
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Publications, Agencies and Staff of the U.S. 
Department of Commerce U.S. Department of Commerce 

9-2008 

A General Framework for the Analysis of Animal Resource A General Framework for the Analysis of Animal Resource 

Selection from Telemetry Data Selection from Telemetry Data 

Devin S. Johnson 
National Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service 

Dana L. Thomas 
University of Alaska Fairbanks, Fairbanks 

Jay M. Ver Hoef 
National Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service 

Aaron Christ 
Alaska Department of Fish and Game 

Follow this and additional works at: https://digitalcommons.unl.edu/usdeptcommercepub 

 Part of the Environmental Sciences Commons 

Johnson, Devin S.; Thomas, Dana L.; Ver Hoef, Jay M.; and Christ, Aaron, "A General Framework for the 
Analysis of Animal Resource Selection from Telemetry Data" (2008). Publications, Agencies and Staff of 
the U.S. Department of Commerce. 190. 
https://digitalcommons.unl.edu/usdeptcommercepub/190 

This Article is brought to you for free and open access by the U.S. Department of Commerce at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications, Agencies and 
Staff of the U.S. Department of Commerce by an authorized administrator of DigitalCommons@University of 
Nebraska - Lincoln. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/17210289?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/usdeptcommercepub
https://digitalcommons.unl.edu/usdeptcommercepub
https://digitalcommons.unl.edu/usdeptcommerce
https://digitalcommons.unl.edu/usdeptcommercepub?utm_source=digitalcommons.unl.edu%2Fusdeptcommercepub%2F190&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/167?utm_source=digitalcommons.unl.edu%2Fusdeptcommercepub%2F190&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/usdeptcommercepub/190?utm_source=digitalcommons.unl.edu%2Fusdeptcommercepub%2F190&utm_medium=PDF&utm_campaign=PDFCoverPages


Biometrics 64, 968–976
September 2008

DOI: 10.1111/j.1541-0420.2007.00943.x
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Summary. We propose a general framework for the analysis of animal telemetry data through the use of
weighted distributions. It is shown that several interpretations of resource selection functions arise when
constructed from the ratio of a use and availability distribution. Through the proposed general framework,
several popular resource selection models are shown to be special cases of the general model by making
assumptions about animal movement and behavior. The weighted distribution framework is shown to be
easily extended to readily account for telemetry data that are highly autocorrelated; as is typical with use
of new technology such as global positioning systems animal relocations. An analysis of simulated data
using several models constructed within the proposed framework is also presented to illustrate the possible
gains from the flexible modeling framework. The proposed model is applied to a brown bear data set from
southeast Alaska.
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1. Introduction
The ever-increasing availability of new technology to wildlife
researchers has led to the frequent use of telemetry data for
assessing habitat characteristics selected by animals. The ad-
vent of satellite technology, such as global positioning systems
(GPS), has allowed wildlife researchers to collect telemetry
data on a temporal scale that was not previously practical.
Observations can now be obtained many times per day for
many months with GPS devices. This development has in-
evitably led to a serious challenge to the usual independence
assumption present in many animal resource selection stud-
ies (see Manly et al., 2002). Traditionally, data are removed
from the sample until it is determined that an independence
assumption is valid (Swihart and Slade, 1985). We believe
that this removal of data defeats the purpose of employing
the latest technology. The solution is to include the effects of
autocorrelation in the analysis.

Another concern when evaluating animal resource selection
is assessing the availability of a resource. A common heuristic
definition of selection is resource use compared to resource
availability. Initial resource selection methods were based on
the animal selecting one of several categorical habitats in a
study area (Neu, Byers, and Peek, 1974; Byers, Steinhorst,
and Krausman, 1984). Availability of a habitat was defined
as the area classified as that particular habitat. Christ, Ver
Hoef, and Zimmerman (2005) note that the concept of avail-
ability is not as well defined when resources are not denoted
by categorical habitat designations. The inclusion of contin-

uously valued environmental resources as well as the concept
of an animal home range and movement confuse the issue
of what resources are actually available to an animal (Christ
et al., 2005). Using different definitions of availability can lead
to different inferences of selection (Porter and Church, 1987;
Buskirk and Millspaugh, 2006).

