
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

CSE Conference and Workshop Papers Computer Science and Engineering, Department
of

2005

An Empirical Study of Fault Localization for End-User An Empirical Study of Fault Localization for End-User

Programmers Programmers

Joseph R. Ruthruff
University of Nebraska-Lincoln, ruthruff@cse.unl.edu

Margaret Burnett
Oregon State University, burnett@eecs.oregonstate.edu

Gregg Rothermel
University of Nebraska-Lincoln, gerother@ncsu.edu

Follow this and additional works at: https://digitalcommons.unl.edu/cseconfwork

 Part of the Computer Sciences Commons

Ruthruff, Joseph R.; Burnett, Margaret; and Rothermel, Gregg, "An Empirical Study of Fault Localization for
End-User Programmers" (2005). CSE Conference and Workshop Papers. 124.
https://digitalcommons.unl.edu/cseconfwork/124

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Conference and
Workshop Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/cseconfwork
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/cseconfwork/124?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages

An Empirical Study of Fault Localization for
End-User Programmers

Joseph R. Ruthruff
Department of Computer Science

and Engineering
University of Nebraska-Lincoln
Lincoln, Nebraska 68588-0115

ruthruff@cse.unl.edu

Margaret Burnett
School of Electrical Engineering

and Computer Science
Oregon State University

Corvallis, Oregon 97331-3202
burnett@cs.orst.edu

Gregg Rothermel
Department of Computer Science

and Engineering
University of Nebraska-Lincoln
Lincoln, Nebraska 68588-0115

grother@cse.unl.edu

ABSTRACT
End users develop more software than any other group of program-
mers, using software authoring devices such as e-mail filtering ed-
itors, by-demonstration macro builders, and spreadsheet environ-
ments. Despite this, there has been little research on finding ways
to help these programmers with the dependability of their soft-
ware. We have been addressing this problem in several ways, one
of which includes supporting end-user debugging activities through
fault localization techniques. This paper presents the results of an
empirical study conducted in an end-user programming environ-
ment to examine the impact of two separate factors in fault local-
ization techniques that affect technique effectiveness. Our results
shed new insights into fault localization techniques for end-user
programmers and the factors that affect them, with significant im-
plications for the evaluation of those techniques.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging-debug-
ging aids, testing tools; D.2.6 [Software Engineering]: Program-
ming Environments-interactive environments; H.4.1 [Informa-
tion Systems Applications]: Office Automation-spreadsheets

General Terms
Experimentation, Verification

Keywords
fault localization, debugging, end-user software engineering, end-
user programming

1. INTRODUCTION
A quiet paradigm shift is occurring in the world of software. Not

long ago, most software was developed by "professional" program-

*Work performed at Oregon State University, Corvallis, OR, USA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE'05, May 15-21, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-58113-963-2/05/0005 ...$5.00.

mers. Today, however, end users write far more software than pro-
fessional programmers: it is estimated that, in 2005 in the United
States alone, 55 million end users, compared to only 2.75 million
professional programmers [8], will be creating software such as
multimedia simulations, dynamic web pages, e-mail filtering rules,
and spreadsheets.
Do these programmers have adequate support? Evidence sug-

gests that they do not. Boehm and Basili observe that 40-50% of
the software created by end users contains non-trivial faults [9].
These faults can be serious, in some cases costing millions of dol-
lars [14, 20, 24].
A problem for the software engineering community, then, is to

provide end users with better support for their software develop-
ment activities. For example, end users, like professional program-
mers, need strategies for improving the dependability of their soft-
ware, such as testing and anomaly detection methodologies to help
them detect failures, andfault localization techniques to help them
find the causes of failures. The latter is our focus in this paper.

Software engineering researchers have invested considerable ef-
fort into bringing fault localization techniques to professional pro-
grammers (e.g., [2, 10, 13, 15, 17, 23, 31]), and similar efforts,
directed at the needs of end users, could be worthwhile. How-
ever, significant differences exist between professional and end-
user software development, and these differences have ramifica-
tions for any such efforts.

First, end users rarely have knowledge of software engineering
methodologies, and are unlikely to take the time to acquire it. Tra-
ditional fault localization techniques often assume that their users
have at least some knowledge of software engineering in order to
properly employ the technique or understand its feedback. (As re-
search [7, 12] explains, understanding is critical to trust, which in
turn is critical to users actually believing a system's output and act-
ing upon it.) Such techniques may be unsuitable for end users.

Second, end-user programming environments are usually mode-
less and interactive: users incrementally experiment with their soft-
ware and see how the results work out after each change. Fault
localization techniques that rely on batch processing (e.g., [2]) are
inconsistent or even incompatible with these types of environments.

Third, end users do not usually possess organized test suites, so
large amounts of testing-derived data are rarely available for use in
end-user environments. Complicating the situation is the interac-
tive nature of end-user debugging: when end users observe a fail-
ure they often begin debugging immediately - not after running
several tests- at which time the system may have little informa-
tion with which to provide feedback. Thus, a fault localization tech-

352

27th International Conference on Software Engineering, 2005. ICSE 2005. Proceedings.
Digital Object Identifier: 10.1109/ICSE.2005.1553578
Publication Year: 2005 , Page(s): 352 - 361

nique that requires large amounts of data (e.g., [15]) may be inap-
propriate for end users.

Fourth, evidence shows that end users often make mistakes when
performing interactive testing and debugging tasks [27]. (Profes-
sional programmers err too, of course, but their understanding of
testing processes may render them less error-prone than end users.)
Unfortunately, many fault localization techniques (e.g., [17]) can-
not operate effectively with such unreliable information.
We have been working to bring fault localization support to end

users in ways that accommodate the foregoing considerations. Our
previous work [26, 27] shows that this support can help end users
find faults by leading them to employ more effective debugging
strategies. However, our results also show that, at times, some fault
localization techniques are not effective. Analysis of the cases in
which the techniques are not effective suggests that there are ac-
tually two distinctfactors involved in technique design that could
be impacting their performance. The first factor - information
base- refers to the type of information maintained by a technique
and is commonly the subject of the research literature on fault lo-
calization. The second factor - mapping - refers to the way in
which a technique maps the information into feedback, including
both the calculation of this feedback using the information pro-
vided by the information base, and displaying the feedback in a
manner that is compatible with the surrounding environment. Sur-
prisingly, compared to the information base factor, this mapping
factor has received scant attention in the research literature. Fur-
ther, in our search of the literature we can find no previous work
that has separated the impact of these two factors on a fault local-
ization technique's effectiveness.

This work makes four contributions. First, we empirically in-
vestigate the impact of both information base and mapping on the
effectiveness of fault localization techniques. Our results indicate
that each factor significantly impacts effectiveness; thus, both must
be considered when developing fault localization techniques. Sec-
ond, we add to the end-user software engineering literature by pro-
viding empirical data on three information bases and three map-
pings that can be used in techniques for end-user programmers.
Third, we provide insights into the way in which interactive fault
localization effectiveness should be measured- insights that have
implications for future empirical evaluations of end-user fault lo-
calization techniques. Fourth, we add to the growing body of ev-
idence that end users make mistakes when performing interactive
testing and debugging tasks, which has implications for the types
of techniques that may be suitable for end-user programmers.

