
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Dissertations, Theses, and Student Research
Papers in Mathematics Mathematics, Department of

8-2010

Applications of Linear Programming to Coding Theory Applications of Linear Programming to Coding Theory

Nathan Axvig
s-naxvig1@math.unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/mathstudent

 Part of the Mathematics Commons, and the Science and Mathematics Education Commons

Axvig, Nathan, "Applications of Linear Programming to Coding Theory" (2010). Dissertations, Theses, and
Student Research Papers in Mathematics. 14.
https://digitalcommons.unl.edu/mathstudent/14

This Article is brought to you for free and open access by the Mathematics, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations, Theses, and
Student Research Papers in Mathematics by an authorized administrator of DigitalCommons@University of Nebraska
- Lincoln.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/17210479?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/mathstudent
https://digitalcommons.unl.edu/mathstudent
https://digitalcommons.unl.edu/mathematics
https://digitalcommons.unl.edu/mathstudent?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/800?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathstudent/14?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages

APPLICATIONS OF LINEAR PROGRAMMING TO CODING THEORY

by

Nathan Axvig

A DISSERTATION

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Doctor of Philosophy

Major: Mathematics

Under the Supervision of Professor Judy L. Walker

Lincoln, Nebraska

August, 2010

APPLICATIONS OF LINEAR PROGRAMMING TO CODING THEORY

Nathan Axvig, Ph.D.

University of Nebraska, 2010

Adviser: Judy L. Walker

Maximum-likelihood decoding is often the optimal decoding rule one can use, but

it is very costly to implement in a general setting. Much effort has therefore been

dedicated to find efficient decoding algorithms that either achieve or approximate the

error-correcting performance of the maximum-likelihood decoder. This dissertation

examines two approaches to this problem.

In 2003 Feldman and his collaborators defined the linear programming decoder,

which operates by solving a linear programming relaxation of the maximum-likelihood

decoding problem. As with many modern decoding algorithms, is possible for the

linear programming decoder to output vectors that do not correspond to codewords;

such vectors are known as pseudocodewords. In this work, we completely classify the

set of linear programming pseudocodewords for the family of cycle codes.

For the case of the binary symmetric channel, another approximation of maximum-

likelihood decoding was introduced by Omura in 1972. This decoder employs an

iterative algorithm whose behavior closely mimics that of the simplex algorithm. We

generalize Omura’s decoder to operate on any binary-input memoryless channel, thus

obtaining a soft-decision decoding algorithm. Further, we prove that the probability

of the generalized algorithm returning the maximum-likelihood codeword approaches

1 as the number of iterations goes to infinity.

iii

DEDICATION

For Dad, who taught me when to keep at it and when to go home for the day.

iv

ACKNOWLEDGMENTS

My first thanks go to my adviser Judy Walker. As I reflect on the past three years, I

see that her efforts have had the goal of training me not only how to conjecture and

prove, but also how to be a better teacher, colleague, and mathematical citizen. I am

certain that her example will be one that I turn to in the years to come.

Second, I would like to thank Lance Pérez, Jamie Radcliffe, and Mark Walker

for serving on my committee. Special thanks are due to Lance, who has been an

invaluable authority on the engineering side of coding theory, not to mention good

beer and wine. Stephen Hartke was not a formal member of my committee, but he

might as well have been. He introduced me to the field of linear optimization and

helped me to develop the technical skills necessary to prove many of the results in

this dissertation.

It would be remiss not to acknowledge my fellow students and friends who have

served with me in the mathematical trenches. My many conversations with Deanna

Dreher, Katie Morrison, and Eric Psota have helped shape and solidify many of the

ideas contained in this dissertation. In addition to my collaborators, I would like to

say thanks to Chris Ahrendt, my long-time officemate and good friend.

A special thank-you goes to my all my friends at the University Lutheran Chapel,

who have been my second family during my time in Lincoln. In particular, I am

grateful for PB, Ryan, Matthew, and Adam and their collective ability to supply

non-mathematical distractions.

I give my final thanks to my parents. Although they may not understand the

finer points of my work (and Dad still doesn’t believe in infinity), their support and

encouragement were essential to the completion of this dissertation. Thank you so

much – I love you.

v

Contents

Contents v

1 Introduction 1

1.1 Optimal Decoding . 2

1.2 Thesis Outline . 4

2 Background on Coding Theory 5

2.1 LPDC Codes: Codes on Graphs . 8

2.2 Channel Models and Decoding . 12

2.2.1 The Binary Symmetric Channel 14

2.2.2 The AWGN Channel . 16

2.2.3 The Binary Erasure Channel 17

2.2.4 The Z-Channel . 19

2.2.5 The Binary Asymmetric Channel 20

2.3 General Binary Memoryless Channels 21

3 Background on Linear Programming Decoding 25

3.1 Background on Linear Programming 26

3.2 Linear Programming Decoding . 32

3.3 The Fundamental Polytope . 34

vi

3.4 Notes on C-Symmetry . 38

4 A Characterization of Linear Programming Pseudocodewords for

Cycle Codes 42

4.1 A Technical Lemma on Active Constraints 44

4.2 LP Pseudocodewords of Cycle Codes are Half-Integral 51

4.3 A Set of Sufficient Suppositions: The Reverse Implication 57

4.4 Construction of LP Pseudocodewords 63

4.5 A Note on Minimal LP Pseudocodewords 68

5 A Generalization of Omura’s Decoding Algorithm 72

5.1 The Generalized Omura Decoder in Context 74

5.1.1 A Survey of Soft-Decision Decoders 74

5.1.2 Derivatives and Other Generalizations of Omura’s Algorithms 77

5.2 Generalization to an Arbitrary Binary-Input Memoryless Channel. . . 79

5.3 Reality Check, and Something New 82

5.4 Algorithm Development . 84

5.4.1 The Full-Rank Assumption 84

5.4.2 Elementary Results . 86

5.4.3 Generalizations of Omura’s Algorithms 101

5.5 Analysis of Algorithm 2 . 105

5.5.1 Technical Lemmas . 106

5.5.2 Modeling Algorithm 2 as a Markov Chain 115

5.6 Simulation Results . 119

5.6.1 A [35,9] LDPC Code . 120

5.6.2 A Randomly Generated [200, 160] Code 122

5.6.3 The [32, 16, 8] Reed-Muller Code 124

vii

Bibliography 130

1

Chapter 1

Introduction

All communication channels have some level of unreliability: storms interfere with

radio signals, memory discs get scratched, and packets of information sent over the

internet get lost or destroyed. A brute-force method of increasing reliability is to

transmit a message with more power, but this can be impractical in terms of the

energy required. Another approach to achieving more reliable communication comes

in the form of repetition: send the intended message n times in a row. In this way,

the receiver can determine the original message with high probability by a simple

majority vote. This method can improve reliability, but it does so by sacrificing the

rate at which information is transmitted.

In his landmark 1948 paper, Shannon [24] proved that is possible to achieve arbi-

trarily reliable communication while maintaining a non-vanishing rate of information

transfer. To accomplish this, codes were introduced. In the broadest sense, a code

is a (usually strict) subset of all possible messages. By transmitting only codewords,

the information rate of a communication system is reduced. However, this restriction

can be thought of as adding a certain amount of redundancy to a message, much

as was illustrated earlier with the repetition scheme. This redundancy can then be

2

exploited at the receiver, where a distorted message can be decoded into a reliable

estimate of the transmitted codeword.

This brief description illustrates two of the central questions addressed by coding

theory. What sort of redundancy should be added to the original message? And how

should one use this redundancy to interpret a noisy received message? Shannon [24]

handles the first question in a remarkable yet non-constructive manner: by considering

a probability distribution on ensembles of codes, he proves that “good” codes must

exist. The search for concrete examples of these good codes can be regarded as the

question of code design, an area that continues to prove both fruitful and surprising.

The second question is that of the decoding problem: once a code has been chosen,

how can the redundancy of that code be used by the decoder form a reliable estimate

of the transmitted codeword? Assuming that all messages are equally likely to be

transmitted, the optimal decoder with respect to word-error rate is the maximum-

likelihood (ML) decoder. Maximum-likelihood decoding is, however, very costly to

implement in a general setting, and in certain situations the decision problem corre-

sponding to ML decoding is known to be NP-complete [4]. Much effort has therefore

been dedicated to finding efficient decoding algorithms that either achieve or approxi-

mate the error-correcting performance of the ML decoder. This dissertation examines

two approaches to this problem, each through the lens of linear optimization.

1.1 Optimal Decoding

A maximum-likelihood decoder works by solving a simply-stated discrete optimiza-

tion problem: given a received sequence y, find a codeword c that maximizes the

probability of receiving y conditioned on the event that c was transmitted. A näıve

implementation of ML decoding involves searching through a list of astronomical

3

proportions. There are, of course, certain situations where a code’s structure can be

exploited to permit efficient ML decoding, e.g., decoding convolutional codes with the

Viterbi algorithm. Since the discovery of a polynomial-time algorithm for ML decod-

ing of general binary linear codes would imply that P = NP [4], a common attack on

the ML decoding problem is to design an efficient algorithm whose error-correcting

performance approximates that of the optimal ML decoder.

In his PhD thesis, Feldman [13] recasts the problem of maximum-likelihood de-

coding as an integer linear program. The linear programming decoder is then defined

as a linear programming relaxation of the ML integer program. The linear program-

ming decoder is provably suboptimal, but the source of this suboptimality is known

to be the presence of non-integer extreme points in the underlying polytope, which

are known as nontrivial pseudocodewords. In this dissertation, we present a new

characterization of these pseudocodewords for the family of cycle codes. This char-

acterization is in terms of the normal graph of the code, and the techniques used in

this specific situation show promise of shedding light on the general case.

For the special case of the binary symmetric channel, another approximation of

maximum-likelihood decoding is introduced by Omura [22]. This decoder employs

an iterative algorithm whose behavior closely mimics that of the simplex algorithm.

While encouraging simulation results are presented, no theoretical results on the per-

formance of this algorithm are given in [22]. We present a generalization of Omura’s

algorithm that is capable of operating on the diverse class of binary-input memoryless

channels (e.g., the additive white Gaussian noise channel, the binary erasure channel,

or the Z-channel). Further, by modeling this generalized algorithm as a Markov chain

we show that the probability of the algorithm returning the ML codeword approaches

1 as the number of iterations is allowed to grow without bound.

4

1.2 Thesis Outline

This thesis is organized as follows. Chapter 2 gives a brief introduction to coding

theory, introducing terminology and results necessary to the ensuing chapters. Most

importantly, this chapter reduces the ML decoding problem to Problem (2.1) of The-

orem 2.3.1. This rephrased problem statement is the base from which both the linear

programming decoder and the generalized Omura decoder are derived.

Chapter 3 introduces Feldman’s linear programming decoder. It also contains

a crash-course in basic linear programming. Two presentations of the fundamental

polytope are given, and these equivalent notions will be used in the proofs of Chapter 4.

Chapter 4 presents a graphical characterization of linear programming pseudocode-

words for cycle codes. This characterization is highly visual, and is shown to be useful

in both the identification and construction of pseudocodewords. We also compare and

contrast our characterization to Dreher’s characterization of minimal linear program-

ming pseudocodewords [12].

In Chapter 5 we generalize Omura’s decoding algorithm from the binary symmetric

channel to any binary-input memoryless channel. This new soft-decision decoder

encompasses past generalizations of Omura’s work. The main contribution of this

chapter is a proof that the probability of the generalized Omura decoder outputting

the ML codeword approaches 1 as the number of iterations grows without bound.

This helps to explain the good error-correcting performance of Omura’s algorithm

observed in computer simulations.

5

Chapter 2

Background on Coding Theory

This chapter collects well-known coding theory terminology and results that can be

found, for example, in [17, 18, 21]. Though one can define codes over arbitrary finite

fields and even rings, we focus exclusively on binary linear codes.

Definition 2.0.1. A binary linear code, or, more simply, a code, is a linear subspace

C of F
n
2 . A codeword is an element c of C. The length of C is the dimension n of the

ambient vector space, and the dimension of C is its vector space dimension k. The

rate of C is the ratio k/n. A code of length n and dimension k is denoted as an [n, k]

code.

Since a binary linear code is a linear subspace of F
n
2 , one can describe it compactly

with matrices.

Definition 2.0.2. A generator matrix G for a code C is a matrix whose row space is

C. A parity-check matrix H for a code C is a matrix whose null space is C.

It is important to note that, in general, a code C has many distinct generator

and parity-check matrices. Also, a given generator matrix or parity-check matrix

need not have full rank: there may be redundant rows in either. The results herein

6

require knowledge of the specific parity-check representation being used, so a code is

taken to be a binary linear code C equipped with a fixed parity-check matrix H . It is

important for the reader to note that this is a marked departure in terminology from

many standard texts and publications in coding theory where a code is described

intrinsically as a subspace, not extrinsically as the kernel of a specific matrix.

One of the most fundamental concepts of coding theory is that of a channel, i.e.,

a medium over which information is transmitted. Examples of channels in physical

systems include telephone lines, ethernet cables, compact discs, and even the earth’s

atmosphere. While actual channels come in myriad forms, we model them mathe-

matically as a random transformation of the channel input.

Definition 2.0.3. Let Y be some output alphabet, which can be either finite or infi-

nite. A binary-input channel, or, more simply, a channel, is a random transforma-

tion from F
n
2 to Yn, characterized by a conditional probability function P (y|x), where

x ∈ F
n
2 and y ∈ Yn.

The case where the channel affects the components of vectors x ∈ F
n
2 indepen-

dently is of particular interest; such a channel is called memoryless. If a channel

affects the transmitted bits 0 and 1 in symmetric fashion, then the channel is called

symmetric.

Definition 2.0.4. A binary-input memoryless channel is a channel whose conditional

probability function P (y|x) can be factored as

P (y|x) =
n∏

i=1

P (yi|xi).

A binary-input memoryless channel with output alphabet Y is called output-symmetric,

or, more simply, symmetric, if Y can be partitioned into pairs {a, b} (possibly with

7

a = b) such that P (y = a | x = 0) = P (y = b | x = 1) and P (y = a | x = 1) = P (y =

b | x = 0).

In addition to the commonly used modifiers of memoryless and symmetric, we

introduce the term “completely non-deterministic” to described channels for which

no output completely determines the channel input.

Definition 2.0.5. A binary-input memoryless channel with output alphabet Y is

called completely non-deterministic if P (y|0) > 0 and P (y|1) > 0 for all y ∈ Y.

A binary-input memoryless channel that is not completely non-deterministic is said

to be partially deterministic.

Remark 2.0.6. While it may be more appropriate to refer to perfect channels as

completely deterministic, such situations are of no interest to coding theory. All

communication channels in this dissertation are therefore assumed to be imperfect

channels, and so the dichotomy introduced by Definition 2.0.5 is appropriate.

For many channels, the probability P (y|x) is closely related to the Hamming

distance between y and x. The notions of Hamming distance and the corresponding

minimum distance are ubiquitous in coding theory, since they aid in describing the

limits of a code’s error-correcting capabilities.

Definition 2.0.7. Let x,y ∈ F
n
2 , and let 0 denote the all-zeros vector. The Hamming

distance between x and y is d(x,y) := |supp(x − y)|, where supp(a) is the support

of the vector a, i.e., the set of all indices where a is non-zero. The Hamming weight,

or simply the weight of a vector x is wt(x) := d(x, 0) = |supp(x)|. The minimum

distance of a code C is the minimum Hamming distance d(x,y) over all pairs of

codewords x,y ∈ C such that x 6= y. If the minimum distance of an [n, k] code C is

known to be d, we say that C is an [n, k, d] code.

8

The next two propositions can be found in any standard text on coding theory.

Proposition 2.0.8. The Hamming distance is a metric on F
n
2 .

Proposition 2.0.9. The minimum distance of a binary linear code C is equal to the

minimum weight of a non-zero codeword.

2.1 LPDC Codes: Codes on Graphs

Since the discovery of turbo codes [5] in 1993, there has been a renewed interest

in graph-based codes. Besides turbo codes themselves, the low-density parity-check

(LDPC) codes of Gallager [15] have been the object of much research. Much of this

interest can be credited to the fact that the graphical structure of the codes admits

efficient decoding algorithms that in simulations have been shown to have outstand-

ing error-correcting capabilities. Iterative message-passing decoding of LDPC codes

is a vast topic, and we will not discuss it here. The graphical structure of LDPC

codes, however, provides a useful framework when discussing Feldman’s linear pro-

gramming decoder [13]. It is for this reason that we provide some basic definitions

and terminology.

A low-density parity-check code is a code whose parity-check matrix is “sparse,”

a term that can be made precise only when considering infinite ensembles of codes.

While the relative number of 0’s and 1’s in a parity-check matrix can have a significant

impact on the complexity of implementing certain decoding algorithms, all results

herein apply to binary linear codes without regard to sparsity.

Definition 2.1.1. A Tanner graph is a bipartite graph with bipartition I ∪ J and

edge set E. The elements of I are called variable nodes, and the elements of J are

called check nodes.

9

Given a parity-check matrix H = (hj,i), one can construct the Tanner graph

T = T (H) of H as follows. Let I be the set of columns of H and let J be the set of

rows. Define T (H) to be the graph whose vertex set is I ∪ J , with i ∈ I adjacent

to j ∈ J if and only if hj,i = 1. In other words, T (H) is the bipartite graph whose

bipartite adjacency matrix is H . Conversely, one can derive a parity-check matrix

from a Tanner graph: index rows by vertices in J and columns by vertices in I. Set

hj,i = 1 precisely when i and j are adjacent in T . In this manner one can see that

there is a bijective correspondence between Tanner graphs and parity-check matrices.

H =





1 1 0 1 0 0 0 0 0
0 1 1 0 1 0 0 0 0
1 0 1 0 0 1 0 0 0
0 0 0 1 0 0 1 0 1
0 0 0 0 1 0 1 1 0
0 0 0 0 0 1 0 1 1




↔

x1

x2

x3

x4

x5

x6

x7

x8

x9

j1

j2

j3

j4

j5

j6

Figure 2.1: A parity-check matrix H and the corresponding Tanner graph T .

The Tanner graph provides a highly visual environment in which to work with

codes.

Definition 2.1.2. Let T be a Tanner graph, and let x be an assignment of binary

values to the variable nodes of T . The assignment x is called a valid configuration on

T provided that for each j ∈ J the quantity
∑

i∈N(j) xi is even, where, as is standard,

10

x1

x2

x3

x4

x5

x6

x7

x8

x9

j1

j2

j3

j4

j5

j6

Figure 2.2: A valid configuration on the Tanner graph of Figure 2.1. Circled nodes
receive a binary value of 1, and uncircled nodes receive a binary value of 0.

N(j) denotes the neighborhood of j in T , i.e., the set of all i ∈ I that are adjacent to

j.

Proposition 2.1.3 (see, e.g., [2]). Let C be a code with parity-check matrix H, and

let T = T (H) be the corresponding Tanner graph. The set of valid configurations on

T is precisely the set C of codewords.

By Proposition 2.1.3, codewords of C may be viewed as valid binary configurations

on a Tanner graph. This graphical realization of codewords is further displayed in

the family of cycle codes.

Definition 2.1.4. A cycle code is a code C equipped with a parity-check matrix H

that has uniform column weight 2. Equivalently, every variable node in the associated

Tanner graph has degree 2. The normal graph N of C is the (multi)graph whose

vertex-edge incidence matrix is H.

11

x1

x2 x3

x4 x5 x6

x7 x8

x9

j1
j2 j3

j4 j5
j6

j1
j2 j3

j4 j5
j6

Figure 2.3: The Tanner graph of Figure 2.1 and the corresponding normal graph N .

The parity-check matrix of Figure 2.1 has uniform column weight two, and hence

defines a cycle code. Figure 2.3 shows a Tanner graph isomorphic to that given in

Figure 2.1 and the corresponding normal graph, illustrating the general fact that the

normal graph can be obtained from the Tanner graph by simply turning variable

nodes into edges.

The class of cycle codes, in general, has poor distance properties: the minimum

distance is equal to the girth of the normal graph, which only grows logarithmically

with the length of the code. However, cycle codes are often much easier to analyze

than general codes because of their special structure. Let C be a cycle code with

Tanner graph T and normal graph N . Proposition 2.1.3 states that C is the set of

valid configurations on T . By identifying variable nodes of T with edges of N , we

may regard C as the set of all valid edge labelings on N , i.e., all binary assignments

to the edges of N such that each vertex of N is incident to an even number of 1’s.

By [26, Proposition 1.2.27], every codeword is an indicator vector for an edge-disjoint

union of simple cycles in N . The converse is also true: the indicator vector of any

12

j1
j2 j3

j4 j5
j6

Figure 2.4: A different view of the configuration indicated in Figure 2.2. Bold edges
receive a value of 1, and all other edges receive a value of 0.

edge-disjoint union of simple cycles is a codeword. This is illustrated in Figure 2.4.

2.2 Channel Models and Decoding

Let C be a code, and consider transmission over a binary-input memoryless channel.

The task of a decoder is to translate the channel output into an educated guess as to

what the transmitted codeword truly was. When a decoder fails to decode or returns

an estimate that does not match the transmitted codeword, this error in interpretation

is called a word or block error. The probability of a word error occurring is called

the word-error rate, and it is sometimes denoted as Pw. A natural and important

question to address is how to design a decoder that minimizes this word-error rate.

Two common decoders are the maximum a posteriori (MAP) decoder and the

maximum-likelihood (ML) decoder. Given a received vector y, the MAP decoder

13

computes

cMAP = argmax
c∈C

P (c|y)

while the ML decoder computes

cML = argmax
c∈C

P (y|c).

A codeword cML that maximizes P (y|c) is called a maximum-likelihood codeword.

The MAP decoder is theoretically optimal in that it minimizes Pw. The ML decoder

does not necessarily minimize the word-error rate; however, in the case where each

codeword is equally likely to be transmitted (a common assumption made in coding

theory) MAP decoding and ML decoding coincide. Being able to go either way under

the assumption of equally likely codewords, we take ML decoding as our optimal de-

coder, for it is somewhat more natural to compute based on the channel’s probability

function.

Maximum-likelihood decoding can be implemented by performing an exhaustive

search over all 2k codewords, but this is not practical for even moderately high values

of k. Much effort has therefore been dedicated to finding more efficient ways of

decoding while still achieving or approaching the optimal word-error rate of the ML

decoder. This section introduces five binary-input memoryless channels and describes

algorithms that achieve ML performance for four of them. The purpose of providing

these examples is two-fold. First, it reviews some common channels and decoding

methods. Second, it illustrates the dependence that specialized decoding strategies

have on the channel for which they were developed. The generalized Omura decoder

introduced in this dissertation is capable of decoding on any of the following channels.

14

2.2.1 The Binary Symmetric Channel

The binary symmetric channel (BSC) with crossover probability p is perhaps the sim-

plest nontrivial example of a communication channel. It is both symmetric and com-

pletely non-deterministic. Its output alphabet is F2, and its conditional probability

function is given by

P (y|x) =






1 − p if y = x

p if y 6= x.

A depiction of the channel is given in Figure 2.5.

1

0

1

0

1 − p

p

p

1 − p

Figure 2.5: The binary symmetric channel.

When working with the binary symmetric channel, it is customary to assume that

p < 1
2
, since if p > 1

2
one can simply invert the output sequence at the receiver and get

back to the p < 1
2

case. The case p = 1
2

is of no interest, since reliable communication

is then impossible. Assuming p < 1
2
, the following proposition points to a method of

ML decoding.

Proposition 2.2.1. Let C be a binary linear code, and consider transmission over the

binary symmetric channel with crossover probability p < 1
2
. If y is received, then the

15

set of maximum-likelihood codewords is precisely the set of codewords that are closest

in Hamming distance to y.