In recognition of the previously mentioned difficulties, as
well as other concerns with selection modeling, several al-
ternative models and modifications were proposed (see Sec-
tion 1.3 of Christ et al., 2005). The discrete choice (DC) model
was proposed by McCracken, Manly, and Vander Heyden
(1998) to allow availability to change over time, as well as
the inclusion of continuously valued resources. Ramsey and
Usner (2003) proposed an extension to the DC model that
accounts for serial correlation in categorical habitat data. To
account for both home range and serial correlation in animal
locations in selection inference Christ et al. (2005) and Christ,
Ver Hoef, and Zimmerman (2008) proposed a weighted dis-
tribution model. Rhodes et al. (2005) proposed a similar, but
slightly simpler, model with known home range centers. All
of these models illustrate different approaches to dealing with
inference from complex telemetry data. Unfortunately, there
is no general model for this type of data that researchers can
tailor to meet their specific needs.

In this article, we propose a general modeling frame-
work that can be used for analyzing resource selection us-
ing animal telemetry data. The model is composed of flexible
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components for both resource selection and movement. All of
the models presented will be for the analysis of data from a
single individual. Thomas, Johnson, and Griffith (2006) and
Ramsey and Usner (2003) use random effects models to make
population-level inference from multiple independent animals.
These methods can be applied to the individual models we are
considering. We, however, do not pursue that aspect in this
article.

The article proceeds in the following manner. In Section 2,
we develop the proposed framework and associated model no-
tation. Researchers can use the framework to build extremely
complex and flexible models but still maintain a cohesive
structure that can be interpreted (and critiqued) through-
out the ecological literature. Next, Section 3 briefly examines
some aspects of parameter estimation. Section 4 illustrates
that our proposed model is a generalization of many tradi-
tional resource selection and animal movement models. In
Section 5, a small simulation experiment is conducted. An
example analysis, using the models developed in this article,
is presented in Section 6. Finally, we conclude with some com-
ments in Section 7.

2. Model Development
2.1 A Weighted Distribution Approach
Resource selection functions (RSF) were first introduced by
McDonald, Manly, and Raley (1990) as an application of a
broader body of statistical literature known as weighted dis-
tributions (Patil, 2002). In the resource selection context one
can envision a “use” distribution with density fu(x) for a suite
of resources x. This is the distribution of resource values that
an animal actually uses. The resources are selected by the ani-
mal from a distribution of available resources that has density
fa(x). The RSF w(x) transforms fa to fu by selectively weight-
ing different resources, i.e.,

fu(x) = K−1w(x)fa(x), (1)

where K is a normalizing constant. Web Appendix A gives
some interesting interpretations of the selection function as
distance measures between fu and fa .

2.2 Incorporating Movement and Behavioral Effects
In order to accommodate animal movement and home range
constraints the weighted distribution model can be placed in a
spatiotemporal context where the resource, x, corresponds to
a spatial location, s, in a study area. Christ et al. (2005, 2007)
and Rhodes et al. (2005) present similar models for including
home range and movement, both of which are special cases
of the following general formulation. By explicitly including
movement and home range constraints via modeling, the data
can speak to the level and uncertainty of serial correlation
and home range scale and seamlessly pass that information
to uncertainty in selection parameters.

For the time being we will consider movement only. In a
study area S of area A, let a specific location be designated
by s and x(s) denote a vector of resource covariates that can
be measured at s. An animal is located in the study area T
times, not necessarily equally spaced. Denote the location of
the animal at time t as st . Further, let Ht−1 = {s1, . . . , st−1} be
the history of locations for the animal prior to time t. Denote
the probability density of locations used by the animal at time

t conditional on the history of used locations during the study
period as gu(st |Ht−1). Now, using the same framework as (1),
location use is modeled as a weighted version of the available
location density, ga , which depends on movement constraint
parameters to give

gu(st |Ht−1) = K−1
t w(st |Ht−1)ga(st |Ht−1), (2)

where w(st |Ht−1) is an RSF and Kt =
∫
S w(u |Ht−1) ×

ga(u |Ht−1) du. To include a home range effect, one might se-
lect a movement model ga that possesses a temporal limiting
distribution (see Section 4.4 for example).

Using a second iteration of weighting one can also account
for changes in behavior. Suppose the animal exhibits B differ-
ent behaviors, then a behavioral model can be constructed by
additional weighting of B different movement/selection mod-
els. This results in the following behavior/movement/selection
model,

gu(st |Ht−1) =

B∑
b=1

ϑ
(b)
t g

(b)
u (st |Ht−1), (3)

where ϑ
(b)
t ∈ [0, 1],

∑
b
ϑ

(b)
t = 1, and the form of g

(b)
u (st |Ht−1)

is given by (2) for each b = 1, . . . ,B. This formulation al-
lows the researcher to include auxiliary behavioral data, yt ∈
{1, . . . ,B}, by letting ϑ

(b)
t = I{b}(yt), the indicator function

for behavior b = 1, . . . ,B. Blackwell (1997, 2003) proposes
a model of this type for animal movement without selection
(i.e., w(b) constant in g

(b)
a (s |Ht−1) for each b).