2. BACKGROUND: WYSIWYT
Our fault localization techniques are prototyped in the spread-

sheet paradigm in conjunction with our "What You See Is What
You Test" (WYSIWYT) testing methodology [25], which we briefly
describe here. Figure 1 presents an example of WYSIWYT in
Forms/3 [11], a spreadsheet language utilizing "free-floating" cells
in addition to traditional spreadsheet grids. WYSIWYT's underly-
ing assumption is that, as a user incrementally develops a spread-
sheet, he or she is also testing incrementally. Because the intended
audience is end users, all communication is performed through vi-
sual devices. In WYSIWYT, untested cells that have non-constant
formulas are given a red border (light gray in this paper). (Cells
whose formulas are simply constants do not participate in WYSI-
WYT devices, since the assumption is that they do not need to be
tested.) The borders of such cells remain red until they become
more "tested".

For cells to become more tested, tests must occur. These tests
can occur at any time - intermingled with formula edits, formula
additions, and so on. The process is as follows. Whenever a user

notices a correct value, he or she can place a checkmark (A/) in the
decision box at the corner of the cell observed to be correct: this
testing decision completes a successful "test". Checkmarks can in-
crease the "testedness" of cells, which is reflected by adding more

blue to cell borders (more black in this paper). Further, because a
correct value in a cell c depends on the correctness of the cells con-
tributing to c, these contributing cells participate in c's test. WYSI-
WYT testedness colors reflect the use of a dataflow test adequacy
criterion that measures the interrelationships in the source code that
have been covered by the user's tests.

In addition to the cell level, WYSIWYT provides user feedback
about testedness at two other granularities. A "percent testedness"
indicator provides testedness feedback at the spreadsheet granu-

larity. Testedness feedback is also available at a finer granularity
through the colors of dataflow arrows, which can be shown at the
cell level or at the subexpression level. The system also provides
testedness feedback through an intelligent explanation system [33],
implemented via "on-demand" tooltips that display the testedness
of any specified cell or dataflow relationship.

3. ADDING FAULT LOCALIZATION FOR
END USERS

Most fault localization support attempts to help programmers lo-
cate the causes of failures in two ways: (1) by indicating the ar-

187.5 1 94.12 1 Z6 s Z 15.03I
Qulz1 QuIz2 QuIz3 QuIz4 QuIz5 QuIz-,Avg

171 7r1.7172 "ff ILo 1-IZ58
Mitarm1 M1tetn11_P9rc Mklterm2 Mldtnn3 vg

1120 1 FI2.191 n S.6363 N
Firxl Firl_Fercentage Exarn_Avg Course-Avg Caurse_Grade

Figure 1: An example ofWYSIWYT in Forms/3.

353

87.5 194.12 _ZZ° 5.03
Quizl Quiz2 QuIz3 Quiz4 QuIz5 QuizAvg

171 1 - 1 73 Ho° I_
MrdteminMlsrm1_Pe bMdbn2 M Werm3 Curved_MWtrm3 Midtrk_Avg

Flna -0._e5e - Ce C
Firal Fina!_Percentage Exam-Avg Course-MAg Course_Grde

Figure 2: An example of fault localization in the Forms/3 spreadsheet environment.

eas that should be searched for faults, thereby reducing the search
space; and (2) by indicating the areas most likely to contain faults,
thereby prioritizing the sequence ofthe search through this space.

In our prototype, WYSIWYT serves as a springboard for fault
localization: instead of noticing that a cell's value is correct and
placing a checkmark, a user might notice that a cell's value is in-
correct (a failure) and place an "X-mark". In Figure 2, the user
notices an incorrect value in ExamAvg- the value is too high-
and places an X-mark in the cell's decision box.
X-marks trigger afault likelihood calculation for each cell (with

a non-constant formula) that might have contributed to the failure.
Fault likelihood, updated for each appropriate cell after any testing
decision or formula edit, is represented by coloring the interior of
suspect cells in shades of red (gray in this paper). This serves our
first goal of reducing the user's search space. As the fault likelihood
of a cell increases, the suspect cell is colored in increasingly darker
shades of red (gray). The darkest cells are estimated to be the most
likely to contain the fault, and are the best candidates for the user
to consider in debugging; this serves our second goal of helping
end users prioritize their search. (This approach is generalizable to
paradigms other than spreadsheets [27].)
We have previously developed three techniques for realizing this

support [26], which we briefly summarize here.

* Test Count. The technique we term "Test Count" maintains,
for each cell c, the number of failed tests (i.e., X-marks)
and passed tests (i.e., checkmarks) in which c has partici-
pated. These failed tests increase c's fault likelihood, while
the passed tests decrease c's fault likelihood. Of course, there
are varying schemes that such a technique could use to de-
cide the degree to which failed and passed tests impact fault
likelihood feedback; in this paper, the Test Count Technique
uses the scheme from our previous work [26] in which two
passed tests were necessary to counteract the effects of one
failed test. TARANTULA [15], a fault localization technique
for traditional programming languages, uses an approach that
is similar to our Test Count Technique.

* Blocking. The "Blocking Technique" includes not only failed
and passed tests, but also whether tests are blocked from a
cell c by one or more other tests. (A test t, can "block"
another test t2 from affecting the fault likelihood of c if all

dataflow from c to the cell in which the t2 testing decision
was made goes through the cell in which the t, testing de-
cision was made.) This is accomplished by maintaining, for
each cell c, (1) information on the tests to which that cell
contributes, and (2) dataflow information to determine which
of those tests are blocked and unblocked from the cell. Un-
like in the Test Count Technique, only the failed tests that
are not blocked from c increase c's fault likelihood, while
only the passed tests that are not blocked from c decrease c's
fault likelihood. As with Test Count, there are many possi-
ble schemes to control the impact of failed and passed tests
on fault likelihood feedback. The Blocking Technique in this
paper uses the scheme from our previous work [26] that re-
quired two passed tests to counteract the effects of one failed
test. Program dicing [17] uses an approach that is similar to
our Blocking Technique.

* Nearest Consumers. We designed the "Nearest Consumers
Technique" to be a low-cost alternative to the other two tech-
niques, whose maintenance of all testing history for each
spreadsheet cell may come at too great a cost as spreadsheet
size increases. Nearest Consumers is a greedy technique that
considers only the direct consumers of a cell c (i.e., those
cells connected with c directly by a dataflow edge). The fault
likelihood of c is first estimated by computing the average
fault likelihood of c's direct consumers (if any). This av-
erage fault likelihood is then adjusted based on the current
testing decisions for c and c's direct consumers. The possi-
ble adjustments are described in detail in previous work [26].
To summarize these adjustments, the fault likelihood of c in-
creases if c or c's direct consumers contain sufficiently more
failed tests than passed tests using a set of defined thresh-
olds [26] - the motivation being that areas in the spread-
sheet showing many failures (failed tests) are more likely to
contain faults. Similarly, the fault likelihood of c decreases
if c or c's direct consumers contain sufficiently more passed
tests than failed tests using a set of defined thresholds- the
motivation being that areas in the spreadsheet showing many
successes (passed tests) are less likely to contain faults. This
"discount" technique is more modest than most other fault
localization techniques described in the literature.

