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Abstract. Analyses of ecological data should account for the uncertainty in the process(es)
that generated the data. However, accounting for these uncertainties is a difficult task, since
ecology is known for its complexity. Measurement and/or process errors are often the only
sources of uncertainty modeled when addressing complex ecological problems, yet analyses
should also account for uncertainty in sampling design, in model specification, in parameters
governing the specified model, and in initial and boundary conditions. Only then can we be
confident in the scientific inferences and forecasts made from an analysis. Probability and
statistics provide a framework that accounts for multiple sources of uncertainty. Given the
complexities of ecological studies, the hierarchical statistical model is an invaluable tool. This
approach is not new in ecology, and there are many examples (both Bayesian and non-Bayesian)
in the literature illustrating the benefits of this approach. In this article, we provide a baseline for
concepts, notation, and methods, from which discussion on hierarchical statistical modeling in
ecology can proceed. We have also planted some seeds for discussion and tried to show where
the practical difficulties lie. Our thesis is that hierarchical statistical modeling is a powerful way
of approaching ecological analysis in the presence of inevitable but quantifiable uncertainties,
even if practical issues sometimes require pragmatic compromises.

Key words: Bayesian modeling; data model; design; empirical Bayes; harbor seals; MCMC; prior;
process model; spatial process; spatiotemporal process.

INTRODUCTION

The field of ecology is becoming increasingly aware of

the importance of accurately accounting for multiple

sources of uncertainty when modeling ecological phe-

nomena and making inferences. This development is

motivated in part by the desire to provide an accurate

picture of the state of knowledge of ecosystems and to be

able to assess the quality of predictions of local and

global change (Hilborn and Mangel 1997, Daszak et al.

2000, Clark et al. 2001, Beckage and Platt 2003, Clark

2005, Ibáñez et al. 2006, Sacks et al. 2007). However,

accounting for various sources of uncertainty is by no

means a simple task.

Ecological data are almost always observed incom-

pletely with large and unknown amounts of measure-

ment error or data uncertainty, and often the expense of

data collection prohibits collecting as much data as

might be desirable. How much and where to sample are

important design questions (e.g., Stevens and Olsen

2004). In addition, most ecological phenomena of

interest can only be studied by combining various

sources of data; aligning these data properly presents

interesting statistical challenges. While data play a large

role in most ecological analyses, incorporating scientific

knowledge through substantive modeling of ecological

processes is essential. Often such process modeling is

based on competing scientific theories and simplifica-

tions of reality. This results in an additional source of

uncertainty, termed model or process uncertainty.

Furthermore, substantive models should acknowledge

parameter uncertainty. Parameter uncertainty can be

handled either by estimating the unknown parameters

(empirical-Bayesian analysis) or by expressing that

uncertainty via a prior probability distribution (Baye-

sian analysis); see, for example, Ver Hoef (1996), Carlin

and Louis (2000), and Gelman and Hill (2006), where

the two approaches are presented. An empirical-

Bayesian analysis looks for plug-in estimates and may

avoid more realistic and flexible specifications that can

include variation over space and time. The Bayesian

analysis can use such variation to help with the choice of

the prior distribution.
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In April 2006, a workshop on ‘‘Uncertainty in

Ecological Analysis’’ was held at the Mathematical

Biosciences Institute (MBI), The Ohio State University.

The workshop organizers, who are the authors of this

paper, believe that the workshop demonstrated how

hierarchical statistical modeling is a powerful approach

for dealing with uncertainty in ecology. As will be

exposited in the sections that follow, it is a statistical

methodology for handling complex (ecological) prob-

lems by building a hierarchy of statistical models:

Broadly, the first level of the hierarchy is a data model,

the second is a process model, and the third (optional)

level is a parameter model. It also provides a framework

for how a team of scientists might work together, and it

partitions variability/uncertainty in a way that can

suggest study designs where uncertainty can be con-

trolled. Both the Bayesian and non-Bayesian (i.e.,

empirical-Bayesian) versions of the hierarchical statis-

tical model are presented, reflecting the diversity of

workshop participants’ views.

This paper does not introduce new methodology, but

it is meant to reach, and engender discussion from,

readers of this journal. To illustrate the themes of the

article, we use an ecological study of harbor seals and

their abundance at haul-out sites in Prince William

Sound, Alaska, as reported by Ver Hoef and Frost

(2003). Harbor seals haul out to rest (da Silva and

Terhune 1988), molt (Boily 1995), and escape predators

(Watts 1992), among other reasons. They are monitored

for trend (e.g., Ver Hoef and Frost 2003) and abundance

(e.g., Boveng et al. 2003) in northern latitudes around

the world, and they are of particular interest in this

study because of potential long-term impacts from the

Exxon Valdez oil spill in 1989.

The organization of the paper is as follows. Modeling

in the presence of uncertainty addresses the general

notion of modeling in the presence of uncertainty and

features hierarchical statistical modeling. Design for data

collection in ecological studies addresses how hierarchical

modeling can contribute to experimental design and

data collection. Statistical inference in ecological analy-

ses discusses statistical inference in ecological analyses,

including treatment of computational aspects and model

choice. The paper finishes with a discussion of challenges

for hierarchical statistical modeling, presented in Chal-

lenges for hierarchical statistical modeling.

MODELING IN THE PRESENCE OF UNCERTAINTY

Why does one build models? Is it simply to organize

information? Does the model depend on the goal,

whether that is estimation, prediction, forecasting,

explanation, or simplification? Ultimately, modeling is

about the synthesis of information, whether that comes

from observations, or from the collective wisdom of a

team of scientists, or more broadly from diverse corners

of the relevant literature. We present a basic framework

here that accommodates the synthesis of information in a

coherent manner. The key to this framework is thinking

conditionally, something we argue comes naturally to

scientists. For example, we observe D conditional upon

E, E happens conditional upon P, and so forth. Not only

is this true in an observational context, but it is

appropriate when we think about processes as well.

