner & Diedrichsen,
2002).

In the past decade, we have shown that these phenomena can be brought under the same
theoretical umbrella—the dynamic field framework—and that this framework can generate
novel, testable predictions (Schutte, et al., 2003; Simmering & Spencer, 2007; Simmering, et
al., 2006; Spencer, et al., 2007). Here we take this claim one step further by demonstrating—
for the first time—that these phenomena can, in fact, be integrated within a single model (the
5-layer version of the DFT shown in Fig. 1) using a well-specified developmental hypothesis.

3. Unifying Behavior across Real and Developmental Time Scales
In the sections that follow, we present simulations of the DFT that capture key behavioral
signatures from four tasks that span infancy through adulthood. Note that although we use the
same model for all simulations presented here, we focus on different aspects of the model’s
functioning in the different sections because interactions between SWM and LTM are central
to A-not-B-type effects, whereas interactions among PF, Inhib, and SWM are central to effects
in recall and discrimination tasks. This shift in focus reflects the changing demands of tasks
typically used in infancy compared to those used with older children and adults, but it also
reflects the emergence of new abilities in our model that arise due to earlier developmental
changes.1 For instance, more “mature” behaviors such as precise position discrimination
depend on prior developing abilities such as the ability to stably sustain a pattern of activation
in working memory (though for ties between the mechanism of discrimination in childhood
and visual recognition in infancy, see Perone, Spencer & Schöner, in press).

3.1 Piaget’s A-not-B Task in Infancy
In Piaget’s A-not-B task, an attractive toy is hidden repeatedly at an “A” location, where infants
generally search accurately. The toy is then hidden at a nearby (and perceptually similar) “B”
location. After a short delay, 8-10-month-old infants tend to search inaccurately at A. Slightly
older infants, around 10-12 months, search accurately at the B location. Previous work by
Thelen and colleagues (2001) demonstrated that a dynamic field model of reaching behavior
could capture infants’ A-not-B performance. According to Thelen et al., infants’ reaches in
this task depend on the interaction between a long-term memory of past reaches to the A

1We thank an anonymous reviewer for highlighting this aspect of our developmental work.
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location and a memory of the cuing event at the B location (see also Diedrich, Highlands,
Thelen & Smith, 2001; Diedrich, Thelen, Smith & Corbetta, 2000; Smith, Thelen, Titzer &
McLin, 1999). Infants “fail” in this task because the memory of B is not robust and is dominated
by the long-term memory of A; infants succeed in this task when they can effectively sustain
the memory of B during short-term delays. This developmental shift was originally modeled
by changing the resting level of neurons in a dynamic field model. Thelen et al. used a low
resting level in early development; consequently, activation patterns in the field were “input-
driven”, where activation takes the form of input and decays to a resting level when input is
removed. To model later development, a higher resting level made the field dynamics more
“cooperative”. Consequently, activation in the field could achieve a self-sustaining state where
activation associated with the B location could be sustained in the absence of input.

Although this model effectively captured a host of data and generated novel predictions (e.g.,
Clearfield, Smith, Diedrich & Thelen, 2006; Diedrich, Clearfield, Smith & Thelen, 2007;
Diedrich, et al., 2001; Diedrich, et al., 2000), it is limited in several respects. For instance, it
does not address issues of how reference frames are calibrated and re-aligned during the task.
Moreover, this account has not been directly integrated with developmental changes in spatial
cognition and action that occur beyond the age of 12 months. One way to move beyond these
limitations is to integrate this account of A-not-B performance with our more general theory
of the development of spatial cognition (Spencer, et al., 2007). We take a step in this direction
here by demonstrating that the 5-layer model and our implementation of the SPH can capture
developmental changes in the A-not-B task.

Fig. 3 shows simulations of a younger infant’s performance (e.g., age 8 to 10 months; see Fig.
3B,C) and an older infant’s performance (e.g., age 10 to 12 months; see Fig. 3D,E) in the A-
not-B task. Fig. 3A shows the input profiles used in both simulations, and the left and right
panels show two layers of the 5-layer model: SWM (Fig. 3B,D) and its associated LTM field
(Fig. 3C,E). We focus solely on these two layers because the critical behaviors—reaching to
A on the first B trial (i.e., making the A-not-B error) and reaching correctly on the first B trial
—arise due to activation in these layers. Note, however, that the full 5-layer model was run in
all simulations. Moreover, the model was simulated across the entire sequence of trials in the
A-not-B task even though we only show results from the first trial to the B location. Simulation
details for the younger and older infant model were identical with one exception: the older
model had stronger locally excitatory interactions within PF and SWM (see Table A1).

Each simulated trial began with the presentation of the “task” input to the model that captured
perception of the box in the task space with two distinct hiding locations. We implemented this
task input with two weak constant inputs at the A and B locations (see Hiding Wells in Fig.
3A). Next, we presented a strong input (i.e., the toy) at the target location (A or B) for 1000
time steps (equivalent to 2 s) and then waited a short delay (3000 time steps, equivalent to 6
s). At the end of the delay in the canonical A-not-B task, the box is pushed forward and the
infant is allowed to reach to retrieve the toy. To capture this in the model, we increased the
strength of the task input after the delay. The model then “reached” to the location associated
with the center of mass of the peak of activation in SWM.

We presented the model with four trials to the A location. Like most infants in this task, the
model “reached” successfully to A on these trials, leaving a memory trace of the A location in
LTMSWM (see LTM of A at the start of the trial in Fig. 3C,E). Next, we presented the younger
and older models with a B trial. The presentation of the target at B (see Target in Fig. 3A)
formed a peak of activation at the B location in SWM for both models. However, in the younger
model (Fig. 3B), neural interactions in SWM were not strong enough to sustain this peak once
the input was removed (i.e., when the toy was hidden). As a result, the peak decayed during
the delay and activation began to grow near the A location due to continual input from LTM
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(see Fig. 3C). Consequently, at the end of the delay when we increased the strength of the task
input to prompt a response, a peak formed at the A location and the younger model reached to
this location, making the A-not-B error. The older model, by contrast, effectively sustained the
peak at B even when the target input was removed (Fig. 3D). Thus, after the delay, this model
correctly reached to the B location. Note that the activation peak remained stably aligned with
the B location during the delay despite the LTM at the A location (Fig. 3E) due to the continued
presence of the task input. This input effectively provided an anchor for the peak in SWM, an
issue we return to in the next section.