3. Estimation and Inference
We begin our investigation into inference for the general class
of proposed selection models with maximum likelihood esti-
mation. Until now we have omitted any parameter notation.
For the remainder of the article, however, we allow w(x) to
depend on a parameter vector θw and fa to depend on a pa-
rameter vector θa . Because the observed data are animal use
locations, the resulting likelihood function is

L(θ;HT ) = gu(s1)

T∏
t=2

gu(st |Ht−1), (4)

where θ = (θw, θa) and gu(s1) is the marginal density func-
tion for the first location. If the selection movement model
is stationary then the gu(s1) would be the temporal limiting
distribution.

For Markov models (those that depend on Ht−1 only
through st−1) Christ et al. (2005) propose using the condi-
tional likelihood obtained by simply removing the gu(s1) term
in (4). They note that the loss of information in this approach
is small if the time series is long. Another approach, which we
take in Section 5, is to use gu(s1) ≈ w(s1)g∞a (s1), where g∞a (s)
is the temporal limiting distribution of the movement model
ga(st |Ht−1). A small number of simulations have shown this
to be a fair approximation.

Estimation methods in resource selection studies often em-
ploy an availability sample (locations randomly sampled by
the researcher) to approximate the study area. Logistic re-
gression is then used to estimate selection parameters (Manly
et al., 2002). There has been considerable debate in the lit-
erature recently concerning this approach (see discussions in
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Keating and Cherry, 2004; Johnson et al., 2006; Thomas and
Taylor, 2006). Johnson et al. (2006) provide a proof that, un-
der certain simplifying constraints, the maximum likelihood
estimator (MLE) derived from a logistic regression likelihood
is equivalent to the MLE derived from the true likelihood
for animal and researcher selections, provided the researcher
draws an availability sample from ga . If ga is unknown then
it is not possible to justify use of logistic regression with the
proof of Johnson et al. (2006) because it depends on drawing
a sample from an unknown distribution.

We believe it is more straightforward to consider using the
availability sample as a tool for approximating the normaliz-
ing constant in (2). This was initially proposed by McCracken
et al. (1998) for use with a DC model (see Section 4.2).
Their proposed approximation was constructed from a design
based estimator of the normalizing constant. We propose the
following generalization using importance sampling methods
(Givens and Hoeting, 2005, p. 163).

(i) For each animal selected location, st , independently
draw M “available” locations, utj , j = 1, . . . ,M , from
qt(· |Ht−1), where qt(· |Ht−1) is a density that is easy
to sample from and shares the same support as
gu(· |Ht−1).

(ii) Obtain the Monte Carlo MLE (MCMLE) θ̂mc by
maximizing Lmc(θ;HT ), which equals (4) with the
exception that, for t = 1, . . . ,T ,Kt is replaced with
the approximation

K̂t =
1

M + 1

{
M∑
j=1

w(utj |θ)ga(utj |Ht−1,θ)

qt(utj |Ht−1)

+
w(st |θ)ga(st |Ht−1,θ)

qt(st)

}
. (5)

The strong law of large numbers states that, asM → ∞, K̂t →
Kt almost surely (a.s.) for all t. If gu is in the exponential fam-
ily of distributions then Geyer and Thompson (1992) state

that θ̂mc
a.s.→ θ̂, the MLE based on the exact normalizing con-

stant. In addition, if mild regularity conditions hold then con-
vergence of likelihood gradients and the Hessian matrix are
also realized (Geyer and Thompson, 1992). This allows stan-
dard error calculation using the Hessian matrix.

It should be noted that one need not actually draw separate
samples for each animal location. All of the asymptotic results
still hold if one large sample from, say q(u), is drawn regard-
less of animal locations. Efficiency of approximation will in-
crease, however, with availability samples that track the path
of the animal. Essentially, the theory of importance sampling
states that the best approximation qt(· |Ht−1) is gu(· |Ht−1),
so, availability sample distributions “close” to the actual use
distributions will approximate the normalizing constant more
efficiently.