354

Our previous empirical work [26, 27] shows that these three fault
localization techniques can provide feedback that is useful to end
users. However, the work also suggests that two separate factors,
one of whose impact on fault localization has not been studied be-
fore, might impact technique effectiveness. This paper investigates
this possibility.

4. EXPERIMENT
Any fault localization approach that includes some form of re-

porting or feedback to a human involves two factors:

* Information Base: To support the behavior of a fault local-
ization technique, information must be stored and maintained
either by the technique or by the surrounding environment.
To abstract away implementation or algorithmic details such
as data structures, we use this term to refer only to the type
of information used and the circumstances under which it is
maintained.

* Mapping: Mappings transform information bases into fault
localization feedback. This transformation involves both cal-
culating a cell's fault likelihood using the information pro-
vided by the information base, and then transforming that
calculation into appropriate feedback for the user in a manner
that is consistent with the goals of the technique and compat-
ible with the surrounding environment.

For example, TARANTULA [15] uses a set of failed and passed
tests, and coverage information indicating the program points con-
tributing to each test, as its information base. Its mapping uses this
information to calculate (1) a color representing each statement's
participation in testing, and (2) the technique's confidence in the
correctness of each color. (TARANTULA colors statements because
these types of visualizations are compatible with the technique's
surrounding environment.)
To gain insight into the importance of each factor, we investigate

the following research questions for end-user fault localization:

RQl: Do differences in information bases impact effectiveness?
RQ2: Do differences in mappings impact effectiveness?
RQ3: Does inaccurate information impact information bases and

effectiveness?

One reason to investigate RQI is that fault localization research
often focuses on information bases. If this factor affects techniques'
effectiveness in interactive programming environments, then end
users may benefit from research that focuses on professional pro-
grammers.

Previous fault localization research often evaluates techniques as
a whole, without considering the specific factors that contribute to
observed results. We devised RQ2 because we suspect that map-
ping alone could be an important factor in determining a tech-
nique's effectiveness.
Our third research question was inspired by the unreliability in

interactive end-user testing that we have seen in previous empirical
work [27]. This question focuses on information bases because it is
specifically the information base that is corrupted by such mistakes.

4.1 Design
In formulating our experiment, we considered three methodolo-

gies for gathering sources of data. The first methodology involves
following the classic human-subjects approach: gather participants
for the nine possible mapping and information base combinations
and compare effectiveness across groups. This methodology has

the advantage of eliciting test suites from real end users, but it has
two drawbacks. First, for proper statistical comparison, it would re-
quire an inordinately large number of subjects. Second, since each
technique would be given different testing actions, it would be very
difficult to control for the fact that differences in test suites might
cause differences in results.
The second methodology involves following a classic test suite

generation approach: generate hypothetical test suites according to
some criterion, and select (randomly or according to other criteria)
tests from these test suites to simulate end users' testing actions. A
drawback of this approach is that the test suites thus created could
not be tied to our ultimate users, and may not be representative of
real end-user testing actions.
The third methodology involves obtaining testing actions from

real end users, and then uniformly applying these actions across all
information base and mapping combinations. This third method-
ology avoids the drawback of requiring an inordinate number of
subjects. It also has the advantages of using testing actions repre-
sentative of those performed by real end users, and of measuring
each technique's ability to provide feedback given the same testing
actions. This latter advantage avoids confounding differing tech-
niques with differing test suites.
We thus chose the third methodology. We obtained the required

testing actions from 20 end-user participants: 18 undergraduate
students and two graduate students from Oregon State University
without personal or professional programming experience. The
test suites, as defined by the testing actions that the end users per-
formed, were thus the "subjects" of our experiment.

4.2 Materials
The experiment utilized two spreadsheet tasks, Gradebook and

Payroll (shown in Figures 2 and 3, respectively). To make our
spreadsheets representative of real end-user spreadsheets, Grade-
book was derived from an Excel spreadsheet of an (end-user) in-
structor, which we ported into an equivalent Forms/3 spreadsheet.
Payroll was a spreadsheet designed by two Forms/3 researchers
from a payroll description from a real company.

These spreadsheets were seeded with five faults created by real
end users. To obtain these faults, we provided three separate end
users with (1) a "template" spreadsheet for each task with cells and
cell names, but no cell formulas; and (2) a description of how each
spreadsheet should work, which included sample values and correct
results for some cells. Each person was given as much time as he
or she needed to design the spreadsheet using these materials.
From the collection of faults left by the end users, we chose

five that provided coverage of the categories in Panko's classifi-
cation system [21], which is based on Allwood's classification sys-
tem [4]. Under Panko's system, mechanical faults include simple
typographical errors or wrong cell references. Logical faults are
mistakes in reasoning and are more difficult to detect and correct
than mechanical faults. An omission fault is information that has
never been entered into a cell formula, and is the most difficult to
detect [21]. We seeded Gradebook with three mechanical faults,
one logical fault, and one omission fault, and Payroll with two
mechanical faults, two logical faults, and one omission fault. Pay-
roll was intended to be the more difficult spreadsheet due to its
larger size, greater level of dataflow and intertwined dataflow rela-
tionships, and more difficult faults.

4.3 Dependent Variable and Measures
As a dependent variable, we require a measure of a fault localiza-

tion technique's effectiveness. Many such measures are possible.
In this experiment, our goal is to study the ability of techniques to

355

AJIaoences M8tdtus Saiary YTOGrossPay PruTax-Chik_Cae LUfeinsurAmount GrossPay

FsdW¶ihHol1JloN AdJustMag9e SingIeWthHc4 Maed1VMthHokd FediIhHckJ NewYTDGrussPay
_-

op
90 Iq 0 __400

GmssOvers?K Soceoc Mdlcum LtreinsurPmumium HealthlnsurPremium DentaJlnsurPmmium MAJustdOrusePay

[we n POO 108 me4 m
EmpoyeselnsurCost EmpiayerinsurCcrnrb NstinsurCost EmpiyeeTaxes NstPay

Figure 3: The Payroll task.

point out faults by applying identical test suites uniformly. Thus,
we define effectiveness as a technique's ability to correctly and vi-
sually differentiate the correct cells in a spreadsheet from those
cells that actually contain faults.

Using this notion, we chose to measure effectiveness in terms
of the visual separation between the faulty cells and the correct
cells of each spreadsheet. Our previous work [27] indicated that
users usually restrict their attention during debugging only to the
cells indicated in the fault localization feedback (i.e., the colored
cells). Given this finding, in this experiment, we decided to focus
our measure only on the cells colored by the technique.