To summarize, the simulations in Fig. 3 illustrate that relatively modest changes in neural
precision in the 5-layer model can capture the qualitative difference in performance between
8 and 10 months in the Piagetian A-not-B task. Although additional work will be needed to
probe whether the 5-layer model can capture the full range of effects described by Thelen et
al. (2001), the work presented here takes an important first step in this direction. This has the
potential to integrate the account proposed by Thelen and colleagues with our work on the
development of spatial cognition, bringing new insights to bear on the A-not-B error in infancy,
including how the alignment of egocentric and allocentric information might impact infants’
performance (see, for instance, Acredolo, 1985;Bremner, 1978;Bremner & Bryant, 1977).

3.2 A Sandbox Version of the A-not-B Task with Toddlers
According to Thelen and colleagues (2001), the A-not-B error reflects the complex, real-time
dynamics that underlie reaching behavior. This theoretical perspective predicts that similar
patterns of reaching will be evident in other tasks and at later points in development. Spencer,
Smith, and Thelen (2001) examined this possibility by altering one important aspect of the A-
not-B task: they removed the visible hiding locations and, instead, hid the toy in a rectangular
sandbox. Spencer et al. found that 2-, 4-, and 6-year-old children showed biases toward a
previously-remembered A location when searching for a toy hidden at a nearby B location,
that is, these children made an A-not-B-type error.

We simulated this result in Fig. 4 using the 5-layer model. To approximate the homogeneous
task space provided by the sandbox, we removed the static inputs at the hiding locations (see
Fig. 4A). In addition, we increased the local excitation from the previous simulations (see Table
A1) to reflect 2-year-olds enhanced WM abilities (Schutte, et al., 2003;Spencer, et al., 2001).
As with the infant version of the A-not-B task, we began our simulations with four A trials,
which the model performed successfully. Then, on the first B trial (Fig. 4B-C) we presented
the target at a nearby B location (see Target in Fig. 4A). Note that the distance between A and
B in this simulation was the same as in the infant simulations in Fig. 3. As the B peak sustained
in SWM during the delay (Fig. 4B), activation at the A location from LTMSWM (Fig. 4C) began
to “pull” the memory peak toward A. Thus, at the end of the trial, the model “reached” to a
location about halfway between A and B, comparable to the errors made by children in the
sandbox task (Schutte, et al., 2003;Spencer, et al., 2001).

The simulation in the right panel of Fig. 4 shows, however, that we can eliminate this bias by
increasing the spatial separation between A and B (Fig. 4D-F). In particular, when the target
was presented at a more distant B location (see Target in Fig. 4D), the SWM peak did not
overlap with activation from LTMSWM, and the model’s memory remained accurate
throughout the delay (Fig. 4E). Schutte and colleagues reported the same pattern in children:
6-year-olds showed significant A-not-B-type biases when A and B were 2 inches apart, but not
when these targets were 6 and 9 inches apart. Importantly, these metric dependencies change
over development as predicted by the SPH. For instance, 2- and 4-year-olds show significant
A-not-B-type biases at 2, 6, and 9 inch separations. These data have been quantitatively
modeled using a one-layer dynamic field model by varying the separation between targets as
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well as the strength and precision of local excitation and lateral inhibition over development
(Schutte, et al., 2003).

3.3 Spatial Recall in Children and Adults
These connections between infants’ performance in Piaget’s A-not-B task and toddlers’ spatial
memory performance are exciting; however, the developmental changes in these examples are
rather intuitive—spatial memory becomes more robust and accurate over time. But the 5-layer
DFT and SPH also make the less obvious prediction that changes in memory precision should
lead to a qualitative change in a second class of spatial memory effects—biases associated with
reference frames. Although other models have been proposed to capture developmental
changes in reference frame biases (e.g., Huttenlocher, et al., 1994), such models fail to connect
performance in recall tasks to the A-not-B findings described above (a point we return to in
the concluding section). Moreover, these accounts have not specified a developmental
mechanism that explains what leads to qualitative changes in spatial recall abilities.

In a typical spatial recall task, a target is presented within a homogeneous task space, and
participants must remember its location for a short delay (e.g., 5-20 s) before reproducing the
remembered location. Studies using these tasks have revealed systematic “geometric” biases
that change markedly over development. For young children, around 2-3 years of age,
responses aligned with visible lines and symmetry axes are accurate, whereas responses to
targets on either side of such reference axes are biased toward these axes over delay (e.g.,
Huttenlocher, et al., 1994; Schutte & Spencer, 2002; Schutte, et al., 2003). Older children (6-11
years) and adults, on the other hand, show biases away from reference axis over delay (e.g.,
Engebretson & Huttenlocher, 1996; Spencer & Hund, 2002; Tversky & Schiano, 1989; Werner
& Diedrichsen, 2002).

The 5-layer DFT and the SPH are able to capture this qualitative shift in how children and
adults use reference frames in spatial recall. Fig. 5 shows simulations of the DFT performing
a single spatial recall trial with broad (A-D) versus narrow (E-H) interactions (see Fig. 2 and
Table A1). Three layers of the model (PF, Inhib, SWM) are shown in Fig. 5 to clarify the origin
of geometric biases in the model. The trial began with a constant, low level input at 0°, reflecting
perception of the midline symmetry axis of the task space (see Midline in Fig. 5A,E; note that,
for simplicity, we did not include the edges of the task space in these simulations). Next, a
target was presented as a strong input to the model at −40° in the task space for 2 seconds (see
Target in 5A,E). Recall that these inputs were broader and weaker in the child model (Fig. 5A)
to capture the hypothesized broader feed-forward projections in early development as well as
an imprecise ability to align egocentric and allocentric reference frames.

The combination of less-precise midline input into PF and weaker interactions early in
development (i.e., the profile shown in Fig. 2A) allow the model to capture young children’s
biases toward midline in recall tasks. With weak interactions early in development, the midline
input was not sufficient to form a peak at 0° in PF (Fig. 5B). Instead, throughout the delay, this
input provided weak excitatory input to SWM. Consequently, the memory peak in SWM drifted
toward midline to about −32°—an 8° “geometric” error toward midline (Fig. 5D).