4. Past, Present, and Future
In this section, we explore different specifications of the gen-
eral movement model (3) that lead to previously proposed
resource selection models. By exploring these links, it enables
one to see what assumptions are being made when these mod-
els are employed for resource selection studies.

4.1 Categorical Habitat Model
Numerous indices have been proposed and compared for de-
scribing categorical habitat selection (Manly et al., 2002).
Alldredge, Thomas, and McDonald (1998) provide the fol-
lowing common assumptions for studies of categorical habitat
selection:

(i) Relocations of an animal are independent over time.
(ii) Every location s ∈ S is available to every animal at

every time.
(iii) Each location is uniquely characterized into resource

type h = 1, . . . ,H.
(iv) The selection function, w, depends on the location s

only through its habitat class designation.

Under these four assumptions one obtains ga(st |Ht−1) =
A−1, hence,

gu(st |Ht−1) ∝ whAh

/
H∑
k=1

wkAk h = 1, . . . ,H, (6)

where Ah is the area of S that is characterized by resource
type h and wh is the value of the RSF for resource h. If the
animal is located T times then (4) reduces to

LCAT (w) ∝
H∏
h=1




whAh

H∑
k=1

wkAk




Ch

, (7)

where C1, . . . ,CH are the number of times the animal is lo-
cated in each resource type.

The main benefit of this model is its simplicity and closed
form estimator. Many researchers have noted, however, that
the assumptions are often unrealistic. Also, continuously val-
ued resources cannot be considered (i.e., distance to water,
elevation, or percent vegetation cover).

4.2 Discrete Choice Models
The DC model has been proposed as a generalization of
the categorical model (McCracken et al., 1998; Cooper and
Millspaugh, 1999; Manly et al., 2002). Here, we illustrate how,
under specific assumptions, our general model reduces to a DC
model. The assumptions needed are as follows:

(i) The number of locations s ∈ S is of finite size N.
(ii) At each time t the animal has a set of locations (choice

set), Ct, from which to select the next location. All s ∈
Ct are equally available. The choice set Ct may depend
on Ht−1.

If these assumptions are met then ga(st |Ht−1) =
n−1
t ICt(st), where nt is the size of the choice set and ICt(st)

is an indicator function for the inclusion of st in Ct. If we
now model w(st |Ht−1) = exp{x(st)′α}, then the resulting use
density is given by

gu(st |Ht−1) =
exp{x(st)′α}ICt(st)∑

u∈S

exp{x(u)′α}ICt(u)
.
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Thus, general likelihood (4) reduces to

LDC(α) =

T∏
t=1

exp{x(st)′α}∑
u∈Ct

exp{x(u)′α}
.

Although locations can be made dependent by allowing Ct to
depend on previous locations, the way in which choice sets
are constructed, however, must be completely known to the
researcher.

4.3 Ramsey and Usner’s Persistence (PER) Model
Ramsey and Usner (2003) propose a DC model with a PER
parameter to model the tendency of animals to stay in the
same habitat type between successive relocations. In this sec-
tion, we illustrate how, under specific assumptions, (3) re-
duces to the PER model. The assumptions needed are as fol-
lows:

(i) At each time the animal selects a new location from S.
(ii) The animal follows two behaviors:

(a) with probability ϑ, select a location within S where
resources are identical to the previous location and

(b) with probability 1 − ϑ select a new location follow-
ing a DC model.

Under these assumptions the movement model is given by

ga(st |Ht−1) =

{
IRt(st)/rt with prob. ϑ

ICt(st)/nt with prob. 1 − ϑ
,

where Rt is the set of all locations in S such that the habitat
classification is the same as x(st−1) and rt is the size of Rt.
Now, the selection function is given by

w(st) =

{
1 with prob. ϑ

exp{x(st)′α} with prob. 1 − ϑ
.

Combining the movement and selection models gives

gu(st |Ht−1) = ϑ
IRt(st)
rt

+ (1 − ϑ)
exp{x(st)′α}∫

u∈S
exp{x(u)′α}

, (8)

which has the form of the behavior/movement/selection
model in (3). Using (4) the PER likelihood is

LPER(α, ϑ) ∝
T∏
t=1

ϑI{xt−1}(xt) + (1 − ϑ)

×
exp

{
H∑
h=1

αhI{h}(xt) + log(Ah/A)

}
H∑
h=1

exp{αh + log(Ah/A)}
, (9)

where xt = x(st) ∈ {1, . . . ,H} is the sequence of habitat
types in which the animal was located. Aside from some small
notational differences, this is the model Ramsey and Usner
propose.