Think of E as an ecological process; then Emight behave

in one way conditioned on one set of environmental

conditions and in another way under a different set of

conditions. The conditional behavior is endemic to the

process’s behavior, regardless of whether observations

are taken or not. Formally, we can link such thinking

within the context of conditional probabilities.

Let E denote our ecological process of interest. We

also observe some data that may, in some sense, be

relevant to this process; call these data D. A traditional

approach that has often been considered is simply to fit a

curve to different parts of the data D and to interpret the

parameters of that curve in some scientific context. For

example, in studies of population dynamics, population

counts are often modeled using standard nonlinear

growth curves, such as the Ricker or the Gompertz

curves (e.g., Wright 1926, Medawar 1940, Ricker 1954,

Bjornstad and Grenfell 2001) that are functions of

ecologically interpretable parameters. The goal is not to

find an exact fit to the data but, rather, to find parameter

values so that the curve ‘‘best’’ fits the data. To find these

best values for the unknown parameters, it is typically

assumed that the data D are generated according to the

growth curve up to additive error. However, such

considerations do not necessarily make a distinction

between the errors of observations (e.g., measurement

error) and the errors in modeling the process (e.g., error

due to model misspecification). For example, the model

may not account for the true underlying process

occurring on a much smaller scale (in space and/or

time) than that of the observations, which themselves

have error due to the particular measuring device.

Conceptually, it is important to separate out these

different sources of uncertainty.

An alternative to this ‘‘curve-fitting’’ approach is

formal statistical modeling. Here, we may wish to

specify a probability distribution for D that depends

on some parameters, say H. Thus, we might think about

estimating the parameters of this distribution, [D jH].

That is, can we find an estimate of the parameters H that

maximizes the likelihood (defined by the distributional

assumption made about D) of observing the data D?

Note that we are using the brackets ‘‘[ ]’’ to refer to a

distribution and the vertical bar ‘‘j’’ is read as

‘‘conditioned upon.’’ So, [A jB] would be read as ‘‘the

distribution of A conditioned upon B,’’ or ‘‘the

distribution of A given B.’’ In this framework, the

parameters H are assumed to summarize the ecological

process E appropriately, and it is assumed that there is

no uncertainty in this summarization. Although greatly

simplified, this is the idea behind much of classical

statistical inference in science. In this setting, the

observations on the process of interest are directly
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modeled without explicit reference to a statistical model

for the process E. The focus here is on a data model; it is

assumed that the uncertainty lies with the data and is

due to sampling and measurement.

Alternatively, we may sometimes be interested in

developing process models for E directly. Often these

models are deterministic. However, our knowledge of E

is always limited in some fashion, which suggests that

randomness should also play a role in process modeling.

Indeed, such thinking has long been crucial to ecological

modeling, where it has been incorporated into the

science (e.g., in the fire-simulation models of Catchpole

et al. [1989] or the forest-simulation models of Botkin et

al. [1972]). These random processes can, in turn, be

characterized by distributions that have associated

parameters, say PE. That is, we know the distribution

of [E jPE]. If we do not distinguish between observations

(which are called D in this paper) and their true values

(E ), then the usual likelihood analysis ignores uncer-

tainties about the relationship between E and D,

resulting in incorrect statistical inferences.

In hierarchical statistical modeling, both the random-

ness in the data and in the process are acknowledged.

This is achieved by specifying a model for D through a

series of conditional distributions. Instead of specifying

[D jH] directly, we decompose H into the ecological

process E and a set of unknown parameters PD that

describe uncertainty in the relationship between D and E

(e.g., Calder et al. 2003, Wikle 2003a). Then, after

accounting for the uncertainty in E, we have two

conditional distributions, [D jE, PD] and [E jPE], that

together comprise a hierarchical statistical model. We

now illustrate this conditional-probabilistic approach to

separating out the sources of uncertainty, with a case

study of harbor seals in Prince William Sound, Alaska.

The introduction given above to hierarchical statis-

tical modeling is quite general, motivated by generic

problems of curve fitting or population growth in a

random environment. For the rest of the paper we shall

use a specific ecological study to illustrate the strengths

and limitations of hierarchical statistical modeling.

Consider the harbor seals censuses from Ver Hoef and

Frost (2003) in Prince William Sound in Alaska, which

were collected as part of routine monitoring following

the Exxon Valdez oil spill in 1989 (see Plate 1). These

data were obtained by counting seals at a set of haul-out

sites photographed during aerial surveys. Surveys were

flown repeatedly for 7–10 days in August or September

each year from 1990 to 1999. A map showing the

geographical context and the sampling plan (sites were

surveyed in either the order of the sites’ identifying

indices or in the reverse order) is given in Fig. 1.