Let FaultyCells(AvgFL) be the average fault likelihood of col-
ored faulty cells. Let CorrectCells(AvgFL) be the average fault
likelihood of colored correct cells. The formula to calculate ef-
fectiveness according to this measure is then:

Eff = FaultyCells(AvgFL) - CorrectCells(AvgFL)

Subtraction is used instead of calculating a ratio because the color
choices form an ordinal, not a ratio, scale. Positive effectiveness is
preferable, and a greater effectiveness implies a better distinction
between faulty and non-faulty cells.

4.4 Points of Evaluation
At what point should we measure effectiveness? Many tradi-

tional techniques report feedback only at the end of a batch pro-
cessing of information. This point of maximal system reasoning
potential - when the system has its best (and only) chance of
producing correct feedback- is therefore the appropriate point at
which to measure the effectiveness of these techniques. Given the
interactive nature of end-user environments, however, debugging,
and therefore fault localization use, occur not just at the end of test-
ing, but throughout the testing process. Measuring effectiveness
only at the end of testing would thus ignore most of the reporting
being done by the interactive technique.

In principle, we could measure effectiveness at each point at
which a user receives feedback. However, it is not statistically vi-
able to utilize every such point, because many will not be reached
by numbers of users sufficient to support comparisons. Therefore,
we elected to measure effectiveness at just the following feedback
points:

* First X-mark. When a failure is first reported by users (in our
environment, signaled by an X-mark), they immediately re-
ceive fault localization feedback. We term this the beginning
of a debugging session. (X-marks initiate such sessions only

when no other session is already in progress.) This point
marks the first opportunity for techniques to provide feed-
back.

* Second X-mark The second X-mark's computations are
based on more information than the first X-mark, so mea-
suring at this point helps us gauge effectiveness trends over
time. (In principle, third X-marks, fourth X-marks, and so
on could also be used, but the participants in our experiment
kept their debugging incremental, with almost all debugging
sessions involving two or fewer X-marks.)

* Last Test. When users find the cause of a failure (a fault),
they often immediately try to fix it. This point includes at
least one X-mark and any number of checkmarks, and de-
notes the end of a debugging session. As such, it is the point
at which techniques have the most information available to
them. Once a user edits the "source code" (formula), down-
stream fault localization information becomes obsolete, and
is discarded.

We emphasize that the need to evaluate effectiveness at multiple
points is not specific to our particular experiment. Rather, we rec-
ommend that any interactive fault localization technique be eval-
uated on the basis of multiple feedback points because otherwise
important data reported by the technique may be overlooked.

4.5 Information Bases and Mappings
The information base and mapping factors in fault localization

techniques have not been previously isolated. To learn whether
each factor significantly impacts technique effectiveness, while also
providing data on techniques in the literature, we used the infor-
mation bases and mappings of the three techniques described in
Section 3.
As described earlier, the information base factor of a fault local-

ization technique is responsible solely for storing and maintaining
the information required by the technique in order to provide fault
localization feedback. We now describe the three information bases
of our own techniques.

* Test Count (I-TC). This technique's information base main-
tains, for each cell c, the set of failed and passed tests that
dynamically execute c. The size of I-TC grows with respect
to both spreadsheet and test suite size.

* Blocking (I-BL). There are two aspects to this information
base. Like I-TC, I-BL maintains a list of all failed and

356

I

passed tests for each cell. However, to achieve the "block-
ing" behavior described in Section 3, I-BL also tracks the
dataflow relationships between each cell, using this informa-
tion to allow tests, under certain circumstances, to "block"
other tests from reaching certain cells. Note that unlike pro-
gram dicing [17], "blocking" does not completely remove
cells from a program slice, as would dicing, because evi-
dence [27] indicates that users occasionally make erroneous
testing decisions, and such decisions could cause the removal
of a cell that actually contains a fault. (Rather than being re-
moved from the program slice, such cells are later assigned
a "minimal fault likelihood".) Because of the overhead nec-
essary to track dataflow and blocking information, I-BL is
more computationally expensive than I -TC.

* Nearest Consumers (I-NC). Rather than maintaining a his-
tory of all previous testing decisions, as do the previous two
information bases, the I-NC information base tracks only
(1) the fault likelihood of each cell in the spreadsheet prior
to a new testing decision, and (2) the current testing decision
for each cell affected by the current test case (i.e., the current
set of input values), including that current test case. Since
each of these components requires only constant space for
each cell in the spreadsheet, the information base grows with
respect to spreadsheet size only, and is therefore the least ex-
pensive of the three.

Because the context of our experiment is interactive fault local-
ization, each of these information bases is immediately updated
whenever any action is taken by a user that affects the contents of
the base, potentially interfering with the environment's interactiv-
ity. One reason to compare these information bases, then, is to learn
whether a modest information base such as I-NC can compete in
effectiveness with the other two more expensive information bases.
The mapping factor uses the information stored by the informa-

tion base to calculate and display fault localization feedback. We
now describe the three mappings of our own three techniques.

* Test Count (M-TC). This technique's mapping increases a
cell c's fault likelihood for each failed test that c contributed
to, and decreases c's fault likelihood for passed tests in a
manner such that two passed tests counteract the effects of
one failed test. The mapping uses the set of failed and passed
tests for each cell to increase the fault likelihood of cells con-
tributing to many failed tests, and decrease the fault likeli-
hood of cells contributing to many passed tests, as described
in Section 3. It has the characteristic of mapping information
bases to four possible fault likelihood values, and begins by
assigning c the lowest fault likelihood if it contributes to a
single failure (X-mark), thereby allowing fault likelihood to
build with further failures.

* Blocking (M-BL). This mapping is similar to M-TC, except
that it considers only the failed and passed tests that are not
blocked, as those are the only tests provided to the mapping
by the I-BL information base. It also supports five, rather
than four, fault likelihood values, and begins by assigning
c the second lowest fault likelihood value so as to be able
to build a cell's fault likelihood value as the number of failed
tests increases, and also reduce fault likelihood as the number
of passed tests or blocked failed tests increases.

* Nearest Consumers (M-NC). This mapping uses the informa-
tion regarding the fault likelihood of each cell to compute the
average fault likelihood of c's direct consumers. It uses the

current testing decision for each cell to adjust this calculated
mean if c and c's direct consumers contain sufficiently more
passed tests than failed tests, or sufficiently more failed tests
than passed tests [26]. It also supports five fault likelihood
values, and begins by assigning c the third fault likelihood
value so as to make it viable to both increase and decrease
fault likelihood values as c's direct consumers' fault likeli-
hood values increase and decrease.