With stronger interactions later in development, on the other hand, a self-stabilized peak formed
at midline in PF after the target input was removed (see Midline Peak in Fig. 5F). This reference
peak in PF produced a strong inhibitory profile around midline in Inhib (Fig. 5G). This
reference-related inhibition was then projected into SWM, effectively repelling the memory
of the target location away from midline during the delay (Fig. 5H). As a result, at the end of
the trial, the model responded at about −46°—a 6° geometric error away from midline.
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These simulations demonstrate that the DFT can capture the qualitative transition in geometric
bias over development via the quantitative changes in neural precision specified by the SPH.
This highlights that the DFT can move beyond results showing that memory simply becomes
better toward findings that are much less intuitive. Indeed, we are currently probing whether
a systematic scaling of neural interactions step-by-step over development can capture the
complex pattern of changes in geometric bias observed between 3 and 6 years (Schutte,
2004; Schutte & Spencer, 2007a).

3.4 Position Discrimination in Children and Adults
Thus far, we have demonstrated that the DFT and SPH can capture infants’ and toddlers’
performance in two versions of the A-not-B task, as well as children’s and adults’ biases in
spatial recall tasks. This illustrates how we are able to get more from less with the SPH—a
simple developmental hypothesis can capture both quantitative and qualitative shifts in
memory performance from infancy through adulthood. Although this level of generalization
is impressive, each of these tasks involved relatively simple spatial recall responses. Another
type of generalization that is critical to achieving a truly flexible real-time system is
generalization across tasks. To explore whether the DFT can handle this challenge, we moved
to a new behavior—same/different judgments—and a new task—position discrimination
(Simmering, et al., 2006).

In a typical position discrimination task, two stimuli are presented in quick succession (i.e.,
500 ms apart) and the participant responds whether the locations were in the same or
different locations. This task differs from spatial recall in three key ways that must be captured
in our model. First, two stimuli are presented instead of one. Second, the time scale is much
shorter than typical recall trials. Third, the task requires a same/different decision rather than
a pointing response. The DFT can adapt to these three differences across tasks with virtually
no modification. Because the system operates in real-time, the first two changes are straight-
forward to implement in the model: we can simply present two inputs at the appropriate delay.
Generating a decision presents a more substantive challenge; as we demonstrate below,
however, the dynamic interplay between PF and SWM can lead to emergent same and
different decisions.

Fig. 6 shows simulations of same (A-D) and different (E-H) discrimination trials using the
“adult” interaction profile shown in Fig. 2B. Same/different responses in the model depend on
the spatial overlap between the input to PF as the second stimulus (S2) is presented and the
location of the SWM peak associated with the first stimulus (S1). The simulation in the left
column shows a case when S1 and S2 overlap, that is, when the two stimuli were presented in
the same location. The trial begins with the presentation of S1 at −40° for 1 second (500 time
steps; see Fig. 6A). As in the recall simulations in Fig. 5, this event builds a target peak in
SWM (Fig. 6D) that is sustained during the brief memory delay (500 ms or 250 time steps).
The peak in SWM is supported by inhibition from the Inhib layer (Fig. 6B) which also projects
inhibition back to PF. When S2 is presented in the same location as the peak in SWM, this
inhibition suppresses the in-coming activation in PF (Fig. 6B)—essentially, the system
“decides” that it already has S2 in working memory. Consequently, S2 fails to build a peak in
PF (Fig. 6B), the SWM peak is maintained, and the model makes a same response (Fig. 6D).

The simulation in the right column shows how the model responds when S1 and S2 are
presented in different locations. This simulation is identical to the same simulation up to the
point where S2 is presented—now S2 is shifted to the right relative to the location of S1 (Fig.
6E). Because S2 does not overlap spatially with the working memory of S1, its activation falls
outside of the inhibited range of PF and builds a different peak (Fig. 6F). This, in turn,
suppresses the SWM peak associated with S1 (see Fig. 6H) due to the shared inhibition
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generated by the S2 peak in PF. Consequently, the simulation ends with a peak in PF and no
above-threshold peak in SWM—the basis for a different response.

The simulations in Fig. 6 highlight that the dynamic interactions among layers in the DFT lead
to emergent behaviors that generalize beyond the simple spatial recall behaviors that were
central to the development of this theory. Importantly, the mechanism for discrimination
illustrated in Fig. 6 has generated a host of novel predictions that have been successfully tested
with both children (Simmering & Spencer, 2007) and adults (Simmering, et al., 2006).
Moreover, we have recently extended this mechanism to account for performance in a canonical
change detection task (Johnson, Spencer & Schöner, in press). Although the details of this
work are beyond the scope of the present report, we note that the mechanisms described here
that underlie discrimination and self-sustained activation can be effectively generalized to a
situation where multiple items (i.e., multiple peaks) must be simultaneously maintained in
working memory and compared to a multi-item test array in the task space.

4. Conclusion and Future Directions
The goal of this paper was to demonstrate—for the first time—that a 5-layer dynamic field
theory of spatial cognition can capture the real time dynamics of performance in a variety of
tasks and connect performance in these tasks across development with a simple developmental
hypothesis. We demonstrated that changes in spatial precision can capture developmental
changes in A-not-B errors, reference effects in spatial recall, and position discrimination
performance, spanning the age of 8 months to 6 years and into adulthood. Model simulations
demonstrate that the DFT can account for the details of performance across tasks while
maintaining a commitment to neural principles. Considered together, then, the simulations in
the present report demonstrate that the DFT can achieve generality with specificity. In the
sections that follow, we evaluate our model of spatial cognition by considering three central
issues: is the DFT strongly grounded in neural principles, how does this theory compare to
other existing models of the phenomena presented here, and what insights does this model offer
for understanding development and what are the future challenges regarding developmental
change?

4.1 The DFT Is Grounded by Neural Principles
In the overview of the DFT presented earlier, we discussed several ways in which the DFT is
grounded by neural principles. We return to that discussion here to link dynamic field models
more tightly to issues central to the field of computational cognitive neuroscience.