We now establish notation and a hierarchical

statistical model for the harbor seals study. Let Yij

denote the jth count for the ith site, i ¼ 1, 2, . . . , n. In

terms of our previous discussion, all of the counts for all

surveys and all sites form a set D ¼ fYijg. A Poisson

(e.g., Ver Hoef and Frost 2003) or negative binomial

(e.g., Boveng et al. 2003) is a natural probability

distribution to assume for count data. We can imagine

that for any given site at any given time, there is a true

number of harbor seals that ‘‘should’’ haul out, but we

are not able to observe that number. That is, harbor

seals are constantly sliding in and out of the water so

that at any given time the actual number that hauls out

is more or less than expected. Let this expected number

be kij, so we might consider Yij ; f(kij, j), where ‘‘;’’ is

read as ‘‘is distributed as’’ and f is the ‘‘Poisson’’

probability distribution or the ‘‘negative binomial’’

probability distribution with mean parameter kij and

variance parameter j (in the case of the negative

binomial). Write E ¼ fkijg and PD ¼ fjg, and hence

the joint distribution of all the data is [D jE, PD], where

this data model is conditional on the ecological process

E and a parameter j expressing variability in the data.

This model has very little ‘‘ecology’’ in it and it would

be very difficult to carry out inference because we have

one parameter (kij) per datum (Yij). However, we know

more about harbor seals; for example, we know that

counts are highest around low tide and midday, and we

know that they change seasonally (date, within year) and

there may be temporal trend (year). These factors reflect

our understanding of harbor seal biology, such as

FIG. 1. Map of Prince William Sound, Alaska, USA, with
the locations of n¼ 25 harbor seal haul-out sites superimposed.
The sites were chosen for aerial surveys to monitor harbor seal
trends following the Exxon Valdez oil spill in 1989. (Reprinted
from Ver Hoef and Frost [2003] with permission.)
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substrate availability and physiology, and we would like

to include them in the model. If we were omniscient, we

would have a perfect deterministic model for the

‘‘expected’’ harbor seal abundance, without error, on

every haul-out site for every instant of time. Lacking

that, we use a ‘‘smooth curve,’’ which is a function of a

set of unknown parameters and the available informa-

tion about the process (i.e., year, date, tide level, and

time of day), to describe the ecological process that

controls haul-out abundance. Since we acknowledge

that this curve does not accurately reflect the complexity

of this process, we account for errors from our

ecological process model by introducing an additional

source of randomness. This can be achieved by letting

log(kij) be distributed according to a normal (Gaussian)

distribution with mean lij [ li(yearij, dateij, tideij, timeij;

hi) and variance r2 for the ith site, where we assume that

flog(kij)g are conditionally independent given flig and

r2. For example, the smooth curve could be modeled as

liðyearij; dateij; tideij; timeij; hiÞ

¼ h0i þ h1iyearij þ h2idateij þ h3iðdateijÞ2 þ h4itideij

þ h5iðtideijÞ2 þ h6itimeij þ h7iðtimeijÞ2

where hi¼ (h0i, h1i, h2i, h3i, h4i, h5i, h6i, h7i); i¼ 1, . . . , n.

The parameter r2 could be viewed as describing the
random effect feijg in the equivalent process-model
formulation:

logðkijÞ ¼ lij þ eij

where feijg are independent and identically distributed
normal random variables with E(eij) ¼ 0 and var(eij) ¼
r2. In terms of our previous discussion, recall E¼ fkijg
and write PE¼fh, r2g, where h¼ (h1, . . . , hn). Hence, we
can obtain the conditional distribution of E, [E jPE],

conditional on the parameters PE.
In the conditional modeling described above, we have

accounted for the uncertainty in the process E by

modeling [E jPE]. In the data-generation mechanism, we
have accounted for the uncertainty by modeling [D jE,
PD] (for the harbor seals data, this is [fYijg j fkijg] for a
Poisson data model, or [fYijg j fkijg, j] for a negative-
binomial data model).

Returning to our general discussion of hierarchical
statistical modeling, we can combine the data model,
[D jE, PD], with the process model, [E jPE], to obtain the

joint uncertainties in the data D and the ecological
process E, as follows:

½D;EjPD;PE� ¼ ½DjE;PD�½EjPE� ð1Þ

which is a result from probability theory that shows how
the joint uncertainties can be expressed hierarchically

using conditional probabilities. We note that this is the
essence of Gaussian, linear, state-space models for

temporal processes, that result in Kalman filtering for
E at a current time based on data at current and past
times (e.g., Meinhold and Singpurwalla 1983, West and

Harrison 1997). In terms of the harbor seals study, Eq. 1
says that we obtain a joint model of the data and the
underlying ecological process, [fYijg, fkijg j j, h, r2],

now conditional on fewer parameters. Fig. 2A shows
this hierarchical model schematically, with conditional
dependencies shown by arrows linking the relevant

boxes. The first level is the data model, [D jE, PD] ¼
[fYijg j fkijg, j], and the second level is the process

model, [E jPE] ¼ [fkijg j h, r2]. From Eq. 1, the joint
model of the data and the underlying ecological process
is simply the product of the data model and the process

model. (The more complicated hierarchical model
shown in Fig. 2B will be discussed later in this section.)
Note that, so far, we simply have a Poisson regression

model for each site, and the sites are not assumed
related. This hierarchical model is a special case of a

generalized linear mixed model, where the ecological
process is a linear model with normal errors, and the
data model comes from the exponential family of

distributions (e.g., binomial, Poisson, gamma, Gaussian,
and so forth).
The formula given by Eq. 1 uses a general result from

probability theory that we present here for three random
variables,A,B, andC.Wemight try to specify directly the
joint probabilistic behavior of these three variables, [A,B,

PLATE 1. (Top) Aerial photo of harbor seals hauled out,
and (bottom) a close-up of a harbor seal. Photo credits: (top)
NOAA National Marine Mammal Laboratory, and (bottom)
Dave Withrow, NOAA National Marine Mammal Laboratory.
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C ]. Equivalently, we could use the following result based

on conditional probabilities: [A, B, C ]¼ [A jB, C ][B jC ]

