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Regional differences in the spatial and temporal heterogeneity
of oceanographic habitat used by Steller sea lions

MICHELLE E. LANDER,1,2,4 THOMAS R. LOUGHLIN,1 MILES G. LOGSDON,3 GLENN R. VANBLARICOM,2 BRIAN S. FADELY,1

AND LOWELL W. FRITZ
1

1National Marine Mammal Laboratory, National Marine Fisheries Service, 7600 Sand Point Way N.E.,
Seattle, Washington 98115 USA

2Washington Cooperative Fish and Wildlife Research Unit, School of Aquatic and Fishery Sciences, Box 355020,
University of Washington, Seattle, Washington 98195 USA

3School of Oceanography, Box 357940, University of Washington, Seattle, Washington 98195 USA

Abstract. Over the past three decades, the decline and altered spatial distribution of the
western stock of Steller sea lions (Eumetopias jubatus) in Alaska have been attributed to
changes in the distribution or abundance of their prey due to the cumulative effects of fisheries
and environmental perturbations. During this period, dietary prey occurrence and diet
diversity were related to population decline within metapopulation regions of the western
stock of Steller sea lions, suggesting that environmental conditions may be variable among
regions. The objective of this study, therefore, was to examine regional differences in the
spatial and temporal heterogeneity of oceanographic habitat used by Steller sea lions within
the context of recent measures of diet diversity and population trajectories. Habitat use was
assessed by deploying satellite-depth recorders and satellite relay data loggers on juvenile
Steller sea lions (n¼ 45) over a five-year period (2000–2004) within four regions of the western
stock, including the western, central, and eastern Aleutian Islands, and central Gulf of Alaska.
Areas used by sea lions during summer months (June, July, and August) were demarcated
using satellite telemetry data and characterized by environmental variables (sea surface
temperature [SST] and chlorophyll a [chl a]), which possibly serve as proxies for environmental
processes or prey. Spatial patterns of SST diversity and Steller sea lion population trends
among regions were fairly consistent with trends reported for diet studies, possibly indicating a
link between environmental diversity, prey diversity, and distribution or abundance of Steller
sea lions. Overall, maximum spatial heterogeneity coupled with minimal temporal variability
of SST appeared to be beneficial for Steller sea lions. In contrast, these patterns were not
consistent for chl a, and there appeared to be an ecological threshold. Understanding how
Steller sea lions respond to measures of environmental heterogeneity will ultimately be useful
for implementing ecosystem management approaches and developing additional conservation
strategies.

Key words: Aleutian Islands; chlorophyll a; composition; diet; diversity; Eumetopias jubatus; Gulf of
Alaska; heterogeneity; satellite telemetry; sea surface temperature; Steller sea lion.

INTRODUCTION

The ultimate aim of ecological science is to explain

and predict properties of living systems (individuals,

populations, and communities) as functions of their

relationships to various biotic and abiotic environments

(DeLaplante 2004). Efforts to assess relationships

between these systems and the properties of ecosystems

have increased as climate change and the global loss of

biodiversity have increased over the past decade (Waide

et al. 1999). Across disciplines, however, ecologists are

faced with the challenges of understanding how these

systems respond to environmental change and hetero-

geneity. Because population declines of large marine

predators, including Steller sea lions (Eumetopias

jubatus; see Plate 1), have been attributed to environ-

mental change, many conservation research studies have

been dedicated to this topic (Hirons et al. 2001, Stirling

2002, McMahon et al. 2005, Trites et al. 2007b).

Steller sea lions range around the North Pacific Ocean

rim from the Kuril Islands and Sea of Okhotsk, through

the Aleutian Islands and Gulf of Alaska, and south to

Año Nuevo Island, central California (Loughlin et al.

1984). During the early 1970s, there were more than

300 000 Steller sea lions world wide, but index counts of

animals present on land at standardized dates and times

indicated that an 80% decline occurred over parts of the

range since the late 1970s (Loughlin 1998). After this

decline became evident in the 1980s, the U.S. population

of Steller sea lions was listed as ‘‘threatened’’ under the

U.S. Endangered Species Act during 1990 (55 FR

12645). During 1997, the U.S. population of Steller sea
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lions west of 1448 W (Cape Suckling, Alaska) was

reclassified as ‘‘endangered’’ (62 FR 24345, 62 FR

30772) after molecular and phylogeographic studies

suggested there were two distinct population segments

(DPS; Bickham et al. 1996, 1998, Loughlin 1997).

To further understand the spatial structure of the

western DPS of Steller sea lions, York et al. (1996) used

cluster analysis to examine the rates of change in

numbers of adult females at rookeries in Alaska during

the peak of breeding season from 1975 to 1994 and

found consistent groupings of rookeries with common

population trends. These data coupled with other

studies (e.g., Raum-Suryan et al. 2002) suggest that

Steller sea lions conform to a metapopulation, which in

this context is a population of populations (Levins 1970)

consisting of groups of rookeries with similar demo-

graphic trends. Although classical metapopulation

theory assumes that space is discrete and patches are

homogeneous across the landscape (Hanski and Sim-

berloff 1997), realistically there may be circumstances

when local populations have unique demographic

responses to local variation in habitat characteristics

(Pulliam 1988).

Since the late 1970s, rookeries within the western DPS

of Steller sea lions have had different rates of population

decline or increase, indicating that conditions may be

variable among regions (Pascual and Adkinson 1994,

York et al. 1996, Sinclair and Zeppelin 2002, Winship

and Trites 2003, Call and Loughlin 2005, Fay and Punt

2006). Nutritional stress, resulting from changes in

composition, distribution, abundance, or quality of prey

due to changes in environmental conditions, is one of

many hypotheses for explaining the decline of the

western DPS (Braham et al. 1980, Merrick et al. 1987,

Loughlin 1998, Loughlin and York 2000). To examine

the nutritional stress hypothesis, Merrick et al. (1997)

examined the summer diet of Steller sea lions from six

regions in the Aleutian Islands from 1990 to 1993 and

found that diet diversity was positively correlated with

population trends, supporting the hypothesis that diet

was linked to population decline. This hypothesis was

further supported by Trites et al. (2007a) who found the

diet of Steller sea lions in Southeast Alaska (a region of

population increase) was more diverse than that

reported for any other region of Alaska. Sinclair and

Zeppelin (2002) also evaluated the diet of Steller sea

lions across the range of the western DPS and found

regional divisions in the diet during summer were closely

aligned with patterns described by York et al. (1996).