Each of these three mappings expects a certain type of informa-
tion, and has attributes developed specifically to handle that infor-
mation. For example, the M-NC mapping expects the current fault
likelihood of cells in order to compute the average fault likelihood
ofeach cell c's direct consumers. Such attributes must be character-
istic of any mapping that is leveraging the I-NC information base.
Therefore, without considering the attributes that "bind" a map-
ping to an information base, the essence of the differences among
our three mappings are two shared characteristics: (1) the number
of possible fault likelihood values, and (2) an "initial" value used
to start assigning fault likelihood feedback. As such, when we refer
to applying a mapping to an information base, we refer to applying
only these two characteristics of one mapping to another to create
an entirely new mapping for that technique. We do not attempt
to tease apart the influences of these two characteristics, but sim-
ply consider them together to learn whether changing the mapping
factor of a technique can significantly impact that technique's ef-
fectiveness.

Since the testing actions to be uniformly applied across tech-
niques had to include fault localization use, some technique had to
be incorporated into the environment for participant use. Because
of their successes in earlier empirical work [26, 27], we chose to in-
corporate the I-TC information base with the M-BL mapping into
the environment.

4.6 Procedure
After completing a background questionnaire, participants were

given a tutorial to familiarize them with the environment. The tu-
torial taught the use of WYSIWYT (checkmarks and associated
feedback), but did not include debugging or testing strategy con-
tent. We also did not teach the use of fault localization; rather, par-
ticipants were introduced to the mechanics of placing X-marks and
given time to explore any aspects of the feedback that they found
interesting.

After the tutorial, participants were given the two tasks with in-
structions to test the spreadsheets and correct any errors found, sup-
ported by I-TC and M-BL. The experiment was counterbalanced
with respect to task order so as to distribute learning effects evenly.
The tasks necessarily involved time limits- set at 20 minutes for
Gradebook and 30 minutes for Payroll - to ensure partici-
pants worked on both tasks, and to remove possible peer influence
of some participants leaving early. To obtain the participants' test-
ing actions, the actions by each participant were recorded into elec-
tronic transcripts.

4.7 Threats to Validity
Any controlled experiment is subject to threats to validity, and

these must be considered in order to assess the meaning and im-
pact of results. (Wohlin et al. [34] provide a general discussion of
validity evaluation and a threats classification.)

Threats to internal validity are other factors that may be respon-
sible for our results. The specific faults seeded in a spreadsheet can
affect fault localization results. To reduce this threat, we selected
faults according to Panko's classification scheme [21] to ensure that

357

different types of faults were included. Also, as mentioned in Sec-
tion 4.5, to apply the same test suites uniformly across all tech-
niques, we had to obtain suites using a single information base and
mapping. It is possible that the test suites created by participants
would have varied in response to fault localization feedback had
a different information base or mapping been chosen. However,
had we chosen a design that allowed for varying testing actions,
we would have risked confounding the independent variable- in-
formation base or mapping selection - with a second variable of
varying suites.

Threats to construct validity question whether the results of an
experiment are based on appropriate information. Our effectiveness
metric considers only the cells colored by a technique. This ignores
search space size (i.e., the number of colored cells) because cells
that are not visually colored are not considered by the metric. To
consider an alternative metric, we cross-checked our results with
the metric used in our previous work [26] (which does consider
search space size) and found the same trends and results. (We do
not report these results due to space constraints.)

Threats to external validity limit the extent to which results can
be generalized. To increase the representativeness of our spread-
sheets, we selected "real-world" spreadsheets from a real end-user
instructor and a real payroll description. Our spreadsheets were
also moderate in size in order to allow subjects to make progress
in the task in the allotted time. In the future, case studies could be
conducted with larger spreadsheets so that participants could work
through larger tasks, and not be faced with the time constraints that
were necessarily imposed on this experiment. Also, the ability to
generalize our results may also be limited by our selection of faults.
To limit this threat we attempted to seed realistic faults using the
procedures outlined in Section 4.2. Finally, our experiment was
conducted in the Forms/3 research language [11]; however, end
users may debug differently in a different language. All of these
external validity concerns can be addressed only through repeated
studies, using different spreadsheets, faults, and languages.

5. RESULTS
5.1 RQ1: Information Base
To investigate the different information bases' impact on effec-

tiveness independent of the mapping factor, we compared the infor-

mation bases' effectiveness three times, once under each mapping.
The comparisons were done at each feedback point described in
Section 4.4.
As a statistical vehicle for our analyses, we state the following

(null) hypotheses:

Hi: There is no difference in effectiveness among the three infor-
mation bases with the M-TC mapping.

H2: There is no difference in effectiveness among the three infor-
mation bases with the M-BL mapping.

H3: There is no difference in effectiveness among the three infor-
mation bases with the M-NC mapping.

Tables l(a)-l(c) show the results. We used the Friedman test
[29] to statistically analyze the data. This test is an alternative to
the repeated measures ANOVA when the assumption of normality
or equality is not met. (We did not run Friedman tests on the Sec-
ond X-mark data due to the small sample sizes.) Table 1(a) shows
no significant differences in information base effectiveness at the
0.05 level under use of the M-TC mapping, so HI cannot be re-
jected. However, Table l(b) shows marginal significance (0.10) at
the First X-mark for the Payroll task and 0.01 significance by
the Last Test. Differences are even more pronounced in Table 1(c).
Therefore, we reject H2 and H3.

5.2 RQ2: Mapping
How important is mapping alone to effectiveness? Table 1 is

suggestive in this regard. To statistically consider whether this fac-
tor had a significant impact on effectiveness, we used the Friedman
test to compare the mappings' effectiveness under each information
base. The hypotheses in this case were:

H4: There is no difference in effectiveness among the three map-
pings with the I-TC information base.

H5: There is no difference in effectiveness among the three map-
pings with the I-BL information base.

H6: There is no difference in effectiveness among the three map-
pings with the I-NC information base.

As Tables 2(a)-2(c) show, there were significant differences in
effectiveness among the different mappings. The differences were
almost always significant at the 0.05 level, and often significant at
the 0.01 level. Clearly, H4, H5, and H6 must all be rejected.

First X-mark First X-mark Fist X-mark
| I-TC I-BL I-NC I-TC I-BL I-NC I-TC I-BL I-NC

Gradebk (n = 18) 0.39 0.26 0.39 Gradebk (n = 18) 0.83 0.86 0.94 Gradebk (n = 18) 1.14 1.39 1.50
(p = 0.8948) (0.50) (0.62) (0.50) (p = 0.7165) (0.84) (1.00) (0.92) (p = 0.0923) (1.32) (1.37) (139)
Payroll (n = 13) 0.00 -0.17 0.04 Payroll (n = 13) 0.29 0.35 OA9 Payroll (n = 13) 0.69 0.54 0.93
(p = 0.1211) (0.00) (0.40) (0.08) (p = 0.1000) (0.42) (0.33) (OAO) (p = 0.0695) (0.78) (0.65) (080)

Second X-mark Second X-mark Second X-mark
I-TC I-BL [I-NC | I-TC I-BL I-NC 1 I-TC I-BL I-NC