As discussed above, there is a demonstrated link between a population dynamics approach to
cortical activation and patterns of activation in dynamic fields, as well as clear methods that
can be used to map single-unit recordings onto dynamic population representations that can be
directly compared to dynamic field models (Erlhagen & Schöner, 2002). Importantly, this link
has been tested in both motor cortex and visual cortex (Bastian, et al., 1998; Bastian, et al.,
2003; Erlhagen, et al., 1999; Jancke, et al., 1999). There is also evidence that space is neurally
represented across continuous, metric feature dimensions, though it is important to emphasis
that this topography is functional rather than anatomical in most cortical areas (di Pellegrino
& Wise, 1993; Georgopoulos, Lurito, Petrides, Schwartz & Massey, 1989; Georgopoulos,
Taira & Lukashin, 1993; Wilson, Scalaidhe & Goldman-Rakic, 1993). Similarly, there is strong
evidence from studies of cortical neurons for the basic local excitation / lateral inhibition form
of neural interaction used in dynamic field models (e.g., Durstewitz, Seamans & Sejnowski,
2000). Moreover, because cortical neurons never project both excitatorily and inhibitorily onto
targets, the inhibitory lateral interaction must be mediated through an ensemble of interneurons.
We used a generic, two-layer formulation (Amari & Arbib, 1977) to realize this interaction
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where an inhibitory activation field receives input from an excitatory activation field and in
turn inhibits that field.

Next, as we noted previously, the type of interactivity among layers used in our 5-layer model
was inspired by studies of the cytoarchitecture of visual cortex (Douglas & Martin, 1998). This
work on visual cortex played a particularly strong role in our implementation of interactions
among the three primary layers (PF, Inhib, SWM). That said, interaction among these layers
could be implemented in other ways. For instance, the same type of interaction could be
achieved using a four layer structure, with separate inhibitory layers associated with PF and
SWM. We chose to use a shared layer of interneurons because it is both more parsimonious
(i.e., 3 layers vs. four layers) and more strongly constrained (i.e., fewer “free” parameters).
Finally, our approach to the integration of dynamics across multiple time scales (i.e., real-time
and learning time) is consistent with basic forms of Hebbian learning (see Wilimzig & Schöner,
2005; Wilimzig & Schöner, 2007), though our implementation of Hebbian learning using
activation in long-term memory fields (rather than through synaptic weight changes) is
somewhat atypical. In each of these cases, then, the dynamic field framework retains strong
ties to known neural principles.

Less clear in our approach is a commitment to neural localization. Here we are, frankly, riding
the fence. On one hand, several characteristics of dynamic activation patterns in our model
reflect processes that have been linked to different cortical areas. For instance, the self-
sustaining working memory peaks discussed here can survive intervening presentations of
stimuli, a characteristic of spatial representations in dorso-lateral prefrontal cortex (di
Pellegrino & Wise, 1993). By contrast, although activation patterns in our perceptual field can
be sustained under some conditions (see the generation of a “different” response in Fig. 6),
sustained activation in this field is generally disrupted by the presentation of new stimuli, a
characteristic of spatial representations in parietal cortex (Constantinidis & Steinmetz, 1996;
Steinmetz & Constantinidis, 1995). Given that there is a mapping between the dynamic
properties of activation patterns in our model and the localization of brain function, why are
we hesitant to assign cortical labels to our layers? This reflects, in part, our grounding in
dynamic systems theory with its emphasis on the collective behavior of a system (see Kelso,
1997; Schöner & Kelso, 1988; Thelen & Smith, 1994), as well as our commitment to the
massive reentrancy and interconnected across cortical circuits in the brain (Fuster, 1995) and
the profound potential for reorganization and brain plasticity in early development (e.g., Stiles,
Bates, Thal, Trauner & Reilly, 1998). In short, these conceptual biases make us hesitant to
embrace a strong form of localization.

Although we remain uncommitted to a strong form of localization, it is still possible to generate
predictions from dynamic field models that can be tested using technologies that rely on
localized neural signals (Bastian, et al., 1998; Bastian, et al., 2003; Jancke, et al., 1999; see
also Edin, et al., 2007, for fMRI predictions using a similar architecture and developmental
mechanism). For example, the DFT framework has generated novel predictions regarding links
between behavioral and electrophysiological measures of performance in a motor planning
task. Specifically, McDowell and colleagues (McDowell, et al., 2002) measured reaction times
and event-related potentials (ERPs) during a two-choice pointing task where they varied both
the angular separation between the two targets (narrow separation of 20° versus wide separation
of 120°) and the probability of the two responses (frequent versus infrequent). According to a
dynamic field theory of movement preparation (see also, Erlhagen & Schöner, 2002), reaction
times to the wide-infrequent target should be slower compared to the other three targets. Based
on the mechanism that underlies this effect in the model, McDowell et al. predicted that there
should be a related increase in the P300 ERP component which has been linked to detection
of “subjectively rare” events (e.g., Johnson, 1993). Results showed the predicted reaction time-
P300 relationship.
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Moving beyond the issue of brain localization, our commitment to dynamic systems theory
also factors in to our emphasis on sustained activation peaks or “bump” attractors (Amari,
1977; see also, e.g., Vogels, Rajan & Abbott, 2005). One advantage to using dynamic field
models is that this class of neural networks have been quasi-formally analyzed (Amari,
1977). Thus, we have a good understanding of the attractor states dynamic field models can
realize, and the bifurcations the model moves through as one attractor state becomes unstable
(e.g., the input-driven state) and another attractor state forms (e.g., the self-sustaining state).
We can (and routinely do!) probe these attractor states across repeated simulations by
manipulating, for instance, the presence or absence of inputs (e.g., does activation sustain after
input is removed?), as well as evaluating the stability of the attractor (e.g., does the model
remain in the attractor state as noise is increased?). Moreover, we know which model
parameters are central to the stability of these attractor states (e.g., the relative strengths of
excitatory and inhibitory projections among layers), and, thus, understand why the model
works the way it does, as well as the critical factors that influence the dynamics of the network.
This detailed understanding of the attractor dynamics of the model is not a standard feature of
theoretical frameworks within computational cognitive neuroscience. Indeed, this
characteristic of dynamic fields is what initially drew us to work by Amari and colleagues
(Amari, 1977; Amari, 1989; Amari & Arbib, 1977).