They suggested the implications of diet diversity should

be addressed with respect to bottom-up processes and

other environmental features that influence the near-

shore habitat of rookery regions and ultimately the

population stability of Steller sea lions.

The response of fish populations (i.e., prey of Steller

sea lions) to environmental variability is most likely

mediated through bottom-up processes, which include

temperature related changes in the amount or timing of

primary and secondary productivity or the direct effects

of temperature on the growth and survival of fish

themselves (Hunt 2006). In turn, under the bottom-up

concept, patterns in the changes of oceanography and

fish populations should be reflected in patterns of sea

lion foraging ecology and abundance (Fadely et al. 2005,

Gende and Sigler 2006, Womble and Sigler 2006). The

objective of this study, therefore, was to investigate these

possible linkages by examining the spatial and temporal

heterogeneity of sea surface temperature (SST) and

chlorophyll a (chl a) associated with habitat use of

Steller sea lions from four regions of the western DPS.

Additionally, regional patterns of environmental het-

erogeneity are discussed relative to concurrent patterns

of diet and population trajectories of Steller sea lions.

Given the bottom-up scenario outlined above, we

expected patterns of SST, chl a, diet, and population

trajectories of Steller sea lions would consistently

coincide across regions.

METHODS

From January 2000 to May 2004, 45 juvenile Steller

sea lions (5 months to 35 months of age) were

opportunistically captured using hoop nets or SCUBA

methodologies (McAllister et al. 2001) at rookeries or

haulout sites within four geographic areas of the western

DPS, including the western Aleutian Islands (WAI),

central Aleutian Islands (CAI), eastern Aleutian Islands

(EAI), and central Gulf of Alaska (CGOA) as outlined

in recent literature (Fritz and Stinchcomb 2005, Fay and

Punt 2006). To assess the habitat use of Steller sea lions,

satellite transmitters were attached to the dorsum of

each animal using five-minute epoxy (Devcon Products,

Riviera Beach, Florida, USA) while they were manually

restrained with valium sedation (1.1–2.0 cc [mL]) or

anesthetized following procedures of Heath et al. (1997).

Satellite-linked depth recorders (SDR-T16, 13.5 3 4.5 3

3.7 cm, 330 g; Wildlife Computers, Redmond, Wash-

ington, USA) were deployed on Steller sea lions from

2000 to 2003, whereas satellite relayed data loggers

(SRDL series 9000, 10.537.03 4.0, 370 g, Sea Mammal

Research Unit [SMRU], Gatty Marine Laboratory,

University of St Andrews, Scotland) were deployed

from 2002 to 2004. Both types of instruments were

equipped with an ultra-high-frequency radio transmit-

ter.

Daily locations from SDRs and SRDLs were ob-

tained through Service Argos, Inc. (Hyattsville, Mary-

land, USA), a satellite-based location and data

collection system (Fancy et al. 1988). Data collected

by SDRs were decoded using Satpak software (Wildlife

Computers), whereas data collected by SRDLs were

decoded with SMRU’s marine mammal behavior

visualization system (MAMVIS; Fedak et al. 1996).

All data were filtered using a swim speed of 2 m/s with

the algorithm described by McConnell et al. (1992).

Analyses for this project were confined to data

gathered during summer months (i.e., June, July, and

MICHELLE E. LANDER ET AL.1646 Ecological Applications
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August) due to the paucity of telemetry, chl a, and diet

data during the remainder of the year. Satellite positions

for the three months were pooled across years for each

region and used to delineate four study areas, which
were defined as the area representing water within a

rectangular polygon superimposed on the telemetry

data.

Sea surface temperature data (4.6-km resolution) for

the three months from 2000 to 2004 were collected by

the moderate-resolution imaging spectroradiometer
(MODIS) instrument aboard the Terra satellite and

obtained from the Goddard Distribution Center (data

available online).5 Additionally, chl a data, which

provide a measure of phytoplankton biomass and are

frequently used as a proxy for the standing crop of
phytoplankton and ultimate primary productivity (Va-

liela 1984, Martin 2004), were collected via MODIS

aboard the Aqua satellite (4.6 km resolution; 2002 to

2004) and the SeaWIFS instrument aboard the SeaStar

spacecraft (9 km resolution; 2000 to 2001) and obtained
from the Ocean Color Discipline Processing System

(data available online).6 All data sets were Level 3

monthly composites (Campbell et al. 1995).

Quality data files, which provided a bin-by-bin

designation of whether input pixels were good (level

0), questionable (level 1), cloud (level 2), or bad (level 3),
were included with Terra SST data files in order to

extract only the best quality estimates (quality level 0

indicates no known problems) using ArcInfo (ESRI,

Redlands, California, USA), whereas the chl a data files

contained only the best quality estimates upon receipt.
Windows Image Manager (6.2; Wimsoft, Inc., San

Diego, California, USA) was used to cut chl a data sets

and ENVI (4.0; ITT Visual Information Solutions,

Boulder, Colorado, USA) was used to define the datum
(i.e., NAD83) to be compatible with other base data

(e.g., land cover, telemetry data).

All remotely sensed data were converted to raster

grids, which were projected to an Albers equal-area

conic projection defined for the State of Alaska using

ArcInfo. To create models representing each of the

variables, geoprocessing tools (ArcGIS 9.0; ESRI) were
used to replace each empty grid cell with the value

corresponding to the nearest neighbor cell containing

data. For this analysis, Euclidean distances based on the

centroids of cells were used to identify the direction to
the closest source cell. All grids were then clipped to the

study areas demarcated by the telemetry data. Grids

representing the three summer months were averaged for

each year within each region, forming a ‘‘summer’’

composite. Only July and August chl a grids were used
to form a summer composite for 2002 because the Aqua

sensor was launched that year during June. Annual

summer composites were then used to quantify the

spatial and temporal heterogeneity of each variable.