[C ]. That is, the joint distribution can be factored into a

series of three distributions, namely two conditional

distributions, [A jB, C ] and [B jC ], and one marginal

distribution, [C ]. We refer to such a representation as a

hierarchical statistical model; Eq. 1 is such a representa-

tion for two random quantities, D and E, conditional on

parameters P [ fPD, PEg. Hierarchical statistical

modeling simply means that we decompose the joint

distribution into a probabilistically valid series of condi-

tional models: [D, E jP ]¼ [D jE, P ][E jP ]. We note that

a conditional-probability decomposition is not unique;

for example, we could write equivalently, [A, B, C ] ¼
[B jC, A ][C jA ][A ], and so forth. Part of scientific

modeling in the presence of uncertainty is to use a

decomposition that reflects the causal mechanisms: If C

causes B which causes A, then the original decomposition

is appropriate. Of course, getting the causal mechanism

rightmeans that the results from the hierarchical statistical

analysis are scientifically meaningful and interpretable.

We now use this framework to put the hierarchical

statistical model (Eq. 1) into a more general context.

Berliner (1996) gives the joint distribution of data,

process, and parameters using the following decom-

position:

½data; process; parameters�
¼ ½datajprocess; parameters�3½processjparameters�

3½parameters�

which we have just seen defines a hierarchical statistical

model. Note that in this case the parameters are

assumed to be random and thus they have a distribution.

Although there may be many cases in which one really

believes that this is scientifically plausible, it can also

simply serve as a mechanism for accounting for

uncertainty in our knowledge about the parameters. It

is also possible to build a simpler hierarchical model that

conditions on the parameters

½data; processjparameters�
¼ ½datajprocess; parameters�3½processjparameters�

which is Eq. 1. The parameters could then be estimated

in a separate inference step (empirical-Bayesian analysis;

in the ecology context; see e.g., Ver Hoef 1996) based on

[data j parameters]. Lele et al. (2007) show how this can

be achieved using a Markov chain Monte Carlo method

for the (non-Bayesian) hierarchical statistical model

given by Eq. 1.

The analogous model to (1) that incorporates

uncertainty in the parameters P ¼ fPD, PEg, is

½D;E;P�½DjE;P�½EjP�½P� ¼ ½DjE;PD�½EjPE�½PD;PE� ð2Þ

where we have used the obvious relationships, [D jE, P]
¼ [D jE, PD] and [E jP]¼ [E jPE] (e.g., Wikle 2003a). The

utility of such a decomposition is that it allows us to

account formally for uncertainty within each stage,

where the stages are linked in a probabilistically

consistent fashion, resulting in a Bayesian analysis

(e.g., Link et al. 2002).

Both types of analyses, empirical-Bayesian and

Bayesian, result in inferences on process values (E )

and parameter values (P). When making inference on E,

an empirical-Bayesian analysis substitutes in an estimate

FIG. 2. A schematic of the hierarchical statistical models for the harbor seals study. (A) The data model [D jE, PD] is the top
level with the process model [E jPE] at the second level. A Bayesian hierarchical statistical model would have a parameter model
at a third level. (B) As in panel A, except the linear model parameters from each site i are given a distribution [E (i ) jE (A), P

ði Þ
E ]. Here,

a Bayesian hierarchical statistical model would have a parameter model at the fourth level. All symbols shown in the figure are
defined in the text and equations preceding Eq. 1.
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P̂ of P into whatever summary of [E jD, P] was chosen

for inference. Typically, the variability of the estimator P̂
is not accounted for, leading to credible intervals for

values of E that are too liberal. One could try to account

for the variability in P̂, but formal inference is usually

approximate (e.g., Morris 1983a, b); one commonly

used approximation is based on multivariable differ-

ential calculus and Taylor-series expansions of estima-

tors (e.g., Prasad and Rao 1990, Cressie 1992, Rao

2003:section 6.2). In contrast, the Bayesian analysis

bases its inferences directly on [E jD] and, provided it

can be computed, the resulting credible intervals are

accurate. Comparisons of this sort are made by Carlin

and Louis (2000) and Gelman and Hill (2006).

Hierarchical statistical modeling leads to computa-

tionally intensive inference, regardless of whether the

empirical-Bayesian or the Bayesian analysis is chosen.

These are discussed in Statistical inference in ecological

analyses, including the use of Markov chain Monte

Carlo and bootstrap procedures to account for the

variability in P̂.

The evaluation of a statistical-inference procedure will

depend on its purpose. If the goal is to describe the

process E, then different procedures could be evaluated

based on some summary of the variability in [E jD],

for a Bayesian analysis. However, if the goal is

management of the ecological process E, then we might

want a summary that averages over D as well. With

many management decisions to make under like circum-

stances, we would not want to use an inference

procedure that is specific to the one dataset we happened

to observe. Hence, inference is often designed

to minimize the expected loss, where the loss is

L(E, d(D)), with respect to the estimator d(D) of E.

Importantly, that expected loss involves expectations

over both E and D. Likewise, for an empirical-Bayesian

analysis, expectation of the loss is taken over both E and

D, but conditional on P.