Importantly, the issue of forming attractor states, that is, achieving a stable pattern of activation
through time is a central challenge in a massively interconnected nervous system (for
discussion see Spencer & Schöner, 2003). In this context, it is important to note that other
researchers have probed the stability properties of bump attractors using a more biophysical
style of neural modeling (Compte, Brunel, Goldman-Rakic & Wang, 2000; Wang, 2001). In
our view, both approaches demonstrate that stable peaks of activation provide a viable neural
mechanism for the formation of “working” memories. Indeed, our empirical work shows direct
behavioral signatures (e.g., time-dependent “drift”) of this basic stabilization mechanism. In
this context, we note that although all of the simulations reported here had a single “bump”
present in working memory at any moment in time, the dynamic field framework can be
naturally extended to capture multi-item working memory, that is, the simultaneous
representation of multiple bump attractors within a single field (Johnson, Spencer & Schöner,
2006; Johnson, et al., in press). More generally, we envision that multiple neural patterns could
be simultaneously represented via collections of peaks distributed across many cortical layers.
We are currently pursuing this view as an entry point into the representation of multiple objects
distributed across both spatial and non-spatial feature dimensions (Faubel & Schöner, 2007;
Johnson, et al., in press).

4.2 Comparing the DFT to Other Models
The fact that the DFT captured performance across tasks and time scales with relatively simple
developmental changes suggests continuity across behaviors that have previously been
considered in separate literatures. Indeed, in each of these literatures, separate models have
been proposed to capture infants’, children’s, and adults’ performance. In this section, we
contrast the DFT with several existing models.

One connectionist model that has captured a variety of effects in the canonical A-not-B task
is Munakata’s PDP model (Munakata, 1998). This model accounts for infants’ performance in
a manner comparable to the account proposed by Thelen et al. (2001) and the simulations
reported here. For instance, developmental change in the PDP model is achieved through
strengthening connections within the hidden layer, which effectively produces a more robust
“active” memory for the current trial. This increased ability to sustain activation is similar to
the increase in local excitation in our model.
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Although Munakata’s model is certainly close in spirit to the model by Thelen et al. and our
own, there are some substantive differences (for discussion see Munakata & McClelland,
2003; Spencer & Schöner, 2003). First, activation in the PDP model is “chunked” into discrete
spatial nodes rather than being distributed across continuous, metric dimensions. This is a fine
simplification in the context of the A-not-B paradigm, but prevents generalization to the other
spatial tasks described here. It is possible this limitation could be overcome; however, adding
continuous metrics to the PDP framework is a non-trivial endeavor and is likely to be
insufficient to capture, for instance, the time-dependent “drift” observed in our simulations of
spatial recall (see Fig. 4 and 5). Such drift is a consequence of the local excitation/lateral
inhibition form of neural interaction in the DFT (see also Compte, et al., 2000).

Another difference is that the PDP model does not have the same type of interactivity across
layers present in our 5-layer model of spatial cognition. Such interactivity plays a central role
in the generalization of our model across response types. For instance, mutual interactivity
between the perceptual and working memory layers is central to performance in position
discrimination (see Fig. 6). Importantly, we have strong evidence for this type of interactivity
early in development: as peaks drift in working memory in early development (3 to 5 years),
this creates predictable asymmetries in discrimination performance (Simmering & Spencer,
2007).

Two final differences are worth noting because they are linked to the issue of stability discussed
above (see Spencer & Schöner, 2003). First, the PDP model provides only a limited view of
the response generation process in that, on each trial in the A-not-B paradigm, group choice
probabilities are estimated from the amount of activation across response nodes after some
settling time (see Mareschal, 1998, for a similar critique). By contrast, DFT models of A-not-
B performance generate individual choice responses on each trial—the model picks A or B.
Through simulations of multiple trials in the context of stochastic fluctuations, group response
probabilities can be computed and fit to empirical results (Dineva, 2005; Thelen, et al.,
2001). It is not clear whether the PDP model could make similar achievements because group
and individual choice responses are conflated (for related issues regarding response generation
and the need for stability, see Schöner & Dineva, 2007; Spencer & Schöner, 2003).

Geometric biases in spatial recall have been linked to children’s and adults’ ability to divide
space into geometric categories (e.g., Huttenlocher, et al., 1994). The Category Adjustment
(CA) model has been proposed by Huttenlocher and colleagues to capture how categorical
information influences memory along continuous dimensions, mostly notably space
(Huttenlocher, Hedges & Duncan, 1991), but also time (Huttenlocher, Hedges & Prohaska,
1988) and continuous feature dimensions like size and shade of gray (Huttenlocher, Hedges &
Vevea, 2000). According to this model, people combine or “weight” fine-grained detail about
individual target items with information about the geometric category within which the items
were placed. Under conditions of uncertainty (e.g., after long memory delays), categorical
information is weighted more heavily leading to a bias in recall responses toward the center of
the relevant spatial category. To account for developmental changes in spatial recall,
Huttenlocher et al. (1994) have proposed that young children treat large spaces such as a
tabletop as one large category with a prototype at the center. Consequently, young children
show recall biases toward the center of the space. Older children and adults, by contrast, sub-
divide space into two categories with prototypes at the centers of the left and right halves of
the tabletop. Consequently, they show recall biases away from the center and toward the centers
of the left and right halves.

Although the CA model can capture the qualitative pattern of results observed in recall studies
with children and adults, this model has several limitations relative to the DFT (see also
Spencer, Simmering & Schutte, 2006). First, the CA model is not a process model: it does not
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specify the process that gives rise to spatial memories (e.g., perceptual processes involved in
the formation of activation peaks in the DFT), how memories for location evolve in real time
(e.g., peak drift in the DFT), the process that gives rise to the formation of spatial categories
(e.g., the emergence of spatial categories in LTMSWM and the use of perceived reference frames
in the DFT), and the process that gives rise to developmental changes in spatial recall abilities
(e.g., the spatial precision hypothesis). Moreover, the CA model offers a limited account of
the details of behavioral performance. For instance, the model predicts that variance in recall
responses near reference axes (i.e., category boundaries) should be high, while variance near
spatial prototypes should be low. Empirical data demonstrate that the opposite pattern is
observed in adults’ recall responses (see Spencer & Hund, 2002). Importantly, the observed
empirical pattern of variance is consistent with the DFT: variance is low near reference axes
in our model due to the presence of continued reference input during the memory delay which
helps stabilize peaks in SWM (much like the task input stabilized SWM peaks in simulations
of the A-not-B model presented earlier).