Spatial habitat heterogeneity

Measurements of spatial heterogeneity are typically

achieved using categorical map analysis, which involves

employing a classification scheme to identify homoge-

neous patches (at a particular scale) that exhibit a

relatively abrupt transition to adjacent patches with

different characteristics (Kotliar and Wiens 1990,

Gustafason 1998). However, unlike terrestrial studies

that have landscape covers that can be easily categorized

and counted in discrete units, standard classification

schemes for oceanographic features such as SST and chl

a do not exist. Because environmental heterogeneity was

the focus of this study, we devised categories to capture

the spatial and temporal variation found about the

median values of SST and chl a concentrations over a

five-year period. For each region, the minimum (min)

and maximum (max) medians for the five years were

used to define core zones of SST and chl a. Remaining

categories were based on min and max values of the

interquartile ranges and extreme values, resulting in a

total of five unique data classes for each region (i.e., min

min to min first quartile, min first quartile to min

median, min median to max median (core), max median

to max third quartile, and max third quartile to max

max). Hence, each data point in space was assigned to a

class that identified its relative variation away from the

extreme median values over a five-year period.

Following data classification, patches were defined as a

contiguous group of cells of the same mapped category

based on an eight-neighbor rule (Forman and Godron

1986, Turner et al. 2001). To quantify heterogeneity of

each summer composite, patch density (total number of

patches/area), core patch density (number of patches

within the core class/area), and diversity indices (di-

versity, richness, and evenness) were calculated for each

region using a pattern analysis computer program

(FRAGSTATS 3.3; McGarigal et al. 2002). Simpson’s

diversity index was calculated using the following metric:

SIDI ¼ 1�
Xc

i¼1

P2
i

where Pi is the proportion of the landscape occupied by

class type i, and c is the number of classes present

(Simpson 1949). SIDI represents the probability that

any two pixels selected at random would be different

patch types. This index equals 0 when the area is

dominated by one patch (i.e., no diversity) and

approaches 1 as the number of different patch types

increases and the proportional distribution of area

among patch types becomes more even (McGarigal

and Marks 1995). Although Shannon’s diversity index

has typically been used to quantify diet diversity for sea

lions in the past, we chose to calculate Simpson’s

diversity index for habitat and diet (below) because it

does not depend on sample sizes (Rosenzweig 1995) and

it is less sensitive to the presence of rare patch/group

types so more weight is placed on common patch/group

5 hhttp://daac.gsfc.nasa.govi
6 hhttp://oceancolor.gsfc.nasa.govi
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types. Given these characteristics, this index, coupled

with the consistency of richness across regions, enabled

us to avoid problems associated with having study areas

of different sizes.

After testing for normality and homogeneity of

variances (SPSS 13.0; SPSS, Chicago, Illinois, USA)

for all data sets, individual Kruskal-Wallis tests were

used to compare mean SIDI of SST and chl a among the

four regions and individual Mann-Whitney tests were

used to examine all pairwise comparisons (SPSS 13.0).

In contrast, individual analyses of variance (ANOVA)

were used to compare mean patch density and mean

core patch density of SST and chl a among the four

regions and Tukey tests were used to examine the

differences between all possible pairs of means (SPSS

13.0).

Temporal habitat heterogeneity

To compare the interannual variability of SST and chl

a among regions, a Kolmogorov-Smirnov test (SPSS

13.0) was first used to determine if annual median values

within each geographic region were approximately

normal. A Bartlett’s test was then used to examine

homogeneity of variances among regions and a multiple

comparison test analogous to a Tukey test was used to

examine differences among variances for the four

regions (Zar 1999). A significance level of P � 0.05

was used for all statistical tests.

Diet diversity

To examine the diet diversity of Steller sea lions, fresh

fecal samples were collected during summer months at

haulout sites and rookeries throughout the Aleutian

Islands and Gulf of Alaska from 2000 to 2004. Similar

to previous diet studies, it was assumed that fecal

samples represented the diet of juvenile and adult female

sea lions because adult males fast during the breeding

season (Merrick et al. 1997, Sinclair and Zeppelin 2002).

Samples were frozen after collection in the field and later

processed at the Alaska Fisheries Science Center’s

National Marine Mammal Laboratory (Seattle, Wash-

ington, USA) following standard procedures (Merrick et

al. 1997, Sinclair and Zeppelin 2002). Prey remains (i.e.,

cephalopod beaks or rostra and fish otoliths, scales, and

bones) were identified to family (Pacific Identifications,

Victoria, British Columbia, Canada) using the all

structures method (Olesiuk et al. 1990). Samples were

pooled across years (Merrick et al. 1997, Sinclair and

Zeppelin 2002) and cumulative frequency curves (cumu-

lative number of families against number of samples)

were plotted for each region to determine if a sufficient

number of fecal samples were collected to precisely

describe the diet (Pielou 1966, Hurtubia 1973). Percent-

age frequency of occurrence (FOi ), which is the

percentage of fecal samples containing prey category i,

was calculated for each family within each region and

Simpson’s diversity index was calculated using the

metric presented above; the proportion of the diet

comprised by family type i was substituted for Pi and the

total number of families¼ c. Additionally, diet richness

for each region was equal to the number of prey families

identified and Simpson’s evenness index (SIEI) was

calculated using the following metric:

SIEI ¼
1�

Xc

i¼1

P2
i

1� 1

c

� � :

RESULTS

Spatial habitat heterogeneity

After filtering the telemetry data, location data for 45

tagged individuals resulted in 8080 positions (n¼ 578 in

the WAI, n¼ 2036 in the CAI, n¼ 1412 in the EAI, and

n ¼ 4054 in the CGOA), which were used to delineate

study areas of habitat use (Table 1, Fig. 1).

Mean SST SIDI from 2000 to 2004 differed signifi-

cantly among regions (v2¼ 15.782, P¼ 0.001; Table 2).

Post hoc analyses indicated values of SST SIDI for all

regions were significantly greater than that for the WAI

(Table 3). Additionally, SST SIDI of the EAI was

significantly greater than values for the CAI and CGOA

(Table 3). Mean patch density of SST from 2000 to 2004

did not differ among regions (F3,16 ¼ 2.616, P ¼ 0.087),

whereas mean core density of SST differed significantly

among regions (F3,16 ¼ 5.538, P ¼ 0.008), with the EAI

being greater than the WAI and CGOA (P ¼ 0.014;

Table 2).