Gradebk (n = 3) 0.00 0.16 0.00 Gradebk (n =3) 0.33 0.50 050 Gradebk (n = 3) 0.50 0.83 1.00
(p = n/a) (1.00) (0.76) (1.00) (p = n/a) (2.08) (1.80) (1.80) (p = n/a) (2.78) (2.57) (2.65)
Payroll (n = 5) O.1S 0.01 0.18 Payroll (n = 5) 0.37 0.36 0.56 Payroll (n = 5) 0.69 0.54 0.94
(p = n/a) (0.46) (0.12) (0.49) (p = n/a) (0.95) (0.60) (083) (p = n/a) (1.17) (1.05) (1.22)

Last ast Tl Last Test Last Test
I-TC I-BL | I-NC | _|_ |_I-TC I-BL I-NC | _|_ |_I-TC I-BL I-NC

Gradebk (n = 18) -0.06 0.00 1 -0.04 Gradebk (n = 18) 0.26 | 0.33 j Gradebk (n = 18)T 0.27 0.76 0.79
(p = 0.4389) _ (0.54) (0.49) '(0.51) (p = 0.4464) (1.12) (1.06) (1.03) (p = 0.0022) (1.52) (1.48) (1.61)
Payroll (n = 13) 0.13 -0.12 0.21 Payroll(n-= 13) 0.30 0.60 0.77 Payroll (n = 13) 0.65 0.83 1.27
(p = 0.0608) (0.28) (0.48) j (0.50) (p = 0.0128) (0.60) (0.53) (0.6) (p = 0.0199) (0.86) (0.88) (0.95)

(a) Information bases with M-TC (b) Information bases with M-BL (c) Information bases with M-NC

Table 1: Isolating the information base factor. The mean (standard deviation) effectiveness comparing the three information bases
with the same mapping are shown. The information base with the greatest average effectiveness is shown in bold. The "'p" denotes
p-values of the Friedman tests, and "n" denotes the number of subjects measured at each point.

358

First X-mark
M-TC M-BL M-NC

Gradebk (n = 18) 0.39 0.83 1.15
(p = 0.0031) (0.50) (0.84) (1.32)
Payroll (n = 13) 0.00 0.29 0.69
(p = 0.0060) (0.00) j(0.42) (0.78)

Second X-mark
| M-TC M-BL M-NC

Gradebk (n = 3) 0.00 1 0.33 0.50
(p = n/a) (1.00) (2.08) (2.78)
Payroll (n = 5) 0.15 0.37 0.69
(p = n/a) (0.46) (0.95) (1.17)

Last Test
| M-TC M-BL M-NC

Gradebk (n = 18) -0.06 0.26 0.27
(p = 0.1180) (0.54) (1.12) (1.52)
Payroll (n = 13) 0.13 0.30 0.65
(p = 0.1220) (0.28) (0.60) (0.86)

First X-mark _
M-TC M-BL M-NC

Gradebk (n = 18) 0.26 0.86 1.39
(p = 0.0004) (0.62) (1.00) (137)
Payroll (n = 13) -0.17 0.35 0.54
(p = 0.0016) (0.40) (0.33) (0.65)

Second X-mark _
T M-TC M-BL T M-NC

Gradebk (n = 3) 0.16 0.50 0.83
(p = n/a) (0.76) (1.80) (2.57)
Payroll (n = 5) 0.01 0.36 0.54
(p = n/a) (0.12) (0.60) (1.05)

Last Test
T M-TC M-BL M-NC

Gradebk (n = 18) 0.00 0.33 T 0.76
(p = 0.0424) (0.49) (1.06) (1.48)
Payroll (n = 13) -0.12 0.60 T 0.83
(p = 0.0001) (0.48) (0.53) (0.88)

First X-mark
M-TC M-BL M-NC

Gradebk (n = 18) 0.39 0.94 1.50
(p = 0.0001) (0.50) (0.92) (1.39)
Payroll (n = 13) 0.04 0.49 0.93
(p = 0.0005) (0.08) (0.40) (0.80)

Second X-mark
M-TC M-BL M-NC

Gradebk (n = 3) 0.00 0.50 | 00
(p = n/a) (1.00) (1.80) (2.65)
Payroll (n = 5) 0.18 0.56 0.94
(p = n/a) (0.49) (0.83) (1.22)

Last Test
M-TC M-BL M-NC

Gradebk (n = 18) -0.04 0.38 0.79
(p = 0.0045) (0.51) (1.03) (1.61)
Payroll (n = 13) 0.21 0.77 1.27
(p = 0.0036) (0.50) (0.66) (0.95)

(a) Mappings with I-TC (b) Mappings with I-BL (c) Mappings with I-NC

Table 2: Isolating the mapping factor.

5.3 RQ3: Inaccurate Information
As our first step, to investigate the frequency of mistakes, we

counted the number of incorrect testing decisions made in each
end-user test suite. In the context of our environment, this is either
a WYSIWYT checkmark (V) signifying a correct value and placed
in a cell that really has an incorrect value, or an X-mark signifying
an incorrect value (a failure) and placed in a cell that really has a
correct value. In the Gradebook task, 8.99% of the checkmarks
and 5.95% of the X-marks were incorrect. This trend continued
in Payroll, where 20.62% of the checkmarks and 3.33% of the
X-marks were incorrect.

Given that such mistakes corrupt information bases, how did
these mistakes impact an information base's effect on effective-
ness? To investigate this, we measured effectiveness at each First
X-mark, Second X-mark, and Last Test that was in the context ofat
least one incorrect testing decision. We isolated information bases
using the same procedure as Section 5.1. The hypothesis in this
case is:

H7: There is no difference in effectiveness among the information
bases when inaccurate information is present.

Although we ran comparisons under all three mappings, due to
space constraints, we show only measurements taken under the
M-NC mapping, because M-NC was the superior mapping in Sec-
tion 5.2. (The information bases under the other mappings show
the same general trend.)
As Table 3 shows, on the last test in debugging sessions, dif-

ferences in each information base's effectiveness were marginally
significant for Payroll, and significant (at the 0.01 level) for
Gradebook. Thus, we reject H7.

6. DISCUSSION
The results regarding RQ1 showed that information base often

made a significant difference in effectiveness. This result is con-
sistent with other fault localization research. We also found that
the information bases' differences in effectiveness were most pro-
nounced at the end of debugging sessions, most likely due to the
increased testing information available, allowing the techniques a
greater opportunity to differentiate themselves from each other.
That effectiveness, however, did not always improve as debugging
sessions progressed- in the case of Gradebook, all nine combi-
nations of information base and mapping became worse. This may

relate to the mistakes the users made in their testing, a point we will
return to shortly.

Recall that one goal of this study was to provide empirical data
on three particular information bases and mappings. Although all
of our information bases generally performed well, a surprise was
the performance of I -NC. One reason this is surprising is that
I-NC is the information base least like those employed in many tra-
ditional techniques, which tend to use counts of failed and passed
tests (as does I -TC) or dicing-like approaches (as does I -BL). A
second reason is that I-NC is the least computationally expensive
of the information bases we compared.