The real power of this approach for complicated

problems comes from the fact that each of the

component distributions in Eqs. 1 or 2 can be decom-

posed further, if necessary, and they may be simplified

with modeling assumptions. For example, say we are

interested in a process E for which we have several

different data sets, D(1), D(2), D(3), all of which measure

the process E with uncertainty and perhaps at different

spatial or temporal scales. Then, it is often possible in

such cases to make the following modeling assumption:

½Dð1Þ;Dð2Þ;Dð3ÞjE;PD�

¼ ½Dð1ÞjE;Pð1ÞD �½Dð2ÞjE;P
ð2Þ
D �½Dð3ÞjE;P

ð3Þ
D �

where PD ¼ fPð1ÞD ;P
ð2Þ
D ;P

ð3Þ
D g. Such an assumption is

appropriate in the harbor seals study for repeat counts

of the same set of sites on successive days. That is, we

might assume that the different datasets are independ-

ent, conditional upon the true process. Although such an

assumption must be justified, it is often plausible and

provides a very convenient approach for synthesizing

various types of observations. For the harbor seals

study, a further assumption, P
ð1Þ
D ¼P

ð2Þ
D ¼P

ð3Þ
D [ PD, was

made; that is, it was assumed that each successive daily

count follows the same data model. The parameters in

each of the component distributions can accommodate

changes of resolution and alignment, as well as different

measurement-error characteristics (e.g., Wikle et al.

1998, 2001, Mugglin et al. 2000, Gelfand et al. 2001,

Gotway and Young 2002, Banerjee et al. 2004, Clark et

al. 2004, Hille Ris Lambers et al. 2005, Wikle and

Berliner 2005, LaDeau and Clark 2006).

Decomposition can also be considered for the

probability distribution of the ecological process. For

example, consider a process E made up of two

subprocesses, E (1) and E (2). We can often make use of

conditional modeling in this context as well:

½Eð1Þ;Eð2ÞjPE� ¼ ½Eð1ÞjEð2Þ;PE�½Eð2ÞjPE�:

For example, one could build hierarchical models for

multiple species to examine species diversity and

distribution patterns (Gelfand et al. 2005a, b, Latimer

et al. 2006). In terms of the harbor seals study, the ideas

of multiple data sets and multiple processes were used by

Ver Hoef and Frost (2003), yielding the following model:

½Dð1Þ; . . . ;DðnÞ;Eð1Þ; . . . ;EðnÞ;EðAÞjPE�

¼ ½Dð1ÞjEð1Þ� � � � ½DðnÞjEðnÞ�½Eð1Þ; . . . ;EðnÞjEðAÞ;PE�½EðAÞjPE�:

That is, a joint model for the data and the linear-

regression parameters was built conditionally. Here,

[D(i) jE (i)] ¼ [Yij j kij], is the Poisson-regression formula-

tion at the ith site, given earlier. Assume

½Eð1Þ; . . . ;EðnÞjEðAÞ;PE� ¼ ½ k1j

� �
jh1;r

2
1� � � � ½ knj

� �
jhn;r

2
n�

where there are now potentially n different variances

frig, one for each site. Furthermore, suppose that all

intercepts across sites have a common distribution with

parameters associated with the area A, all slope

parameters across sites have a common distribution,

and so forth. Let E (A) denote the set of all these

parameters associated with the area A. This model is

shown in Fig. 2B, which extends the model shown in Fig.

2A. For example, let the intercept mean parameter be

normally distributed. This and specifications for the

slope parameters and the variance parameters determine

[E (A) jPE]. This makes clear one of the real strengths of

hierarchical modeling. Without it, we might model each

site separately but then lack the ability to say anything

about all sites within the area, or we might ignore sites

and model all data with a single Poisson regression. The

hierarchical model allows inference for E (i) at the ith site

or for E (A) over the area that contains all sites, through

their respective posterior distributions.

Fig. 3 shows the posterior density of the individual

slopes fh1i: i¼ 1, . . . , ng for year (temporal trend) in the
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linear model for li given above (Fig. 2B), along with the

posterior density of the slope h1A, where recall that h11,
. . . , h1n are conditionally distributed with mean h1A.
Consider the mean of each posterior density, and notice

the distribution of the individual sites’ mean slopes

around the areal mean slope. The mean of each

posterior density, considering each site separately (Fig.

2A), is shown with solid circles along the x-axis of Fig. 3.

The one-at-a-time site means are linked by the dashed

line to their counterparts under the conditional model

with mean h1A. It is generally true that one-at-a-time

estimates will ‘‘shrink’’ towards the global mean under

the hierarchical model; the extent of shrinkage depends

on the (estimated) variability within site versus among

sites. From Fig. 3, the majority of the slopes’ means are

negative, indicating a decline in harbor seal abundance

over years. We also see that the mean of h1,A, the

regression coefficient for the area, is negative.

It is often possible to simplify the joint interaction of

one component of the process with another, by using a

conditional probabilistic relationship. A well known

example of this occurs in time series, where a Markov

assumption is made. Specifically, if one has the time

series, E1, E2, . . . , ET�1, ET, it is often very difficult to

specify the joint distribution of the entire series.

However, under the first-order Markov assumption,

the joint distribution is

½ET ;ET�1; . . . ;E2;E1�

¼ ½ET jTT�1�½ET�1jET�2� � � � ½E2jE1�½E1�:

The key to these process decompositions is to model

the process in stages that are scientifically plausible. In

that way, very complicated joint distributions can be

modeled by relatively simple conditional distributions.

Often, deterministic process models for E (given PE)

can be reformulated with stochastic components; for

example, Wikle (2003b) uses a reaction–diffusion

partial differential equation to motivate a stochastic

process model for invasive species. The Markov

assumption is the basis of the Kalman filter (e.g., West

and Harrison 1997); Meinhold and Singpurwalla

(1983) demonstrate that the Kalman filter can be

derived from a non-Bayesian hierarchical statistical

model. When the individual processes in the series E1,

E2, . . . , are spatial processes, spatiotemporal hierarch-

ical models can be built that result in a spatiotemporal

Kalman filter (Huang and Cressie 1996, Wikle and

Cressie 1999).