Said colloquially, maximum-likelihood decoding on the binary symmetric channel

can be accomplished by employing a nearest-neighbor decoder, i.e., one that finds

the closest codeword to the received vector. Using this fact and Proposition 2.0.8,

one can show the classical result that an ML decoder on the BSC is guaranteed to

correctly decode a received sequence provided that at most ⌊(d−1)/2⌋ positions were

flipped by the channel, where d is the minimum distance of the code.

Given a received vector y, the task of nearest-neighbor decoding can be accom-

plished by first finding a least-weight error vector e∗ ∈ F
n
2 satisfying y + e∗ ∈ C and

then adding e∗ to y to obtain the codeword nearest to y. Finding such an error

vector is equivalent to finding a least-weight vector satisfying H(y+ e) = 0, or, more

simply, He = Hy. With this reformulation of nearest-neighbor decoding in mind, we

now describe syndrome decoding.

Let C be an [n, k] code with parity-check matrix H . Before any decoding takes

place, create a table of all possible 2n−k syndromes and their corresponding coset

leaders.

Definition 2.2.2. Let C be an [n, k] code with parity-check matrix H. The syndrome

s of an n-dimensional vector y is s = Hy. A coset leader e ∈ F
n
2 for a syndrome s

is a minimum-weight vector satisfying He = s.

Remark 2.2.3. There is a natural bijective correspondence between syndrome vectors

and cosets of C. Indeed, a coset is uniquely determined by the syndrome of any of its

elements. From this viewpoint, one can see why coset leaders are so named.

Once a vector y is received, find its syndrome s = Hy. Search the previously con-

structed table to find the coset leader e∗ whose syndrome matches s. Finally, return

16

the estimate c∗ = y + e∗, which, by the preceding discussion, is an ML codeword.

2.2.2 The AWGN Channel

The additive white Gaussian noise (AWGN) channel is a binary-input memoryless

channel with output alphabet R, and it is both symmetric and completely non-

deterministic. When a codeword c ∈ F
n
2 is sent through the AWGN channel, it

is first modulated via the coordinate-wise map m(ci) = 2ci − 1. This modulation

serves to model a digital communication system, where bits are transmitted as an-

tipodal waveforms. The set m(C) = {m(c) : c ∈ C} ⊆ R
n of all modulated codewords

is called the signal constellation of the code C.

Once a codeword is modulated, the additive white Gaussian noise channel is mod-

eled by adding independent, identically distributed Gaussian random variables to each

coordinate of the modulated vector. Thus, the received vector is y = m(c)+η, where

the components of η are drawn independently from a Gaussian random variable of

mean 0 and variance σ2. This model gives rise to the following conditional probability

functions:

P (y | c = 0) =
1√

2πσ2
e−

(y+1)2

2σ2

P (y | c = 1) =
1√

2πσ2
e−

(y−1)2

2σ2 .

Proposition 2.2.4. Let C be a binary linear code, and consider transmission over

the additive white Gaussian noise channel. Suppose that the vector y is received. The

set of maximum-likelihood codewords is precisely the set of codewords whose points in

the signal constellation are closest to y with respect to Euclidean distance.

17

Figure 2.6: The additive white Gaussian noise channel.

Proposition 2.2.4 implies that we may implement maximum-likelihood decoding on

the additive white Gaussian noise channel by first computing the Euclidean distance

between the received vector and all points in the signal constellation and then selecting

the codeword whose corresponding point in the signal constellation is nearest to the

received vector. Performing ML decoding in this nearest neighbor fashion still involves

an exhaustive search through the 2k points in the signal constellation, which quickly

becomes computationally infeasible as the dimension of the code grows.

2.2.3 The Binary Erasure Channel

The binary erasure channel (BEC) with probability ǫ of erasure is a binary-input

memoryless channel with output alphabet {0, e, 1}. The basic premise of the BEC

model is that if a bit is received, it must be the correct bit (i.e., the transmitted bit).

Bits are erased on occassion, in which case the transmitted bit is equally likely to be

a 0 or a 1. The conditional probability function presented in Figure 2.7 makes this

explicit.

The binary erasure channel is symmetric, but, unlike the binary symmetric chan-

nel and the additive white Gaussian noise channel, it is partially non-deterministic

since P (y = 0 | x = 1) = 0 and P (y = 1 | x = 0) = 0. This combination of complete

certainty (if y = 0 or 1) with complete uncertainty (if y = e) results in a ML decod-

18

1

0

1

e

0

1 − ǫ

ǫ

ǫ

1 − ǫ

Figure 2.7: The binary erasure channel.

ing algorithm that resembles a feasibility problem. In other words, if any plausible

solution is found, it must be optimal. This idea is made clear in Proposition 2.2.5,

to which we provide a proof since the author was unable to locate a satisfactory ref-

erence. Nonetheless, the basic idea behind the proof is certainly not original to this

dissertation.

Proposition 2.2.5. Let C be a code of length n, and consider transmission over the

binary erasure channel with probability of erasure ǫ. If the vector y is received, then

the set of maximum-likelihood codewords is the collection of all codewords that agree

with y on all but the erased positions.

Proof. Let U = {i ∈ {1, 2, . . . , n} | yi = e} be the set of indices of erased positions in

y, and let C = {1, 2, . . . , n} \ U. Define A := {c ∈ C | ci = yi for all i ∈ C}, so that

A is the set of codewords that match y in all but the erased positions. If c ∈ C \ A,

then there exists some index ℓ ∈ C such that cℓ 6= yℓ. This implies that P (yℓ|cℓ) = 0,

and so

P (y|c) =
n∏

i=1

P (yi|ci) = 0.

19

On the other hand, if c ∈ A we have

P (y|c) =

n∏

i=1

P (yi|ci)

=

(
∏

i∈U

P (yi|ci)

)

·
(
∏

i∈C

P (yi|ci)

)

= ǫ|U|(1 − ǫ)n−|U|.

Thus, the codewords in A are exactly the codewords that maximize P (y|c).

Let C be a code with parity-check matrix H , and suppose that y is received

over the binary erasure channel. Set C = {i | yi ∈ {0, 1}} and U = {i | yi = e}. We

interpret C as the set of coordinates with certainty and U as the set of coordinates

with uncertainty. In the following, xA is used to denote the projection of a vector x

onto the coordinates indicated by A ⊆ {1, 2, . . . , n}. In a similar manner, HA denotes

the projection of the matrix H onto the columns indicated by A.

By Proposition 2.2.5, we can achieve ML decoding if we can find a codeword

that matches y on the positions of C. We therefore seek a binary vector c such that

Hc = 0 and cC = yC. Such a vector c can be found by solving the linear system

HCyC + HUcU = 0 for cU.

2.2.4 The Z-Channel

The Z-channel with cross-over probability p is a binary-input memoryless channel with

output alphabet F2. Its conditional probability function is depicted in Figure 2.8.

Unlike the binary symmetric channel, the additive white Gaussian noise channel,

and the binary erasure channel, the Z-channel is not symmetric with respect to the

input bit. Like the BEC, the Z-channel is partially deterministic: if a 0 is received,

20

1

0

1

0

1

p

1 − p

Figure 2.8: The Z-channel.

it is known that a 0 was sent.

For completeness, we present a maximum-likelihood decoding algorithm for this

channel model. For any T ⊆ {1, 2, . . . , n}, let C(T) denote the code obtained by first

considering only those codewords that are equal to 0 on the positions of T and then

projecting these codewords onto the complement of T (this procedure is known as

shortening the code on T). Given a received vector y, project y onto supp(y) and

perform nearest-neighbor decoding in C({1, 2, . . . , n} \ supp(y)). Lift the result back

to a length n vector to obtain an ML codeword.

2.2.5 The Binary Asymmetric Channel

The binary asymmetric channel with crossover probabilities p and q is the binary

input memoryless channel illustrated in Figure 2.9. The binary asymmetric channel

models communication channels where transition probabilities can vary according to

the input bit. As such, the binary asymmetric channel subsumes both the BSC (by

setting p = q) and the Z-channel (by setting q = 0).

It is unclear how to best implement maximum-likelihood decoding for the binary

21

1

0

1

0

1 − q

q

p

1 − p

Figure 2.9: The binary asymmetric channel.

asymmetric channel, and it is for this reason that this channel is introduced. We

seek a method of performing ML decoding on any binary-input memoryless channel.

In Section 2.3 we recast the ML decoding problem as an integer program. It is

from this point of view that Feldman develops the linear programming decoder [13],

and it is also from this perspective that we develop a generalization of Omura’s

decoding algorithm [22]. The linear programming decoder can operate on any binary-

input memoryless channel that is completely non-deterministic, while our generalized

Omura decoder is capable of decoding on any binary-input memoryless channel. Both

decoders are suboptimal in that they do not guarantee ML performance, but the

generality that they admit warrants attention.

2.3 General Binary Memoryless Channels

We now recast the maximum-likelihood decoding problem on general binary-input

memoryless channels, a class of channels that subsumes all of the channels previously

discussed. Let C be a binary linear code presented by a parity-check matrix H ,

22

not necessarily of full rank. Consider transmission over a binary-input memoryless

channel and suppose that the vector y is received.

To allow for the treatment of partially deterministic channels, we first examine

the situation in which some received symbols completely determine the corresponding

codeword bits. Define

U := {i ∈ {1, 2, . . . , n} | P (yi|0) > 0 and P (yi|1) > 0}.

In other words, U is the set of positions where there is some uncertainty as to what

yi ought to be. Set C := {1, 2, . . . , n} \ U. The set C represents the positions where

yi determines the codeword bit ci. Let d = (di)i∈C be such that for each i ∈ C the

bit di is the unique binary value such that P (yi|di) > 0; note that the case where

some position is such that P (yi|0) = P (yi|1) = 0 has probability 0. The vector d

is the vector of determined codeword bits. For each i ∈ U, define the vector λ of

log-likelihood ratios component-wise by

λi = log

(
P (yi|0)

P (yi|1)

)
.

By definition, the output of the ML decoder is

argmax
c∈C

P (y|c).

Since the channel is memoryless, we can express P (y|c) as
∏n

i=1 P (yi|ci), so the

expression above becomes

argmax
c∈C

n∏

i=1

P (yi|ci).

If a codeword c is such that
∏n

i=1 P (yi|ci) > 0, it must be that cC = d. The output

23

of ML decoding can therefore be expressed as

argmax
c∈C

n∏

i=1

P (yi|ci) = argmax
c∈C

cC=d

n∏

i=1

P (yi|ci)

= argmax
c∈C

cC=d

∏

i∈U

P (yi|ci)

= argmax
c∈C

cC=d

∑

i∈U

log(P (yi|ci))

= argmin
c∈C

cC=d

∑

i∈U

log

(
1

P (yi|ci)

)

= argmin
c∈C

cC=d

(
∑

i∈U

log

(
1

P (yi|ci)

)
+
∑

i∈U

log (P (yi|0))

)

= argmin
c∈C

cC=d

∑

i∈U

log

(
P (yi|0)

P (yi|ci)

)

= argmin
c∈C

cC=d

λTcU,

where the final equivalence can be observed by considering the cases of ci = 0 and

ci = 1 separately. We have proven the following well-known theorem.

Theorem 2.3.1. Let C be a code and suppose that y is received over a binary input

memoryless channel. Set U = {i ∈ {1, 2, . . . , n} | P (yi|0) > 0 and P (yi|1) > 0}

and C = {1, 2, . . . , n} \ U, and let λ be the vector of log-likelihood ratios on U. Let

d = (di)i∈C be such that for each i ∈ C the bit di is the unique binary value such that

P (yi|di) > 0. The set of maximum-likelihood codewords is precisely the solution set

to the following optimization problem:

minimize λTcU

subject to c ∈ C

cC = d.

(2.1)

24

Corollary 2.3.2 follows immediately from Theorem 2.3.1. It has significant rele-

vance, since it applies to the BSC and the AWGN channel.

Corollary 2.3.2 ([13], Theorem 2.1). Let C be a code and consider transmission over

a completely non-deterministic binary input memoryless channel. Suppose that y is

received, and let λ be the vector of log-likelihood ratios. The set of maximum-likelihood

codewords is precisely the solution set to the following minimization problem:

minimize λTc

subject to c ∈ C.
(2.2)

25

Chapter 3

Background on Linear

Programming Decoding

A linear program is a problem in which a linear functional of the form cTx is to be

optimized over all real vectors x that satisfy a finite set of linear equality and linear

(non-strict) inequality constraints1. Imposing the additional constraint that x be an

integer vector gives rise to integer linear programs. Many important problems can

be phrased in terms of integer linear programs, one of the most famous being the

Traveling Salesman Problem [6]. While solutions to these problems are often of great

interest, the task of solving general integer linear programs is quite difficult. On the

other hand, solutions to linear programs can often be found quickly (using, e.g., the

simplex algorithm), and they can even be found in polynomial time (using, e.g., the

ellipsoid method). A common approach to solving integer linear programs therefore

is to solve a related linear program (or a series of linear programs) and then interpret

the solution in light of the original problem.

In his thesis [13], Feldman recasts the maximum-likelihood decoding problem as

1Unless stated otherwise, in the context of linear programming we use the convention that
inequalities are not strict, i.e., we assume the use of “≥” and “≤” instead of “>” and “<”.

26

an integer linear program. In an attempt to find solutions to this integer program effi-

ciently, a linear programming relaxation of the original integer program is introduced.

The linear programming (LP) decoder is defined to be the decoder that outputs a so-

lution to this relaxed optimization problem. The LP decoder has been the subject of

much research since its introduction in the early 2000’s, partially because of intuitive

ties between it and iterative message-passing decoding of LDPC codes [25]. In this

dissertation we examine the LP decoder for its own sake.

This chapter offers a brief introduction to Feldman’s linear programming decoder,

setting the stage for Chapter 4. We first introduce basic vocabulary and concepts

from linear programming in Section 3.1. Section 3.2 introduces the LP decoder, and

the fundamental polytope is defined and discussed in Section 3.3. We conclude in

Section 3.4 with a brief discussion of C-symmetry, a property of the fundamental

polytope that is both immediately useful and interesting in its own right.

3.1 Background on Linear Programming

This section gives a brief introduction to linear programming. Most material is taken

from Bertsimas and Tsitsiklis’s excellent text [6].

In this dissertation, we define a linear program as being an optimization problem

of the form

minimize cTx

subject to aT
j x ≥ bj j ∈ M1

aT
j x ≤ bj j ∈ M2

aT
j x = bj j ∈ M3

xi ≥ 0 i ∈ N1

xi ≤ 0 i ∈ N2,

(3.1)

27

where c,x, and aj are n-dimensional real vectors and the index sets M1, M2, M3, N1,

and N2 are finite. The vector c is called the cost function of the linear program. The

linear functional cTx is the objective function, though it is sometimes also referred to

as the cost function. The vectors aj are called constraint vectors, or simply constraints.

Also called constraints are the (in)equalities of the form aT
j x ≥ bj , a

T
j x ≤ bj , or

aT
j x = bj .

Remark 3.1.1. In general, a linear program can be either a maximization or a min-

imization problem. We restrict to minimization problems to simplify definitions and

discussion. There is, however, no essential loss of generality in using this convention:

maximizing cTx is equivalent to minimizing (−c)Tx.

Any vector x that satisfies all of the linear program’s constraints is called a feasible

solution, and the set of all feasible solutions is the feasible set. A feasible solution

x∗ that minimizes the objective function is an optimal feasible solution, or simply

an optimal solution. Note that while the optimality of a vector x depends on both

the constraints and the cost function, the feasibility of a solution x depends only

on the constraints. Since the feasible set for a linear program is an intersection

of closed half-spaces in R
n, it is a polyhedron. A polyhedron that is also bounded is

called a polytope. When dealing with polyhedra in the context of linear programming,

particular attention is paid to the extreme points.

Definition 3.1.2. Let M be a nonempty polyhedron defined by linear equality and

inequality constraints. A point x ∈ M is an extreme point provided that it is not in

the convex hull of M\ {x}. In other words, x is an extreme point of M if it cannot

be written as a convex sum αy + (1 − α)z for y, z ∈ M \ {x} and α ∈ (0, 1).

Remark 3.1.3. Extreme points are often referred to as vertices in linear programming

literature. We refrain from applying the term “vertex” to polyhedra to avoid confusion

28

when speaking of both graphs and polyhedra simultaneously. Thus, the terms “node”

and “vertex” are reserved for graphs, and “extreme point” is reserved for polyhedra.

In general, a polyhedron need not contain any extreme points. For a bounded

polyhedron, however, at least one extreme point is guaranteed to exist [6, Corollary

2.2]. The importance of extreme points is summarized in the next two theorems.

Theorem 3.1.4 ([6], Theorem 2.7). Suppose that a linear program has feasible set

M. If M has an extreme point and an optimal solution to the linear program exists,

then there exists an optimal solution that is an extreme point of M.

Theorem 3.1.4 implies that we may assume that an optimal solution to a linear

program occurs at an extreme point. In particular, when solving a linear program

whose underlying polyhedron is bounded, it suffices to consider only extreme points as

candidate solutions. On the other hand, given an extreme point e of a polyhedron M

there is always some linear program with M as its feasible set whose unique solution

is e:

Theorem 3.1.5 ([6], Theorem 2.3). Let M be a polyhedron defined by linear equality

and inequality constraints. If e is an extreme point of M, then there exists a cost

function c ∈ R
n such that e is the unique optimal solution to the following linear

program:

minimize cTx

subject to x ∈ M.

In other words, cTe < cTx for all x ∈ M \ {e}.

29

Example 3.1.6. Consider the linear program given by

minimize −2x − y

subject to −x + y ≤ 2

3x + y ≤ 21
2

3
4
x + y ≤ 15

4

x, y ≥ 0

The feasible set is the convex region in R
2 depicted below. This set has five extreme

points.

Since the number of extreme points of a polyhedron is guaranteed to be finite [6,

Corollary 2.1], one might be tempted to solve a given linear program by first enu-

merating all extreme points and then computing the cost of each to find the optimal

solution. The task of enumerating vertices of general polyhedra can, however, take

an amount of time that is exponential in the dimension of the feasible set and the

number of constraints. This is the case, for example, when enumerating the vertices

of the unit hypercube [0, 1]n. Fortunately, there is a practical method for solving

30

linear programs that forgoes this brute-force search: the simplex algorithm.

Though a complete and concrete development of the simplex algorithm is not

necessary for this work, a high-level understanding of how it operates will be useful.

The simplex algorithm can be accurately viewed as a guided walk on the underlying

polyhedron. The algorithm is initialized at some extreme point x0 of M. It then

examines all neighboring extreme points (i.e., those that lie on a common edge of

M with x0) to see if any offers an improvement in cost over x0. If it finds such an

extreme point x1, the simplex algorithm “walks” to x1 along an edge of M. The

process continues until an optimal solution is found, which is guaranteed to occur

after a finite number of steps.

Example 3.1.7. This example is a continuation of Example 3.1.6. If the simplex

algorithm is initialized at (0, 0), it is possible for the algorithm to follow the route

(0, 0) → (0, 2) → (1, 3) → (3, 1.5).

31

The corresponding sequence of costs is

0 7→ −2 7→ −5 7→ −7.5.

The extreme point (3, 1.5) is an optimal solution to this linear program.

In order to implement the simplex algorithm on paper or in computer software, it

is convenient to represent the feasible set of a linear program algebraically instead of

geometrically. We say that a constraint of the form aTx ≥ b, aTx ≤ b, or aTx = b is

active at ω if aT ω = b, i.e., if the constraint is met with equality. If the polyhedron M

is defined by linear equality and inequality constraints and x is an element of R
n, then

we say that x is a basic solution if all equality constraints of M are satisfied and the

set of active constraint vectors spans all of R
n. If x is a basic solution that satisfies all

of the constraints, it is called a basic feasible solution. Using these algebraic notions,

Theorem 3.1.8 gives an alternative characterization of extreme points.

Theorem 3.1.8 ([6], Theorem 2.3). Let M be a nonempty polyhedron defined by lin-

ear equality and inequality constraints, and let x ∈ M. The following are equivalent:

(a) x is an extreme point of M,

(b) x is a basic feasible solution of M.

Theorem 3.1.8 relates a geometric invariant to the specific algebraic representation

of a polyhedron. It also points to a method of finding extreme points: suppose that

a1, . . . , an is a set of n linearly independent constraint vectors, and let b1, . . . , bn be

the associated constraint values. Let A be the matrix whose rows are a1, . . . , an, and

let b be a column vector whose entries are b1, . . . , bn. Since the rows of A are linearly

independent, there is a solution to Ax = b, namely x = A−1b. By the construction

32

of x, it satisfies the constraints a1, . . . , an with equality. If x turns out to satisfy the

rest of the constraints of the polyhedron, then x is a basic feasible solution and hence,

by Theorem 3.1.8, an extreme point.

Conversely, if x is an extreme point of a polyhedron, then Theorem 3.1.8 implies

that there exists a set of n linearly independent constraint vectors that are active at

x; call them a1, . . . , an. With A and b as in the preceding paragraph, the extreme

point x must be the unique solution to Ax = b. This interpretation of an extreme

point as a solution to a linear system of equations gives the proof of the following

well-known theorem.

Theorem 3.1.9. Let M be a non-empty polyhedron. If every constraint vector defin-

ing M has rational coefficients, then every extreme point of M is a rational vector.

3.2 Linear Programming Decoding

Let C be a code, and consider transmission over a binary-input memoryless channel

that is completely non-deterministic. Corollary 2.3.2 states that ML decoding can be

accomplished by finding a solution to

minimize λTc

subject to c ∈ C,
(3.2)

where λ is the vector of log-likelihoods determined by the channel output. By con-

sidering codewords as elements of the unit hypercube in R
n instead of vectors in F

n
2 ,

we can restate this problem as

minimize λTx

subject to x ∈ conv(C),

33

where conv(C) denotes the set of all convex combinations of elements of C. Since it is

the convex hull of a finite set of points, conv(C) is a polytope [6, Corollary 2.6], and

hence can be described in terms of linear equality and inequality constraints. However,

as Feldman points out, the number of constraints needed to describe conv(C) is likely

to be quite large [13].

To get around this problem, Feldman defines a relaxation P of conv(C). This

relaxed polytope P, known as the fundamental polytope, is a function of the specific

parity-check matrix defining C (this is the main reason we make the convention that

a code is a subspace of F
n
2 paired with a fixed parity-check matrix describing it).

The polytope P is a subset of [0, 1]n that contains the polytope conv(C), and so every

codeword is a vertex of P. Furthermore, the fundamental polytope is more practical to

represent with linear equality and inequality constraints than conv(C) [13]. Section 3.3

gives a precise definition of the fundamental polytope. For the time being, however,

we have the vocabulary necessary to define the linear programming decoder.

Definition 3.2.1 ([13]). Let C be a linear code with parity-check matrix H, and let P

be its fundamental polytope. Suppose that y is a received vector from a binary-input

memoryless channel that is completely non-deterministic, and let λ be the associated

vector of log-likelihood ratios. The linear programming (LP) decoder is the decoder

that outputs an optimal solution to

minimize λTx

subject to x ∈ P.
(3.3)

By Theorem 3.1.4, we may assume without loss of generality that the linear pro-

gramming decoder always returns an extreme point of P as its output. Operating

under the paradigm that the output of any decoding algorithm, however strange or

34

nonsensical, is a pseudocodeword, we make the following definition.

Definition 3.2.2. Let C be a code with parity-check matrix H and fundamental poly-

tope P. A vector ω is a linear programming pseudocodeword if ω is an extreme

point of P. A linear programming pseudocodeword that is not a zero–one vector cor-

responding to a codeword is a nontrivial linear programming pseudocodeword.

In principle, one could define a decoding rule however one wishes. Given a received

vector y, one could decode y by completely disregarding the vector and instead

returning whatever happens to be the catch-of-the-day at the local fish market. This

is completely well-defined, but an output of “halibut” makes little sense when one is

expecting something along the lines of “1011011.” In the same way, we would like

to have some assurance that the outputs of the LP decoder have some meaningful

relation with the transmitted sequence. Such assurance lies in Feldman’s fundamental

polytope P, which we now present explicitly.