Mean chl a SIDI from 2000 to 2004 differed

significantly among regions (v2 ¼ 15.090, P ¼ 0.002;

Table 2). Similar to SST diversity, values of chl a SIDI

for all regions were significantly greater than that for the

WAI (Table 3). Furthermore, chl a SIDI of the CGOA

was significantly greater than that of the EAI (Table 3).

Mean patch density of chl a did not differ among regions

TABLE 1. Summary of sample sizes obtained for this study,
including number of tagged Steller sea lions and number of
fecal samples collected in the western Aleutian Islands
(WAI), central Aleutian Islands (CAI), eastern Aleutian
Islands (EAI), and central Gulf of Alaska (CGOA), USA.

Year WAI CAI EAI CGOA

Steller sea lions

2000 1 1
2001 1 3 6
2002 3 7 13
2003 1 1
2004 6 2

Fecal samples

2000 22 85 32
2001 33 48 32
2002 60 222 75 21
2003 106 14
2004 71 53

Note: Blank cells indicate that no effort was made in those
regions in those years.
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(F3,16¼ 2.140, P¼ 0.135), whereas mean core density of

chl a differed significantly among regions (F3,16¼ 6.113,

P¼ 0.006), with the CAI being greater than the WAI (P

¼ 0.003; Table 2).

Temporal habitat heterogeneity

Annual median values of SST and chl a data were

normally distributed within each geographic region. A

corrected Bartlett’s test indicated variances of annual

median SST values were heterogeneous for the four

regions (Bc¼ 13.829, P , 0.001); from year to year, SST

was more variable in the WAI than in the EAI (P ,

0.050; Fig. 2). Although variances of annual, median chl

a values were heterogeneous for the four regions (Bc ¼
18.539, P , 0.001), post hoc differences were not

detected, which may have been a result of a Type II error

due to the limited sample size (Zar 1999). Variance of

the WAI appeared similar to that of the CAI, whereas

variances for the EAI and CGOA appeared similar (Fig.

2).

Annual median values of both variables illustrated a

geographical longitudinal trend, increasing from the

WAI to the CGOA (Fig. 2). Linear regression indicated

a positive relationship between annual values of median

chl a and SST (F1,18 ¼ 27.875, P ¼ 0.000; Fig. 3a) and

chl a SIDI and SST SIDI (F1,18 ¼ 6.963, P ¼ 0.017;

Fig. 3b).

Diet diversity

Fecal samples (n ¼ 874) were collected at rookeries

and haulouts in the four regions (Table 1). Similar to

previous studies (Merrick et al. 1997, Sinclair and

Zeppelin 2002, Call and Loughlin 2005), the majority

of fecal samples from the WAI and CAI were composed

of hexagrammids, primarily Atka mackerel (Pleuro-

grammus monopterygius; Table 4). Important prey items

FIG. 1. Telemetry positions (n¼ 8080) of 45 juvenile Steller sea lions with respect to geographical regions in Alaska comprising
the western distinct population segment (DPS). Regions include the western Aleutian Islands (WAI), central Aleutian Islands
(CAI), Eastern Aleutian Islands (EAI), western Gulf of Alaska (WGOA), central Gulf of Alaska (CGOA), and eastern Gulf of
Alaska (EGOA), USA. The study area for each region was defined as a rectangular polygon superimposed on the telemetry data
(black dots).

September 2009 1649STELLER SEA LION HABITAT HETEROGENEITY



in the WAI also included Pacific cod (Gadus macroceph-

alus), rockfish (Sebastes spp.), and salmonids (Onco-

rhynchus spp.). For the CAI, common prey items also

included cephalopods, salmonids, and gadids, which

were equally represented by Pacific cod and walleye

pollock (Theragra chalcogramma). Atka mackerel and

gadids (walleye pollock and Pacific cod) dominated the

diet of sea lions from the EAI, followed by salmonids,

sand lance (Ammodytes hexapterus), righteye flounder

consisting primarily of southern rock sole (Lepidopsetta

biliniata) and arrowtooth flounder (Atheresthes stomias),

and Pacific herring (Clupea harengus). Walleye pollock,

salmonids, and arrowtooth flounder were found most

frequently in samples from the CGOA.

After data were pooled across years within each

region, cumulative frequency curves indicated sample

sizes were sufficient for regional comparisons. The

number of prey families (i.e., diet richness) ranged from

TABLE 3. Results of Mann-Whitney U pairwise comparisons
of sea surface temperature (SST) and chlorophyll a (chl a)
diversity (SIDI) between regions of the western distinct
population segment (DPS) of Steller sea lions.

Regional
comparison

SST SIDI Chl a SIDI

U P U P

WAI vs. CAI 2.000 0.021 0.000 0.007*
WAI vs. EAI 0.000 0.007* 0.000 0.005*
WAI vs. CGOA 0.000 0.005* 0.000 0.006*
CAI vs. EAI 1.500 0.014 7.500 0.134
CAI vs. CGOA 7.500 0.134 7.500 0.221
EAI vs. CGOA 2.500 0.014 2.500 0.014

Note: Regions are the western Aleutian Islands (WAI),
central Aleutian Islands (CAI), eastern Aleutian Islands (EAI),
and central Gulf of Alaska (CGOA).

* Significant comparisons after P values were Bonferroni-
corrected to account for the six different tests (a¼ 0.05/n).

TABLE 2. Measures of heterogeneity for sea surface temperature (SST) and chlorophyll a (chl a), including Simpson’s diversity
index (SIDI), patch density (number of patches per 100 ha) for the entire study area, and patch density for the core data class.