In this section, we have provided a baseline for the

concept of, consistent notation for, and the flexibility

of, hierarchical statistical modeling to deal with

uncertainty in ecological studies. An important part

of the exposition has been to present the role of both

the ecological process E and the parameters P. The

observant reader will see that the distinction between E

and P is not always precise, but this is not probabilisti-

cally important in a hierarchical statistical model. At

the last stage of the hierarchy, there will typically be

unknown parameters that could be estimated or whose

uncertainty could be captured probabilistically by

(prior) statistical distributions.

FIG. 3. Posterior densities of slopes fh1i: i¼1, . . . , 25g, corresponding to the year (trend) covariate, with the posterior density of
h1A superimposed (heavy solid line). These posterior densities correspond to the model in Fig. 2B. The solid circles along the x-axis
correspond to the peak densities for the model in Fig. 2A. The dashed lines link the peaks for each site and show how the Bayesian
hierarchical model ‘‘shrinks’’ one-at-a-time site estimates toward the global trend estimate.
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DESIGN FOR DATA COLLECTION IN ECOLOGICAL STUDIES

Before moving to discussion of statistical inference for
hierarchical models (Statistical inference in ecological

analyses), we consider the issue of design for data
collection from a statistical modeling perspective. This is

a topic that deserves more exposure in the ecology
literature, where it has hitherto not been connected with

hierarchical statistical modeling. Hence, we aim here for
a complete presentation, where we highlight the

importance of collecting data using sampling designs
based on the principles of randomization, stratification,

and replication, no matter how the data are analyzed.
We show how sampling designs can be incorporated into

(hierarchical) statistical models. This should be con-
trasted with model-assisted, design-based inference (e.g.,

Särndal et al. 1992), where a model-based estimator is
assessed based on distributions implied by survey-
sampling probabilities. We believe that design is the

medium through which team members with different
scientific expertise can communicate with each other,

and that its principles are founded on the uncertainties
that are present in all scientific studies.

To many people who have taken a course on design in
a statistics program, the topic brings back memories of

factorial designs, randomized block designs, partially
balanced incomplete block designs, latin-square designs,

and so forth. These are relatively dry topics (although
variants of latin-square designs have surfaced with the

popularity of the game of Sudoku, found in most daily
newspapers). In fact, design is a much broader concept,

and appearances of it can be found throughout a typical
Statistics graduate curriculum, particularly in survey-

sampling courses (sampling design) and design-of-
experiments courses (experimental design).

Every sampling design should start with a specifica-
tion of the population and the subpopulations under
study. For the harbor seals study, the population is the

continuous abundance of harbor seals on all haul-out
sites for a given study area and time span.

The main principles of design are stratification,
randomization, and replication, which are intended to

allow the scientist to get closer to the elusive goal of
establishing causation. Stratification controls variability

by splitting populations into subpopulations that are
internally comparable. Strata (or blocks) should be

chosen so that important subpopulations are included
and so that the subpopulations will span the variability

in responses expected. Often strata are chosen according
to a combination of (prespecified) factors. Suppose each

factor is split up into levels (e.g., two levels, ‘‘high’’ and
‘‘low’’). A factorial design is where every possible

combination of levels appears once, and each combina-
tion of levels represents a stratum. By ensuring that the
levels of each factor are at least at the ‘‘high end’’ and at

the ‘‘low end’’ of possible choices, strata in a factorial
design will span the variability in responses expected.

The goal of the harbor seals study was to monitor
trend. Hence, it would be best to standardize, as much as

possible, the timing of counts each year. As indicated

earlier, counts are primarily affected by date, tide, and

time of day. To see how stratification would work, the

time relative to low tide could be divided into three

categories: more than one-half hour before low tide,

one-half hour before to one-half hour after low tide, and

more than one-half hour after low tide. Likewise, the

time of day could be divided into three categories and

the date into three categories. Then, one could decrease

variability across years by sampling only within a single

cross-classified stratum, for example, low tide in the

middle of the day in the middle of August. As is often

the case, real-world factors do not allow such a design;

low tide varies considerably among days and weeks

within each year, and using a single aircraft to observe

all sites every day does not allow observers to be

everywhere at once. The strategy of finding a constant

set of environmental conditions is not possible in this

example. The alternative is to embrace the environ-

mental variation and create a design that models

variations in counts due to environmental conditions.

Stratification was based on cross-classified levels of

factors, and as much as possible the numbers of samples

in strata were balanced. For example, samples from late

in the day, more than one-half hour after low tide, and

in August, were obtained in about the same number as

samples from the stratum with the near-optimal

conditions of early morning, low tide, and in early

August.

Randomization offers protection against a biased

(unintentional or intentional) choice of sampling sites

(or of organisms) in the study. If it is at all possible,

ecologists should avoid choosing a so-called ‘‘represen-

tative site.’’ In the harbor seals study, Ver Hoef and

Frost (2003) analyzed data from 25 sites in Prince

William Sound, Alaska, but economical considerations

did not permit sampling these 25 sites randomly from

the hundreds of possible sites in the study area. It is very

expensive to contract aircraft, and there are only a few

possible ways to fly economically from site to site. Thus,

to avoid spending a lot of time and money flying back

and forth to sites selected at random, or even a spatially

clustered set of sites in a random order, the harbor seals

study did not use random sampling. As a result, purely

design-based statistical inference cannot extend beyond

these 25 sites, and how representative they are of a larger

region has been criticized by Hoover-Miller et al. (2001).