3.3 The Fundamental Polytope

We begin this section with a clarification: what we term the fundamental polytope

Feldman refers to as the projected polytope. The reason for this is that the first poly-

tope Q developed for the purposes of linear programming decoding in [13] is “bigger”

than it needs to be; its definition involves many auxiliary variables that never directly

influence the objective function of the linear program. When these auxiliary variables

are stripped away through projection, the result is the fundamental or projected poly-

tope. We include discussion of this extended polytope both to illustrate the relaxation

of the integer program to a linear program, and also because it will play a central

role in the characterization of linear programming pseudocodewords in Chapter 4.

35

Definition 3.3.1 ([13]). Let C be a code with parity-check matrix H and Tanner

graph T = (I ∪ J , E). For each variable node i in T , create a variable xi. For

each check node j, let Ej denote the collection of all even-sized subsets of N(j). For

every pair (j, S) with S ∈ Ej, create a variable wj,S. Let x = (x1, x2, . . . , xn) and

w = (wj,S)j∈J ,S∈Ej
. The extended polytope Q = Q(H) is the set of all real vectors

(x,w) satisfying the following constraints:

(a) 0 ≤ xi ≤ 1 for all i = 1, 2, . . . , n,

(b) wj,S ≥ 0 for all checks j and subsets S ∈ Ej,

(c)
∑

S∈Ej

wj,S = 1 for all checks j, and

(d)
∑

{S∈Ej | i∈S}

wj,S = xi for all j ∈ J and variable nodes i ∈ N(j).

Feldman gives motivation for Definition 3.3.1 in [13], which we repeat here for

completeness. Suppose that x is a codeword. Then xi ∈ {0, 1} for all i, and Hx =

0 ∈ F
n
2 . In other words, the projection xN(j) of x onto the neighborhood of every check

node j must have an even number of 1’s. For each check j, define Sj = supp(xN(j)),

and then set wj,Sj
= 1 and all other wj,S = 0. One can see that the vector formed in

this way satisfies all the constraints of Q. The variables xi indicate the bit values of

the variable nodes, and the variables wj,S indicate how the bit nodes satisfy the local

parity constraint at check j.

Definition 3.3.2 ([13]). Let C be a code with parity-check matrix H and Tanner

graph T = (I ∪ J , E). The fundamental polytope P = P(H) of C is the set of all

vectors x ∈ R
n satisfying the following constraints:

(a) 0 ≤ xi ≤ 1 for all i = 1, 2, . . . , n, and

36

(b)
∑

i∈S xi +
∑

i∈N(j)\S(1− xi) ≤ |N(j)| − 1 for all pairs (j, S), where j ∈ J and S

is a subset of N(j) with odd cardinality.

Feldman offers a heuristic justification for the constraints defining P, which again

we reproduce here for the sake of completeness. Since all codewords lie in {0, 1}n,

we do not wish for the components of x ∈ P to be able to assume values outside the

interval [0, 1], but since linear programs require convexity we permit these variables

to assume intermediate values. The other nontrivial family of constraints is best

explained in the integer case, for then these constraints can be seen as forbidding any

“bad” configurations. To be explicit, suppose that x ∈ {0, 1}n is not a codeword.

Then there is a check node j ∈ J such that x assigns an odd number of ones to the

variable nodes of N(j) in T . Letting S denote this subset, we see that x is such that

∑

i∈S

xi +
∑

i∈N(j)\S

(1 − xi) =
∑

i∈S

1 +
∑

i∈N(j)\S

1

= |S| + |N(j) \ S|

= |N(j)|

> |N(j)| − 1.

Hence, the non-codeword integer vector x is excluded from P.

Although the definitions of the extended polytope Q(H) and the fundamental

polytope P(H) appear to be quite different, there is a tight link between these two

polytopes.

Theorem 3.3.3 ([13], Theorem 5.1). Let C be a code with parity-check matrix H.

Then P(H) = {x | there exists a vector w such that (x,w) ∈ Q(H)}.

As mentioned in Section 3.2, the properties of the polytope over which the linear

37

programming decoder is defined can make or break this decoder in terms of its use-

fulness. Fortunately, the fundamental polytope has a key property relating its integer

points back to codewords.

Definition 3.3.4 ([13]). Let C be a code. A polytope M ⊆ [0, 1]n is called proper

provided that M∩ {0, 1}n = C, i.e., if the set of integral points in M is exactly the

set of codewords.

Theorem 3.3.5 ([13]). Let C be a code with parity-check matrix H. Then the funda-

mental polytope P = P(H) of C is proper.

Using the properness of the fundamental polytope, Feldman [13] is able to derive

one of the main properties of the linear programming decoder: the ML-certificate

property [13]. Suppose that the linear programming decoder outputs an integer vector

z such that λTz < λTx for all x ∈ P \{z}. Since the fundamental polytope is proper,

the zero–one vector z must be a codeword. Further, the properness of the polytope

implies that conv(C) ⊆ P. Thus, λTz < λTx for all x ∈ conv(C) \ {z}, so z is a

solution to Problem (3.2) and hence is an ML codeword [13].

By the ML-certificate property, an integer output of the linear programming de-

coder is guaranteed to be an optimal maximum-likelihood codeword. This does not,

however, imply that the LP decoder attains ML performance. In addition to code-

words, there are usually fractional extreme points of P as well (since the constraints

defining P are linear with integer coefficients, Theorem 3.1.9 implies that non-integer

extreme points are rational). Suppose that ω is a fractional extreme point of P. By

Theorem 3.1.5, there exists a cost function λ such that the solution to Problem (3.3)

is ω. In such a case, the LP decoder declares a decoding error while the ML decoder

provides an optimal solution. The presence of these fractional extreme points, or

38

nontrivial LP pseudocodewords, is therefore exactly what prevents the LP decoder

from attaining ML performance.

3.4 Notes on C-Symmetry

When studying the performance of linear codes, analysis is often simplified when one

can make the all-zeros assumption, i.e., when one may assume that the transmitted

codeword is 0 without changing the word-error rate. Feldman [13] shows that the

all-zeros assumption is valid for the LP decoder provided that the channel is both

completely non-deterministic and symmetric. To do this, the notion of C-symmetry is

introduced. Loosely speaking, a C-symmetric polytope is a polytope whose symmetry

group admits the additive group structure of the code.

We introduce C-symmetry mainly to utilize it in the construction of nontrivial lin-

ear programming pseudocodewords in Chapter 4. We also make explicit the relation-

ship between the symmetry of the fundamental polytope and the additive structure

of a code: if Sym(P) is the group of rotational and reflective symmetries of P, then

C is isomorphic to a subgroup of Sym(P). We do not fully develop this latter idea,

but leave it as an object of future pursuit.

Definition 3.4.1 ([13]). Let f ∈ [0, 1]n and y ∈ {0, 1}n be given. The relative point

f [y] of f with respect to y is the point whose coordinates are given by f
[y]
i = |fi − yi|

for all i = 1, 2, . . . , n.

Definition 3.4.2 ([13]). Let C be a code with parity-check matrix H. A proper poly-

tope M is said to be C-symmetric provided that for all points x ∈ M and all codewords

c ∈ C the relative point x[c] is also an element of M.

With these definitions, Feldman proves the following two theorems.

39

Theorem 3.4.3 ([13], Theorem 4.6). Let C be a code, and let M be a C-symmetric

polytope. For all extreme points x of M and for all codewords c ∈ C, the relative

point x[c] is also an extreme point of M.

Theorem 3.4.4 ([13], Theorem 5.4). Let C be a code with parity-check matrix H.

The fundamental polytope P = P(H) of C is C-symmetric.

Example 3.4.5. Let C be the code presented by the parity-check matrix H of Fig-

ure 2.1:

H =





1 1 0 1 0 0 0 0 0

0 1 1 0 1 0 0 0 0

1 0 1 0 0 1 0 0 0

0 0 0 1 0 0 1 0 1

0 0 0 0 1 0 1 1 0

0 0 0 0 0 1 0 1 1





.

Let P be the fundamental polytope of C. Since c1 = (1, 1, 1, 0, 0, 0, 1, 1, 1) and c2 =

(1, 0, 1, 1, 1, 0, 0, 1, 1) are both codewords, the properness of C implies that both are

elements of P. We have that c
[c2]
1 = c

[c1]
2 = (0, 1, 0, 1, 1, 0, 1, 0, 0). Note that c

[c2]
1 is

identical to the binary sum of c1 and c2 and hence is also a codeword.

Consider now c3 = (1, 1, 1, 0, 0, 0, 0, 0, 0), c4 = (0, 1, 0, 1, 1, 0, 1, 0, 0), and c5 =

(1, 0, 0, 1, 0, 1, 0, 0, 1). The points c3, c4, and c5 are codewords and hence are extreme

points of P. As we will show in Section 4.4, the point ω = (1
2
, 1

2
, 1

2
, 1, 0, 0, 1

2
, 1

2
, 1

2
) is

also an extreme point of P. Since P is convex, the point p = 1
2
c3 + 1

6
c4 + 1

3
ω =

(2
3
, 5

6
, 2

3
, 1

2
, 1

6
, 0, 1

3
, 1

6
, 1

6
) is an element of P. By Theorem 3.4.4, the point p[c5] =

(1
3
, 5

6
, 2

3
, 1

2
, 1

6
, 1, 1

3
, 1

6
, 5

6
) is also in P.

Let C be a code with parity-check matrix H and fundamental polytope P, and let

c ∈ C be a codeword. Define a map φc : P → [0, 1]n by φc(x) := x[c].

40

Proposition 3.4.6. The map φc is an element of Sym(P).

Proof. Define φi : [0, 1]n → [0, 1]n by reflection through the plane xi = 1
2
. Note that

φi(x) has ith coordinate equal to 1 − xi and is otherwise equal to x. Using this fact,

we see that φ2
i is the identity map and that φi ◦ φj = φj ◦ φi.

Enumerating the support of c as {i1 < i2 < · · · < im}, we have that φc(x) =

x[c] =

(
φi1 ◦ φi2 ◦ · · · ◦ φim

)
(x). If x ∈ P, Theorem 3.4.4 implies that x[c] and hence

(
φi1 ◦φi2 ◦ · · · ◦ φim

)
(x) is also in P. Thus, φc maps P into P. Since φc = φi1 ◦ φi2 ◦

· · · ◦ φim is a composition of reflections, it is itself a rotation or reflection (depending

on the parity of |supp(c)|). We conclude that φc is an element of Sym(P).

Theorem 3.4.7. Let C be a code with parity-check matrix H and fundamental poly-

tope P. The map Φ : C → Sym(P) given by c 7→ φc is an injective group homomor-

phism.

Proof. Let c1, c2 ∈ C be given. By Proposition 3.4.6, both Φ(c1) = φc1 and Φ(c2) =

φc2 are elements of Sym(P). We also have that φc1 = φc2 if and only if supp(c1) =

supp(c2), if and only if c1 = c2 (since C is a binary code). Thus, the map Φ is

injective. It remains to be shown that Φ(c1 + c2) = Φ(c1)Φ(c2).

By Definition 3.4.1, we have that x[c1+c2] =

(
x[c2]

)[c1]

. This can be restated as

φc1+c2 = φc1 ◦ φc2 , and finally as Φ(c1 + c2) = Φ(c1)Φ(c2).

Combining Theorem 3.4.7 with the fact that elements of Sym(P) preserve the

spatial relationships between points of P, we have that Φ induces a faithful group

action of C on the set of extreme points of P (this is essentially a more formal

statement of the conclusion of Theorem 3.4.3). The action of C on the set of extreme

points of P will serve a practical purpose in Chapter 4 when we discuss how to

generate a complete set of extreme points for the fundamental polytope of a cycle

41

code. Though at the present we only use this group action as a method of jumping

from one extreme point to another, it would be interesting to study for its own sake.

In particular, it would be interesting to examine what, if any, information about a

fractional extreme point can be gleaned from its stabilizer subgroup or from its orbit.

42

Chapter 4

A Characterization of Linear

Programming Pseudocodewords

for Cycle Codes

As discussed in Section 3.2, we may take the output of the linear programming decoder

to be an extreme point of the fundamental polytope. If the output is an integer

vector, then the properness of the fundamental polytope implies that the output is

a codeword, and the ML-certificate property implies that this codeword is the ML

codeword. On the other hand, if the output of the LP decoder is a fractional extreme

point of the fundamental polytope, then a decoding error is declared. To compare the

performance of the LP decoder to the optimal ML decoder, it is therefore important to

identify sources of nontrivial LP pseudocodewords. Since the fundamental polytope

is a function of the parity-check matrix defining the code, it is reasonable to begin

this task by examining structures of the parity-check matrix and the corresponding

Tanner graph that give rise to these fractional extreme points.

In this chapter we characterize the set of linear programming pseudocodewords in

43

the case of cycle codes. We first introduce some terminology that will aid in stating

the characterization succinctly.

Definition 4.0.1. Let G = (V, E) be a (multi)graph, and recall that every edge e ∈ E

can be regarded as a set consisting of two vertices v1, v2 ∈ V (if v1 = v2, then the edge

is a loop). For any A ⊆ E, define the subgraph of G spanned by A, or, more simply,

the subgraph spanned by A, to be subgraph of G with vertex set
(⋃

e∈A e
)

and edge

set A.

Recall from Section 3.3 that for a code C with Tanner graph T and fundamental

polytope P, points in P are indexed by the variable nodes in T . We therefore view

points in P as numeric labelings on the variable nodes of the Tanner graph; this is

analogous to identifying codewords with valid configurations (see Section 2.1). For

cycle codes, we may also view points in the fundamental polytope as numeric labels

on the edges of the normal graph. With this in mind, the main result of this chapter

is given in Theorem 4.0.2.

Theorem 4.0.2. Let C be a cycle code of length n with normal graph N and funda-

mental polytope P. A vector ω ∈ R
n is a linear programming pseudocodeword of P if

and only if the following four conditions hold:

(a) ω ∈ P.

(b) ω ∈ {0, 1
2
, 1}n.

(c) The subgraph Γ of N spanned by the edges that are assigned a value of 1
2

by ω is

2-regular. Equivalently, Γ is a vertex-disjoint union of simple cycles γ1, γ2, . . . , γℓ.

(d) For every simple cycle γi in Γ, the number of edges in N incident to γi that are

assigned a value of 1 by ω is odd.

44

The proof of Theorem 4.0.2 offered herein makes use of both presentations of the

fundamental polytope given in Section 3.3. As such, the proof is divided into two

main parts: Sections 4.2 and 4.3. Section 4.4 discusses how to use Theorem 4.0.2

in conjunction with C-symmetry to obtain a complete list of LP pseudocodewords

for a given cycle code. Finally, Section 4.5 discusses the relation between this char-

acterization of LP pseudocodewords and Dreher’s characterization of minimal LP

pseudocodewords [12]. We begin by proving an important technical lemma in Sec-

tion 4.1.

4.1 A Technical Lemma on Active Constraints

To prove the forward direction of Theorem 4.0.2 in Section 4.2, we adopt a viewpoint

suggested by Theorem 3.1.8 – namely, we view an extreme point of a polytope as

a solution to a linear system of equations. In our case, the equations forming this

system come from the constraint vectors of the fundamental polytope that are satisfied

with equality. In this section we develop vocabulary particular to the fundamental

polytope that aids in discussing whether and how a vector satisfies a given constraint.

We then prove a key lemma that is used in Section 4.2.

Let C be a code defined by parity-check matrix H , and let T = (I ∪ J , E) be

its Tanner graph. Without loss of generality, we may assume that I = {1, 2, . . . , n}.

Recall from Section 3.3 that the fundamental polytope P = P(H) is defined as the

45

set of all x ∈ R
n satisfying the following set of inequalities:

xi ≤ 1 i = 1, 2, . . . , n

xi ≥ 0 i = 1, 2, . . . , n

∑

i∈S

xi +
∑

i∈N(j)\S

(1 − xi) ≤ |N(j)| − 1
for all j ∈ J and for all

S ⊆ N(j) such that |S| is odd

We may rearrange this to put it in the standard form presented in Section 3.1:

xi ≤ 1 i = 1, 2, . . . , n (4.1)

xi ≥ 0 i = 1, 2, . . . , n (4.2)

∑

i∈S

xi +
∑

i∈N(j)\S

−xi ≤ |S| − 1
for all j ∈ J and for all

S ⊆ N(j) such that |S| is odd
(4.3)

Constraints in the form of Inequalities (4.1) and (4.2) simply keep the fundamental

polytope from escaping the unit hypercube. Of more interest are constraints in the

form of Inequality (4.3) that are imposed by the check nodes of the Tanner graph.

There is a natural bijection between constraint vectors in the form of Inequality (4.3)

and pairs (j, S), where S is an odd-sized subset of N(j). If S is an odd-sized subset

of N(j), there is a corresponding constraint vector of P that assigns coefficients of

+1’s to i ∈ S, −1’s to i ∈ N(j)\S, and 0’s to all other i. Similarly, given a constraint

vector for P that is not of the form xi ≤ 1 or xi ≥ 0, one can easily find an odd-

sized subset S of N(j) for some j. We therefore use the notation (j, S) to denote

the constraint vector of P corresponding to the check j and the odd-sized subset

S ⊆ N(j).

Definition 4.1.1. Let C be a code presented by a parity-check matrix H. Let T =

46

(I ∪ J , E) be its Tanner graph, and let P be its fundamental polytope. For a check

node j ∈ J , a subset S ⊆ N(j), and a vector x ∈ [0, 1]n, the cost of S at j relative

to x is given by

κj,x(S) =
∑

i∈S

xi +
∑

i∈N(j)\S

(1 − xi).

If there exists an odd-sized subset S ⊆ N(j) such that κj,x(S) = |N(j)| − 1, then we

say that the check j is active at x and that the set S is active for x at j.

Note that a vector x ∈ [0, 1]n is in the fundamental polytope if and only if κj,x(S) ≤

|N(j)|−1 for all pairs (j, S) such that S is an odd-sized subset of N(j). The following

lemma follows directly from Definition 4.1.1 in conjunction with the definition of the

fundamental polytope.

Lemma 4.1.2. Let C be a code presented by a parity-check matrix H. Let T =

(I ∪ J , E) be its Tanner graph, and let P be its fundamental polytope. If j ∈ J is

active at some x ∈ P and α ∈ (0, 1), then x can assume the value of α in at most

max{ 1
α
, 1

1−α
} positions of N(j). In particular, x can assume the value of 1

2
at most

twice in N(j).

Proof. Let D ⊆ I be the set of variable nodes in N(j) that are assigned a value of

α by x, and let d := |D|. Since j is active at x, there exists an odd-sized subset

S ⊆ N(j) such that S is active for x at j. We consider two cases.

If α ≥ 1
2
, then α ≥ 1 − α. We therefore have

|N(j)| − 1 = κj,x(S) ≤ |N(j)| − d(1 − α),

which implies that d ≤ 1
1−α

= max{ 1
α
, 1

1−α
}.

47

On the other hand, if α < 1
2
, then α < 1 − α. We therefore have

|N(j)| − 1 = κj,x(S) ≤ |N(j)| − dα,

which implies that d ≤ 1
α

= max{ 1
α
, 1

1−α
}.

Recalling that the symmetric difference between two sets S1 and S2 is S1△S2 :=

(S1 ∪ S2) \ (S1 ∩ S2), we now prove the main result of this section.

Lemma 4.1.3. Let C be a code presented by a parity-check matrix H. Let T =

(I ∪ J , E) be its Tanner graph, and let P be its fundamental polytope. Fix x ∈ P

and j ∈ J . If j is active at x and x is not integral on N(j) (i.e., there is some

i ∈ N(j) such that 0 < xi < 1), then there are at most two active sets for x at

j. Moreover, in the case that the number of active sets for x at j is exactly two,

the symmetric difference of these two sets consists of exactly two variable nodes, and

these two variable nodes are exactly the neighbors of j at which x is not integral.

Proof. Let x ∈ P and j ∈ J be given such that xN(j) is not integral and j is active

at x. For each i ∈ N(j), the value xi appears in the expression for κj,x(S) as xi if

i ∈ S or as 1 − xi if i ∈ N(j) \ S. The basic idea of this proof is to address the

following question: how can xi make the largest contribution to κj,x(S)? It is clear

that xi > 1 − xi if and only if xi > 1
2

and that xi < 1 − xi if and only if xi < 1
2
.

From this, we see that κj,x(S) is maximized exactly when S consists of all indices

i such that xi > 1
2
, and possibly some indices i with xi = 1

2
. In a search for sets

S that are active for x at j we can only consider odd-sized subsets of N(j). This

parity-based issue is highly dependent on x itself, about which we know little. We

therefore consider several cases, each of which takes the greedy solutions that ignore

parity and mashes them into solutions that respect this parity condition.

48

Define the following sets:

• L := {i ∈ N(j) | xi < 1
2
}

• E := {i ∈ N(j) | xi = 1
2
}

• G := {i ∈ N(j) | xi > 1
2
}

• Q := {i ∈ N(j) | |1
2
− xi| ≤ |1

2
− xi′ | for all i′ ∈ N(j)}.

The set Q contains all positions i such that xi is closest to 1
2

among all xℓ with

ℓ ∈ N(j); note that Q = E if E 6= ∅.

Since j is active at x, by Lemma 4.1.2 we know that 0 ≤ |E| ≤ 2. Suppose first

that |E| = 2, and write Q = E = {q1, q2}. If |G| is odd, then the sets S1 := G and

S2 := G ∪ Q are the only two odd-sized subsets of N(j) that maximize κj,x over

all odd-sized subsets of N(j). Moreover, since j is active at x, the maximum value

achieved by κj,x over all odd-sized subsets of N(j) is precisely |N(j)| − 1. Having

|E| = 2 therefore forces all values on N(j) \ Q to be integral. Since S1 and S2 satisfy

S1△S2 = Q and |S1△S2| = 2, the lemma is proved in this case. If |G| is even, then

the sets S1 := G ∪ {q1} and S2 := G ∪ {q2} are the only two odd-sized subsets that

maximize κj,x. As in the previous case, the maximum value achieved by κj,x over all

odd-sized subsets of N(j) is |N(j)| − 1, so |E| = 2 again forces all values on N(j) \Q

to be integral. Since S1△S2 = Q, we are done in this case as well.

Now suppose that |E| = 1. If |G| is odd, then S = G is the unique maximizer of

κj,x over all odd-sized subsets of N(j). If |G| is even, then S = G ∪ E is the unique

maximizer of κj,x over all odd-sized subsets of N(j). In either situation there is at

most one active set at j, and so the lemma is proved in this case.

Finally, assume that |E| = 0. If |G| is odd, then S = G is the unique maximizer of

κj,x over all odd-sized subsets of N(j) and the lemma is proved. If |G| is even, then

49

the collection of all active sets for x at j is given by {Sq | q ∈ Q}, where Sq is defined

as follows:

Sq :=






G ∪ {q} if q 6∈ G

G \ {q} if q ∈ G.

If |Q| = 1, there is a unique set Sq that maximizes κj,x(S) and we are done. So

suppose that |Q| > 1, and let q1 and q2 be distinct elements of Q. By the definition

of Q, we have xq1 = xq2 if q1, q2 ∈ L or q1, q2 ∈ G, and xq1 = 1 − xq2 if q1 ∈ L and

q2 ∈ G or vice-versa. We will soon deduce that xi ∈ {0, 1} for all i ∈ N(j) \ {q1, q2},

but first we do a computation for each of these four cases.

If q1, q2 ∈ L , then

|N(j)| − 1 = κj,x(Sq1)

=
∑

i∈Sq1

xi +
∑

i∈Sc
q1

(1 − xi)

=
∑

i∈Sq1\{q1}

xi + xq1 + (1 − xq2) +
∑

i∈Sc
q1

\{q2}

(1 − xi)

=
∑

i∈Sq1\{q1}

xi + 1 +
∑

i∈Sc
q1

\{q2}

(1 − xi).