Region, year,
and statistics

SST Chl a

SIDI Patch density Patch density (core) SIDI Patch density Patch density (core)

WAI

2000 0.5 0.0029 0.0005 0.4 0.0008 0.0001
2001 0.6 0.0041 0.0005 0.6 0.0009 0.0001
2002 0.6 0.0036 0.0008 0.6 0.0017 0.0002
2003 0.1 0.0014 0.0000 0.5 0.0014 0.0001
2004 0.5 0.0035 0.0004 0.6 0.0010 0.0001

Mean 0.5 0.0031 0.0004 0.5 0.0012 0.0001
SD 0.21 0.0010 0.0003 0.09 0.0004 0.0000
CV 0.45 0.3000 0.6548 0.17 0.3260 0.3727

CAI

2000 0.6 0.0017 0.0004 0.8 0.0011 0.0003
2001 0.7 0.0055 0.0010 0.7 0.0014 0.0004
2002 0.7 0.0037 0.0006 0.8 0.0017 0.0006
2003 0.6 0.0043 0.0006 0.7 0.0015 0.0005
2004 0.7 0.0056 0.0008 0.7 0.0017 0.0006

Mean 0.7 0.0042 0.0007 0.7 0.0015 0.0005
SD 0.05 0.0016 0.0002 0.05 0.0002 0.0001
CV 0.08 0.3830 0.3353 0.07 0.1682 0.2716

EAI

2000 0.7 0.0024 0.0006 0.7 0.0014 0.0002
2001 0.8 0.0032 0.0009 0.7 0.0013 0.0002
2002 0.8 0.0034 0.0011 0.7 0.0017 0.0003
2003 0.8 0.0038 0.0013 0.7 0.0022 0.0005
2004 0.8 0.0034 0.0009 0.7 0.0020 0.0004

Mean 0.8 0.0032 0.0010 0.7 0.0017 0.0003
SD 0.04 0.0005 0.0003 0.00 0.0004 0.0001
CV 0.06 0.1598 0.2716 0.00 0.2229 0.4075

CGOA

2000 0.7 0.0030 0.0006 0.8 0.0013 0.0003
2001 0.7 0.0017 0.0003 0.8 0.0012 0.0003
2002 0.7 0.0021 0.0005 0.8 0.0015 0.0001
2003 0.7 0.0022 0.0003 0.7 0.0023 0.0006
2004 0.7 0.0028 0.0005 0.8 0.0017 0.0002

Mean 0.7 0.0024 0.0004 0.8 0.0016 0.0003
SD 0.00 0.0005 0.0001 0.04 0.0004 0.0002
CV 0.00 0.2254 0.3049 0.06 0.2724 0.6236

Note: Mean, standard deviation (SD), and coefficient of variation (CV) are provided for each index.
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9 to 25 and diet SIDI and SIEI ranged from 0.6 to 0.9

(Table 4).

DISCUSSION

Sea surface temperature heterogeneity

Diet diversity and richness inferred from food habits

of opportunistic or generalist apex predators are

thought to reflect prey diversity and richness in the

environment. In turn, prey (i.e., species) diversity and

richness tend to parallel variation in local physical and

biological conditions (Ricklefs 1987), typically increas-

ing with habitat heterogeneity or more diverse land-

scapes (MacArthur 1958, 1964, Rosenzweig 1995, Kerr

and Packer 1997, Guégen et al. 1998). During this study,

the spatial pattern of environmental heterogeneity as

characterized by mean SST diversity over the five years

was similar to patterns of diet diversity reported in the

literature (Merrick et al. 1997, Sinclair and Zeppelin

2002, Call and Loughlin 2005). Additionally, the

regional pattern of SST diversity along with diet richness

and diversity patterns found for this study were fairly

consistent with regional population trajectories for that

same period, possibly indicating a link between envi-

ronmental diversity, prey diversity, and distribution or

abundance of Steller sea lions. SST diversity was

greatest in the region of greatest sea lion population

increase (EAI), similar for intermediate areas (CAI and

CGOA), and lowest in the region of greatest population

decline (WAI; Fig. 4). A similar trend was found for diet

richness (Table 4), whereas only extreme values of diet

diversity coincided with population trends because diet

diversity of sea lions from the CAI was less than diet

diversity of sea lions from the WAI and CGOA (Fig. 4).

This was unexpected based on previous diet studies and

the diet richness observed for the CAI during this study.

However, because hexagrammids dominated the diet of

sea lions from the CAI, diet diversity in this area was

likely confounded by diet evenness.

The habitat heterogeneity hypothesis proposes that

species richness and diversity tend to increase with

FIG. 2. Box plot parameters used to classify sea surface temperature (SST) and chlorophyll a (chl a) grids for categorical map
analysis. Plots indicate annual median, interquartile range, and extreme values for SST and chl a within the western Aleutian
Islands (WAI), central Aleutian Islands (CAI), eastern Aleutian Islands (EAI), and central Gulf of Alaska (CGOA) from 2000 to
2004. Median values were used compare interannual variability of each variable within and among regions. Note the axis break and
different scales for chl a plots. The variance (s2) of annual median values is illustrated for each region.

FIG. 3. Positive relationship between annual values of (a)
median chl a concentration and SST and (b) chl a SIDI and
SST SIDI within the western Aleutian Islands (WAI; triangles),
central Aleutian Islands (CAI; circles), eastern Aleutian Islands
(EAI; squares), and central Gulf of Alaska (CGOA; diamonds).
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habitat heterogeneity because different habitat proper-

ties support the specializations of different species

(Rosenzweig 1995). Patch metrics for SST corroborated

diversity results because greater patch density is indica-

tive of greater spatial heterogeneity (McGarigal and

Marks 1995) and mean core density of the EAI was

significantly greater than estimates for the WAI and

CGOA. Thus, it appears that maximum SST heteroge-

neity is important for sea lions, especially within the zone

of core SST. This may be because greater patch density is

associated with greater abundance or diversity of species

(Forman and Godron 1986, Swartzman et al. 1999,

Gorresen and Willig 2004), and an increase in patch

density increases the patch encounter rate (de Knegt et al.

2007). Our annual composites further suggested that

core patches within the EAI were smaller than those in

other regions. The composition of patches within the

EAI may have been beneficial for sea lions or their prey

because small patches offer species a wide array of

resources, which can be exploited with a variety of patch

use strategies (Kozakiewicz 1995). Additionally, small

habitat patches may increase the quality of a given

TABLE 4. Percentage frequency of occurrence (% FO) for prey families identified in fecal samples collected from the western
Aleutian Islands (WAI), central Aleutian Islands (CAI), eastern Aleutian Islands (EAI), and central Gulf of Alaska (CGOA)
during summer months from 2000 to 2004.