Turning to RQ2, the role of the mapping factor was quite pro-
nounced. While we found two significant differences at the 0.05
level and one difference at the 0.01 level in RQ1, our investigation
ofRQ2 yielded one significant difference at the 0.05 level, and nine
differences at the 0.01 level. These significant differences occurred
despite only small distinctions among the three mappings (i.e., the
number of fault likelihood values, and the "initial" value).

This result has two implications. First, great care should be ex-
ercised in selecting mappings for fault localization techniques. To
our knowledge, no previous work has provided empirical evidence
to support this finding. Second, because both factors are important,
evaluating each factor separately is important in order to obtain ac-

First X-mark _

I I-TC T I-BL I-NC
Gradebk (n = 13) 1.10 T 1.42 1.56
(p = 0.1251) (1.27) (1.48) (1.38)
Payroll (n = 10) 0.68 0.45 0.95
(p = 0.1095) (0.79) 1 (0.55) (0.80)

Second X-mark
|I-TC I-BLI-NC

Gradebk (n = 3) 0.50 T 0.83 1.00
(p = n/a) (2.78) (2.57) (2.65)
Payroll n = 3) 1.28 0.85 1.24
(p = n/a) (1.00) |(1.20) (1.52)

Last Test

|I-TC I-BL I-NC
Gradebk (n = 13) -0.11 T 0.58 0.59
(p = 0.0024) (1.36) (1.57) (1.65)
Payroll (n = 10) 0.70 T 0.67 1.16
(p = 0.0665) (0.84) (0.71) (0.94)

Table 3: Isolating the information bases with M-NC in the con-
text of mistakes.

359

curate information regarding a technique. Otherwise, in attempt-
ing to improve a technique's ability to pinpoint faults, researchers
could actually weaken their technique's effectiveness by manipu-
lating a factor that was already working well and overlooking the
real culprit.
One result from RQ3 was that the end-user test suites contained

many mistakes, corroborating previous findings [27]. The effects
of these mistakes were far-reaching too- although they numbered
just under 25% of the tests, they affected 74% of the debugging ses-
sions. This result underlines the seriousness with which this issue
should be regarded, especially since it runs contrary to a common
assumption in prior research: that all testing has been reliable.

7. RELATED WORK
Most fault localization research has been based on program slic-

ing- a survey of which is provided by Tip [30] - and dicing [17]
techniques. Our fault localization techniques draw from informa-
tion gleaned via slicing, and make use of that information using
heuristics inspired by dicing.

There has been a great deal of work on fault localization strate-
gies for professional programmers (e.g., [2, 10, 13, 15, 17, 23, 31]).
For example, Agrawal et al. [2] present a technique, implemented
as Xslice, for locating faults using execution traces from tests. This
technique is based on displaying dices of the program relative to
one failing test and a set of passing tests. Jones et al. [15] describe
a similar approach implemented as TARANTULA. Unlike Xslice,
TARANTULA uses information from all passing and failing tests,
coloring statements based on the likelihood that each statement is
faulty according to its ratio of failing to passing tests. Using a faulty
"run" and a larger number of correct runs, Renieris and Reiss's
technique [23] compares the faulty run with the correct run that
most resembles it, and reports "suspicious" areas of the program.
Two ways in which our approach differs from these are that our
methods (1) are targeted at end users, and (2) are interactive and in-
cremental at the granularity of revising fault likelihood estimations
in real time after each single program edit.

Pan and Spafford [19] present a family of 20 fault localization
heuristics based on program statements exercised by passing and
failing tests, three of which directly relate to the mappings of our
techniques.
A little work aimed specifically at aiding end users with fault

localization is emerging. For example, Ayalew and Mittermeir [6]
present a method of "fault tracing" for spreadsheets that uses "in-
terval testing" and slicing. Woodstein [32] is a web interface agent
that assists e-commerce debugging. Ko and Myers [16] present a
type of fault localization via the Whyline, an "interrogative debug-
ging" technique. Our approach differs from the first strategy by
allowing users to interactively improve feedback by providing the
system with additional information, and from all these strategies
through the incorporation of a robustness feature [26, 27].

There is other work that can help end users find faults. S2 [28]
provides a visual auditing feature in Excel 7.0. Work is emerging
to automatically detect certain kinds of errors, such as errors in
spreadsheet units [1, 5] and types [3]. There has also been work to
help end users detect failures, such as statistical outlier finding [18]
and anomaly detection [22]. Finally, the assertions approach [33]
in Forms/3 automatically detects failures in spreadsheet cells, and
has been shown empirically to help end users.

8. CONCLUSIONS
Despite the growing number of end-user programmers, to date,

relatively little research has sought to address the dependability is-

sues that arise in end-user software. We are working on ways to
bring software engineering methodologies to bear upon this prob-
lem, focusing in this paper on fault localization for end-user pro-
grammers.

In this paper we have considered two factors that make up fault
localization techniques - information base and mapping - and
investigated their impact on effectiveness. The work makes four
primary contributions.

First, we describe two factors that affect fault localization tech-
niques, and provide empirical data indicating that each factor sig-
nificantly impacts the effectiveness of techniques. Two immediate
implications are the need to separately (1) design and (2) evalu-
ate each factor. While it may make intuitive sense that each factor
would play a role in technique effectiveness, to date, no studies
have explicitly teased the two factors apart and empirically con-
firmed that each indeed does have a significant role in effectiveness.

Second, we provide data on three particular information bases
and three mappings for fault localization techniques, which serves
to address the lack of empirical data conceming fault localization
support for end users. In doing so, we found that the inexpen-
sive, non-traditional I -NC information base performed particularly
well. This surprising result makes I-NC especially advantageous
in end-user programming given the importance of responsiveness
in these highly interactive environments.

Third, we show why traditional measures for fault localization
effectiveness, which are taken at the points of maximal system rea-
soning potential, are unsuitable in evaluating effectiveness in in-
teractive environments, and we present a set of measures that is
instead taken at user feedback points. This type of measurement is
critical when measuring interactive debugging devices, which are
common in end-user programming environments, to ensure that im-
portant feedback is not omitted.

Fourth, our results corroborate the growing body of evidence that
end users make an alarming number of mistakes when performing
interactive testing and debugging tasks; in our experiment, 74% of
the debugging sessions were performed in the context of at least one
incorrect testing decision. Such evidence suggests that some fault
localization techniques, which assume that all testing information
is correct, may not be suitable for end users.

All four of the above findings run counter to much of the fault
localization research aimed at professional programmers. In fact,
our results indicate that a number of traditional assumptions in that
prior work are not appropriate for fault localization in end-user soft-
ware environments.

9. ACKNOWLEDGMENTS
We thank the participants of our experiment. This work was

supported in part by the EUSES Consortium via NSF grant ITR-
0325273.

10. REFERENCES
[1] R. Abraham and M. Erwig. Header and unit inference for

spreadsheets through spatial analyses. In Proceedings of the
IEEE International Symposium on Visual Languages and
Human-Centric Computing, pages 165-172, Rome, Italy,
September 2004.