A sampling design becomes a probability sampling

design when there is a known nonzero inclusion

probability for every member of the population (Over-

ton 1993). The sampling weights, which should be given

as part of the design, are simply one divided by the

inclusion probabilities. Without randomization, the

harbor seals study clearly does not use a probability

sampling design.

Replication is a way to decrease (e.g., measurement,

spatial, temporal) variability within strata. The general

idea is that an average of responses within a stratum has
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variance proportional to one divided by the number of

replicates. The larger the number of replicates, the

smaller the variance and the more precise the inferences.

For the harbor seals study, 7–10 replicate flights per year

were flown to decrease variation.

In the harbor seals study, as is the case with most

ecological studies, a limiting factor that influences the

total number of observations is the amount of money

available. Generally, the number of strata that make up

the stratification is determined by the team of scientists,

whose goal is to avoid confounding of factors and to

increase the precision of estimates as much as possible.

To illustrate, consider the simple case where there are

equal numbers in each stratum. Then, the number of

replications per stratum is simply obtained by dividing

the total number of observations by the number of

strata. But, a small number of replicates typically does

not allow us to find a regression parameter significant

when it should be, or it results in a hypothesis test that

has weak power. There is clearly a tension between

appropriate stratification/sufficient replication and cost

of the scientific study; statistical design shows how to

express this tension mathematically.

A good design will specify, in advance, inference

thresholds and determine the number of observations

per stratum needed to achieve those thresholds. It

creates a rational basis for the inevitable compromise

between the cost of the study and the ability to make

scientific inferences from incomplete and noisy data

(e.g., Cressie [1998] relates cost and inference in an ice-

core sampling design for a transect across Antarctica).

Equally, a good design will involve random sampling,

from which robust, design-based inference is possible.

Additionally, a good design will stratify to ensure

sampling over a range of levels (values) of factors

(covariates).

Sampling design has traditionally eschewed the

modeling approach given in Design for data collection

in ecological studies, but while design-based inference

can be robust, model-based inference can be very

efficient (e.g., Aldworth and Cressie 1999), where

efficiency is characterized by mean squared prediction

error. In this section, we show how traditional sampling

design can be included in the hierarchical-statistical-

modeling approach.

Given that many ecological processes evolve dynam-

ically through space and time, purely spatial designs are

typically not as efficient as those that consider spatio-

temporal dependence. For the most part, the construc-

tion of optimal designs in the spatiotemporal context is

similar in principle to the optimal-design problem in the

purely spatial case (Le and Zidek 1994, Federov and

Nachtsheim 1995, Arbia and Lafratta 1997, Zimmerman

2006). However, as demonstrated in Wikle and Royle

(1999, 2005), even more efficient designs in the

spatiotemporal context can be obtained by allowing

the design to change with time, where they characterize

efficiency by mean squared prediction error averaged

over the current spatial domain of interest. Although

related to the adaptive-sampling approaches for purely

spatial designs (e.g., Thompson and Seber 1996, Chao

and Thompson 2001), these ‘‘dynamic designs’’ are

fundamentally different. They explicitly account for

temporal changes of the process caused by the under-

lying dynamics.

The ecological process E is of interest, and one wishes

to design a sampling plan through which knowledge

about E can be obtained. For the moment, we make the

(unrealistic) assumption that when E or parts of it are

observed, they are observed without error. We discard

this assumption later in the section.

In the rest of this section, we write

E [ Es : s 2 Af g

where A is an index set that describes the complete

population of scientific interest; s may or may not index

a spatial location. In traditional sampling design, the

unknown population is sampled randomly. That is, a

probability distribution is put on fS: S ffl Ag, the set of

all subsets of A; then inference on E is based on the

stochasticity in the random samples. This is called

design-based inference and, in the terminology devel-

oped in Modeling in the presence of uncertainty, it

depends on [S jE ], where S is a random subset of A that

defines the random sample. Because of the practical

difficulties mentioned for the harbor seals study,

appropriate stratification and random sampling was

not carried out. Hence, design-based inference is not

possible in the study, and it cannot be used to illustrate

the methodology given below.

Suppose that S ¼ S (1) is observed, and hence E (1) [

fEs: s 2 S (1)g is the observed part of E. Recall that we

are momentarily assuming that there is no measurement

error; hence we do not distinguish between Ds (data

value) and Es (process value). In this simple formulation,

one wishes to make inference on the unobserved parts of

E, Ē (1) [ fEs: s 2 A\S (1)}, from the observed part E (1),

where A\S (1) means the index set of A with those in S (1)

removed. Traditional quantities of interest are the

population total and the population mean: TE [ Rs2A
Es, and lE [ Rs2A Es/Rs2A 1, respectively, as well as the

population variance: r2
E [ Rs2A (Es� lE)

2/Rs2A 1 (e.g.,

Cochran 1977).

Estimators of population quantities are functions of

S (1) and E (1). For example, consider estimating the total

TE, which we can write as, TE ¼ Rs2Sð1ÞEs þ Rs2A\Sð1ÞEs.