Family Common name

% FO (n) per region

WAI CAI EAI CGOA

Agonidae poachers 0.4 (2) 1.1 (11)
Ammodytidae sandlances 2.1 (2) 0.9 (5) 9.9 (102) 6.4 (14)
Anarhichadidae wolf-eels 0.1 (1)
Anoplopomatidae sablefishes 0.2 (1)
Bathylagidae deepsea smelts 0.8 (8)
Bathymasteridae ronquils 0.1 (1)
Cephalopoda squids/octopus 3.2 (3) 12.2 (66) 3.5 (36) 1.8 (4)
Clupeidae herrings 8.9 (92) 4.6 (10)
Cottidae sculpins 2.1 (2) 2.4 (13) 4.3 (44)
Cyclopteridae lump/snail fishes 0.1 (1)
Gadidae codfishes/whiting 11.7 (11) 6.1 (33) 20.2 (209) 28.4 (62)
Gasterosteidae sticklebacks 0.7 (7)
Hemitripteridae sailfin sculpins 0.1 (1) 0.5 (1)
Hexagrammidae greenlings 58.5 (55) 64.1 (346) 20.4 (211) 0.5 (1)
Liparididae snailfishes 0.2 (1) 0.3 (3)
Myctophidae lanternfishes 2.0 (11) 0.6 (6)
Osmeridae smelts 0.7 (7) 5.6 (12)
Petromyzontidae lampreys 0.4 (4)
Pholidae gunnels 0.2 (2)
Pleuronectidae righteye flounders 4.3 (4) 1.7 (9) 9.6 (99) 24.3 (53)
Rajidae skates 2.1 (2) 0.6 (3) 1.1 (11)
Salmonidae salmonids 6.4 (6) 8.5 (46) 11.5 (119) 26.1 (57)
Scorpaenidae rock/scorpion fishes 9.6 (9) 0.7 (4) 1.1 (11) 1.8 (4)
Stichaeidae pricklebacks 0.1 (1)
Trichodontidae sandfishes 3.9 (40)
Zaproridae prowfishes 0.7 (7)

Total number of families (diet richness) 9.0 13.0 25.0 10.0

SIDI 0.6 0.6 0.9 0.8
SIEI 0.7 0.6 0.9 0.9

Notes: Number of samples (n) containing each family is indicated in parentheses. Diet richness and Simpson’s diversity (SIDI)
and evenness (SIEI) are also reported, in the bottom two rows of the table.

FIG. 4. Rate of Steller sea lion population
change (2000–2004) relative to mean diversity
(Simpson’s diversity, SIDI) of sea surface tem-
perature (SST), chlorophyll a (chl a), and diet for
four regions within Alaska, including the western
Aleutian Islands (WAI), central Aleutian Islands
(CAI), eastern Aleutian Islands (EAI), and
central Gulf of Alaska (CGOA). Annual rates
of population change, which were obtained from
Fritz and Stinchcomb (2005), were derived from
regression coefficients of log-linear regressions of
non-pup counts on three survey years (2000,
2002, and 2004).
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habitat matrix by supplying complementary resources or

predator-free space (Cramer and Willig 2005).

Although the patterns observed during this study

provide an initial step for identifying underlying

processes influencing spatial patterns of habitat diversi-

ty, they do not imply causation and we can only

speculate about the mechanisms maintaining diversity

within each region. Diversity of SST may have been

perpetuated in the EAI because of exposure to more

physical forcing than the other three regions. Unlike the

other regions, the EAI occurs at the junction of three

ecosystems. Rookeries and haulouts within the EAI are

not only exposed to local environmental conditions

within the North Pacific and eastern Bering Sea, but are

also exposed to conditions that originate in the GOA

(e.g., eddies) and travel the Aleutian chain (Ladd et al.

2005b). Within areas of the EAI, Steller sea lions are also

exposed to four different currents (Alaskan Stream,

Alaska Coastal Current, Aleutian North Slope Current,

and Bering Slope Current), which aid in the aggregation

and transport of nutrients and prey. This area also is

associated with high tidal flow and mixing (Ban 2005).

Given these features, the EAI including Unimak Pass,

have been described as an oceanographically dynamic

area with high species richness (Logerwell et al. 2005)

and nursery stocks of critical prey (Sinclair and Stabeno

2002).

In addition to being the most diverse area with respect

to the spatial composition of SST, our data also

indicated interannual SST in the EAI was less variable,

and therefore possibly more stable than other areas,

especially the WAI. The environmental variability

hypothesis proposes that temporally less variable

environments permit greater species richness because

species are likely to evolve narrow ecological niches,

whereas variable environments have less species richness

because fewer species are able to tolerate the stressful

conditions of a varying environment (Ruggiero and

Kitzberger 2004). Because species typically are capable

of coexisting in stable environments (May 1973),

environmental conditions within the EAI may have

been beneficial for Steller sea lions. Organisms in stable

ecosystems are faced with fewer or less severe challenges

and more energy can be allocated to growth, reproduc-

tion, and ultimate population increase (Connell and

Orians 1964). For example, Raum-Suryan et al. (2004)

found juvenile Steller sea lions remained close to shore

while foraging skills were being developed and suggested

the predictability of prey resources adjacent to rookeries

and haulouts was critical to survival.

Interannual variability of SST was greater for the

WAI than for any other region, possibly resulting in a

less stable area for sea lions. In contrast to environ-

mental stability, unpredictable environmental variation

may not allow population assemblages to reach equilib-

PLATE 1. Steller sea lions (Eumetopias jubatus) on Mitrofania, Alaska (USA). Photo credit: L. W. Fritz.
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rium (Owen 1990). Because organisms generally tend to

tolerate a narrow range of variation in the environment,

extinction rates of rare species also tend to increase in

areas with environmental fluctuations (Connell and

Orians 1964). Environmental fluctuations may impact

individuals or populations directly (physiologically via

metabolic and reproductive processes) or indirectly by

affecting prey, predators, and competitors (Stenseth et

al. 2002). For example, lower SST in the WAI may

require an increase in food consumption because a larger

subcutaneous lipid store is necessary for thermoregula-

tion in colder habitats (Arnould et al. 1996, Kitts et al.

2004). Water temperature may also influence the

spawning, behavior, survival, and availability of forage

fish (Bailey et al. 1995). Walleye pollock, Atka mackerel,

and Pacific cod, which are common in the diet of Steller

sea lions, are either directly affected by temperature or

feed on zooplankton or other fish species that respond to

temperature changes (Ottersen et al. 1994, Rothschild

1994, Orlov 1997, Yang 1999, Sundby 2000, Shima et al.

2002). These factors, coupled with the need for greater

food consumption (Winship and Trites 2003) and the

possibility that the prey base is not diverse or rich, may

have exacerbated the decline of sea lions in the WAI.