If q1, q2 ∈ G, we have again that κj,x(Sq1) = |N(j)| − 1. This implies that

|N(j)| − 1 = κj,x(Sq1)

=
∑

i∈Sq1

xi +
∑

i∈Sc
q1

(1 − xi)

=
∑

i∈Sq1\{q2}

xi + xq2 + (1 − xq1) +
∑

i∈Sc
q1

\{q1}

(1 − xi)

=
∑

i∈Sq1\{q2}

xi + 1 +
∑

i∈Sc
q1

\{q1}

(1 − xi).

50

If q1 ∈ L and q2 ∈ G, we have

|N(j)| − 1 = κj,x(Sq1)

=
∑

i∈Sq1

xi +
∑

i∈Sc
q1

(1 − xi)

=
∑

i∈Sq1\{q1,q2}

xi + xq1 + xq2 +
∑

i∈Sc
q1

(1 − xi)

=
∑

i∈Sq1\{q1,q2}

xi + xq1 + (1 − xq1) +
∑

i∈Sc
q1

(1 − xi)

=
∑

i∈Sq1\{q1,q2}

xi + 1 +
∑

i∈Sc
q1

(1 − xi).

Finally, if q1 ∈ G and q2 ∈ L, we have

|N(j)| − 1 = κj,x(Sq1)

=
∑

i∈Sq1

xi +
∑

i∈Sc
q1

(1 − xi)

=
∑

i∈Sq1

xi + (1 − xq1) + (1 − xq2) +
∑

i∈Sc
q1

\{q1,q2}

(1 − xi)

=
∑

i∈Sq1

xi + xq2 + (1 − xq2) +
∑

i∈Sc
q1

\{q1,q2}

(1 − xi)

=
∑

i∈Sq1

xi + 1 +
∑

i∈Sc
q1

\{q1,q2}

(1 − xi).

In each of these four cases, we conclude that x must be integral on N(j)\{q1, q2};

otherwise, it would not be possible for κj,x(Sq1) to attain the value |N(j)| − 1. By

assumption we have that x must be non-integral in at least one position of N(j), so

we conclude that either 0 < xq1 < 1 or 0 < xq2 < 1. It follows from this and from the

definition of Q that Q = {q1, q2} and that 0 < xq1 , xq2 < 1. Thus, there are exactly

two active sets Sq1 and Sq2, these sets satisfy |Sq1△Sq2| = 2, and Sq1△Sq2 is exactly

51

the set of indices where x is not integral.

4.2 LP Pseudocodewords of Cycle Codes are

Half-Integral

Let C be a code of length n with parity-check matrix H , Tanner graph T = (I∪J , E),

and fundamental polytope P. Let ω ∈ P be an LP pseudocodeword, i.e., an extreme

point of P. By Theorem 3.1.8, ω is a basic feasible solution. Thus, the span of the

constraint vectors of P that are active at ω has dimension n. For each node to which

ω assigns either a 0 or a 1 there is an active constraint of the form (4.1) or (4.2). This

set of constraint vectors is linearly independent, so we may extend it by other active

constraint vectors, which will necessarily be of the form (j, S), to obtain a set of n

linearly independent constraint vectors that are active at ω. Up to a permutation of

rows and columns, we may write these n constraint vectors in matrix form as

Lω :=




In−m 0

Uω Rω



 ,

where the last m columns represent the variable nodes in Fω := {i | 0 < ωi < 1}.

Note that since the last m rows of Lω come from constraints of the form (j, S), each

entry of Lω is either −1, 0, or +1. Because det(Lω) = det(Rω), the fact that Lω is

invertible implies that the square submatrix Rω is also invertible.

Since each row of Lω is a constraint vector that is active at ω, we have that

Lωω = zω, where zω is an integer vector determined from the right-hand sides of

constraints (4.1) – (4.3). If we knew that L−1
ω

takes entries only from 1
2
Z, we could

write ω = L−1
ω

zω and conclude that ω ∈ {0, 1
2
, 1}n. Our next goal is therefore to show

52

that L−1
ω

has entries only in 1
2
Z. Because of the block structure of Lω, this amounts

to showing that R−1
ω

has entries only in 1
2
Z. To show this algebraic fact about Rω,

we turn to graphical methods.

Definition 4.2.1. Let C be a code with parity-check matrix H, Tanner graph T =

(I ∪ J , E) and fundamental polytope P. Let ω be a nontrivial linear programming

pseudocodeword, define Fω := {i ∈ I | 0 < ωi < 1}, and set m = |Fω|. Let Rω be an

m×m matrix formed as above, and define JRω
to be the set of all check nodes j ∈ J

such that a constraint of the form (j, S) is represented in the rows of Rω. Define TRω

to be the subgraph of T whose vertex set is Fω∪JRω
with i ∈ Fω adjacent to j ∈ JRω

if and only if one of the rows of Rω arising from j has a non-zero entry in the ith

position.

Lemma 4.2.2. Let C be a code with parity-check matrix H, Tanner graph T =

(I ∪ J , E) and fundamental polytope P. Fix x ∈ P and j ∈ J . If j is incident to a

variable node i ∈ Fx := {i ∈ I | 0 < xi < 1}, then it is incident to at least two such

nodes in Fx.

Proof. Assume that j is incident to one and only one variable node i0 ∈ Fx. Then

every variable node in N(j) \ {i0} is assigned a value of 0 or 1 by x. Let Oj := {i ∈

N(j) | xi = 1}. If |Oj| is even, then S := Oj ∪ {i0} has odd cardinality. Notice that

κj,x(S) > |S| + |N(j) \ S| − 1 = |N(j)| − 1, which means that x does not satisfy

constraint (j, S) of P given by

κj,x(S) =
∑

i∈S

xi +
∑

i∈N(j)\S

(1 − xi) ≤ |N(j)| − 1.

Hence, x is not an element of P.

53

If |Oj | is odd, set S = Oj and observe that κj,x(S) > |S|+|N(j)\S|−1 = |N(j)|−1.

Again, x fails to satisfy constraint (j, S) of P, so x is not an element of P.

Remark 4.2.3. Lemma 4.2.2 implies that for any x ∈ P, Fx is a stopping set. By

definition, a stopping set is a set of variable nodes U such that if a check j is adjacent

to some u ∈ U , then it is adjacent to at least two distinct elements of U . Stopping

sets are significant in the study of iterative message-passing decoding on the binary

erasure channel: the belief propagation algorithm fails to decode if and only if the set

of erased bits contains a stopping set [9].

We now restrict to the case where C is a cycle code.

Lemma 4.2.4. Let C be a cycle code with Tanner graph T = (I ∪ J , E) and fun-

damental polytope P. For any nontrivial linear programming pseudocodeword ω ∈ P

we have JRω
⊆ N(Fω), |Fω| = |JRω

|, and TRω
is 2-regular.

Proof. We first show that JRω
⊆ N(Fω). Let j ∈ JRω

be given. There must be a

corresponding S ⊆ N(j) such that (j, S) is a row of Lω. Since Rω is non-singular, this

row must involve some variable nodes in Fω. Thus, j ∈ N(Fω), so JRω
⊆ N(Fω).

We now show that |JRω
| = |Fω|. This amounts to showing that no check is

represented in the rows of [Uω Rω] more than once. Clearly, a single constraint vector

(j, S) associated with j cannot appear in the rows of [Uω Rω] more than once since

otherwise Rω would not be invertible.

Suppose now that for some j ∈ Jω there are two distinct subsets S1, S2 ⊆ N(j)

such that the constraints (j, S1) and (j, S2) are both rows of [Uω Rω]. Then both

S1 and S2 are active for ω at j. In general, the vectors (j, S1) and (j, S2) are such

that (j, S1) = −(j, S2) when we restrict to those positions of S1△S2, and (j, S1) =

(j, S2) = 0 on the positions of I \N(j). By applying Lemma 4.1.3 to this check node

54

we see that S1△S2 = {i ∈ N(j) | 0 < ωi < 1}. This means that (j, S1) = −(j, S2)

on S1△S2 = N(j) ∩ Fω and (j, S1) = (j, S2) = 0 on Fω \ N(j). It follows that

the projections of (j, S1) and (j, S2) onto the positions of Fω are scalar multiples of

one another, which contradicts in the fact that Rω is invertible. We conclude that

|JRω
| = |Fω|.

To prove the third and final claim of the lemma, we bound the number e of edges

in TRω
in two different ways. Since C is a cycle code, each variable node has degree

exactly 2 in T , so every variable node in TRω
has degree at most 2. Thus, e ≤ 2|Fω|.

On the other hand, since JRω
⊆ N(Fω) Lemma 4.2.2 yields e ≥ 2|JRω

|. Since

|Fω| = |JRω
|, the result follows.

Proposition 4.2.5. Let C be a cycle code with fundamental polytope P. For any

nontrivial linear programming pseudocodeword ω ∈ P and corresponding matrix Rω,

the matrix R−1
ω

has entries only in {−1
2
, 0, +1

2
}.

Proof. By Lemma 4.2.4, TRω
is a 2-regular bipartite graph. Thus, each connected

component is a cycle of even length. By Definition 4.2.1, the non-zero entries of

Rω give the incidence structure of TRω
. More formally, the matrix |Rω| obtained by

taking the coordinate-wise absolute value of each entry in Rω is the incidence matrix

for TRω
. We may therefore assume (by permuting columns and rows) that Rω is a

block diagonal matrix

Rω =





D1 0 . . . 0

0 D2 . . . 0

...
...

. . .
...

0 0 . . . Db





55

where each block is square and has the form

D =





d1,1 d1,2 0 · · · 0

0 d2,2 d2,3 · · · 0

...
. . .

. . .
...

0 dℓ−1,ℓ−1 dℓ−1,ℓ

dℓ,1 0 . . . 0 dℓ,ℓ





,

with dp,q ∈ {−1, +1} for all p, q. To show that R−1
ω

has entries only in {−1
2
, 0, +1

2
},

it suffices to show that each block D of Rω is such that D−1 takes entries only in

{−1
2
, 0, +1

2
}.

Let D be a block of Rω. Since Rω is invertible, D is also invertible. This implies

the existence of a unique solution a to the equation Da = ǫp, where ǫp is the pth

standard basis vector. The equation Da = ǫp gives rise to a set of relations that

must hold between the entries of a. In the following we take subscripts modulo ℓ to

respect the cyclic nature of D. For all q 6= p, we have aqdq,q + aq+1dq,q+1 = 0. Since

dq,q+1, dq,q ∈ {−1, +1} we may rearrange to get aq = −dq,q+1

dq,q
aq+1, and so aq = ±aq+1

for all q 6= p. This in turn implies that all of the entries of a are the same up to sign.

The equation Da = ǫp also implies that apdp,p + ap+1dp,p+1 = 1. We know from

the previous paragraph that ap+1 is either ap or −ap. Thus, we have to consider two

possible equations: ap(dp,p + dp,p+1) = 1 or ap(dp,p − dp,p+1) = 1. In either case, since

dp,p+1, dp,p ∈ {−1, +1} we have that ap is either −1
2

or +1
2
. Combining this with the

previous paragraph, we see that all the entries of a are in {−1
2
, +1

2
}.

56

Renaming the unique solution to the equation Da = ǫp to be ap, we see that

D−1 =





| | . . . |

a1 a2 . . . aℓ

| | . . . |





It follows that D−1 takes entries only in {−1
2
, 1

2
}.

The next corollary follows immediately from Proposition 4.2.5 and the discussion

at the beginning of this section.

Corollary 4.2.6. Let C be a cycle code with fundamental polytope P. If ω is an

extreme point of P, then L−1
ω

has entries only in 1
2
Z.

We now have the tools to prove the following theorem.

Theorem 4.2.7. Let C be a cycle code with Tanner graph T = (I ∪ J , E) and

fundamental polytope P. If ω is a nontrivial linear programming pseudocodeword of

P, then ω ∈ {0, 1
2
, 1}n and the subgraph TFω

of T induced by the set Fω = {i | ωi = 1
2
}

and its neighborhood N(Fω) is precisely TRω
, which is 2-regular.

Proof. By Corollary 4.2.6, L−1
ω

has entries in 1
2
Z. By the discussion at the beginning of

this section, we have that Lωω = zω, where zω is an integer vector. Thus, ω = L−1z

must have entries that come only from 1
2
Z. Since any point in the fundamental

polytope can only assume values between 0 and 1, ω ∈ {0, 1
2
, 1}n.

Lemma 4.2.4 implies that JRω
⊆ N(Fω), |Fω| = |JRω

|, and TRω
is 2-regular. From

JRω
⊆ N(Fω) and Definition 4.2.1 we see that TRω

is a subgraph of TFω
. Letting e

denote the number of edges in TFω
, we have that e = 2|Fω| since C is a cycle code.

57

Lemma 4.2.2 implies that 2|N(Fω)| ≤ e. Using the fact that JRω
⊆ N(Fω), we have

2|JRω
| ≤ 2|N(Fω)| ≤ e = 2|Fω|.

Since |Fω| = |JRω
|, these inequalities must be tight. Thus TFω

has the same number

of edges as TRω
and contains TRω

as a subgraph. We conclude that TFω
= TRω

.

Theorem 4.2.7 gives most of the forward direction of Theorem 4.0.2. In Section 4.3,

we derive a parity-based condition that allows us to complete this forward direction

as well as to prove the reverse implication.

4.3 A Set of Sufficient Suppositions: The Reverse

Implication

Throughout this section we continue with the assumption that C is a cycle code

with parity-check matrix H , Tanner graph T = (I ∪ J , E), normal graph N , and

fundamental polytope P. We also identify variable nodes of the Tanner graph with

edges in the normal graph. In this way, we use xe to denote the value x ∈ P assigns

to edge e ∈ N .

It is important to note that in shifting from Tanner graphs to normal graphs,

we must appropriately alter the manner in which we present the constraints for the

fundamental polytope. For a generic graph G with vertex v, we use E(v) to denote

the set of edges incident to v. Thus N(j), the neighborhood of check node j in the

Tanner graph, is identified with E(j) in the normal graph. For a cycle code C with

normal graph N , we can therefore say that the fundamental polytope is the set of all

real vectors x satisfying

58

(a) 0 ≤ xe ≤ 1 for all edges e, and

(b)
∑

e∈S xe+
∑

e∈E(j)\S(1−xe) ≤ |E(j)|−1 for all checks j in N , and for all odd-sized

subsets S of E(j).

We also appropriately adapt the notion of the cost κj,x(S), where S ⊆ E(j), to mean

κj,x(S) =
∑

e∈S

xe +
∑

e∈E(j)\S

(1 − xe).

We now finish the proof of Theorem 4.0.2. To do so, we first prove two supporting

lemmas.

Lemma 4.3.1. Let C be a cycle code with fundamental polytope P, and let j be a

check node in the normal graph N . Suppose that a point x ∈ P assigns 0’s and 1’s to

all but possibly two edges incident to j, say e1 and e2. Let O∗
j denote the set of edges

in E(j) \ {e1, e2} that are assigned a value of 1 by x.

(a) If |O∗
j | is odd, then xe1 + xe2 = 1.

(b) If |O∗
j | is even, then xe1 = xe2.

Proof. In the following, Z∗
j is the set of edges in E(j) \ {e1, e2} that are assigned a

value of 0 by x. We first prove part (a). Assume that |O∗
j | is odd, and set S = O∗

j .

Since x ∈ P, we know that κj(S) is at most |E(j)| − 1:

∑

i∈O∗
j

1 +
∑

i∈Z∗
j

(1 − 0) + (1 − xe1) + (1 − xe2) ≤ |E(j)| − 1.

Since |O∗
j ∪ Z∗

j | = |E(j)| − 2, we have

1 ≤ xe1 + xe2 .

59

For the other inequality, set S = O∗
j ∪ {e1, e2}. Using this set S, we have the

following constraint:

xe1 + xe2 +
∑

i∈O∗
j

1 +
∑

i∈Z∗
j

(1 − 0) ≤ |E(j)| − 1.

This can be rearranged to obtain

xe1 + xe2 ≤ 1.

Thus, xe1 + xe2 = 1, and part (a) is proved.

For part (b), assume that |O∗
j | is even, and set S = O∗

j ∪ {e1}. Since |S| is odd,

we have the constraint

xe1 +
∑

i∈O∗
j

1 +
∑

i∈Z∗
j

(1 − 0) + (1 − xe2) ≤ |E(j)| − 1.

This can be rearranged to get xe1 − xe2 ≤ 0, or, more simply, xe1 ≤ xe2 . By setting

S = O∗
j ∪{e2} and performing a symmetric argument, one finds that xe2 ≤ xe1 , which

completes the proof.

Lemma 4.3.2. Let C be a cycle code with normal graph N and fundamental polytope

P. Fix x ∈ {0, 1
2
, 1}n and let Γ be the subgraph of N spanned by the edges of N that

are assigned values of 1
2

by x. If Γ is 2-regular, then the following are equivalent:

(a) x ∈ P.

(b) If j is a check node of N that is incident to an odd number of edges assigned a

value of 1 by x, then j must also be incident to exactly two edges assigned values

of 1
2
.

60

Proof. Throughout the proof, we use Oj and Hj to denote the sets of edges incident

to the check j that are assigned values of 1 and 1
2

by x, respectively.

Since Γ is 2-regular, this means that |Hj| = 0 or 2 for all checks j. If there exists

some check j with |Oj | odd and |Hj| 6= 2, we must therefore have Hj = ∅. Letting

S = Oj , we see that x violates the (j, S) constraint of the fundamental polytope, and

so x 6∈ P. We have shown that (a) implies (b).

To show that (b) implies (a), we make use of Theorem 3.3.3, which establishes

the equivalence of Feldman’s extended polytope and the fundamental polytope. This

equivalence implies that a point y is in the fundamental polytope if and only if for

every check j, the local configuration of y at j is a convex sum of local codewords. In

other words, the projection yE(j) of y onto the edges incident to j must be a convex

sum of even-weight zero-one vectors. Thus, to show x ∈ P it is sufficient to write

xE(j) as a convex combination of local codewords at j.

Suppose that (b) holds, i.e., for all checks j with |Oj | odd, we also have |Hj| = 2.

Let j be an arbitrary check node of N . If |Oj | is even, let a = ind(Oj ∪Hj) and b =

ind(Oj), where ind(A) is used to denote the indicator vector of the set A. Both a and

b are local codewords at j, and we have 1
2
a + 1

2
b = xE(j). If, on the other hand, |Oj|

is odd, we can write Hj = {e1, e2}. Set a = ind (Oj ∪ {e1}) and b = ind (Oj ∪ {e2}).

As defined, both a and b are local codewords at j, and 1
2
a+ 1

2
b = xE(j). Since for all

checks j of N we have shown that xE(j) is a sum of local codewords at j, we conclude

that x is an element of the fundamental polytope.

Theorem 4.3.3. Let C be a cycle code with normal graph N and fundamental polytope

P. Let ω ∈ P∩{0, 1
2
, 1}n be given, and let Γ be the subgraph of N spanned by the edges

of N that are assigned values of 1
2

by ω. Assume that Γ is 2-regular; equivalently,

that Γ is a vertex-disjoint union of simple cycles γ1, γ2, . . . , γℓ. Then ω is an extreme

61

point of P if and only if for every simple cycle γ in Γ, the number of edges in N that

are incident to γ and are assigned a value of 1 by ω is odd.

Proof. We begin by assuming that every simple cycle γ in Γ is incident to an odd

number of edges assigned a value of 1. Suppose that there are x,y ∈ P and a

λ ∈ (0, 1) such that λx + (1 − λ)y = ω. For this to occur, it must be that x and

y both assign 0’s to the edges that ω does, and that x and y both assign 1’s to the

edges that ω does. Thus, the only edges where x and y can possibly disagree with ω

are those edges in Γ.

Let γ ∈ Γ be a simple cycle, and let Cγ be the set of check nodes in γ that

are incident with an odd number of edges to which ω assigns a 1. By assumption,

|Cγ| must be odd. Let j1, j2, . . . , j2m+1 be an enumeration of Cγ . Without loss of

generality, assume that these check nodes are indexed in such a way that respects the

cyclic structure of γ. Partition the edges of γ into groups Eℓ such that Eℓ is the set of

all edges between jℓ and jℓ+1, where subscripts are taken modulo 2m+1. We say that

two such subsets Ek and Eℓ are adjacent if k ≡ ℓ ± 1 (mod 2m + 1). Lemma 4.3.1

implies that x is constant on each Eℓ, and also that the common values assigned to

any two adjacent sets must add to 1. Since there are an odd number of these sets

and their adjacency structure is cyclic, we must have that each edge in the cycle is

assigned a value of 1
2

by x. See Figure 4.1 for an illustration.

Thus, x = ω. By a symmetric argument, y = ω. Since ω cannot be written as a

convex sum of elements of P \ {ω}, we conclude that ω is an extreme point of P.

For the converse, suppose that there is a simple cycle γ ∈ Γ that is incident to an

even number of edges receiving 1 from ω. Let Cγ be the set of check nodes in γ that

are incident with an odd number of edges to which ω assigns a 1, and let j1, j2, . . . , j2m

be an enumeration of the checks in Cγ that respects the cyclic structure of γ. With

62

1 − x

x

1 − x

x

x = 1 − x

Figure 4.1: A case where |Cγ| is odd.

the sets Eℓ defined as before, set A =
⋃

ℓ odd Eℓ and B =
⋃

ℓ even Eℓ. Define a vector

x ∈ R
n by making it equal to 1 on all edges of A, 0 on all edges of B, and otherwise

identical to ω. Define y to be 0 on A, 1 on B, and otherwise equal to ω. It is easy

to see that 1
2
x + 1

2
y = ω: Figure 4.2 provides an illustration.

1
2

1
2

1
2

1
2 0

1

0

1

1

0

1

0

= 1
2

+

Figure 4.2: A case where |Cγ| is even.

63

Lemma 4.3.2 implies that x,y ∈ P, and so ω is not an extreme point of P.

Combining Theorem 4.2.7 and Theorem 4.3.3, we obtain Theorem 4.0.2.

4.4 Construction of LP Pseudocodewords

Given a cycle code C with normal graph N , Theorem 4.0.2 provides an immediate

litmus test to check whether a vector is a linear programming pseudocodeword. This

test, while highly graphical, is not a major result. Indeed, for general polytopes one

can test a candidate point to see if it is an extreme point by computing the rank

of the matrix of active constraint vectors (see Theorem 3.1.8). The true worth of

Theorem 4.0.2 is that it completely describes all LP pseudocodewords in a clear-cut

manner, and in doing so suggests a method of constructing them.

To write down a pseudocodeword, begin with a subgraph Γ =
(
V (Γ), E(Γ)

)
of

N = (V, E) that is a vertex-disjoint union of simple cycles in N . Next, select a set P

of edge-disjoint paths1 from N \ Γ :=
(
V, E \ E(Γ)

)
, each of which starts and ends

at some simple cycle of Γ. Ensure that each simple cycle of Γ is incident to an odd

number of edges in P . Note that it is permissible for a path in P to start and end at

the same simple cycle of Γ, as well as for a path in P to be incident with more than

two simple cycles of Γ. Assign values of 1 to the edges of P and values of 1
2

to the

edges in Γ. To all other edges, assign values of 0. Letting ω be the vector built up in

this way, Lemma 4.3.2 guarantees that ω ∈ P , and Theorem 4.0.2 implies that ω is

an LP pseudocodeword.

1We use the convention that a path is a walk that does not repeat any vertex.

64

As an example, let C be the cycle code presented by the following normal graph.

j1
j2 j3

j4 j5
j6

e1

e2 e3

e4 e5 e6

e9

e7 e8

The only possible nontrivial vertex-disjoint union of simple cycles is Γ = {e1e2e3, e7e8e9}.