[2] H. Agrawal, J. Horgan, S. London, and W. Wong. Fault
localization using execution slices and dataflow tests. In
Proceedings of the Sixth IEEE International Symposium on
Software Reliability Engineering, pages 143-151, Toulouse,
France, October 1995.

360

[3] Y Ahmad, T. Antoniu, S. Goldwater, and S. Krishnamurthi.
A type system for statically detecting spreadsheet errors. In
Proceedings ofthe 18th IEEE International Conference on
Automated Software Engineering, pages 174-183, Montreal,
Quebec, Canada, October 2003.

[4] C. Allwood. Error detection processes in statistical problem
solving. Cognitive Science, 8(4):413-437, 1984.

[5] T. Antoniu, P. Steckler, S. Krishnamurthi, E. Neuwirth, and
M. Felleisen. Validating the unit correctness of spreadsheet
programs. In Proceedings ofthe 26th International
Conference on Software Engineering, pages 439-448,
Edinburgh, Scotland, May 2004.

[6] Y. Ayalew and R. Mittermeir. Spreadsheet debugging. In
Proceedings ofthe European Spreadsheet Risks Interest
Group, Dublin, Ireland, July 2003.

[7] N. Belkin. Helping people find what they don't know.
Communications ofthe ACM, 41(8):58-61, August 2000.

[8] B. Boehm, C. Abts, A. Brown, and S. Chulani. Software Cost
Estimation with COCOMO 11. Prentice Hall PTR, Upper
Saddle River, New Jersey, USA, 2000.

[9] B. Boehm and V. Basili. Software defect reduction Top 10
list. Computer, 34(l):135-137, January 2001.

[10] P. Bunus and P. Fritzson. Semi-automatic fault localization
and behavior verification for physical system simulation
models. In Proceedings ofthe 18th IEEE International
Conference on Automated Software Engineering, pages
253-258, Montreal, Quebec, Canada, October 2003.

[11] M. Burnett, J. Atwood, R. Djang, H. Gottfried, J. Reichwein,
and S. Yang. Forms/3: A first-order visual language to
explore the boundaries of the spreadsheet paradigm. Journal
ofFunctional Programming, 11(2):155-206, March 2001.

[12] C. Corritore, B. Kracher, and S. Wiedenbeck. Trust in the
online environment. In HCI International, volume 1, pages
1548-1552, New Orleans, Louisiana, USA, August 2001.

[13] R. DeMillo, H. Pan, and E. Spafford. Critical slicing for
software fault localization. In Proceedings ofthe
International Symposium on Software Testing and Analysis,
pages 121-134, San Diego, California, USA, January 1996.

[14] D. Hilzenrath. Finding errors a plus, Fannie says; mortgage
giant tries to soften effect of $1 billion in mistakes. The
Washington Post, October 31, 2003.

[15] J. Jones, M. Harrold, and J. Stasko. Visualization of test
information to assist fault localization. In Proceedings ofthe
24th International Conference on Software Engineering,
pages 467-477, Orlando, Florida, USA, May 2002.

[16] A. Ko and B. Myers. Designing the Whyline: A debugging
interface for asking questions about program failures. In
Proceedings oftheACM Conference on Human Factors in
Computing Systems, pages 151-158, Vienna, Austria, April
2004.

[17] J. Lyle and M. Weiser. Automatic program bug location by
program slicing. In Proceedings ofthe 2nd International
Conference on Computers and Applications, pages 877-883,
1987.

[18] R. Miller and B. Myers. Outlier finding: Focusing user
attention on possible errors. In Proceedings ofthe ACM
Symposium on User Interface Software and Technology,
pages 81-90, Orlando, Florida, USA, November 2001.

[19] H. Pan and E. Spafford. Toward automatic localization of
software faults. In Proceedings ofthe 10th Pacific Northwest
Software Quality Conference, October 1992.

[20] R. Panko. Finding spreadsheet errors: Most spreadsheet
errors have design flaws that may lead to long-term
miscalculation. Information Week, page 100, May 1995.

[21] R. Panko. What we know about spreadsheet errors. Journal
on End User Computing, pages 15-21, Spring 1998.

[22] 0. Raz, P. Koopman, and M. Shaw. Semantic anomaly
detection on online data sources. In Proceedings ofthe 24th
International Conference on Software Engineering, pages
302-312, Orlando, Florida, USA, May 2002.

[23] M. Renieris and S. Reiss. Fault localization with nearest
neighbor queries. In Proceedings ofthe 18th IEEE
International Conference on Automated Software
Engineering, pages 30-39, Montreal, Quebec, Canada,
October 2003.

[24] G. Robertson. Officials red-faced by $24m gaffe: Error in
contract bid hits bottom line of TransAlta Corp. Ottawa
Citizen, June 5, 2003.

[25] G. Rothermel, M. Burnett, L. Li, C. Dupuis, and A. Sheretov.
A methodology for testing spreadsheets. ACM Transactions
on Software Engineering and Methodology, 10(1): 110-147,
January 2001.

[26] J. Ruthruff, E. Creswick, M. Burnett, C. Cook,
S. Prabhakararao, M. Fisher II, and M. Main. End-user
software visualizations for fault localization. In Proceedings
ofthe ACM Symposium on Software Visualization, pages
123-132, San Diego, Califomia, USA, June 2003.

[27] J. Ruthruff, S. Prabhakararao, J. Reichwein, C. Cook,
E. Creswick, and M. Burnett. Interactive, visual fault
localization support for end-user programmers. Journal of
Visual Languages and Computing, 2005 (to appear).

[28] J. Sajaniemi. Modeling spreadsheet audit: A rigorous
approach to automatic visualization. Journal on Visual
Languages and Computing, 11(1):49-82, February 2000.

[29] S. Siegel and N. Castellan Jr. Non-parametric Statisticsfor
the Behavioral Sciences. McGraw Hill, Boston,
Massachusetts, USA, 1998.

[30] F. Tip. A survey of program slicing techniques. Journal on
Programming Languages, 3(3):121-189, 1995.

[31] J. Voas. Software testability measurement for assertion
placement and fault localization. In Proceedings ofthe
International Workshop on Automated and Algorithmic
Debugging, pages 133-144, 1995.

[32] E. Wagner and H. Lieberman. Supporting user hypotheses in
problem diagnosis on the web and elsewhere. In Proceedings
ofthe International Conference on Intelligent User
Interfaces, pages 30-37, Funchal, Madeira Island, January
2004.

[33] A. Wilson, M. Burnett, L. Beckwith, 0. Granatir,
L. Casburn, C. Cook, M. Durham, and G. Rothermel.
Harnessing curiosity to increase correctness in end-user
programming. In Proceedings of theACM Conference on
Human Factors in Computing Systems, pages 305-312, Fort
Lauderdale, Florida, USA, April 2003.

[34] C. Wohlin, P. Runeson, M. Host, B. Regnell, and A. Wesslen.
Experimentation in Software Engineering. Kluwer Academic
Publishers, Boston, Massachusetts, USA, 2000.

361

	An Empirical Study of Fault Localization for End-User Programmers
	

	Title