Both Munakata’s PDP model and the CA model can capture aspects of the developmental
profiles simulated here, and both models have been extended to other tasks not currently
addressed within our framework (e.g., Huttenlocher, et al., 2000; Morton & Munakata,
2002). Importantly, however, these cases of generalization are closely tied to tasks that rely on
the same or similar response types—selection of a limited number of choices in the case of
Munakata’s model, and estimation along a continuous dimension for the CA model. The DFT,
by contrast, has shown a different type of generalization by also capturing different types of
responses across tasks—reaching to a visibly-specified location in the infant A-not-B task,
pointing in continuous space for the sandbox and recall tasks, and generating same/different
decisions in position discrimination (for additional extensions, see Spencer, et al., 2006). This
third example is the most dramatic in that the processes that underlie same/different
discrimination are typically conceptualized using a signal-detection framework. For instance,
Kinchla (1971) proposed a signal-detection model to account for some of the discrimination
results reported here (e.g., enhanced discrimination near a reference, see Simmering, et al.,
2006). Importantly, our process model of discrimination has moved beyond the signal detection
framework by generating several novel predictions about how the memory of the first stimulus
should “drift” differentially between stimulus presentations depending on the location of the
stimulus relative to a reference axis (Simmering, et al., 2006), as well as how such effects
should change over development (Simmering & Spencer, 2007).

Thus far, we have contrasted our model with other models of the specific phenomena we
presented in this paper. As a final contrast, we consider other approaches to working memory
within the computational cognitive neuroscience framework. Specifically, a growing class of
models capture working memory using a neural reverberation or neural synchrony mechanism
(e.g., Lisman & Idiart, 1995). In these models, sustained oscillations code for the presence or
absence of items in working memory. This mechanism has been used to capture elements of
working memory such as capacity limitations and feature binding (Raffone & Wolters,
2001). Such models offer a clearly different neural mechanism for working memory than the
one used here, and an important future goal is to contrast these mechanisms directly. Toward
this end, it is unclear whether models that rely on neural synchrony could account for some of
the effects reported in our studies of spatial recall. For instance, it is not clear how a neural
synchrony mechanism could produce delay-dependent “drift” in the contents of working
memory given that working memory in such models is not defined over a continuous, metric
dimension. Clearly, a vigorous comparison between these broad classes of models is needed
to reveal the strengths and weaknesses of each.
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4.3 Insights into Development and Challenges on the Horizon
The simulations presented here highlight an emerging “more from less” theme in our
developmental work: by developing a detailed, real-time account of behavior across multiple
tasks, we require less from developmental process. Thus, a coherent set of relatively simple
developmental changes effectively captured key aspects of performance across the four tasks
discussed here, spanning the ages of 8 months to 6 years and into adulthood with the same
model, without introducing any new components or processes. Indeed, our simulations required
only modest changes in local excitation to capture changes across tasks between 8 months and
6 years. This is, most certainly, an overly simplistic view of the changes in spatial cognition
taking place within this age range, and we are confident that more substantive changes would
be required to provide a detailed account of all of the phenomena discussed here. That said,
the goals of the present report were more modest: to provide the first demonstration proof that
the phenomena discussed here could be linked together within a single framework.

Although the simulations reported here to demonstrate a “more from less” view of
developmental change, a critical question is whether the “more” we built into our model was
reasonable. For instance, is “less” required from development because we have built an overly-
complicated model that is simply too powerful or underconstrained? Consider what is known
about the structure we built in to the model (as described in Section 4.1): cortical maps are well
documented and change over development (e.g., Kohonen, 1982; Miikkulainen, Bednar, Choe
& Sirosh, 1999); the layered structure of cortex is evident prenatally (e.g., Rakic, 1995);
receptive fields become tuned with experience (e.g., Clark, Allard, Jenkins & Merzenich,
1988). In each of these cases, the structure we built into our model is consistent with studies
of both prenatal and postnatal development and is grounded in a neural principles.

Is our model overly complicated? Here, we contend that complexity is in the eye of the
beholder. From our vantage point, the DFT is less complicated than many biophysical models
that implement bump attractors (e.g., Wang, 2001). That said, the DFT is, in some ways, more
complicated than a typical connectionist architecture. To get a better sense of this comparison,
consider a few ways in which we could modify the model presented here, yet retain the
characteristics of the model shown in the simulations. First, we could limit the number of
neurons in each layer to 50 or so. Next, we could get rid of our LTM fields and, instead,
implement long-term memory using changes in synaptic weights among neurons in PF and
SWM. This would reduce our 5-layer model to a more typical 3-layer structure. The resulting
3-layer model would still have more pre-structure than the standard connectionist model. Note,
however, that much of this pre-structure arises due to our commitment to neural principles.
For instance, the 2-layered architecture we use to implement lateral inhibition is a direct result
of known cortical constraints on how populations of neurons interact. Connectionist models
typically do not implement local excitation/lateral inhibition in this neurally-grounded way.
Given this, we view much of the apparent complexity of our model as an important feature that
moves us closer to understanding brain-behavior relations.

In summary, then, we contend that the model presented here does shed new light on how a
richly-structured real-time system requires less from developmental process. Although this is
an exciting insight into development, the DFT provides only a limited window on this issue—
our model identifies what is changing, but not precisely how those changes are taking place.
As we look to the future, therefore, a clear challenge will be to “close the loop” on development
(Simon, 1962) within our framework to explore the origins of the spatial precision hypothesis.
Put concretely, the parameter changes reported in Table A1 were all implemented “by hand”
for the present simulations. It will be important in future efforts to probe whether such changes
can emerge from, for instance, Hebbian processes involved in the tuning of cortical maps
(Bednar & Miikkulainen, 2007; Kohonen, 1982; Miikkulainen, et al., 1999). We have taken
steps in this direction by implementing a reference frame alignment and calibration process in
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the “adult” model (Spencer, et al., 2007). This process will play a central role in exploring the
consequences of changes in children’s ability to align and re-align egocentric and allocentric
reference frames.
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Appendix A

A.1 Model Equations
In this section, we describe the equations that govern activation in each layer of the 5-layer
model used in the present report. Although the equations share most components, we describe
each separately to highlight the unique contributions to the dynamics of each layer.