For a set of paths P satisfying the desired conditions, we have four choices: P = {e4},

P = {e5}, P = {e6}, or P = {e4, e5, e6}. The nontrivial LP pseudocodewords we ob-

tain in this way are

(
1
2
, 1

2
, 1

2
, 1, 0, 0, 1

2
, 1

2
, 1

2

)

(
1
2
, 1

2
, 1

2
, 0, 1, 0, 1

2
, 1

2
, 1

2

)

(
1
2
, 1

2
, 1

2
, 0, 0, 1, 1

2
, 1

2
, 1

2

)

(
1
2
, 1

2
, 1

2
, 1, 1, 1, 1

2
, 1

2
, 1

2

)
.

This list of four vectors is a complete list of all the fractional extreme points of the

fundamental polytope for this code.

The method described thus far can only produce nontrivial pseudocodewords,

along with the all-zeros vector (if the number of cycles in Γ is chosen to be zero). The

properness of P, however, implies that each of the 16 codewords is also an extreme

point of the fundamental polytope. This is not a contradiction to Theorem 4.0.2;

indeed, every codeword satisfies the conditions of Theorem 4.0.2 since the empty graph

65

is trivially 2-regular. This shortcoming in our construction method is patched by

allowing for C-symmetry: Proposition 4.4.2 below shows that any LP pseudocodeword

is either a codeword or lies in the C-symmetry orbit of a pseudocodeword that is

obtainable by the cycle-path method outlined earlier in this section. The proof of

Proposition 4.4.2 requires the following lemma.

Lemma 4.4.1. Let G be an acyclic graph. The edge set E of G can be partitioned

as
⋃d

ℓ=1 Pℓ, where each Pℓ is the edge set of a path in G whose endpoints have odd

degree.

Proof. Let V and E denote the vertex set and the edge set of G, respectively. We

proceed by induction on |E|. If |E| = 1, the result is trivial. So suppose that |E| > 1.

Since G is acyclic, each connected component of G is a tree, and hence each

connected component has at least two leaf nodes. Let v1, v2 ∈ V be distinct vertices

of degree 1 in the same connected component of G. Let ρ0 be the unique path

connecting v1 and v2 in G, and let P0 be the edge set of ρ0.

Let G′ be the graph with vertex set V \{v1, v2} and edge set E \P0. By induction,

there is a partition
⋃d

ℓ=1 Pℓ of E \P0 such that each Pℓ is the edge set of a path ρℓ in

G′ with the property that ρℓ begins and ends at vertices with odd degree in G′. We

have that P0 ∪ P1 ∪ · · · ∪ Pd is therefore a partition of E. For every vertex v in G′,

the degree of v in G′ either has the same degree as v did in G or has degree two less

than it did in G. Thus, the parity of the degree of v in G′ is the same as the parity

of the degree of v in G. It follows that every path ρ1, ρ2, . . . , ρd begins and ends at a

vertex of odd degree in G, and the result is proved.

Proposition 4.4.2. Let C be a cycle code with normal graph N and fundamental

polytope P. For any linear programming pseudocodeword ω ∈ P, we have that ω

lies in the C-symmetry orbit of either 0 (the all-zeros codeword) or a nontrivial linear

66

programming pseudocodeword ω′ that is constructible by the cycle-path method outlined

at the beginning of this section.

Proof. By Theorem 4.0.2, ω ∈ {0, 1
2
, 1}n. Let Γ be the subgraph of N spanned by

those edges assigned a value of 1
2

by ω. If Γ contains no edges, ω is an integer vector

and the properness of P implies that ω ∈ C. We therefore have 0[ω] = ω, i.e., ω lies

in the C-symmetry orbit of 0, and we are done.

Now suppose that Γ has at least one edge. By Theorem 4.0.2, Γ must be a vertex-

disjoint union of simple cycles γ1, γ2, . . . , γℓ. For any vector x of length n, let Nx=1 be

the subgraph of N spanned by the edges of N that receive a value of 1 from x. Let

A be the set of codewords in C whose support is contained in the edge set of Nω=1.

Choose c ∈ A to have maximal support, i.e., such that for all c′ ∈ A \ {c} we have

that supp(c) 6⊆ supp(c′). By Theorems 3.4.3 and 3.4.4, we have that ω′ := ω[c] is also

an LP pseudocodeword. Moreover, the maximality of c implies that Nω
′=1 is acyclic.

We claim that ω′ is constructible by the cycle-path method outlined at the begin-

ning of this section. Apply Lemma 4.4.1 to Nω
′=1 to obtain a set of paths ρ1, ρ2, . . . , ρd

whose edges partition the edge set of Nω
′=1 and with the property that each ρℓ be-

gins and ends at a node of Nω
′=1 that has odd degree in Nω

′=1. By Lemma 4.3.2,

every vertex of Nω
′=1 with odd degree in Nω

′=1 must be on some cycle γi of Γ. It

follows that ω′ is constructible by the cycle-path method using Γ for the cycles and

ρ1, ρ2, . . . , ρd for the paths. Since ω =
(
ω[c]
)[c]

= (ω′)[c], we are done.

Example 4.4.3. Let ω be the configuration indicated on the following normal graph:

dashed edges receive a value of 1, bold edges receive a value of 1
2
, and all other edges

67

receive a value of 0.

Lemma 4.3.2 guarantees that ω ∈ P , and Theorem 4.0.2 implies that ω is an LP

pseudocodeword. The dashed cycle on the lower right prevents this pseudocodeword

from being constructed in the manner discussed at the beginning of this section.

Let c be the codeword defined graphically by the following picture.

68

With c as given, we have that ω[c] is the configuration described by the following.

This latter pseudocodeword ω[c] can be obtained via the cycle-path construction at the

beginning of this section. Finally, we observe that ω =
(
ω[c]
)[c]

, and so ω is in the

C-symmetry orbit of ω[c].

4.5 A Note on Minimal LP Pseudocodewords

The set of linear programming pseudocodewords constitutes the entire set of output

vectors that the linear programming decoder can return. In [25], it is shown that the

performance of LP decoding is governed primarily by the set of minimal pseudocode-

words, much as the performance of a classical ML decoder is determined largely by

the codewords of minimum weight.

Definition 4.5.1 ([25]). Let C be a code with parity-check matrix H and fundamental

polytope P. Define the fundamental cone K(H) = K to be the conic hull of P; i.e.,

K := {x ∈ R
n | x = αy for some α ∈ [0,∞) and y ∈ P}.

69

An extreme point ω ∈ P is said to be a minimal linear programming pseudocodeword,

or more simply a minimal pseudocodeword, if it lies on an edge of K. A minimal

pseudocodeword that is also a codeword is a trivial minimal pseudocodeword, and a

minimal pseudocodeword that is not a codeword is a nontrivial minimal pseudocode-

word.

Remark 4.5.2. Since scaling in the fundamental cone is in some sense immaterial,

other authors (e.g., Vontobel and Koetter [25]) define minimal pseudocodewords as

being any point on an edge of the fundamental cone.

With this definition, it is intuitively plausible that the minimal pseudocodewords

play a major role in determining the performance of the LP decoder: suppose that 0

is the transmitted codeword. If the codeword is received perfectly, i.e., without any

noise, the cost function λ of the LP decoder should “point at” 0. As noise can be

interpreted as a perturbation of this cost function [13], the most likely error to be

made by the LP decoder is for it to decide on one of 0’s neighboring extreme points

in P, i.e., a minimal pseudocodeword.

In her PhD thesis, Dreher [12] provides an elegant graphical characterization of

minimal pseudocodewords for cycle codes.

Theorem 4.5.3 ([12], see Theorem 5.2.21). Let C be a cycle code of length n with

normal graph N and fundamental polytope P. A vector ω ∈ R
n is a trivial minimal

linear programming pseudocodeword if and only if the following three conditions hold:

(a) ω ∈ P.

(b) ω ∈ {0, 1}n.

(c) The subgraph of N spanned by the edges of N that are assigned a value of 1 by ω

consists of a single simple cycle.

70

A vector ω ∈ R
n is a nontrivial minimal linear programming pseudocodeword if

and only if the following four conditions hold:

(a) ω ∈ P.

(b) ω ∈ {0, 1
2
, 1}n.

(c) The subgraph Γ of N spanned by the edges of N that are assigned a value of 1
2

by

ω is a vertex-disjoint union of two simple cycles γ1 and γ2.

(d) The subgraph P of N spanned by the edges of N that are assigned a value of 1 by

ω is a path that begins at γ1 and ends at γ2 but is otherwise internally disjoint

from γ1 and γ1.

The similarity between Theorem 4.5.3 and Theorem 4.0.2 is apparent, though

there are important differences. Theorem 4.0.2 classifies all pseudcodewords for cy-

cle codes, yet it does not distinguish between minimal and non-minimal pseudocode-

words. By comparison, the set of minimal pseudocodewords is usually a proper subset

of all the pseudocodewords, as is illustrated in the following example.

Example 4.5.4. Let C be the cycle code presented by the following normal graph.

j1
j2 j3

j4 j5
j6

e1

e2 e3

e4 e5 e6

e9

e7 e8

71

In Section 4.4 the nontrivial linear programming pseudocodewords were found to be

ω1 =
(

1
2
, 1

2
, 1

2
, 1, 0, 0, 1

2
, 1

2
, 1

2

)

ω2 =
(

1
2
, 1

2
, 1

2
, 0, 1, 0, 1

2
, 1

2
, 1

2

)

ω3 =
(

1
2
, 1

2
, 1

2
, 0, 0, 1, 1

2
, 1

2
, 1

2

)

ω4 =
(

1
2
, 1

2
, 1

2
, 1, 1, 1, 1

2
, 1

2
, 1

2

)
.

The pseudocodewords ω1, ω2, and ω3 are minimal pseudocodewords by Theorem 4.5.3.

The vector ω4 is not, since it violates condition (c) of Theorem 4.5.3.

Although the vector ω4 of Example 4.5.4 is not minimal, it is in the C-symmetry

orbit of the minimal pseudocodeword ω1. Indeed, we have that ω
[c]
1 = ω4 for c =

(0, 0, 1, 0, 1, 1, 0, 1, 0) ∈ C. Thus, in this example each nontrivial pseudocodeword is

either minimal or it is in the orbit of a minimal pseudocodeword under the action

of C-symmetry. A natural question to ask is whether this occurs in general; that is,

whether the minimal pseudocodewords “span” all pseudocodewords under the action

of C-symmetry. This is not, however, the case: an LP pseudocodeword can have four

or more simple cycles in the normal graph whose edges receive values of 1
2
, whereas

by Theorem 4.5.3 a minimal pseudocodeword can have at most two such cycles. For

a concrete illustration, refer to Example 4.4.3.

72

Chapter 5

A Generalization of Omura’s

Decoding Algorithm

Let C be an [n, k] code presented by the parity-check matrix H , and consider trans-

mission over the binary symmetric channel with crossover probability p < 1
2
. If the

binary vector y is received, it is well known that ML decoding on this channel can

be achieved by the method discussed in Section 2.2.1: first, compute the syndrome

s = Hy of the received vector. Next, find the smallest weight vector e∗ satisfying

He = s. Finally, add e∗ to y. The result is an ML codeword.

A typical way of performing the second step in this process is to create, a priori, a

look-up table of all possible syndrome vectors and the corresponding minimum weight

error vectors (coset leaders) that produce them. Decoding then amounts to searching

this array to find the minimum-weight error vector whose syndrome matches that

of the received vector. For even moderately large values of n and k (e.g., n = 100

and k = 50), however, this näıve approach becomes computationally intractable. For

this reason Omura [22] dispenses with this look-up table and designs a decoder that

handles the task of finding the minimum weight vector e∗ in a much different manner.

73

Development of this new decoder begins by recasting the problem as

minimize 1Te (over R)

subject to He = s (over F2)

over all e ∈ {0, 1}n

(5.1)

where 1 denotes a column vector of all 1’s.

At first glance, Problem (5.1) looks like a linear program in standard form, but

the function to be minimized is being computed in the reals while the constraints are

binary. This prevents us from using the simplex method [6] for solving the problem.

Omura [22] has developed a method that is guaranteed to solve this problem in

finite time provided that H has full rank. This is accomplished by using an iterative

algorithm whose behavior closely mimics that of the simplex algorithm. A practical

snag is that this algorithm can be computationally prohibitive (this is not too much

of a surprise, since the decision problem corresponding to ML decoding on the BSC is

NP-complete [4]). Omura recognizes this drawback and compensates by randomizing

the algorithm in such a way as to make it more efficient. Simulation results suggest

that the corresponding loss of performance is not large, yet no proof that Omura’s

randomized algorithm always converges to the ML codeword is given in [22].

In this chapter, we generalize Omura’s algorithm to decode any fixed binary linear

code over an arbitrary binary-input memoryless channel (e.g., the binary symmetric

channel, the binary erasure channel, the additive white Gaussian noise channel, the

Z-channel, etc.). Moreover, we demonstrate that the generalized version of Omura’s

randomized algorithm can be modeled by a finite-state Markov chain and use this

to show that the probability of decoding to an ML codeword approaches 1 as the

number of iterations goes to infinity.

This chapter is organized as follows: Section 5.1 gives a brief survey of past work

74

on soft-decision decoding algorithms, as well as work directly following from Omura’s

original paper. Section 5.2 develops a key reduction of ML decoding on an arbitrary

binary-input memoryless channel. Section 5.3 examines the reduction of Section 5.2

in the case of the BSC, the BEC, and the AWGN channel. We develop the generalized

Omura algorithms in Section 5.4. Section 5.5 focuses on analyzing the performance of

the randomized version of the generalized Omura decoder. Finally, Section 5.6 gives

simulation results of the generalized Omura decoder for several codes, which serve as

empirical evidence of the results proven in Section 5.5.

5.1 The Generalized Omura Decoder in Context

5.1.1 A Survey of Soft-Decision Decoders

The generalized Omura decoder can be categorized as a soft-decision decoder. De-

coders in this class account for the reliability of received bits as well as the hard-

decision vector (i.e., the vector obtained from the channel output by making coordinate-

wise optimal choices). The use of this “soft” information can improve decoding perfor-

mance by as much as 3 decibels over hard-decision decoding [21], making soft-decision

decoding an attractive choice. In the following we outline three soft-decision decoders.

As with the generalized Omura decoder, these algorithms can be used to decode any

binary linear code over any channel for which the reliability of the received code-

word bits can be computed (e.g., for completely non-deterministic channels). There

are, however, notable differences between these decoders and the generalized Omura

decoder.

One of the first soft-decision decoders was the generalized minimum distance

(GMD) decoder introduced by Forney [16]. Given a received sequence y, the GMD

75

decoder forms the hard decision vector ŷ along with a vector r of reliability values,

where ri ≥ 0 for all i. By making hard decisions, errors are likely to occur. Moreover,

most of these errors will lie in the positions with lowest reliability. Erasures are there-

fore systematically introduced in the least reliable positions of v, and the resulting

vectors are each decoded with a hard-decision algebraic decoder that is capable of

correcting both errors (for the relatively few reliable positions in error) and erasures

(for the unreliable positions the decoder erased). This process results in a list of

candidate codewords from which the most probable is chosen. In the case of a fixed

code on the AWGN channel, the performance of GMD decoding approaches that of

the optimal ML decoder as the signal-to-noise ratio (SNR) goes to infinity [16].

Three related soft-decision decoders are introduced by Chase in [10]. The three

Chase decoding algorithms operate in a manner similar to the GMD decoder. Given

a received vector y, the Chase decoding algorithms first compute the hard-decision

vector ŷ and the vector of reliability values. A certain number of low-weight error

patterns are introduced to ŷ in the least reliable positions (compare this method to

the GMD decoder that erases such bits). The manner of choosing which low-weight

error patterns to form is determined by which of the three decoders is being used.

Each resulting vector is decoded with a hard-decision errors-only decoding algorithm,

and the best codeword from the final list of candidates is selected as the output.

As with the GMD decoder, in the case of a fixed code on the AWGN channel the

performance of each of the Chase decoding algorithms approaches ML performance

as the SNR goes to infinity [10].

In contrast to the generalized minimum distance decoder or the Chase decoding

algorithms, which make use of the least reliable received bits, the ordered-statistic

decoder [14] of Fossorier and Lin makes use of the most reliable positions. Given a

received vector y, compute the reliability of each code-bit position. Assigning these

76

reliabilities as weights to the columns of a generator matrix for the code, one can use

a greedy search to find a most reliable basis B, i.e., a set of k linearly independent

columns of G with maximum weight1 (see Section 10.8 of [18] for an efficient method

of finding such a basis). Let m̂ denote the length k vector obtained by making

hard decisions at each code-bit position in B. Intuitively, m̂ ought to differ from

the transmitted codeword in relatively few positions since the positions in B were

chosen to have high reliability. The ordered statistic decoder operates according to

the following general procedure: first, make some number of low-weight alterations

to the vector m̂ to obtain a set of vectors M. Using the columns of G indicated by

B as an information set, encode each vector m′ ∈ M as a codeword y′ and compute

the likelihood of receiving y′ given that m′ was transmitted. Select the vector with

the highest likelihood.

It is through the lens of performance that we see the first major difference between

the generalized Omura decoder and the aforementioned decoders. For a fixed code, the

GMD decoder, the three Chase decoders, and the generalized Omura algorithm are

all asymptotically ML on the AWGN channel, but they are asymptotic with respect

to different parameters. For the GMD and the three Chase decoders to approach

ML performance, the SNR must be allowed to grow without bound - essentially, this

means that the channel itself is becoming completely reliable. This is in contrast to the

generalized Omura decoder, which by Theorem 5.5.11 is guaranteed to approach ML

performance for a fixed SNR as long as the decoder is permitted to use an arbitrarily

large number of iterations.

It is the author’s belief that the difference in performance results highlighted in

1If A is a matrix with column set E, then the collection of linearly independent subsets of
E forms a matroid on the ground set E. For any nonnegative weight function on E, the greedy
algorithm is guaranteed to produce a maximal linearly independent set of maximum total weight.
For more reading on matroids, see, e.g., [26].

77

the previous paragraph is due primarily to an algorithmic difference between the

generalized Omura decoder and the other decoders. Generalized minimum distance

decoding, Chase decoding, and ordered statistic decoding all work by fixing an or-

dering on the received bits (using reliability information) and proceeding with strict

respect to this order – the idea being that errors are more likely to occur in positions

with low reliability. Still, it is possible for positions with high reliability to be re-

ceived in error and likewise for positions with low reliability to be received correctly.

Moreover, this intuition of relative likelihood loses its potency for received vectors

where the range of reliability values is small (an extreme example is the BSC, where

reliability is uniform). As will be made clear in Section 5.4, the generalized Omura

decoder takes into account reliability information, but, given the opportunity, it is

able to flip the value of any received bit – regardless of that bit’s individual reliability

– to arrive at a better solution.

5.1.2 Derivatives and Other Generalizations of Omura’s

Algorithms

Given the number of years that have passed since the 1972 publication date of Omura’s

paper, there has been relatively little work done on extending the methods of Omura.

In [11], Omura’s decoder is adapted to the AWGN channel2. This decoder is more or

less identical to the decoder obtained by specializing the generalized Omura decoder

that we will develop in Section 5.4.2 to the AWGN channel. To discuss the significance

of the work presented in this chapter, it is useful to describe a common model into

which these decoding algorithms can be placed.

As will be shown in Section 5.5, these Omura-type algorithms can be modeled

2The Omura-type algorithm of [11] is also explored in [7].

78

accurately as guided walks on the matroid basis graph [19] of the parity-check matrix

H . The matroid basis graph of a matrix M has as its vertices every possible maximal

linearly independent set of columns taken from M . As such, these vertices are called

bases. Two bases B1 and B2 are adjacent if and only if |B1 ∩ B2| = rank(M) − 1; in

other words, if they differ in only one element. The reason for considering this specific

graph is that there is a natural map (made explicit in Definition 5.4.3) from the set of

bases to the set of candidate codewords. Each algorithm is initialized at some basis

B0. It then examines all neighboring bases to see if one offers an improved solution.

If it finds such a neighbor, it moves to this new basis and the process continues. The

end goal is to arrive at a basis that corresponds to an optimal, or nearly optimal,

solution to the ML decoding problem.

Using intuition similar to that of the ordered statistic decoder, the decoding al-

gorithm of [11] makes use of the least-reliable basis – a basis for the columns of H

that has minimal reliability. Using a least reliable basis has the effect of giving this

algorithm a head-start over the generalized Omura decoder, which manifests itself in

very good simulation results (see [7]). A heuristic explanation of this good decoding

performance is given in [11], but a precise analysis (i.e., an actual theorem regarding

performance) is still lacking.

The main contribution of the work herein is two-fold. First, we explicitly describe

how to adapt Omura’s algorithm to any binary-input memoryless channel, including

those that are partially deterministic. Second and most importantly, we abandon the

notion of most and least reliable bases. This is not to say that we cannot use a least

reliable basis to initialize the generalized Omura decoder – doing so just brings us back

to previous attacks on the problem. Rather, this carefree point of view allows us to

prove that the generalized Omura decoder, and hence Omura’s original algorithm [22]

and the decoder of [11], will converge in probability to the ML codeword regardless

79

of the initial basis.

On a final note, we observe that some of the same ideas utilized by Omura have

been applied in the context of cryptanalysis. Canteaut and Chabaud [8] develop an

algorithm not unlike Omura’s for the purpose of breaking McEliece’s cryptosystem.

As opposed to operating on the fundamental hardness of computing the discrete log-

arithm or factoring large integers, McEliece’s cryptosystem relies on the hardness of

decoding a code that has seemingly random structure [20]. Attacks on such systems

must therefore be capable of achieving relatively good decoding performance while

utilizing only the linearity of the code, which is exactly what Omura’s original algo-

rithm is designed to do. In light of Theorem 5.5.11, further analysis of the convergence

rate of the generalized Omura decoder will aid in determining its efficacy as an attack

on code-based cryptosystems.

5.2 Generalization to an Arbitrary Binary-Input

Memoryless Channel.

Let C be a binary linear code with parity-check matrix H , not necessarily of full rank.

Consider transmission over a binary-input, memoryless channel and suppose that the

vector y is received. By Theorem 2.3.1, the output of the ML decoder can be taken

to be any solution to

minimize λT cU

subject to c ∈ C

and cC = d

(5.2)

where U = {i |P (yi|0) > 0 and P (yi|1) > 0} is the set of uncertain code-bit positions,

C = {1, 2, . . . , n} \ U is the set of certain code-bit positions, λ is the vector of log-

80

likelihood ratios on U, and d is the vector of codeword bits determined by C.

The requirement that c ∈ C and cC = d is equivalent to looking only at those

binary vectors x of length u := |U| such that HCd + HUx = 0, which is the same

as HUx = HCd where, as in Chapter 2, we use HU and HC to denote the matrix H

projected onto the columns indicated by U and C, respectively. We may therefore

rephrase Problem (5.2) as

minimize λTx (over R)

subject to HUx = HCd (over F2)

over all x ∈ {0, 1}u.

(5.3)

Define the vector ŷ ∈ {0, 1}u coordinate-wise by

ŷi =






0 if λi ≥ 0

1 if λi < 0.

The vector ŷ is the hard-decision vector based on yU; for example, on the BSC with

p < 1
2

we have C = ∅ and ŷ = y. It is clear that ŷ minimizes λTx over all vectors

x ∈ {0, 1}u; however, ŷ need not satisfy the constraint HUŷ = HCd specified by

Problem (5.3). Since any solution to Problem (5.3) must satisfy this constraint, we

are left to find a perturbation v of ŷ with HUv = HCd such that the difference

between λT v and λT ŷ is as small as possible.

Set s = HUŷ + HCd. All solutions v to HUv = HCd can be generated by first

finding a solution e to HUe = s and then setting v = ŷ + e. Let “⊙” denote the

coordinate-wise (Hadamard) product of two vectors. Keeping in mind that ŷ, e ∈

{0, 1}u, we have that ŷ + e is symbolically the same as ŷ + e − 2(e ⊙ ŷ), where

the first sum is computed modulo 2 and the the latter sum is computed in the real

81

numbers. Using this, Problem (5.3) reduces to

minimize λT ŷ + λTe − 2λT (e ⊙ ŷ) (over R)

subject to HUe = s (over F2)

over all e ∈ {0, 1}u.