Our results were similar to Rodionov et al. (2005) who

examined the seasonal changes in surface air tempera-

ture (SAT) across the Aleutian Islands and found more

variable SAT in the WAI on interannual time scales.

Rodionov et al. (2005) hypothesized that increased SAT

variability in the WAI may have contributed to the

decline of Steller sea lions in the region by impacting

them directly (e.g., increased physiological stress) or

affecting the production of prey.

Chlorophyll a heterogeneity

The spatial pattern of environmental heterogeneity as

characterized by mean chl a diversity was inconsistent

with patterns of SST diversity, diet diversity, and

population trends of Steller sea lions. Chlorophyll a

diversity was lowest in the WAI and greatest in the

CGOA, which were both areas of Steller sea lion decline.

These results suggest that resources may be scarce and

incapable of sustaining sea lion or prey populations in

areas of low productivity or diversity (WAI), whereas

there may also be a critical threshold after which the

environment may be too productive or diverse for sea

lions to utilize efficiently (CGOA). These data support

the conceptual idea that some environmental heteroge-

neity may be advantageous, but too much heterogeneity

may lead to reduced encounters between sea lions and

their prey. Overall, it appeared that intermediate areas

of chl a diversity may offer the best combination of food

and competitor exclusion. Denslow (1980) suggested

that habitats of intermediate productivity tend to be

more common (as was the case for our study) and

support more individuals because species evolve to deal

with the most common habitat conditions.

The extreme values of chl a diversity corresponding to

the two regions of population decline likely have

different effects on Steller sea lions and their prey. The

WAI are characterized by a very narrow, steep shelf with

limited productivity with respect to the rest of the

Aleutian archipelago (Mordy et al. 2005) and it is

believed that decreased productivity in this region was

responsible for decreases in species richness and walleye

pollock abundance (Logerwell et al. 2005). Decreased

productivity or diversity in this area may also be

disadvantageous for Atka mackerel, which is a plank-

tivorous fish. Because habitat composition appears to be

important for the persistence of populations, including

those of endangered territorial animals (Gilpin 1987,

Lande 1987, Andrén 1994), the abundance of Steller sea

lions may have been adversely affected by decreased

concentrations of chl a coupled with the spatial

composition of chl a.

Although variations in primary productivity resulting

from changes in oceanographic conditions may be the

link between climate and animals at higher trophic levels

(Strom et al. 2006), this did not appear to be the case for

the CGOA. During this study, SST and chl a appeared

coupled (Fig. 4), but given the amount of variation

explained by the analyses and the discordance between

the spatial patterns of SST diversity and chl a diversity

for the EAI and CGOA, it is possible that processes

other than those associated with SST contributed to the

spatial heterogeneity of chl a in the CGOA. Sea surface

temperature can also be associated with more than one

mechanism (i.e., fronts, upwelling) related to the

aggregation or production of phytoplankton and these

mechanisms may have differed among regions. Further-

more, the dominant mechanisms responsible for gener-

ating the pattern of chl a diversity in the CGOA may not

have been associated with SST at all. Strom et al. (2006)

found a weak relationship between phytoplankton

growth rates in the GOA and environmental variables,

including temperature, and concluded that no single

resource could predict the response of phytoplankton to

physical events in this area. It is also believed that local

topography such as bathymetric structures contribute to

regional differences in mid-trophic assemblages in the

GOA and eastern Bering Sea, which is utilized by sea

lions from the EAI (Doyle et al. 2002).

Despite the productive conditions of the CGOA

during this study, diet richness and diversity were low

and the population of Steller sea lions in this region

continued to decline over the five years. Although the

mechanisms responsible for this pattern are unknown, it

has been proposed that disturbance, interspecific density

dependence, predation, competitive exclusion, and

competition for space can all occur as productivity

increases (Tilman 1982, Abrams 1988, Leibold 1999).

Our data further suggest that the bottom-up construct

we proposed became disjunct at mid-trophic levels. This

hypothesis warrants further investigation because the

number of intermediate trophic levels has major
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consequences for the amount and type of higher

predators that can be supported (Strom et al. 2007).

Additionally, primary productivity commonly settles

out as detritus before it can be used by other trophic

levels (Pauly and Christensen 1995). The spatial pattern

of chl a relative to sea lion population trends may have

also been attributed to time lags between the onset of

productivity, the response of intermediate-trophic-level

biota including fish populations, resource utilization by

Steller sea lions, and population growth. Unfortunately,

our five-year time series was not sufficient for detecting

lagged effects, which have been evident for other studies

(Jaquet et al. 1996). This deserves further attention,

however, especially in light of the latest Steller sea lion

survey, which was conducted during 2007 and indicated

numbers are now increasing in the CGOA (area of sea

lion decline with greater chl a diversity during the time

frame of our study), but declining in the CAI (area of

sea lion increase with lower chl a diversity; Fritz et al.

2008).

The implications described above for the temporal

variability of SST may not have been an issue for chl a

because interannual variability of chl a in the CGOA

was similar to that in the EAI, where sea lions did not

appear to be negatively impacted. Additionally, the

interannual variability of chl a in the WAI did not

coincide with the interannual variability of SST, lending

support to the idea that SST may have had direct

impacts on the prey of sea lions. It was not surprising to

find that chl a variability was similar between the eastern

regions (CGOA and EAI) and similar between the

western regions (WAI and CAI) because an abrupt

change in water properties, including chlorophyll

fluorescence, occurs between the eastern and central

Aleutian Islands near Samalga Pass at ;1708 W (Fig. 1;

Ladd et al. 2005a, Mordy et al. 2005). Despite the

reduced concentrations of chlorophyll in the western

regions, sea lions from the CAI increased, perhaps a

result of the spatial heterogeneity of chl a noted above.

As for the eastern regions, the cyclical patterns of

annual, summer median chl a deserve more attention

with respect to other physical structures such as eddies,

which are seasonally modulated, interannually variable,

and have been associated with high chlorophyll concen-

trations (Okkonen et al. 2003, Ladd et al. 2005b).

Although interannual variability of summer chl a was

analyzed for each region during this study, intraannual

variability and diversity were not examined. However,

the marine environment is not static, rather it is in

constant flux characterized by disturbance and change.