Activation in the perceptual field, PF (u), is captured by:

(1)

where u̇(x,t) is the rate of change of the activation level for each neuron across the spatial
dimension, x, as a function of time, t. The constant τ determine the time scale of the dynamics
(Erlhagen & Schöner, 2002). The first factor that contributes to the rate of change of activation
in PF is the current activation in the field, - u(x,t) , at each site x. This component is negative
so that activation changes in the direction of the resting level hu.

Next, activation in PF is influenced by the local excitation / lateral inhibition interaction profile,
defined by self-excitatory projections, , and inhibitory
projections from the Inhibitory layer (Inhib; v), . These
projections are defined by the convolution of a Gaussian kernel with a sigmoidal threshold
function. In particular, the Gaussian kernel was specified by:

(2)

with strength, c, width, σ, and resting level, k. The sigmoidal function is given by:

(3)

where β is the slope of the sigmoid, that is, the degree to which neurons close to threshold (i.e.,
0) contribute to the activation dynamics. Lower slope values permit graded activation near
threshold to influence performance, while higher slope values ensure that only above-threshold
activation contributes to the activation dynamics. At extreme slope values, the sigmoid function
approaches a step function.
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PF also receives input from an associated long-term memory field, ultm, with strength cuultm.
Lastly, in the full version of the model, PF receives input from the world via a second perceptual
field in a retinal frame of reference (see Spencer, et al., 2007). For simplicity in the present
simulations, we replaced this retinal field with direct input already in an object-centered
reference frame. In particular, three inputs passed activation to PF: the reference input (e.g.,
perception of the midline axis in the recall and discimination tasks), the task input (e.g., the
hiding wells in the infant A-not-B task), and target input (e.g., the transient presentation of a
target object in the task space). All inputs took the form of a Gaussian:

(4)

centered at xcenter, with width, σ, and strength, c. These inputs could be turned on and off
through time (e.g., the target appears and then disappears). This time interval was specified by
the step function χ(t) (see text for details on the timing of inputs).

The next layer of the model, LTMPF (ultm), is governed by the following equation:

(5)

This equation specifies the rate of change of activation, u̇ltm(x,t) , for each neuron in the long-
term memory layer across the spatial dimension, x, as a function of time, t. A separate constant
τltm determines the time scale of the dynamics and is set such that the LTM field builds
activation much more slowly (i.e., τltm>>τ). As above, the first component that contributes to
the rate of change is the current activation in the field, - ultm(x,t) , at each site x. Projections to
this field come from PF (u), as defined by . The
contribution of LTMPF to the activation profile in PF is one-to-one where cuultm specifies the
strength of the input from ultm(x,t) to PF (see Equation 1). The final term,

, is multiplied by the equation to essentially turn the memory trace
mechanism on and off. Specifically, if activation in PF is above zero at any location x, then the
long-term memory field is engaged and ; otherwise, this field is held constant and

. This implements a form of Hebbian learning (Schöner, 2007; Wilimzig & Schöner,
2007; Wilimzig & Schöner, 2005).

The third layer of the model, Inhib (v), is specified by the following equation:

(6)

As before, v̇(x,t) specifies the rate of change of activation across the population of spatially-
tuned neurons, x, as a function of time, t; the constant τ sets the time scale; v(x,t) captures the
current activation of the field; and hv sets the resting level of neurons in the field. Note that
Inhib receives activation from two projections—one from PF,

, and one from SWM,
. As described above, these projections are defined by the

convolution of a Gaussian kernel (Equation 2) with a sigmoidal threshold function (Equation
3).

Next is the SWM layer (w) governed by the following equation:

(7)
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Again, ẇ (x,t) is the rate of change of activation across the population of spatially-tuned
neurons, x, as a function of time, t; the constant τ sets the time scale; w(x,t) captures the current
activation of the field; and hwsets the resting level. SWM receives self excitation,

, lateral inhibition from Inhib,
, and input from PF,
. This field also receives input from an associated long-

term memory field, wltm, with strength cwwltm, and direct reference, S ref (x, t) , task, S task
(x, t) , and target, S tar (x, t) , inputs scaled by cs.

Lastly, LTMSWM (wltm) is governed by the following equation:

(8)

This equation is identical to Equation 5. As with LTMPF, the contribution of LTMSWM
(wltm) to the activation profile in SWM (w) is one-to-one where cwwltm specifies the strength

of the input from wltm(x,t) to w (see Equation 7). The final term, , is
multiplied by the equation to turn the memory trace mechanism on and off as described above.

A.2 Model Parameters
This section provides the parameter values used in all simulations. Table A1 shows the
parameter values for the primary layers of the model for the “adult” simulations: PF (Equation
1), Inhib (Equation 6), SWM (Equation 7). The β parameter, used to threshold activation in all
projections, was always set to 5. In addition, the resting level for the Gaussian kernel, k, was
generally set to 0 with the few exceptions noted in Table A1. Lastly, the projections to and
from each long-term memory layer were as follows: cultmu = cuultm = cwltmw = cwwltm = 0.05;
σultmu = σuultm = σwltmw = σwwltm = 10.

To capture development in our model, we implemented the spatial precision hypothesis by
scaling the spatial precision (i.e., widths) and strengths of three classes of interactions in the
model: projections from the input layer to PF and SWM; projections from PF and SWM into
the associated LTM fields; and locally excitatory / laterally inhibitory interactions among PF,
Inhib, and SWM. The details of these changes are described separately below.

A.2.1 Scaling of Local Excitation / Lateral Inhibition
To capture developmental changes in neural precision, we modified the local excitation / lateral
inhibition profile as shown in Fig. 2A. For this change, we added the scaling parameter,
dev_cself, to scale self-excitatory projections. Local excitation was modified for both PF (cuu)
and SWM (cww). We also added to parameters, dev_cv and dev_σv, to scale the strength and
width of inhibitory projections, respectively. The lateral inhibition scaling parameters were
multiplied by the corresponding projection parameters from Inhib to PF (cvu, σvu) and from
Inhib to SWM (cvw, σvw). The scaling parameter values are specified in the bottom portion of
Table A1. Note that lateral inhibition did not change across developmental simulations; only
local excitation increased with age.