(5.4)

The λT ŷ term in Problem (5.4) above does not affect which e ∈ {0, 1}u solves the

problem. We may therefore drop this term to obtain

minimize λTe − 2λT (e ⊙ ŷ) (over R)

subject to HUe = s (over F2)

over all e ∈ {0, 1}u.

(5.5)

Define the vector β ∈ R
u by βi = |λi| for all i ∈ U. Notice that β = λ− 2(λ⊙ ŷ)

since ŷi = 1 when λi is negative and ŷi = 0 otherwise. We have

λTe − 2λT (ŷ ⊙ e) = λTe − 2(λ ⊙ ŷ)Te

= (λ − 2(λ ⊙ ŷ))Te

= βTe,

and Problem (5.5) can be further reduced to

minimize βTe (over R)

subject to HUe = s (over F2)

over all e ∈ {0, 1}u.

(5.6)

Adopting terminology from linear programming, we say that β is the cost function

of Problem (5.6). We do this because βi represents the “cost” or “penalty” one must

82

pay in order to set ei = 1.

In summary, we have reduced the problem of maximum-likelihood decoding on an

arbitrary binary-input memoryless channel to the following: given a received vector,

find the sets C and U and compute the vectors d, λ, ŷ, s, and β. Find a vector

e∗ ∈ {0, 1}u that minimizes βTe subject to the constraint that HUe = s. Add this

vector e∗ to ŷ and extend this sum to a vector of length n by padding it with the

entries of d. The result is an ML codeword.

5.3 Reality Check, and Something New

The process of performing maximum-likelihood decoding as outlined at the end of

Section 5.2 involves much notation to handle the full generality of an arbitrary binary-

input memoryless channel. This method does, however, reduce to familiar methods

of decoding when we consider specific channels.

First, consider the case of the binary symmetric channel with crossover probability

p < 1
2
. We observe that on the BSC the set C is always empty – there is always a

chance that a received bit may have been flipped. Thus, the vector d does not exist

and ŷ is simply y. The vector s is the usual syndrome Hy. The vector λ of log-

likelihood ratios is a vector in
{
± log

(
p

1−p

)}n

, and the corresponding β = |λ| is

a constant vector that can be scaled to the all-ones vector. Putting this together

shows that on the BSC, Problem (5.6) reduces to Problem (5.1), i.e., the problem

that Omura originally considered [22].

Next, assume that transmission occurs over the binary erasure channel. The set

U denotes the set of erased positions, and d is the vector of bits that did not get

erased by the channel. Since an erased bit has an equal probability of being 0 or 1,

83

the vector λ of log-likelihood ratios is the all-zeros vector. Problem (5.6) becomes

minimize 0 (over R)

subject to HUe = s (over F2)

over all e ∈ {0, 1}u.

Since the quantity to be minimized is constant, solving this problem amounts to

finding a solution to HUe = s. Said another way, we need to find binary values for

e, the erased bits, such that when we combine these bits with d we get a codeword.

This is the classical decoding rule for the BEC outlined in Section 2.2.3.

Finally, we consider the case of the additive white Gaussian noise channel. With

this channel model, Problem (5.6) becomes equivalent to the problem considered

in [11]. Elaborating on this, assume binary antipodal modulation of codeword bits

via the map ci 7→ 2ci − 1 and let y be a received vector. The set of certain codeword

bits C is empty, and λ is proportional to −y:

λi = log

(
P (yi|ci = 0)

P (yi|ci = 1)

)

= log

((
1√

2πσ2
e−

(yi+1)2

2σ2

)
/

(
1√

2πσ2
e−

(yi−1)2

2σ2

))

= log

((
e−

(yi+1)2

2σ2 +
(yi−1)2

2σ2

))

= −2yi

σ2
.

Thus, ŷi = 1 if and only if yi > 0, and the cost function β is |y|. We note that β

could be any real-valued vector whose entries are all positive, although small entries

are certainly more probable than larger ones.

Of course, this generalization is of little use if we have no method of solving Prob-

lem (5.6). In Section 5.4, we generalize two of Omura’s algorithms. Algorithm 1 is

84

guaranteed to solve Problem (5.6), but as is the case with the corresponding algorithm

in [22], this method is too computationally intense to be used in general. Algorithm 2

is a randomized version of Algorithm 1, and is less costly to implement. Algorithm 2,

however, is not guaranteed to solve Problem (5.6) in a finite number of iterations.

In Section 5.5 we present a detailed analysis of Algorithm 2, which shows that the

probability of Algorithm 2 returning the ML codeword approaches 1 as the number

of iterations grows without bound.

5.4 Algorithm Development

5.4.1 The Full-Rank Assumption

Before developing any algorithms, we first show that without loss of generality we

may assume that the matrix HU of Problem (5.6) has full rank. This full-rank as-

sumption is crucial to both Algorithm 1 and Algorithm 2, which will be introduced

in Section 5.4.3.

Proposition 5.4.1. Let C be a code presented by some t × n parity-check matrix

H, and consider transmission over a binary-input memoryless channel. Let y be a

received vector, and let U, β, and s be the set of uncertain code-bit positions, the cost

function, and the syndrome vector computed from y. When solving

minimize βTe (over R)

subject to HUe = s (over F2)

over all e ∈ {0, 1}u

one may assume without loss of generality that the projected t×u matrix HU has full

rank.

85

Proof. Let r ≤ t be the rank of HU. Then there is then a collection of r linearly

independent rows of HU that are indexed by some set A := {a1 < a2 < · · · < ar}.

Let M = (mi,j) be the r× t matrix with mi,j = 1 if and only if j = ai. Then MHU is

the full-rank r× u matrix consisting of the linearly independent rows of HU specified

by A.

We claim that the solution sets of HUe = s and MHUe = Ms coincide. We first

argue that there must be at least one solution to HUe = s. Let C = {1, 2, . . . , n} \ U,

let d be the vector of length n−u of codeword bits determined by yC, and, as usual, let

ŷ be the hard-decision vector of length u based on yU. Then there exists a codeword

c ∈ C such that cC = d. This implies that HUcU = HCd. Set e = cU + ŷ, and recall

that s is defined as HUŷ + HCd. Then

HUe = HUŷ + HUcU

= HUŷ + HCd

= s.

Now let e∗ be a solution of HUe = s, and let N denote the null space of HU. The

solution set S of HUe = s is exactly {e∗ + n | n ∈ N}. By the rank-nullity theorem,

|S| = 2u−r. Let SM denote the solution set of MHUe = Ms. It is clear that S ⊆ SM .

By the rank-nullity theorem, |SM | = 2u−r, so S = SM . Thus, the solution sets of

HUe = s and MHUe = Ms coincide. It follows that any vector that is a solution to

minimize βTe (over R)

subject to HUe = s (over F2)

over all e ∈ {0, 1}u

86

must also be a solution to

minimize βTe (over R)

subject to MHUe = Ms (over F2)

over all e ∈ {0, 1}u.

Since MHU has full rank, the proposition is proved.

5.4.2 Elementary Results

We now develop some elementary yet important results that will aid us in solving

Problem (5.6). This subsection is essentially a reproduction of the work done by

Omura [22], borrowing much notation and generalizing many results. It is necessary

that we include this reproduction because in shifting from the BSC to general binary-

input memoryless channels we are no longer able to assume the cost function β (see

Section 5.2) is constant. We do, however, know that β only takes on non-negative

values, a fact that turns out to be the key ingredient in generalizing Omura’s theorems.

Throughout this section, let y be a vector received from a binary-input memo-

ryless channel. Any objects dependent on the received vector, such as U, s, β, etc.,

are assumed to be associated with the fixed vector y unless otherwise stated. For

simplicity, we reset the notation of Problem 5.6 so that H := HU is an (n − k) × n

binary matrix. By Proposition 5.4.1, we may assume that H has full rank. We let hℓ

denote the ℓth column of H . Let B be an (n− k)× (n− k) square matrix formed by

some collection of (n − k) linearly independent columns of H (such a matrix exists,

since we assume H to have full rank). We call any such matrix B a basic matrix of H ,

and the columns of B are referred to as the basic columns. Let I = (i1, i2, . . . , in−k)

be an ordered (n − k)-tuple such that hiℓ is the ℓth column of B. Similarly, let

87

J = (j1, j2, . . . , jk) denote an ordered k-tuple indexing the columns of H not used by

B. We use I(ℓ) and J(p) to refer to the ℓth and pth entries of I and J , respectively.

Define R as the (n − k) × k matrix formed by the columns indicated by J . The

columns of R are referred to as the nonbasic columns. If x is a length n vector, let

xB denote the projection of x onto the coordinates associated with the basic columns

and xR denote the projection of x onto the coordinates associated with the nonbasic

columns. We define the cost of a length n vector e ∈ {0, 1}n as cost(e) := βTe,

where β is the cost function of Problem (5.6), i.e., the vector of absolute values of

the log-likelihood ratios. With this notation, we may rephrase Problem (5.6) as

minimize cost(e) (over R)

subject to He = s (over F2)

over all e ∈ {0, 1}n.

(5.7)

At times it will be useful to consider the cost of a vector associated only with the

basic or nonbasic columns, so we define costB(u) := (βB)Tu for vectors u of length

(n − k) and costR(v) := (βR)Tv for vectors v of length k .

If He = s, we have

s = BeB + ReR.

Since B is invertible, we may write

B−1s = eB + B−1ReR.

The vector B−1s and the matrix B−1R are important enough to warrant names of

their own: following [22], set ēB := B−1s and Y := B−1R. With this notation, the

88

previous equation becomes

ēB = eB + Y eR.

We write yp for the pth column of Y and yℓ,p for the (ℓ, p)th entry of Y .

Example 5.4.2. Consider the [7, 4, 3] Hamming code, as described by the following

parity check matrix:

H =





1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1




.

Let I = (2, 1, 4) be the indices of the basic columns of H and let J = (3, 5, 6, 7) be

the indices of the nonbasic columns. The corresponding basic matrix and matrix of

nonbasic columns are

B =





0 1 0

1 0 0

0 0 1





and

R =





1 1 0 1

1 0 1 1

0 1 1 1




.

Note that B−1 = B. Suppose that s = (1, 0, 1)T . Then

ēB = B−1s =





0 1 0

1 0 0

0 0 1









1

0

1




=





0

1

1





89

and

Y = B−1R =





0 1 0

1 0 0

0 0 1









1 1 0 1

1 0 1 1

0 1 1 1




=





1 0 1 1

1 1 0 1

0 1 1 1




.

Definition 5.4.3 ([22]). The basic solution associated with a basic matrix B of H is

the solution of

He = s

given by constructing e such that

eB = ēB = B−1s

and

eR = 0.

As an example of Definition 5.4.3, the basic solution associated with the basic

matrix of Example 5.4.2 is e = (1, 0, 0, 1, 0, 0, 0)T . The next proposition establishes

that in trying to solve Problem (5.7), it suffices to consider only basic solutions.

Proposition 5.4.4 (compare to [22], Theorem 1). If e satisfies He = s, then there

exists a basic solution e∗ such that cost(e∗) ≤ cost(e).

Proof. Let A denote the set of columns of H indicated by the non-zero positions

of e. Let M be a maximal set of vectors in A that add to 0 (note that M could

be the empty set). Then A \ M is linearly independent, so we may supplement

A \ M with other columns of H so as to form a basic matrix B. Let e∗ be the

basic solution associated to B. Abusing notation, identify the sets A and M with

the indices of the columns of H they contain. Since
∑

ℓ∈M hℓ = 0, we have that

s = He =
∑

i∈A\M hi +
∑

ℓ∈M hℓ =
∑

i∈A\M hi. This last expression is a linear

90

combination of columns of B that adds to s, so it must be that A \ M = supp(e∗)

since B is invertible. Finally, we note that since β is a vector with all entries non-

negative and supp(e∗) ⊆ supp(e), we have cost(e∗) = βTe∗ ≤ βTe = cost(e).

Proposition 5.4.4 motivates the following definition.

Definition 5.4.5. The cost of a basic matrix B is defined to be cost(B) := cost(e) =

costB(ēB), where e is the basic solution associated to B. We say that a basic matrix B

is optimal if the basic solution associated to B is an optimal solution to Problem (5.7).

We now introduce the notion of the tableau associated to a basic matrix. As in

the so-called “full tableau” implementation of the simplex method (see, e.g., [6]),

the tableau provides an object well-suited to the storage of information. Moreover,

Proposition 5.4.8 and Corollary 5.4.9 below demonstrate that changing from one

tableau to another can be as easy as performing elementary row operations. This

fact that will be put to good use when implementing Algorithm 2, which will be

introduced in Section 5.4.3.

Definition 5.4.6. Let B be a basic matrix of H. The tableau associated to B is the

(n − k) × (n + 1) array given by

tab(B) =

[
B−1s, B−1H

]
=

[
ēB, B−1H

]
.

The columns of tab(B) are numbered from left to right as 0, 1, 2, . . . , n.

Note that all (n − k) standard basis vectors may be found in the columns of the

tableau: they appear in the locations indicated by I. The columns corresponding

to J are exactly the columns of Y = B−1R, and the cost of column 0, costB(ēB), is

precisely the cost of the basic solution associated to B. These observations are made

concrete in the following example.

91

Example 5.4.7. This example is a continuation of Example 5.4.2. Recall that I =

(2, 1, 4), J = (3, 5, 6, 7),

H =





1 0 1 0 1 0 1

0 1 1 0 0 1 1

0 0 0 1 1 1 1




,

B =





0 1 0

1 0 0

0 0 1




,

and

Y =





1 0 1 1

1 1 0 1

0 1 1 1




.

Suppose that the vector of log-likelihood ratios is

λ = (1, 2, 2, 3,−0.5, 2, 2)T .

The corresponding vectors are

ŷ = (0, 0, 0, 0, 1, 0, 0)T

s = (1, 0, 1)T

β = (1, 2, 2, 3, 0.5, 2, 2)T .

92

The tableau associated to B is therefore

tab(B) =





0 1 2 3 4 5 6 7

0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1

1 0 0 0 1 1 1 1




.

Column 0 of tab(B) is ēB = B−1s. The first, second, and third standard basis vectors

may be found in columns 2, 1, and 4, respectively, as was predicted by I. Columns

3, 5, 6, and 7 are the columns of Y , as was predicted by J . Finally, Definition 5.4.5

states that we may compute cost(B) as follows:

cost(B) = (βB)T ēB

= (2, 1, 3)(0, 1, 1)T

= 4.

This value of 4 is identical to the cost of the basic solution (1, 0, 0, 1, 0, 0, 0) associated

to B.

Proposition 5.4.8 (compare to [22], Theorem 2). Let B be a basic matrix with

associated matrix Y , and let J denote the nonbasic columns with respect to B. By

replacing the ℓth column of B with column hJ(p) of H, the new matrix B∗ we obtain is

a basic matrix if and only if yℓ,p = 1. Moreover, when yℓ,p = 1 we have B−1
∗ = AB−1,

where A is the matrix that performs elementary row operations on yp to obtain the

ℓth standard basis vector.

Proof. The vector yp = B−1hJ(p) gives the unique linear combination of columns of

93

B that produces hJ(p), since

hJ(p) = B(B−1hJ(p)) = Byp =

n−k∑

ℓ=1

yℓ,phI(ℓ).

If yℓ,p = 0, then there is a linear dependence between hJ(p) and columns 1, 2, . . . , ℓ −

1, ℓ+1, . . . , n − k of B. Conversely, if yℓ,p = 1, then the ℓth column of B is required in

the linear combination of columns of B that produces hJ(p), and no linear dependence

can exist between hJ(p) and columns 1, 2, . . . , ℓ − 1, ℓ + 1, . . . , n − k of B. Thus, by

replacing the ℓth column of B with column hJ(p) of H we obtain a new basic matrix

B∗ if and only if yℓ,p = 1.

Suppose now that yℓ,p = 1. For j 6= ℓ, the jth column of B−1B∗ is the jth standard

basis vector, due to the fact that the jth columns of B and B∗ coincide. The ℓth

column of B−1B∗ is B−1hJ(p) = yp. Let A be the matrix that performs elementary

row operations on yp to obtain the ℓth standard basis vector. Then AB−1B∗ is the

identity matrix, which implies that B−1
∗ = AB−1.

Combining Definition 5.4.6 with Proposition 5.4.8, we obtain the following corol-

lary.

Corollary 5.4.9. Let B be a basic matrix with Y its associated matrix, and let J

denote the nonbasic columns with respect to B. If yℓ,p = 1 and B∗ is the basic matrix

formed by replacing the ℓth column of B with hJ(p), then tab(B∗) can be found by

row-reducing tab(B) in such a way as to make column J(p) the ℓth standard basis

vector.

Theorem 5.4.10 (compare to [22], Theorem 3). Let B be a basic matrix with Y its

associated matrix, and let J denote the nonbasic columns with respect to B. If yℓ,p = 1

and B∗ is the basic matrix formed by replacing the ℓth column of B with hJ(p), then

94

the cost of the basic solution associated to B∗ is given by

costB∗(ēB∗) =






costB(ēB) if ēB
ℓ = 0

costB(ēB) + βJ(p) + costB(yp) − 2costB(ēB ⊙ yp) if ēB
ℓ = 1,

where βJ(p) is the J(p)th entry of β, the cost function of Problem (5.7).

Proof. By Corollary 5.4.9, we may obtain tab(B∗) from tab(B) by row-reducing in

such a way as to transform column J(p) of tab(B) into the ℓth standard basis vector.

If ēB
ℓ = 0, this process of row-reduction has no effect on column 0 of tab(B), and the

basic solution associated with B is the same as the basic solution associated with B∗.

If ēB
ℓ = 1, the row reduction makes the first column of tab(B∗) equal to ēB∗ =

ēB+yp+ǫℓ, where the sum is computed modulo 2 and ǫℓ denotes the ℓth standard basis

vector. As noted in Section 5.2, we may write ēB∗ as the real sum ēB+yp−2ēB⊙yp+ǫℓ.

Therefore

costB∗(ēB∗) = costB∗(ēB) + costB∗(yp) − 2costB∗(ēB ⊙ yp) + costB∗(ǫℓ).

Let I denote the tuple indicating the columns of B. Since the columns of B∗ are the

same as the columns of B with the exception of the ℓth column that is now hJ(p), we

have

costB∗(ēB) =costB(ēB) − βI(ℓ) + βJ(p)

costB∗(yp) =costB(yp) − βI(ℓ) + βJ(p)

−2costB∗(ēB ⊙ yp) = − 2costB(ēB ⊙ yp) + 2βI(ℓ) − 2βJ(p)

costB∗(ǫℓ) =βJ(p).

95

Summing these equations, we find the desired formula.

Example 5.4.11. This example is a continuation of Examples 5.4.2 and 5.4.7. Recall

that β = (1, 2, 2, 3, 0.5, 2, 2)T , I = (2, 1, 4), J = (3, 5, 6, 7), and

Y =





1 0 1 1

1 1 0 1

0 1 1 1




.

Since y3,2 = 1, Proposition 5.4.8 implies that we may exchange the third column of

the basic matrix B for the second column of R to obtain a new basic matrix

B∗ =





0 1 1

1 0 0

0 0 1




.

To compute tab(B∗) from tab(B), we follow Corollary 5.4.9 and row-reduce tab(B) to

make column J(2) = 5 the third standard basis vector:

tab(B∗) =





0 0 1 1 0 0 1 1

0 1 0 1 1 0 1 0

1 0 0 0 1 1 1 1




.

Since ēB
3 = 1, Theorem 5.4.10 states that the difference between cost(B∗) and

cost(B) is precisely β5+4−2(4) = −3.5. This is verified by observing that cost(B∗) =

(2, 1, 0.5)(0, 0, 1)T = 0.5 and cost(B) = (2, 1, 3)(0, 1, 1)T = 4 .

Theorem 5.4.10 may be restated as follows: if yℓ,p = 1, then the net change in the

cost of the basic solution imposed by exchanging hI(ℓ) for hJ(p) in the basis is 0 if

96

ēB
ℓ = 0, and the net change is βJ(p) + costB(yp)− 2costB(ēB ⊙yp) if ēB

ℓ = 1. We note

that the quantity βJ(p) + costB(yp) − 2costB(ēB ⊙ yp) is a function of yp and can be

calculated independently of ℓ. From this, we see that if a basic solution associated

to B is optimal, then βJ(p) + costB(yp) − 2costB(ēB ⊙ yp) ≥ 0 for all columns yp

of Y . This condition does not, however, classify all optimal basic matrices. For a

necessary and sufficient condition, one needs to consider nonbasic columns many at

a time, not just one at a time. This is made explicit in Theorem 5.4.13 below, whose

proof requires Lemma 5.4.12.

Lemma 5.4.12. Let B be any basic matrix for H, and let S be the set of solutions

to He = s. The map φ : S → F
k
2 given by φ(e) = eR is a bijection.

Proof. The inverse function φ−1 is given by taking v ∈ F
k
2 to the vector e such that

eB = B−1(s − Rv) and eR = v.

Theorem 5.4.13 (compare to [22], Theorem 4). Let B be a basic matrix. The basic

solution associated to B is an optimal solution if and only if

2costB(ēB ⊙ Y eR) ≤ costB(eR) + costR(Y eR)

for all k-dimensional vectors eR.

Proof. Suppose e is a solution to He = s. We have that cost(e) = costB(eB) +

costR(eR). Since s = He = BeB + ReR, we have ēB = B−1s = eB + Y eR, which can

be rearranged to obtain eB = ēB + Y eR. Thus,

cost(e) = costR(eR) + costB(ēB) + costB(Y eR) − 2costB(ēB ⊙ Y eR). (5.8)

Since costB(ēB) is the cost of the basic solution associated to B, the basic solution

97

associated to B is optimal if and only if costB(ēB) ≤ cost(e) for all solutions to

He = s. Equation (5.8) implies that the basic solution associated to B is optimal if

and only if 0 ≤ costR(eR) + costB(Y eR)− 2costB(ēB ⊙Y eR), or 2costB(ēB ⊙ Y eR) ≤

costR(eR) + costB(Y eR), for all solutions to He = s. By Lemma 5.4.12, there is

a bijective correspondence between solutions to He = s and the projected vectors

eR. Since the condition 2costB(ēB ⊙ Y eR) ≤ costR(eR) + costB(Y eR) only involves

the non-basic coordinates eR of e, we conclude that the basic solution associated

to B is optimal if and only if 2costB(ēB ⊙ Y eR) ≤ costR(eR) + costB(Y eR) for all

k-dimensional vectors eR.

Theorem 5.4.13 motivates the following definition.

Definition 5.4.14 (see [22]). Given a basic matrix B and a k-dimensional vector eR,

the gradient of eR is

GB(eR) := costR(eR) + costB(Y eR) − 2costB(ēB ⊙ Y eR).

Proposition 5.4.15. If He = s, then for any basic matrix B we have cost(e) =

costB(ēB) + GB(eR).

Proof. This is a restatement of Equation (5.8) in the notation of Definition 5.4.14.

By Theorem 5.4.13, the basic solution associated with a basic matrix B is optimal

if and only if the gradient of all k-dimensional vectors is positive. Let ǫp denote the

pth standard basis vector. In the case where eR = ǫp for some p ∈ {1, 2, . . . , k}, i.e.,

the Hamming weight of eR is 1, we recover the necessary condition for optimality

obtained earlier from Theorem 5.4.10: βJ(p) +costB(yp)−2costB(ēB ⊙yp) ≥ 0. Since

we will frequently only be concerned with the gradient of weight-one vectors, we define

98

the gradient [22] of a single column yp of Y to be

gB(yp) := GB(ǫp) = βJ(p) + costB(yp) − 2costB(ēB ⊙ yp).

Example 5.4.16. This example is a continuation of Examples 5.4.2, 5.4.7, and 5.4.11.

Suppose now that the vector of log-likelihoods is

λ = (1, 3, 2, 2, 2,−0.3,−0.2)T .