The PER model generally does not make sense for a point
level model. Essentially, an animal would have to remain in

exactly the same spot as the previous location with probabil-
ity ϑ; an unlikely event. In addition, the researcher still needs
to completely define a known availability set.

4.4 Gaussian Process Movement Models
Here we propose a new model for analyzing resource se-
lection from telemetry data. Using the weighted distribu-
tion approach, building a model that incorporates all of the
improvements of previous resource selection modeling while
eliminating many of the pitfalls is straightforward. First, a bi-
variate Gaussian process model is used for animal movement.
Dunn and Gibson (1977) proposed an Ornstein–Uhlenbeck
model (OU), to incorporate home range in animal movement
models. Blackwell (1997) improved the OU model by allowing
for alternate behaviors in the same manner as Section 2.2 (see
Section 6 for example). Here we will focus on the single be-
havior model (2), but the extension to (3) is straightforward
(see Section 6).

The OU movement selection model is defined for observa-
tion times τ 1, . . . , τT as follows:

(a) ga(st |Ht−1) = N(µt,Λt),
(b) w(st) = exp{x(s)′ α},

where µt = µ + Bt(st−1 − µ),Λt = Λ − BtΛBt, and
Bt = Diag(exp{−(τ t − τ t−1)/φ}). Blackwell (2003) notes that
a single autocovariance parameter φ is usually sufficient.

One can interpret µ and Λ as defining the center and
spread, respectively, of an elliptical home range. Technically,
however, µ represents a central attraction point and Λ is a
positive definite matrix that controls the strength of attrac-
tion from various locations in the study area. The limiting
distribution, g∞a (·), for the OU process is N(µ, Λ). The range
of correlation in locations can be inferred from φ by noting
Corr(sτ , sτ+3φ) ≈ 0. Therefore, at a time separation of 3φ,
locations can be considered independent. Christ et al. (2005,
2007) consider a model similar to the OU model by using
a vector autoregressive (VAR) movement model. In fact, for
uniform observation times, the OU model can be reparame-
terized to VAR form. One benefit of the OU form is that it
automatically handles nonuniform observation times.

There are additional benefits of the OU movement selection
model. First, like the PER model, autocorrelation is included
in the model. Unlike the PER model, however, the autocor-
relation is built in at the point level from physical principles
of motion. Second, like the DC model all environmental vari-
ables, categorical and continuous, as well as spatial resolu-
tions, can be modeled without loss of interpretability. Unlike
the DC model, however, choice sets do not need to be defined
by the user. The data speak to the availability of resources
via the estimated Λ and φ.

Another Gaussian process that would be useful for ani-
mals with no home range effects is a standard Brownian mo-
tion (BM) model. The BM model is very similar to the OU
model. Essentially, the same model is used with µt = st−1 and
Λt = Λ(τ t − τ t−1). Usually, one also uses the constraint that
Λ ∝ I, but this is not necessary. The BM movement model
does not have a stationary distribution so the likelihood must
condition on s1.
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Table 1
Bias and RMSE properties of selection coefficient maximum

likelihood estimators for the simulated data sets

Independence range

Estimator property Model 20 10 5 1

Relative bias (α1) OU 0.01 0.01 −0.01 0.03
DC −0.2 −0.28 −0.36 −0.34
PER −0.19 −0.28 −0.36 −0.34

Relative bias (α2) OU −0.07 0.01 −0.09 0.02
DC −0.95 −0.99 −1.23 −1.17
PER −0.95 −0.99 −1.23 −1.17

RMSE (α1) OU 0.29 0.26 0.24 0.3
DC 0.46 0.5 0.59 0.59
PER 0.44 0.5 0.59 0.59

RMSE (α2) OU 0.36 0.31 0.36 0.32
DC 0.87 0.82 0.99 0.94
PER 0.85 0.82 1.00 0.93

Table 2
Power and 95% confidence interval coverage of selection
coefficient maximum likelihood estimators for simulated

data sets

Independence range

Estimator property Model 20 10 5 1

Power (α1) OU 1.00 1.00 1.00 1.00
DC 0.99 0.97 0.98 0.97
PER 0.98 0.97 0.98 0.97

Power (α2) OU 0.51 0.65 0.56 0.63
DC 0.07 0.03 0.01 0.01
PER 0.06 0.00 0.01 0.01

95% CI coverage (α1) OU 0.96 0.94 0.99 0.91
DC 0.66 0.64 0.37 0.43
PER 0.78 0.68 0.4 0.46