It is well known that the distribution of chl a in the

GOA varies seasonally (Brickley and Thomas 2004) and

our summer composites may not have been a represen-

tative sample for the entire year. Although it appeared

that sea lion population decline occurred in an area of

high productivity and diversity, this pattern may have

been an artifact of our sampling design because sea lions

are obviously dependent on resources throughout the

year, which may not have been as plentiful beyond the

summer months. It is also possible that the patterns we

observed were a result of underlying processes operating

at different temporal scales within each of the regions.

Unfortunately, it is often difficult to infer trophic

relations with simple correlation analyses of abundance

data because predators typically respond to prey over a

wide range of spatial and temporal scales (Russell et al.

1992). For example, the temporal scale of nutrient

depletion and zooplankton grazing in the Aleutian

Islands may not have corresponded with that of the

CGOA. Because we were working with a three-month

‘‘snap shot’’ in time, chl a may have appeared lower in

the Aleutian Islands as a result of these factors. Given

these constraints, the prospect of chl a being an

appropriate proxy for sea lion prey should be considered

further.

Although bottom-up trophic linkages among produc-

tivity, diet, and reproductive success or population

dynamics of apex predators have been documented for

other systems (Hyrenbach and Veit 2003), the mecha-

nistic links between oceanographic features, prey avail-

ability, nutritional stress, and changes in sea lion

demographics remain a critical research challenge

(National Marine Fisheries Service 2008). Our data

support the idea that regions of high prey diversity may

reflect an environment of high habitat diversity or

productivity (Sinclair and Zeppelin 2002). However, the

functional relevance of our results is still unclear,

especially when examined within the context of sea lion

demography. We should also note that our data become

even more uncertain if a conservative approach is

applied (see Table 3 for an example). Studies in the

future should be employed to simultaneously sample the

prey environment while examining the fine-scale forag-

ing behaviors of Steller sea lions using GPS technology

coupled with in situ measurements of water temperature

and fluorescence.

Results should be interpreted with caution because

satellite imagery differed among regions due to unequal

cloud cover and sea lion sample sizes (including number

of tracked individuals used to infer habitat use and

number of fecal samples used to characterize diet) were

inconsistent among regions and years, possibly biasing

our models and results. It is also possible, if not

probable, that other mechanisms obscured the patterns

we observed among regions. Competition with fisheries

(Loughlin 1998, Hennen 2006), fisheries interactions

(Loughlin and York 2000), predation (Springer et al.

2003), fisheries management measures (Hennen 2006),

the reduction of incidental takes, or a combination of

these factors have all been implicated as regulators of

sea lion population change. It should also be noted that

trends in population abundance data tend to display a

gradual response to environmental change (Holmes and

York 2003, Holmes et al. 2007); thus, the comparisons

made during this study may have only provided a
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conservative picture of the possible effects of habitat

diversity on population trends of Steller sea lions.

Understanding the links between environmental

processes and the regulation of populations is challeng-

ing, but necessary for conservation of endangered

species and implementation of ecosystem-based fisheries

management measures. Overall, the goal of ecosystem-

based fisheries management is to maintain ecosys-

tem health and sustainability by recognizing that

ecosystems are composed of interconnected organisms

that collectively interact with their physical and biolog-

ical environment and preserving habitat, biodiversity,

and predator–prey relationships (Ecosystem Principles

Advisory Panel 1999, Livingston et al. 2005). The

ecosystem-based management approach also attempts

to integrate ecological thresholds and uncertainty into

models used to inform management decisions (Mangel

et al. 2000). For example, over the past few years,

measures of functional (trophic or structural habitat)

diversity and environmental factors have been incorpo-

rated into some Alaskan fisheries stock assessment

models as it has become increasingly evident that ocean

temperature and productivity influence the spatial

distribution and abundance of many fish species (Boldt

2005, Livingston et al. 2005). However, it is also

important for managers to understand how apex

predators such as Steller sea lions respond to these

measures before implementing ecosystem management

approaches and this study provided a basic framework

for identifying and defining habitat, quantifying patterns

of habitat, detecting natural variability, and formulating

conceptual models regarding ecosystem linkages and

tolerance thresholds.

Quantitatively characterizing patterns of variation

and understanding their correlates and consequences are

important steps in investigating the influence of spatial

heterogeneity on the structure and function of ecological

systems (White and Brown 2003). However, this study

represented only a short period within a nearly 30 year

decline, during which considerable changes occurred.

For example, severe declines first began in the EAI

during the early 1970s (Kenyon and Rice 1961, Braham

et al. 1980, Loughlin et al. 1992), but this area is now

relatively stable with respect to other regions comprising

the western DPS (Fritz and Stinchcomb 2005). Unfor-

tunately, understanding the effects of long-term envi-

ronmental change on the regulation of population

structure has been hampered by lack of historical data

on the abundance of Steller sea lions prior to the 1970s

(Francis et al. 1998), confounding effects of anthropo-

genic disturbance, three climatic regime shifts (Mantua

et al. 1997, Mantua and Hare 2002), and the idea that

proximate causes of mortality have changed during the

past three decades (York 1994, York et al. 1996, Holmes

and York 2003). With the standardization of sea lion

surveys, the progression of sea lion research, and the

advancement of computer power and software packag-

es, further studies should focus on the impacts of

environmental variability on the spatial structure and

population dynamics of Steller sea lions. An under-

standing of natural variability and the critical habitat of

this species will be fundamental for formulating models

that can be used to predict behavioral response as

habitat composition changes in the future.

Diversity indices are a nonspatial measure of compo-

sition without explicit reference to an ecological process

(McGarigal and Marks 1995, Gustafson 1998). Al-

though we attempted to interpret the ecological impli-

cations of our data, much uncertainty remains regarding

the mechanisms underlying the patterns of environmen-

tal heterogeneity we observed and their effects on the

demographics of sea lions. Additional studies should

also incorporate specific hypotheses with respect to

specific processes and diversity metrics should be used in

concert with spatially explicit metrics of configuration.

Understanding the metapopulation dynamics of Steller

sea lions will entail having a better understanding of

what defines suitable habitat and the spatial arrange-

ment of that habitat (Turner et al. 2001). The integration

of environmental heterogeneity with metapopulation

models will further our knowledge of the biogeography

of this species and will be useful for developing

additional conservation strategies.
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