As before, we take I = (2, 1, 4) and J = (3, 5, 6, 7), so that

B =





0 1 0

1 0 0

0 0 1





and

Y =





1 0 1 1

1 1 0 1

0 1 1 1




.

We have β = (1, 3, 2, 2, 2, 0.3, 0.2)T , so βB = (3, 1, 2)T and βR = (2, 2, 0.3, 0.2)T .

Also, ŷ = (0, 0, 0, 0, 0, 1, 1)T and s = Hŷ = (1, 0, 0)T . Multiplying s by B−1, we get

ēB = (0, 1, 0)T .

99

The gradient of the fourth column y4 of Y is

gB(y4) = βJ(4) + costB(y4) − 2costB(ēB ⊙ y4)

= β7 + (3, 1, 2) · (1, 1, 1)T − 2(3, 1, 2) · (0, 1, 0)T

= 0.2 + 6 − 2(1)

= 4.2.

In a similar manner one can compute that the gradients of the first, second, and third

columns of Y are 4, 3, and 5.3 respectively. Thus, there is no single column of Y that

has a negative gradient.

Let eR = (0, 0, 1, 1)T . We have

GB(eR) = costR(eR) + costB(Y eR) − 2costB(ēB ⊙ Y eR)

= (2, 2, 0.3, 0.2) · (0, 0, 1, 1)T + (3, 1, 2) · (0, 1, 0)T − 2(3, 1, 2) · (0, 1, 0)T

= 0.3 + 0.2 + 1 − 2

= −0.5.

By Theorem 5.4.13, we conclude that the basic matrix B is not optimal, despite the

fact that no single column of Y has a negative gradient.

Theorem 5.4.13 allows us to design an algorithm that is guaranteed to converge

to a maximum-likelihood solution in a finite number of steps. Loosely speaking, this

algorithm starts with some basic matrix and examines k-dimensional vectors until

one of negative gradient is found. It then changes to a new basic matrix with lower

cost, and it repeats this procedure until an optimal basic matrix is found. (This is

analogous to Omura’s first algorithm [22].) To formalize this algorithm, we first prove

100

Theorem 5.4.17. This result, which is implicit in [22], elaborates on how to change

basic matrices once a vector of negative gradient is discovered.

Theorem 5.4.17. Let B be a basic matrix with Y its associated matrix, and suppose

that B is not optimal. Of all k-dimensional vectors eR with GB(eR) < 0, let eR
∗ be

one of smallest Hamming weight. Then there exists a basic matrix B∗ that includes

the nonbasic columns associated to the support of eR
∗ and the basic columns associated

to the support of ēB + Y eR
∗ . Moreover, cost(B∗) = cost(B) + GB(eR

∗) < cost(B).

Proof. By Lemma 5.4.12, there is a unique (n − k)-dimensional vector eB
∗ such that

s = BeB
∗ + ReR

∗ , i.e. ēB = eB
∗ + Y eR

∗ . Rearranging, we obtain eB
∗ = ēB + Y eR

∗ . We

deduce that the columns of H associated with the support of ēB + Y eR
∗ are the same

as those associated with the support of eB
∗ . Let A be the set of basic columns of H

associated to eB
∗ , and let N be the set of nonbasic columns of H associated to eR

∗ .

We claim that A ∪ N is linearly independent. Suppose, for a contradiction, that

there exists a linear dependence between vectors in A∪N . Let M denote a non-empty

subset of A∪N such that the vectors in M add to the zero vector. Note that the set

A is linearly independent, since its elements come from the current basis. Thus, M

must include at least one element of N . Let ẽB
∗ and ẽR

∗ denote indicator vectors for

A \ M and N \ M respectively, and note that the Hamming weight of ẽR
∗ is strictly

less than the Hamming weight of eR
∗ .

Let e∗ be the solution to He = s given by combining eB
∗ and eR

∗ . Similarly, let

ẽ∗ be the solution obtained by combining ẽB
∗ and ẽR

∗ . Since supp(ẽ∗) ⊆ supp(e∗) and

the coordinates of β are nonnegative, cost(ẽ∗) ≤ cost(e∗). By Proposition 5.4.15, this

implies GB(ẽR
∗) ≤ GB(eR

∗) < 0, which contradicts the minimal weight assumption on

eR
∗ . Thus A∪N is linearly independent, so we can augment this set by columns of B

to obtain a basic matrix B∗.

101

Finally, we have

cost(B∗) = cost(e∗)

= costB(eB
∗) + costR(eR

∗)

= costB(ēB + Y eR
∗) + costR(eR

∗)

= costB(ēB) + costB(Y eR
∗) − 2costB(ēB ⊙ Y eR

∗) + costR(eR
∗)

= costB(ēB) + GB(eR
∗)

= cost(B) + GB(eR
∗),

as was to be shown.

5.4.3 Generalizations of Omura’s Algorithms

Following [22], we now use the results of Section 5.4.2 to develop an iterative algorithm

that is guaranteed to solve Problem (5.7) in a finite number of steps. Let B be any

basic matrix of H . Systematically check the gradients of all k-dimensional vectors eR,

first examining those of Hamming weight one, then those of weight two, and so on.

If B is optimal, then by Theorem 5.4.13 the exhaustive search of all k-dimensional

vectors will fail to produce one of negative gradient. If, however, we find a vector eR
∗

with GB(eR
∗) < 0, then B is not optimal. Since the search of k-dimensional vectors

was done in the order of increasing Hamming weight, we know that eR
∗ has minimum

Hamming weight among all vectors of negative gradient. By Theorem 5.4.17, there

is a basic matrix B∗ with cost(B∗) = cost(B) + GB(eR
∗) < cost(B); one can find B∗

by extending the set of columns given by supp(eR
∗)∪ supp(ēB + Y eR

∗). Switch to this

new basic matrix, and repeat the process.

In each iteration of the above algorithm, one of two things happens. In one

102

case, the algorithm finds that all k-dimensional vectors have non-negative gradient,

concludes that the current basic matrix is optimal, and outputs an optimal solution

to Problem (5.7). In the case where the current basic matrix is not optimal, the

algorithm moves to a new basic matrix that yields a solution to He = s of strictly

smaller cost. Since there are only a finite number of basic matrices for a given parity-

check matrix, this algorithm must eventually find an optimal solution. The algorithm

is presented formally below.

Algorithm 1: A generalization of Omura’s algorithm.
Input: A parity-check matrix H , a basic matrix B, a syndrome s, and a cost

function β.

Output: An optimal solution e∗ to Problem (5.7).

Compute ēB and Y .

Set L = 1.

while L ≤ k do

if GB(eR) ≥ 0 for all length k, Hamming weight L vectors eR then

◮ Set L = L + 1.

else

◮ Choose a vector eR
∗ that minimizes GB(eR) over all weight L vectors.

◮ Reset the basic matrix B to be a matrix that includes the columns

associated to the nonzero components of eR
∗ and of ēB + Y eR

∗ .

◮ Use this new basic matrix to recompute ēB and Y .

◮Set L = 1.

end

end

Output the basic solution e∗ associated to the current basic matrix B.

As previously observed, Algorithm 1 will always find an optimal solution to Prob-

lem (5.7) in a finite number of steps. This finite number, however, could be very large,

103

given that the algorithm must examine all 2k − 1 nonzero k-dimensional vectors at

least once before convergence. We therefore follow Omura’s lead in reducing the com-

plexity of the algorithm by bringing columns into the basis one at a time, rather than

many at a time [22]. More specifically, we modify Algorithm 1 so as to only consider

single columns of Y . If one of negative gradient is found, we bring it into the basis

so as to reduce the cost of the current basic matrix (Theorem 5.4.10). If no single

column of Y has a negative gradient, instead of moving on to consider higher-weight

combinations of columns of Y we randomly select a pair (ℓ, p) such that yℓ,p = 1 and

ēB
ℓ = 0 and then exchange the ℓth basis vector for hJ(p). We refer to an operation

of the latter type as a “dry pivot” on position (ℓ, p) of Y . By Theorem 5.4.10, the

execution of a dry pivot has no effect on the cost of the current basis. Finally, if

all columns of Y have nonnegative gradient and no dry pivot is possible, then the

algorithm terminates and outputs the current basic solution.

104

Algorithm 2: A generalization of Omura’s randomized algorithm.
Input: A parity-check matrix H , a basic matrix B, a syndrome s, a cost

function β, and the maximum number of iterations Nmax.

Output: A low-cost solution e∗ of He = s.

for N = 1 to Nmax do

Compute ēB and Y .

if there exists a column y of Y such that gB(y) < 0 then

◮ Select a column yp uniformly at random from those columns of Y

that minimize gB(y).

◮ Select an index ℓ such that ēB
ℓ = yℓ,p = 1 uniformly at random, and

exchange the ℓth column of B for hJ(p).

else if there exists an integer ℓ and an index p such that yℓ,p = 1 and

ēB
ℓ = 0 then

◮ Find all columns y of Y such that there exists an integer ℓ that

satisfies yℓ = 1 and ēB
ℓ = 0.

◮ From these columns, select one yp uniformly at random.

◮ Pick an index ℓ with yℓ,p = 1 and ēB
ℓ = 0 uniformly at random.

◮ Exchange the ℓth column of B for hJ(p).

else

◮ Break

end

end

Output the basic solution e∗ associated to the current basis matrix B.

A clear advantage that Algorithm 2 holds over Algorithm 1 is that the number

of computations done between changes of basic matrices is drastically reduced. Also,

by Corollary 5.4.9 the task of changing basic matrices for Algorithm 2 can be ac-

complished with a simple pivoting operation on a tableau. This gain in speed and

105

simplicity is balanced by the loss of assurance that the output of the algorithm is

an optimal solution to Problem (5.7). This can be attributed to the fact that this

algorithm only tests a necessary condition for optimality, i.e., only weight-one combi-

nations of columns of Y instead of all possible combinations. Another issue to tackle

is whether Algorithm 2 will ever prematurely enter the “Break” stage, i.e., whether

the loop may be broken before Nmax iterations and result in a suboptimal output.

In Section 5.5 we show that if the algorithm breaks the loop before Nmax iterations

have passed, then the output is an optimal solution to Problem (5.7). Moreover,

we show that despite the lack of a hard guarantee of optimality, the probability of

the algorithm returning an optimal solution to Problem (5.7) approaches one as the

number of iterations Nmax goes to infinity.

5.5 Analysis of Algorithm 2

Section 5.4 was dedicated to generalizing and clarifying the work of Omura [22].

Indeed, the work of [22] is completely recovered by specializing Section 5.4 to the

BSC. In this section we depart from generalizing past work and present a novel

analysis of Algorithm 2. To the author’s knowledge, the work below constitutes the

first precise explanation of why Omura-type algorithms perform well in simulations.

This section is organized as follows. We first prove two technical lemmas that,

when combined in Theorem 5.5.3, show that there is a non-zero probability of Al-

gorithm 2 moving to a basic solution of strictly lower cost. A detailed illustration

of these results is provided by a continuation of the examples from Section 5.4. We

then segue into viewing Algorithm 2 as a Markov chain whose state space is the set

of basic matrices, and we show in Theorem 5.5.10 that the ergodic vertices of this

Markov chain are precisely the optimal basic matrices. From this and the theory of

106

Markov chains, we conclude by proving Theorem 5.5.11, which states that the proba-

bility of Algorithm 2 returning a basic solution e∗ corresponding to an ML codeword

approaches 1 as the number of iterations goes to infinity.

5.5.1 Technical Lemmas

Lemma 5.5.1. Let B be the current basis with Y its associated matrix. Suppose that

B is not optimal, and let eR
∗ have minimum Hamming weight among all k-dimensional

vectors eR satisfying GB(eR) < 0. If the weight of eR
∗ is at least 2, then there is an

integer ℓ ∈ {1, 2, . . . , n − k} and an index p ∈ supp(eR
∗) such that

(a) ēB
ℓ = 0,

(b) yℓ,p = 1, and

(c)
∑

q∈supp(eR
∗)\{p} yℓ,q = 1.

Proof. As before, let ǫp denote the pth standard basic vector of length k. Since the

Hamming weight m of eR
∗ is minimal and m ≥ 2, we have that both GB(ǫp) ≥ 0 and

GB(eR
∗ − ǫp) ≥ 0 for all p ∈ supp(eR

∗). Since costR(ǫp) = βJ(p) and Y ǫp = yp, the

condition GB(ǫp) ≥ 0 can be restated as

2costB(ēB ⊙ yp) ≤ βJ(p) + costB(yp). (5.9)

Similarly, since costR(eR
∗ − ǫp) =

∑
q∈supp(eR

∗)\{p} βJ(q) :=
∑

βJ(q) and Y (eR
∗ − ǫp) =

∑
q∈supp(eR

∗)\{p} yq :=
∑

yq, the condition GB(eR
∗ − ǫp) ≥ 0 can be restated as

2costB
(
ēB ⊙

∑
yq

)
≤
∑

βJ(q) + costB
(∑

yq

)
. (5.10)

107

The rest of the proof will proceed as follows. We first show that there must exist a

pair (ℓ, p) satisfying (a) and (b). Building on this preliminary existence result, we dig

deeper to show that there must be a pair (ℓ, p) satisfying not only (a) and (b) but also

(c). In each of these two parts, we start by assuming that no such pair (ℓ, p) exists.

We then use Inequalities (5.9) and (5.10) along with the assumption that GB(eR
∗) < 0

to derive a contradiction.

We begin by showing that there is a pair (ℓ, p) that satisfies (a) and (b). Suppose

for a contradiction that for all ℓ ∈ {1, 2, . . . , n − k} and p ∈ supp(eR
∗), if ēB

ℓ = 0

then yℓ,p = 0. This implies that supp(yp) ⊆ supp(ēB) for all p ∈ supp(eR
∗). Fix

p ∈ supp(eR
∗). Since supp(yq) ⊆ supp(ēB) for all q ∈ supp(eR

∗) \ {p}, we also have

supp(
∑

yq) ⊆ supp(ēB). The inclusions supp(yp) ⊆ supp(ēB) and supp (
∑

yq) ⊆

supp(ēB) imply that ēB ⊙ yp = yp and ēB ⊙ (
∑

yq) =
∑

yq. These statements allow

us to rewrite Inequalities (5.9) and (5.10) as

2costB(yp) ≤ βJ(p) + costB(yp)

and

2costB
(∑

yq

)
≤
∑

βJ(q) + costB
(∑

yq

)
.

Performing the obvious cancellations yields

costB(yp) ≤ βJ(p)

and

costB
(∑

yq

)
≤
∑

βJ(q).

108

Summing these inequalities, we obtain

costB(yp) + costB
(∑

yq

)
≤ βJ(p) +

∑
βJ(q). (5.11)

By assumption, GB(eR
∗) < 0. This is equivalent to

2costB(ēB ⊙ Y eR
∗) > costR(eR

∗) + costB(Y eR
∗). (5.12)

Since Y eR
∗ = yp +

∑
yq and each of supp(yp) and supp(

∑
yq) is a subset of supp(ēB),

we have ēB ⊙ Y eR
∗ = yp +

∑
yq. Also, note that costR(eR

∗) = βJ(p) +
∑

βJ(q). This

allows us to simplify (5.12) to

costB
(
yp +

∑
yq

)
> βJ(p) +

∑
βJ(q). (5.13)

Since

costB
(
yp +

∑
yq

)
≤ costB (yp) + costB

(∑
yq

)
, (5.14)

we may combine (5.11), (5.13), and (5.14) to obtain

costB (yp) + costB
(∑

yq

)
< costB (yp) + costB

(∑
yq

)
,

which is absurd.

We conclude from the preceding contradiction that there must exist some integer

ℓ and some index p ∈ supp(eR
∗) such that ēB

ℓ = 0 and yℓ,p = 1, i.e., that (a) and (b)

hold. To complete the proof, we must show that there exists such a pair with the

additional property that
∑

yℓ,q = 1. To that end, we make the following claim. Let

p ∈ supp(eR
∗) be such that there exists some integer ℓ with ēB

ℓ = 0 and yℓ,p = 1. Then

there exists an integer ℓ′ satisfying ēB
ℓ′ = 0, yℓ′,p = 1, and

∑
yℓ′,q = 1. Note that we

109

are actually proving something stronger than we need: for all p such that there exists

an integer ℓ satisfying (a) and (b), there exists an ℓ′ satisfying (c) as well.

We prove this claim by contradiction. Fix p ∈ supp(eR
∗) such that there exists

some integer ℓ with ēB
ℓ = 0 and yℓ,p = 1. Assume that for any ℓ′ such that ēB

ℓ′ = 0

and yℓ′,p = 1, we also have
∑

yℓ′,q = 0. Setting Z = {1, 2, . . . , n− k} \ supp(ēB), this

implies that Z ∩ supp(yp) ∩ supp (
∑

yq) = ∅. In the following, we let costZ denote

the restriction of the cost function costB to those coordinates indicated by Z.

The assumption that GB(eR
∗) < 0 implies

2costB
(
ēB ⊙

(
yp +

∑
yq

))
> βJ(p) +

∑
βJ(q) + costB

(
yp +

∑
yq

)

= βJ(p) +
∑

βJ(q)

+ costB
(
ēB ⊙

(
yp +

∑
yq

))
+ costZ

(
yp +

∑
yq

)
.

Canceling, we get

costB
(
ēB ⊙

(
yp +

∑
yq

))
> βJ(p) +

∑
βJ(q) + costZ

(
yp +

∑
yq

)
. (5.15)

Because the supports of yp and
∑

yq on Z are disjoint, we have costZ (yp +
∑

yq) =

costZ (yp) + costZ (
∑

yq). Since

costB
(
ēB ⊙

(
yp +

∑
yq

))
≤ costB

(
ēB ⊙ yp

)
+ costB

(
ēB ⊙

∑
yq

)
,

we obtain from (5.15) that

costB
(
ēB ⊙ yp

)
+ costB

(
ēB ⊙

∑
yq

)
> βJ(p) +

∑
βJ(q) (5.16)

+ costZ (yp) + costZ
(∑

yq

)
.

110

Since the inequalities of (5.9) and (5.10) hold, we also have

costB(ēB ⊙ yp) ≤ βJ(p) + costZ(yp)

and

costB
(
ēB ⊙

∑
yq

)
≤
∑

βJ(q) + costZ
(∑

yq

)
.

Summing, we get

costB(ēB ⊙ yp) + costB
(
ēB ⊙

∑
yq

)
≤ βJ(p) +

∑
βJ(q) (5.17)

+ costZ(yp) + costZ
(∑

yq

)
.

Combining (5.16) with (5.17), we obtain the desired contradiction.

Lemma 5.5.2. Let B be the current basic matrix with J indicating the nonbasic

columns with respect to B. Let eR be a k-dimensional vector of Hamming weight at

least 2, and suppose there exists an integer ℓ ∈ {1, 2, . . . , n − k} and an index p ∈

supp(eR) such that ēB
ℓ = 0 and yℓ,p =

∑
q∈supp(eR)\{p} yℓ,q = 1. If B′ is the basic matrix

obtained from B by setting the ℓth column equal to hJ(p), then GB′

(eR−ǫp) = GB(eR),

where, as usual, ǫp denotes the pth standard basis vector.

Proof. Let Y and Y ′ be the “Y ” matrices associated with B and B′ respectively. By

Corollary 5.4.9, we know that Y ′ = AYp, where A is the matrix that row reduces yp

to ǫℓ and Yp is the matrix obtained from Y by replacing the pth column with ǫℓ.

111

By definition,

GB′

(eR − ǫp) = costR′

(eR − ǫp) (5.18)

+ costB′ (
Y ′(eR − ǫp)

)

− 2costB′
(
ēB′ ⊙ Y ′(eR − ǫp)

)
.

We now examine each of these three terms. Since J ′, the vector of nonbasic indices rel-

ative to B′, is identical to J except in the pth position, we have that costR2(eR − ǫp) =
∑

βJ(q) (as in the proof of Lemma 5.5.1, we suppress the index set supp(eR) \ {p} of

the summation).

We have

Y ′(eR − ǫp) = A
(
Yp(e

R − ǫp)
)

= A
(∑

yq

)

=
(∑

yq

)
+ yp + ǫℓ

= Y eR + ǫℓ.

The penultimate equality can be verified by recalling that yℓ,p =
∑

yℓ,q = 1 and that

A is the matrix that row reduces yp to ǫℓ: the action of A on
∑

yq is recovered by first

adding yp to
∑

yq and then placing a 1 back into the pivot position. The equality

above yields

costB′ (
Y ′(eR − ǫp)

)
= costB′

(Y eR + ǫℓ)

= costB′

(Y eR) + costB′

(ǫℓ)

= costB(Y eR) + βJ(p).

112

By Corollary 5.4.9, we have that ēB′

= ēB, since ēB
ℓ = 0. Thus,

costB′
(
ēB′ ⊙ Y ′(eR − ǫp)

)
= costB′ (

ēB ⊙ (Y eR + ǫℓ)
)

= costB′

(ēB ⊙ Y eR + ēB ⊙ ǫℓ)

= costB′

(ēB ⊙ Y eR + 0)

= costB′

(ēB ⊙ Y eR)

= costB(ēB ⊙ Y eR)

where the final equality holds because B and B′ are identical except in the ℓth column.

Substituting the results from the last three paragraphs into Equation (5.18) shows

that GB′

(eR − ǫp) = GB(eR).

Theorem 5.5.3. Let B be the current (n − k) × (n − k) basic matrix, and suppose

that B is not optimal. Then there is a non-zero probability of Algorithm 2 moving to

a basic matrix of cost strictly lower than B in at most k iterations.

Proof. Since the basic solution associated to B is not optimal, Theorem 5.4.13 states

that there is at least one binary k-dimensional vector eR such that GB(eR) < 0.

Of those k-dimensional vectors with negative gradient, consider those of smallest

Hamming weight; call this weight m. From these weight-m vectors with negative

gradient, choose eR
∗ to have the least gradient. We will show by induction on m that

there is a non-zero probability that Algorithm 2 will move from B to a basic matrix

of lower cost in at most m iterations. Since m ≤ k, this will complete the proof.

Let Y be the matrix associated with B, and let J denote the nonbasic columns

with respect to B. If m = 1, then eR
∗ = ǫp for some p and we have

0 > GB(eR
∗) = gB(yp) = βJ(p) + costB(yp) − 2costB(ēB ⊙ yp).

113

Hence, supp(ēB ⊙ yp) is not empty, and so there is an ℓ such that ēB
ℓ = yℓ,p = 1.

Thus, there is a non-zero probability that Algorithm 2 will choose to include hJ(p) in

the basis while excluding hI(ℓ), which by Theorem 5.4.10 will lower the cost of the

current basis by a positive amount.

Now suppose that m > 1. By Lemma 5.5.1, there is an integer ℓ and an index

p ∈ supp(eR
∗) such that ēB

ℓ = 0 and yℓ,p = 1 =
∑

yℓ,q, where as before we write

∑
yq for

∑
q∈supp(eR

∗)\{p} yq. Algorithm 2 has a non-zero probability of exchanging the

ℓth column of B for hJ(p) to obtain a new basis matrix B′. The vector eR
∗ − ǫp has

Hamming weight strictly less than m, and GB′

(eR
∗ − ǫp) < 0 by Lemma 5.5.2. By

induction there is a non-zero probability of Algorithm 2 moving from B′ to a basis

with strictly lower cost in no more than m − 1 iterations. Thus, there is a non-zero

probability of Algorithm 2 moving from B to a basis of strictly lower cost in no more

than m iterations.

Example 5.5.4. This example is a continuation of Examples 5.4.2, 5.4.7, 5.4.11,

and 5.4.16. Again let λ = (1, 3, 2, 2, 2,−0.3,−0.2)T , I = (2, 1, 4), and J = (3, 5, 6, 7).

Consider the following array:





1 ∗ ∗ ∗ 4 ∗ 3 5.3 4.2

3 0 0 1 1 0 0 1 1

1 1 1 0 1 0 1 0 1

2 0 0 0 0 1 1 1 1




.