95% CI coverage (α2) OU 0.97 0.98 0.92 0.95
DC 0.43 0.38 0.19 0.19
PER 0.54 0.44 0.23 0.19

The general likelihood for a Gaussian process model is,

LGP (α,θGP )

=

T∏
t=1

exp
{
x(st)′α + (st − µt)

′Λ−1
t (st − µ)

/
2
}∫

S
exp

{
x(u)′α + (u − µt)

′Λ−1
t (u − µ)

/
2
}
du
, (10)

where θGP are the movement parameters used to model µt and
Λt . Note that the Gaussian process models have the form of a
DC model with anisotropic distance to the last location as a
covariate. If Euclidean distance were used as a covariate (see
Example 8.2 in Manly et al. [2002]) it would be equivalent to
using a bivariate Laplace distribution centered on st−1 for the
movement model.

5. A Simulation Experiment
In order to demonstrate the benefits of using the framework
to construct more realistic models for selection from teleme-

try data we provide the results of a simulation experiment.
The simulation experiment provides a solid base for judging
whether a more complex model, such as the OU model, al-
lows a researcher to make better inference concerning resource
selection.

5.1 Details of the Experiment
In the experiment we compared three models: DC, PER, and
OU. The same RSF, w(s) = exp{x(s)′α}, was used through-
out all simulations. Animal paths were simulated from a dis-
cretized version of the OU model on a 100 × 100 grid of loca-
tions. The MLE for each path was calculated from (4) for each
model. For the OU model we used gu(s1) ∝ w(s1)g∞a (s1). Mod-
els were compared using relative bias ([simulation average −
true value]/true value), root mean square error (RMSE),
power to detect positive selection coefficients (one-tailed test,
5% significance level), and 95% CI coverage. Because the data
are simulated from the OU model it was fully expected that
the OU model would perform the best. What was unknown,
however, was the degree to which it would outperform the
others.

A study area with three categorical habitat levels on which
paths were simulated was constructed. The environment in-
cluded equal amounts of the three habitat types. Next, 100
paths of T = 100 observations were simulated under four lev-
els of autocorrelation, φ = 20/3, 10/3, 5/3, and 1/3. These
correspond to independence at roughly 20, 10, 5, and 1 time
units. For the home range parameters we set µ = (50, 50),
Λ = 200I. Finally, and most importantly, the selection pa-
rameters were set at α = (0, 1.5, 0.75). The coefficient α1 was
held fixed at zero for identifiability (implying the remaining
coefficients represent log relative selection ratios). See Web
Figure 1 for example.

5.2 Results of the Experiment
The results of the selection parameter comparisons are pre-
sented in Tables 1 and 2. As expected, the OU model per-
formed better than the DC or PER models. The magnitude
of the DC and PER model shortcomings was, however, unex-
pected. In terms of relative bias, RSME, power, and CI cover-
age, the OU model gave significant improvements in selection
parameter inference.

The OU model estimates are approximately unbiased for
each dependence range (Table 1). RMSE held nearly constant
over each of the dependence ranges (0.24–0.36). Table 2 shows
that for the largest selection parameter (α2) power to detect
α2 > 0 was uniformly 1.0. The power to detect α3 > 0 ranged
from 0.51 to 0.65. CI coverage ranged from 92% to 99% for
both coefficients. Web Table 1 contains the results for the OU
movement parameters.

The DC and PER models were nearly identical with respect
to bias. They both had uniformly negative bias that is posi-
tively related to the dependence range. The bias magnitude
increases as the observations become independent. Because
of this bias, the same phenomenon occurred with RMSE (Ta-
ble 1) and CI coverage rates (Table 2). Power to detect α2 >
0 was nearly 100% for both models at all dependence levels
(Table 2). For α3, however, power was almost 0%. Model mis-
specification and resulting negative bias contributed to power
below 5%. CI coverage ranged from approximately 40% to
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Figure 1. Bear locations for the example data set examined in Section 6.

80% for α2 and 20% to 50% for α3 with coverage higher for
the PER model as expected.

6. Brown Bear Example
Here we present analysis of selection for a single male brown
bear (Ursus arctos) in southeast Alaska. We compared a va-
riety of models that belong to the general class defined by
(3). Data were collected, on average, every 1.72 hours, with
a range of 0.46–22.01 hours using a GPS collar. The animal
was located on T = 457 occasions (Figure 1).