A.2.2 Scaling of Inputs
We added two developmental scaling parameters to each set of inputs to modulate the strengths
(c) and widths (σ) of inputs: dev_cref and dev_σref for reference inputs; dev_ctask and
dev_σtask for task inputs; dev_ctar and dev_σtar, for target inputs.Values of these parameters
are shown in the bottom portion of Table A1. Note that the reference and task inputs were used
only in specific simulations given the experimental details of the tasks we modeled and known

Simmering et al. Page 19

Brain Res. Author manuscript; available in PMC 2009 April 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



empirical effects. Moreover, note that the strength and width of the reference input for the
recall task were weak and broad relative to the task input. This reflects the fact that the reference
in this task is defined by the midline symmetry axis of the task space. Research has shown that
symmetry axes are percieved more weakly than visible lines (e.g., Palmer & Hemenway,
1978;Wenderoth & van der Zwan, 1991), which is reflected by the weaker dev_cref. In addition,
we propose that children have relatively imprecise (compared to adults) alignment of
egocentric and allocentric reference frames (Spencer, et al., 2007); as a result, the reference
input is spread out in space (relative to the more precisely specified task input). We approximate
this by using a broader dev_σref.

A.2.3 Scaling of Long-Term Memory Projections
One final developmental parameter was added to approximate the decreased precision of long-
term memory in early development: dev_σltm = 2 was multiplied by the widths of the Gaussian
projections into the two long-term memory fields, σultmu and σwltmw. This parameter did not
vary across developmental simulations.

Table A1
Parameter values for simulations

Layer τ h
self-
excitation

excitatory
projection(s)

inhibitory
projection(s)

reference
input

task
input

target
input

u (PF) 80 −7 cuu = 1.25 cuv = 1.1 cref = 10 ctask
a = 10 ctar

b = 40
σuu = 3 σuv = 5 σref = 3 σtask = 3 σtar = 3

kuv = 0.05
v (Inhib) 10 −12 cvu = 4.38

σvu = 5
cvw = 2.2
σvw = 6

w (SWM) 80 −4 cww = 1.64 cwu = 2.05 cwv = 38
σww = 5 σwu = 5 σwv = 0.665 [all inputs scaled by cs = 0.2]

kwv = 0.05

developmental
  scaling
 parameters

dev_cself =
0.3 (8-10
mos.)
dev_cself =
0.4 (10-12
mos.)
dev_cself =
0.5 (>12
mos.)

dev_cv = 0.1
dev_σv = 0.1

dev_cref =
0.7
dev_σref =
18

dev_ctask =
0.7
dev_σtask =
1

dev_ctar =
0.8
dev_σtar =
1.5

Note. The top portion of the table shows parameter values used for all simulations described as “adult” parameters (see Fig.1, Fig. 2B, Fig. 3E-H, and Fig.
4). The bottom portion shows developmental scaling parameters for the remaining simulations, which were multiplied by the “adult” parameters listed
above.

a
Because we only simulated the spatial recall task with the adult parameters, task input was not used. We provide the values here that were used in conjunction

with the developmental scaling parameters for the infant A-not-B task.
b
Target inputs for the discrimination task were weaker, reflecting the difference in salience of the dots used in this task (compared to attractive toys in A-not-

B). For the discrimination simulations, ctar = 20. All other parameters remained unchanged.
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Fig. 1.
A simulation of the dynamic field theory performing one spatial recall trial. In each panel,
location is across the x-axis, activation on the y-axis, and time on the z-axis. (A) Inputs to the
model are presented directly to the model already in an object-centered reference frame (see
text for details of the calibration process that transforms spatial information from an egocentric
frame of reference in the full model). After this shift, activation is passed to the model consisting
of 5 layers: (B) a perceptual field; (C) a long-term memory field associated with this perceptual
field; (D) a shared layer of (inhibitory) interneurons; (E) a spatial working memory field; (F)
a long-term memory field associated with the spatial working memory field. Solid arrows show
excitatory connections between layers, and dashed arrows show inhibitory connections
between layers.
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Fig. 2.
The local excitation (+) / lateral inhibition (-) function used for child (A) and adult (B)
simulations. Dashed line indicates the zero threshold.
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Fig. 3.
Simulations of the infant A-not-B task. Both simulations began with four trials to the A location
(not shown), then used identical input (A) on the first B trial. Note that these simulations include
only the relevant layers of the model, SWM (B, D) and LTMSWM (C, E). Local excitatory
interactions were lowest for the “young” infant simulations (B-C), which showed an A-not-B
error (see peak circled in B). Local excitation was increased for the “older” infant simulation
(D-E), which correctly responded at B (see peak circled in D). Axes are as in Fig. 1.
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Fig. 4.
Simulations of the sandbox A-not-B task. Both simulations began with four trials to the A
location with identical inputs (not shown). On the first B trial, the target was presented either
near (A-C) or far (D-F) from A. When B was near A (see A), the peak in SWM (B) drifted
toward the activation from LTMSWM (C). When B was far from A (see D), on the other hand,
the peak in SWM remained stable and did not drift (E). Axes are as in Fig. 1.
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Fig. 5.
Simulations of spatial recall trials with child (A-D) and adult (E-H) parameter settings. To
approximate developmental changes in reference frame calibration, the inputs are broader and
weaker in the child model (A) relative to the adult model (E). In the child model, midline does
not provide enough focused input to form a peak in PF (B), and the target peak in SWM (D)
is attracted toward the sub-thresholds activation from midline. In the adult model, on the other
hand, midline forms a peak in PF (F), which contributes inhibition via Inhib (G) to SWM (H),
resulting in the peak being repelled from midline. Axes are as in Fig. 1.
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Fig. 6.
The DFT performing same (A-C) and different (D-F) responses in position discrimination. In
both simulations, S1 was presented at −40°, with S2 presented at −40° for same and −30° for
different. Note that, for simplicity, we did not include reference input in these simulations.
Axes are as in Fig. 1.

Simmering et al. Page 31

Brain Res. Author manuscript; available in PMC 2009 April 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


	Generalizing the dynamic field theory of spatial cognition across real and developmental time scales
	

	tmp.1280940302.pdf.TFpSp