The lower-right-hand portion of this array is tab(B). The first row indicates the

gradients of the corresponding columns of Y , and the first column indicates the costs

of the basic columns. The entry in the upper left-hand corner indicates the cost of the

current basic solution.

114

It was shown in Example 5.4.16 that the binary vector eR = (0, 0, 1, 1)T satisfies

GB(eR) = −0.5. Lemma 5.5.1 implies that there is a pair (ℓ, p) such that ēB
ℓ = 0 and

yℓ,p =
∑

yℓ,q = 1. The pair ℓ = 1, p = 4 fits the bill.

The probability of Algorithm 2 exchanging the first column of B for the fourth col-

umn of Y is 1
6
· 1
2

= 1
12

. Supposing that it chooses to make this particular exchange, the

array above will be updated by first performing elementary row operations on tab(B)

so as to make column J(4) = 7 the first standard basis vector (via Corollary 5.4.9)

and then updating the first row and column of the big array:





1 ∗ ∗ 4.2 4.2 ∗ 3 −0.5 ∗

0.2 0 0 1 1 0 0 1 1

1 1 1 1 0 0 1 1 0

2 0 0 1 1 1 1 0 0




.

The cost of the current basic solution has not changed, but a column of negative

gradient has been “revealed.” Indeed, letting B∗ denote this new basis, we have

GB∗((0, 0, 1, 0)T) = GB((0, 0, 1, 1)T) = −0.5, as guaranteed by Lemma 5.5.2. Al-

gorithm 2 will immediately exchange the second column of the current basis for the

sixth column of H to obtain





0.5 ∗ 0.5 4.7 3.8 ∗ 3.5 ∗ ∗

0.2 1 1 0 1 0 1 0 1

0.3 1 1 1 0 0 1 1 0

2 0 0 1 1 1 1 0 0




.

In fact, the basic solution e = (0, 0, 0, 0, 0, 1, 1)T associated with this final array is the

optimal solution to Problem (5.7).

115

5.5.2 Modeling Algorithm 2 as a Markov Chain

At each iteration, Algorithm 2 jointly selects one basic column and one non-basic

column, where the selection is made randomly from a set of permissible candidate

pairs. The criterion for selection ensures that the algorithm can exchange the non-

basic column for the basic column to obtain a new basic matrix for H . The key

observation we make is that the probability of augmenting the current basic matrix

in a given manner depends only upon the current basic matrix and is independent of

the current iteration number. In other words, Algorithm 2 can be accurately modeled

as a Markov chain.

Any finite-state Markov chain is completely specified by its transition digraph [23],

a directed graph whose vertices are the states of the Markov chain and whose edges

are weighted by the probability of moving from one state to another. In order to

describe the transition digraph of Algorithm 2, we define an equivalence relation ∼

between basic matrices so that B1 ∼ B2 if and only if one can be obtained from the

other by a permutation of columns. Let V be the collection of all basic matrices

of H under this equivalence relation, and let D be the digraph whose vertex set is

V . Place a directed edge from B1 to B2 in D and write B1 → B2 if and only if

Algorithm 2 initialized at B1 has a non-zero probability of moving from B1 to B2 in

a single iteration. For basic matrices causing Algorithm 2 to prematurely enter the

“Break” stage, we add a self-loop whose associated probability is 1. Labeling each

directed edge with its associated probability, we see that D is the transition digraph

for Algorithm 2.

As was suggested by the preceding paragraph, the advantage of viewing of Algo-

rithm 2 as a Markov chain is that it allows us to succinctly discuss the behavior of

the algorithm in the context of graphs. To this end, we introduce some terminology

116

and notation from graph theory and Markov chain theory, material which is largely

adapted from [23]. Let G be a digraph, and let v1, v2 be two vertices of G. We write

v1 v2 if there is a directed path in G from v1 to v2. Define an equivalence relation

v1 ∼ v2 if and only v1 v2 and v2 v1. An equivalence class under ∼ is called a

strongly connected component of G.

A set S of vertices is closed provided that, whenever v ∈ S and v w, we have

w ∈ S. Said colloquially, once you are in a closed set you stay inside. We define the

closure of S to be

S := {v ∈ V (G) : there exists an s ∈ S such that s v}.

One can check that S is always closed and that S ⊆ S with equality if and only if S

is closed. Also, if S ⊆ Q, then S ⊆ Q. An ergodic set is a minimal closed set, and

an ergodic vertex is an element of an ergodic set. With these definitions, one can see

that a set S is ergodic if and only if S is closed and constitutes an entire strongly

connected component of G. Also, a vertex v is ergodic if and only if its strongly

connected component [v] is closed. The importance of ergodic vertices is summarized

in the following theorem.

Theorem 5.5.5 ([23], Theorem 5.4). Let M be a homogenous Markov chain with

finitely many states, let G be its transition digraph, and let v be a vertex of G. If M

is initialized at v and run for t steps, then the probability of the process terminating

at an ergodic vertex of G approaches 1 as t goes to infinity.

We now explore the nature of the digraph D with the goal of showing that Algo-

rithm 2 converges to an optimal solution with high probability. We first prove some

results on what strongly connected components of D must look like. These results,

117

along with Theorem 5.5.3, are combined in Theorem 5.5.10 to show that the set of

optimal basic matrices of H and the set of ergodic vertices of D coincide. Using this

characterization in tandem with Theorem 5.5.5 we obtain Theorem 5.5.11, which is

the main result of this chapter.

Lemma 5.5.6. If B and B′ are two basic matrices in the same strongly connected

component of D, then cost(B) = cost(B′).

Proof. The basic matrices B and B′ are in the same strongly connected component

of D if and only if there is a non-zero probability that Algorithm 2 initialized at B

will move to B′ in a finite number of iterations, and vice-versa. From iteration to

iteration, the cost of the current basic solution can never increase. Thus, cost(B) ≥

cost(B′) ≥ cost(B), and so we have equality.

Lemma 5.5.7. Let B be a basic matrix with Y its associated matrix. If there exists

a column of Y that has negative gradient, then the strongly connected component of

B in D is {B}.

Proof. Since there is a column of Y that has negative gradient, Algorithm 2 will

always choose to move from B to a basic matrix of strictly lower cost. Thus for any

B∗ with B B∗, we must have that B∗ 6∈ [B] by Lemma 5.5.6.

Proposition 5.5.8. Let B and B′ be two basic matrices, and let Y and Y ′ be their

associated matrices. Suppose that costB(y) ≥ 0 for all columns y of Y and that

costB′

(y′) ≥ 0 for all columns y′ of Y ′. If B → B′, then B′ → B.

Proof. Since costB(y) ≥ 0 for all columns y of Y and B → B′, it must be that there

is an integer ℓ and an index p such that Algorithm 2 can move from B to B′ through

a dry pivot on position (ℓ, p) of Y . This implies that ēB
ℓ and ēB′

ℓ must both be equal

to 0. By Corollary 5.4.9, we know that Y ′ = AYp, where A is the matrix that row

118

reduces yp to ǫℓ and Yp is the matrix obtained from Y by replacing the pth column

with ǫℓ. Thus the pth columns of Y and Y ′ are identical. In particular, position (ℓ, p)

of Y ′ is equal to 1. Combining this with the facts that ēB′

ℓ = 0 and that no column

of Y ′ has negative gradient, we see that Algorithm 2 initialized at B′ has a non-zero

probability of moving to B. Thus, B′ → B.

Corollary 5.5.9. Let B and B′ be two distinct basic matrices in the same strongly

connected component of D. If B → B′, then B′ → B.

Proof. Since [B] contains at least two elements, Lemma 5.5.7 implies that all columns

of Y must have non-negative gradient. A symmetric argument implies that all

columns of Y ′ must have non-negative gradient. The result follows from Proposi-

tion 5.5.8.

Theorem 5.5.10. A vertex B of D is ergodic if and only if it is an optimal basic

matrix.

Proof. Suppose that B is optimal. To show that B is ergodic, we will show that its

strongly connected component [B] is closed. Let B1 ∈ [B] be given, and let B2 be

such that B1 → B2 in D. Since Algorithm 2 always moves to a basic matrix whose

cost is less than or equal to that of the current basic matrix, we have that B1 and B2

are optimal as well. This optimality allows us to apply Proposition 5.5.8, so we have

B2 → B1. Thus, [B] is closed, so B is ergodic.

Now suppose that B is not optimal. By Theorem 5.5.3, there is a non-zero prob-

ability of Algorithm 2 moving from B to a basic matrix B∗ of strictly smaller cost.

This means that B B∗ in D. By Lemma 5.5.6, it must be that B and B∗ belong

to different strongly connected components, so B∗ 6 B. It follows that the strongly

connected component of B is not closed, so B is not ergodic.

119

Theorem 5.5.11. Let B be any basic matrix of H. If Algorithm 2 is initialized at

B and allowed to perform n iterations, then the probability that the output yields a

maximum-likelihood codeword approaches 1 as n → ∞.

Proof. Initializing Algorithm 2 at B and allowing it to run for n iterations is equiva-

lent to initializing the Markov chain whose transition digraph is D at B and allowing

it to run for n steps. Theorem 5.5.5 states that the probability of this process termi-

nating at an ergodic vertex of D approaches 1 as n → ∞. By Theorem 5.5.10, any

ergodic vertex gives an optimal solution to Problem (5.7) and therefore yields an ML

codeword.

5.6 Simulation Results

The word-error rate Pw of the generalized Omura decoder using Algorithm 2 was

simulated for three binary linear codes: a [35, 9] low-density parity-check code, a

randomly generated [200, 160] code, and the [32, 16, 8] Reed-Muller code. Each of

these three codes was simulated on the BSC and on the AWGN channel, and the

Reed-Muller code was also simulated on the binary asymmetric channel and on the

Z-channel. The output of the generalized Omura decoder was sampled at various

iterations to see how the number of iterations affected performance. As predicted by

Theorem 5.5.11, allowing more iterations only improves performance. When feasible,

ML decoding was also performed to see if the generalized Omura decoder did indeed

approach ML performance with increased iterations. We observe that in all such

examples ML decoding was steadily approximated by the generalized Omura decoder.

120

5.6.1 A [35,9] LDPC Code

Figure 5.1 shows the simulated word-error rates of the [35, 9] turbo-based low-density

parity-check code of [1] and [3] on the binary symmetric channel. Both generalized

Omura decoding and ML decoding were performed, with the output of the generalized

Omura decoder sampled at 10, 20, 30, and 80 iterations. The performance of the

generalized Omura decoder at 10 iterations differs from ML performance by a wide

margin, but as the number of iterations is increased performance does likewise. At 80

iterations, the word-error rate of the generalized Omura decoder is almost identical

to that of the ML decoder.

0 1 2 3 4 5 6 7 8
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

P
ro

ba
bi

lit
y

of
 W

or
d

E
rr

or

ML
10 iterations
20 iterations
30 iterations
80 iterations

Figure 5.1: Pw for a [35, 9] turbo-based LDPC code on the BSC.

121

0 1 2 3 4 5 6
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

P
ro

ba
bi

lit
y

of
 W

or
d

E
rr

or

ML
20 iterations
30 iterations
40 iterations
50 iterations
100 iterations

Figure 5.2: Pw for a [35, 9] turbo-based LDPC code on the AWGN channel.

Figure 5.2 shows the same [35, 9] code on the additive white Gaussian noise chan-

nel. The performance curve of the generalized Omura decoder sampled at 20 iterations

roughly follows the curve of the ML decoder, but the gap between word-error rates

grows along with the signal-to-noise ratio (SNR). Nonetheless, we observe that as the

number of iterations is increased, the corresponding performance curves converge to

ML performance.

122

5.6.2 A Randomly Generated [200, 160] Code

Since the generalized Omura decoder was designed for use on any binary linear code,

its performance was tested on a randomly generated code of moderate length. More

specifically, a 40 × 200 binary parity-check matrix H was generated at random, and

it was verified that the resulting code had dimension 160. All simulations in this

subsection were done with respect to the fixed parity-check matrix H . Due to the

prohibitive computational demands made by ML decoding at this length and dimen-

sion, we include results only for generalized Omura decoding.

2 3 4 5 6 7 8 9
10

−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

P
ro

ba
bi

lit
y

of
 W

or
d

E
rr

or

50 iterations
100 iterations
150 iterations
200 iterations

Figure 5.3: Pw for a randomly generated [200, 160] code on the BSC.

The random [200, 160] code was first simulated on the binary symmetric channel;

the results are shown in Figure 5.3. As was the case in Section 5.6.1, the performance

123

curves are stacked neatly on top of one another, ordered according to the number of

iterations. While the performance curves tend to diverge from one another at low to

moderate SNRs, as they did in Section 5.6.1, they begin to converge together again

at higher SNRs. This behavior is especially curious given that the same phenomenon

is not observed for the same code on the AWGN channel (see Figure 5.4).

2 3 4 5 6 7 8 9
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

P
ro

ba
bi

lit
y

of
 W

or
d

E
rr

or

50 iterations
100 iterations
150 iterations
200 iterations

Figure 5.4: Pw for a randomly generated [200, 160] code on the AWGN channel.

Figure 5.4 shows the word-error rates of the [200, 160] code on the additive white

Gaussian noise channel. There is no indication of the performance curves piling up

next to each other; indeed, there seems to be a fairly uniform increase in performance

for every additional 50 iterations. This seems to indicate that at 200 iterations the

generalized Omura decoder is still a good distance away from achieving ML perfor-

mance.

124

5.6.3 The [32, 16, 8] Reed-Muller Code

The [32, 16, 8] second order Reed-Muller Code (see, e.g., [17, pages 33-36]) was sim-

ulated on several channels. Figure 5.5 displays the data from a simulation on the

BSC. The generalized Omura decoder sampled at 100 iterations achieves practically

optimal word-error rates on the BSC. By comparison, we see from Figure 5.6 that on

the AWGN channel 100 iterations are not enough to converge to ML performance.

0 1 2 3 4 5 6 7 8

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

P
ro

ba
bi

lit
y

of
 W

or
d

E
rr

or

ML
20 iterations
30 iterations
50 iterations
100 iterations

Figure 5.5: Pw for the [32, 16, 8] Reed-Muller code on the BSC.

125

0 1 2 3 4 5 6
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

P
ro

ba
bi

lit
y

of
 W

or
d

E
rr

or

ML
50 iterations
100 iterations
150 iterations
200 iterations

Figure 5.6: Pw for the [32, 16, 8] Reed-Muller code on the AWGN channel.

Recall from Section 2.2.5 that the binary asymmetric channel’s conditional prob-

ability function can be depicted by the following diagram.

1

0

1

0

1 − q

q

p

1 − p

As was noted in Section 2.2.5, the Z-channel is the special case of the binary asym-

126

metric channel obtained by setting q = 0.

Remark 5.6.1. Initial simulations of the generalized Omura decoder on the binary

asymmetric channel resulted in erratic performance curves when specialized to the

binary symmetric channel. To overcome this problem, in all simulations on the binary

asymmetric channel small amounts of Gaussian noise were added to all components

of the log-likelihood vector λ before its use in both generalized Omura decoding and

ML decoding. In all instances, each component of this noise was drawn independently

from a Gaussian random variable with mean 0 and standard deviation |λmin| · 10−6,

where λmin denotes the component of λ closest to zero in the Euclidean metric. The

use of this additional noise corrected the problem, and the degradation in performance

incurred by its use, as compared to the performance of the same decoders using the

true log-likelihood vector, is negligible for two of our three simulations.

Elaborating on this, let λ′ = λ+|λmin|·10−6·η with all components of η being drawn

independently from a standard normal distribution, and let E be the event in which a

codeword that is not an ML codeword under λ becomes an ML codeword under λ′. For

our simulations of the [32, 16, 8] Reed-Muller code on the binary asymmetric channel

with q = P (0 | 1) ≈ 0.0377 and with q = P (0 | 1) ≈ 0.000783, the probability of the

event E can be upper bounded by P (χ2(32) ≥ 12, 000), the probability of a chi-square

random variable with 32 degrees of freedom exceeding 12,000. MATLAB R© evaluates

P (χ2(32) ≥ 12, 000) as being exactly 0. Thus, for the [32, 16, 8] Reed-Muller code on

the binary asymmetric channel with q ≈ 0.0377 and q ≈ 0.000783, our simulations of

ML decoding, and hence of generalized Omura decoding, should experience very little

degradation in performance.

We were unable to draw a similar conclusion for our simulation of the [32, 16, 8]

Reed-Muller code on the binary asymmetric channel with q ≈ 0.159, though we con-

127

jecture that the added noise does not affect decoding performance on this particular

channel much either.

0 1 2 3 4 5 6
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

P
ro

ba
bi

lit
y

of
 W

or
d

E
rr

or

ML
10 iterations
20 iterations
40 iterations
100 iterations

Figure 5.7: Pw for the [32, 16, 8] Reed-Muller code on the binary asymmetric channel
with q := P (0 | 1) ≈ 0.000783. The horizontal axis measures p := P (1 | 0).

Figure 5.7 shows Pw for the [32, 16, 8] Reed-Muller code on the binary asymmetric

channel with q := P (0 | 1) fixed at a value of approximately 0.000783. The perfor-

mance curves for both 10 and 20 iterations fall at the same rate as the ML curve

until 2.5 decibels, at which point there is a marked increase in the gap between these

two curves and ML. This jump is less pronounced at 40 iterations, and it vanishes

outright at 100 iterations, at which point the generalized Omura decoder attains prac-

tically optimal performance. This serves as yet another illustration of the eventual

convergence predicted by Theorem 5.5.11.

128

0 1 2 3 4 5 6
10

−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

0
 (dB)

P
ro

ba
bi

lit
y

of
 W

or
d

E
rr

or

ML
5 iterations
10 iterations
25 iterations

Figure 5.8: Pw for the [32, 16, 8] Reed-Muller code on the Z-channel. The horizontal
axis measures p := P (1 | 0).

Figure 5.8 displays the results of a simulation on the Z-channel. We note that

even though the Z-channel is a special case of the binary asymmetric channel, the

generalized Omura decoder must go through additional procedures (i.e., computing

a new, smaller parity-check matrix based on the received vector) to account for the

partial determinism of the Z-channel. At 25 iterations we see that ML performance

is achieved, which is a faster rate of convergence than was observed on the BSC. This

is likely due to the fact that, on the Z-channel, Algorithm 2 is actually dealing with

parity-check matrices smaller than the original parity-check matrix defining the code.

129

0 1 2 3 4 5 6
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

P
ro

ba
bi

lit
y

of
 W

or
d

E
rr

or

q = 0.159, ML
q = 0.159, 50 iterations
q = 0.0377, ML
q = 0.0377, 50 iterations
q = 0.000783, ML
q = 0.000783, 100 iterations
q = 0, ML
q = 0, 25 iterations

Figure 5.9: A comparison of word-error rates for the [32, 16, 8] Reed-Muller code on
the binary asymmetric channel for several values of q := P (0 | 1). A value of 0 for q
indicates the Z-channel. The horizontal axis measures p := P (1 | 0).

We conclude with Figure 5.9, which shows the performance of the [32, 16, 8] Reed-

Muller code on the binary asymmetric channel for several values of q, as well as on the

Z-channel. Not only do word-error rates drop in tandem with q, but we see that both

generalized Omura decoding and ML decoding on the binary asymmetric channel

approach the the error rates of the Z-channel with diminishing values of q.

130

Bibliography

[1] N. Axvig, D. Dreher, K. Morrison, E. Psota, L.C. Pérez, and J.L. Walker.

A universal theory of decoding and pseudocodewords. SGER Technical Re-

port 0801, University of Nebraska-Lincoln, July 2008. Available online at

http://www.math.unl.edu/∼jwalker7.

[2] N. Axvig, D. Dreher, K. Morrison, E. Psota, L.C. Pérez, and J.L. Walker. Analy-

sis of connections between pseudocodewords. IEEE Transactions on Information

Theory, 55(9):4099–4107, September 2009.

[3] N. Axvig, E. Price, E. Psota, D. Turk, L.C. Pérez, and J.L. Walker. A universal

theory of pseudocodewords. In Proceedings of the 45th Annual Allerton Con-

ference on Communication, Control, and Computing, pages 336–343, September

2007.

[4] E.R. Berlekamp, R.J. McEliece, and H.C.A. van Tilborg. On the inherent in-

tractibility of certain coding problems. IEEE Transactions on Information The-

ory, 24(3):384–6, May 1978.

[5] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon limit error-

correcting coding and decoding: Turbo codes 1. In Proceedings of the 1993

IEEE International Conference on Communications, pages 1064–1070, Geneva,

Switzerland, 1993.

131

[6] D. Bertsimas and J. N. Tsitsiklis. Introduction to Linear Optimization. Athena

Scientific, 1997.

[7] M. Breitbach, M. Bossert, R. Lucas, and C. Kempter. Soft-decision decoding of

linear block codes as optimization problem. European Transactions on Telecom-

munications, 9(3):289–293, May-June 1998.

[8] A. Canteaut and F. Chabaud. A new algorithm for finding minimum-weight

words in a linear code: application to McEliece’s cryptosystem and to narrow-

sense BCH codes of length 511. IEEE Transactions on Information Theory,

44(1):367–378, January 1998.

[9] D. Changyan, D. Proietti, I.E. Telatar, T.J. Richardson, and R.L. Urbanke.

Finite length analysis of low-density parity-check codes on the binary erasure

channel. IEEE Transactions on Information Theory, 48:1570–1579, June 2002.

[10] D. Chase. A class of algorithms for decoding block codes with channel measure-

ment information. IEEE Transactions on Information Theory, 18(1):170–182,

January 1972.

[11] G.C. Clark, Jr. and J.B. Cain. Error-Correction Coding for Digital Communi-

cations. Plenum Press, New York, NY, 1981.

[12] D. Dreher. Pseudocodewords on Graph Covers and Computation Trees. PhD

thesis, University of Nebraska-Lincoln, 2010.

[13] J. Feldman. Decoding Error-Correcting Codes via Linear Programming. PhD

thesis, Massachusetts Institute of Technology, Cambridge, MA, 2003.

132

[14] M.P.C. Fossorier and S. Lin. Soft-decision decoding of linear block codes based on

ordered statistics. IEEE Transactions on Information Theory, 41(5):1379–1396,

September 1995.

[15] R.G. Gallager. Low-Density Parity Check Codes. MIT Press, Cambridge, MA,

1963.

[16] G.D. Forney, Jr. Generalized minimum distance decoding. IEEE Transactions

on Information Theory, 12(2):125–131, April 1966.

[17] W.C. Huffman and V. Pless. Fundamentals of Error-Correcting Codes. Cam-

bridge University Press, 2003.

[18] S. Lin and D.J. Costello, Jr. Error Control Coding. Pearson Prentice Hall, Upper

Saddle River, NJ, second edition, 2004.

[19] S.B. Maurer. Matroid basis graphs. I. Journal of Combinatorial Theory. Series

B, 14:216–240, 1973.

[20] R.J. McEliece. A public-key cryptosystem based on algebraic coding theory.

DSN Progress Report 42-44, January and February 1978.

[21] T.K. Moon. Error Correction Coding. John Wiley & Sons, Inc., 2005.

[22] J.K. Omura. Iterative decoding of linear codes by a modulo-2 linear program.

Discrete Mathematics, 3:193–208, 1972.

[23] F.S. Roberts. Discrete Mathematical Models with Applications to Social, Biolog-

ical, and Environmental Problems. Prentice Hall, Inc., 1976.

[24] C.E. Shannon. A mathematical theory of communication. Bell System Technical

Journal, 27:379–423 and 623–656, July and October 1948.

133

[25] P. Vontobel and R. Koetter. Graph-cover decoding and finite-length analysis of

message-passing iterative decoding of LDPC codes. To appear in IEEE Trans-

actions on Information Theory.

[26] D.B. West. Introduction to Graph Theory. Prentice-Hall Inc., Upper Saddle

River, NJ, 2001.

	Applications of Linear Programming to Coding Theory
	

	axvig_dissertation.dvi