We are interested in two resources for which selection could
be inferred. First, a categorical habitat class is available via a
50-m-resolution GIS layer. The classes included: estuary, non-
forest, clearcut, scrub forest, small forest, medium forest, and
large forest. Second, perpendicular distance from the near-
est stream was also calculated on the centroids of the 50-m
grid. In order to make the analysis computationally tractable,
the 50-m grid was aggregated to a 256 × 256 grid and bear
locations were snapped to the centroid of the grid. The cell
centroids are then modeled as the only available locations in
the same manner as the simulation experiment. Habitat layer
aggregation was accomplished by selecting the majority habi-
tat type within cells which were combined. For the stream
distance variable, the mean distance was used for aggrega-
tion.

In the analysis of the bear data five different selection mod-
els from the general class were fit. First, the data were naively
modeled with a DC model, which assumes the entire study
area was available for each use location. We used this as a
base which states that there are no home range or serial cor-
relation effects. Secondly, to include time correlation effects
only, we utilized a BM movement model. Finally, to include
time and home range effects, an OU movement model was em-
ployed. Looking at Figure 1, however, one can see that there

is a possible behavioral shift in which the bear moves to an-
other foraging area in the northwest section of the study area.
Therefore, three OU models were fit. The first is as described
in Section 4.4, a single set of home range parameters (OU1). In
the second model, OU2, a known behavior indicator yt ∈ {1,
2} was employed to model two separate circular home ranges
(i.e., Λ ∝ I). Finally, in model OU3, two elliptical home range
distributions were modeled using the yt indicator.

Each model was fit to the data using maximum likelihood
estimation, where the likelihood function in (4) was used. In
order to broadly compare models Akaike information crite-
rion (AIC), and subsequently the Akaike weight, was calcu-
lated for each model (Burnham and Anderson, 1998). The
bimodal-elliptical home range model, OU3, was clearly the
optimal AIC model even with its 18 parameters (Web Ta-
ble 2). The OU3 model collected 99% of the Akaike weight
for the group of models. It was distantly followed by the
circular home range model (OU2; 14 parameters) with 1%
of the weight. The remaining models possessed zero weight
of evidence. The DC model was clearly inadequate, imply-
ing the existence of strong serial correlation and home range
effects.

The parameter estimates along with p-values for each fitted
model are given in Table 3. One can notice some marked dif-
ference in parameter estimates and significance levels between
models. For the most part, the naive DC model is overly op-
timistic in its assessment of significance for most of the selec-
tion parameters. When comparing the four movement models
there is little disagreement between the selection coefficients
in direction and magnitude. There is a general rise in p-values
for the selection coefficients as one proceeds from low to high
model complexity, suggesting that the movement portion of
the model gives a better explanation of the data than some
of the resource covariates.
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Table 3
Bear data resource selection function parameter estimates. Values in parentheses are p-values for a Z test of difference

from zero.

Model

Resource DC BM OU1a OU2b OU3c OU3 (MCMLE)d

Habitat
Estuary −2.34 (0.000) −9.61 (0.137) −8.53 (0.641) −9.10 (0.769) −8.49 (0.714) −9.81 (0.675)
Nonforest −0.18 (0.339) −1.08 (0.000) −1.02 (0.001) −0.70 (0.026) −0.69 (0.030) −1.13 (0.001)
Clearcut −2.34 (0.000) −0.93 (0.004) −0.92 (0.005) −0.99 (0.0044) −0.91 (0.009) −1.76 (0.000)
Scrub forest −0.68 (0.000) −0.58 (0.021) −0.48 (0.075) −0.10 (0.7196) −0.09 (0.742) −0.69 (0.021)
Small forest −1.26 (0.000) −0.45 (0.131) −0.36 (0.256) 0.07 (0.827) 0.08 (0.814) −0.11 (0.737)
Medium forest 0.40 (0.004) −0.65 (0.007) −0.67 (0.006) −0.43 (0.090) −0.41 (0.115) −0.65 (0.013)
Large forest 0.00 (NA) 0.00 (NA) 0.00 (NA) 0.00 (NA) 0.00 (NA) 0.00 (NA)
Stream distance −3.50 (0.000) −1.94 (0.000) −1.88 (0.000) −2.26 (0.000) −2.11 (0.000) −2.39 (0.000)

aSingle mean with elliptical covariance matrix.
bTwo means with circular covariance matrix.
cTwo means with elliptical covariance matrix.
dMC MLE with M = 2000.

The DC model ignores time and home range effects and
presents standard error estimates, hence significance values,
which do not reflect realistic parameter uncertainty. The neg-
ative nonforest coefficient becomes more significant when time
and home range effects are included. This is due to the fact
that over the study area as a whole there is not as much non-
forest habitat as there is available to the bear when a time
dependent availability window is used.

Focusing on the optimal AIC model, OU3, more closely, we
can make some biological inference concerning the selection
function of the bear. Relative to large forest habitat, there
is no significant selection of the other forest classes. There
is significantly negative selection of clearcut and nonforest
habitat. There is a significant, strongly negative selection of
habitat located far from streams. This is expected due to the
large dependence of brown bears on salmon in streams. The
fact that a bimodal home range was observed implies that
there is evidence of multiple spatial scales of selection. The
bear seems to first select a larger general “foraging” home
range in which small scale selections of habitat are made while
it forages. Figure 2 illustrates selection and use distributions
of the bear. The strong selection of river corridors is strongly
present in Figure 2d.

In order to examine the effect of using an availability sam-
ple as an approximation to the exact MLE a sample of M =
2000 locations on the grid was chosen with proposal qt(u) =
A−1. The MC MLE was calculated using (5). The MCMLE
selection coefficients are presented in Table 3 along with the
OU3 MLE. For the most part the results are qualitatively the
same as the exact MLE. There are, however, some differences.
Both scrub and medium forest coefficients have become more
negative and significant. Nonforest and clearcut coefficients
have also become slightly more negative, but, these were al-
ready significantly different from zero, so qualitatively remain
unchanged.

The MLE for the movement portion of the OU3 model
can also provide some interesting information (Web Table 3).
The MLE of the autocorrelation parameter φ̂ = 45.89 which
implies that observations 3 × (45.89 ± 9.41) ≈ 138 ± 28 hours
apart are roughly independent. MCMLE estimates were very
similar to the exact MLE. Area within the 75% ellipses, A(b)

defined by each µ(b) and Λ(b) were also calculated (Web Ap-
pendix B). For the bear data, area and 95% confidence in-
tervals are Â(1) = 4017.27 ± 68.42 and Â(2) = 1921.56 ± 70.34.
The first occupied home range was significantly larger than
the second (Z = 3.35, p = 0.0004). Perhaps there was some
missing factor leading to a smaller home range and availability
window for movement once the bear switched primary loca-
tion. This could be related to terrain differences or perhaps
another bear.

7. Discussion
The proposed general framework and associated model take
a large step in unifying the methodologically diverse field of
animal resource selection. With the proposed model build-
ing framework researchers can build models tailored to their
particular species of interest, yet the model framework con-
tains common aspects such that comparisons between differ-
ent studies can be made.

The example analysis presented herein was concerned with
data from a single animal. Even with that simplification, ob-
taining parameter estimates was computationally expensive.
Estimating parameters for large (or fine resolution) study ar-
eas or large numbers of animals may become problematic.
MCMC procedures for multiple animal random effects mod-
els such as Thomas et al. (2006) are difficult to implement
with computationally expensive likelihoods.

In addition to estimating population level selection parame-
ters with multiple animals Bayesian inference could be used to
account for data uncertainty or location prediction. A hierar-
chical model could be envisioned in which (3) models the true
locations of an animal and the observed locations are equal
to the true location plus some random error. This approach
could also be used with habitat measurement error as well.
Predictive distributions are hard to obtain (due to Kt) with
the general model. Within an MCMC framework, however,
they are relatively easy to obtain. Christ et al. (2005) have
used posterior location predictions derived from MCMC sim-
ulation to estimate a spatial use distribution that accounts for
home range effects as well as selection. This approach could
be applied to these models in general.
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Figure 2. Use and selection for fitted OU3 model in Section 6. Figures (a)–(b) are the estimated use distributions for
t = 100, 319, and 440, respectively. The solid dot is the previous location and the open circle is the realized location.
Figure (b) illustrates the transition move between primary foraging areas. Figure (d) is the map of w(·) normalized to 1.

The general framework presents a cohesive way to view
and develop models for telemetry data now and in the future.
Telemetry technology will only improve in the future. Thus
the field needs general methodology that has room to expand
as the answerable questions become more complex. The pro-
posed framework possesses this type of “room to grow.”

8. Supplementary Material
Web Tables, Figures, and Appendices A and B, referenced
in Sections 2.1, 5.1, and 6, respectively, R code for imple-
menting the OU model, and the bear data are available un-
der the Paper Information link at the Biometrics website
http://www.biometrics.tibs.org.
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