One popular estimator of TE is known as the Horvitz-

Thompson estimator:

T̂E ¼
X

s2Sð1Þ

ðEs=psÞ

where ps is the probability that s belongs to S (1); that is,

ps ¼
X

Sð1Þ:s2Sð1Þ

½Sð1ÞjE�:
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Recall that for a probability sampling design (Overton

1993), fpsg is known. The Horvitz-Thompson estimator

is unbiased (e.g., Cochran 1977); that is, the mean of the

estimator is equal to the population quantity:

X

Sð1Þ

T̂E 3½Sð1ÞjE� ¼ TE

and its sampling variance can be calculated in a like

manner, again based on [S (1) jE ]. Notice that sampling

moments (e.g., mean, variance) are calculated with

respect to the S (1) that could have occurred, through

the probability [S (1) jE].
In other words, for design-based inference, the source

of randomness is an externally imposed probability

distribution that refers to which parts of the fixed E will

be sampled. A sample is purposive if a particular S (0) is

used and hence data on E (0) [ fEs: s 2 S (0)g is obtained;
as mentioned above, ecologists should beware of

choosing a ‘‘representative site’’ (i.e., purposive sample)

for their study, because statistical inference on Ē (0) ¼
E \E (0), the unsampled part of E, requires further

assumptions that may be difficult to justify. Further-

more, inferences can be very inefficient (e.g., Aldworth

and Cressie 1999, Ver Hoef 2002).

Surprisingly, much of the past sampling-design liter-

ature assumes that E can be observed without error (as

we did above). From the discussion in Modeling in the

presence of uncertainty, this is an unrealistic assumption;

uncertainty in the measurement process should always be

accounted for. Let D(1) [ fDs: s 2 S (1)g denote the data
resulting from observing E (1). Then the joint uncertain-

ties are expressed through

½Dð1Þ; Sð1ÞjE;PD� ¼ ½Dð1ÞjSð1Þ;E;PD�½Sð1ÞjE�:

A hierarchical-statistical-modeling approach takes the

extra step of including uncertainties in the process E:

½Dð1Þ; Sð1Þ;EjP� ¼ ½Dð1ÞjSð1Þ;E;PD�½Sð1ÞjE�½EjPE�

where, recall from Eq. 2, P¼ fPD, PEg. Modeling in the

presence of uncertainty has already discussed the

importance of accounting for uncertainty in E. The

joint distribution just above shows how this can be done

in conjunction with the uncertainty in sampling.

If parameters P are assumed to be fixed, inference on

E is based on the posterior distribution:

½EjDð1Þ; Sð1Þ;P�}½Dð1ÞjSð1Þ;E;PD�½Sð1ÞjE�½EjPE�

where the proportionality constant is [D(1), S (1) jP].
Now suppose that uncertainty in P ¼ fPD, PEg is

captured by the prior [P]; then the appropriate posterior

distribution is

½E;PjDð1Þ; Sð1Þ�}½Dð1ÞjSð1Þ;E;PD�½Sð1ÞjE�½EjPE�½P�: ð3Þ

Many designs have the property that they are

ignorable (e.g., Gelman et al. 2004), namely, [S (1) jE ]

¼ [S (1)], independent of the process E. In this case, an

extraordinary simplification takes place:

½E;PjDð1Þ; Sð1Þ�}½Dð1ÞjSð1Þ;E;PD�½EjPE�½P�:

That is, uncertainty from sampling disappears from the

inference, yielding the purely model-based inference

developed in Modeling in the presence of uncertainty. (A

similar result for ignorable designs occurs when P is

assumed fixed.) Further details on incorporating sam-

pling designs (ignorable and non-ignorable) in a

hierarchical statistical model can be found in Gelman

et al. (2004: Chapter 7).

It is important to realize that for purely observational

studies without randomization, the sample is purposive;

statistical inference on Ē (0) is achieved by making

ecological modeling assumptions about all of E through

[E jPE]. Such is the case for the harbor seals study,

where recall that there was no randomization in the data

acquisition. Ver Hoef and Frost (2003) assume that the

measurement process fD(i)g has Poisson variation with

means fkijg; then inference is based on [fkijg, h, r2 jD(1),

. . . , D(n)], where there is now no reference to the

sampling scheme in the posterior distribution.

In conclusion, this section has presented a unified way

to treat sampling design and statistical modeling

together, using hierarchical statistical models. Many

sampling designs are chosen to be ignorable (such as

simple random sampling, systematic sampling; e.g., see

Cressie [1993:316–323]), in which case the approach

given in Modeling in the presence of uncertainty is

appropriate. More generally, the posterior distribution

(Eq. 3), which involves the sampling probabilities,

should be used for inference, but often is not.

STATISTICAL INFERENCE IN ECOLOGICAL ANALYSES

In Modeling in the presence of uncertainty, we have

shown how conditional probabilities can be used to

build complex models of ecological processes that

account for uncertainty. Even if we agree that this

approach is reasonable, there remains the question of

how one does inference in this setting. An empirical-

Bayesian approach could be taken. That is, consider

only the first two stages, [D jE, PD] and [E jPE], and take

the parameters P¼ fPD, PEg to be fixed, but unknown.

Depending on the complexity of the component models

in this case, it is often possible to use classical statistical-

estimation approaches to obtain estimates of the

parameters PD and PE, and hence to use plug-in

predictions for E. For example, the usual linear mixed

model can be thought of in this context (Christensen

1991). In addition, spatial prediction (kriging) fits into

this framework (Cressie 1993: Chapter 3), as do

sequential time-series methods such as Kalman filtering.

Common approaches for estimation of P include the

expectation–maximization (E–M) algorithm, condition-

al and pseudo-likelihood methods, and estimating

equations (Hardin and Hilbe 2003). Although such

methods do not explicitly account for the uncertainty in

estimating the parameters, that uncertainty can, if

deemed necessary, often be accounted for by Taylor-
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series approximations (e.g., Rao 2003: section 6.2) and

resampling and bootstrap procedures (Efron and

Tibshirani 1993). For example, prior to using the

Bayesian hierarchical model for harbor seals given in

Ver Hoef and Frost (2003), Frost et al. (1999) used a

bootstrap approach. They modeled variation in counts

with Poisson regression for each site, and then they

summed up the model predictions across sites for a

standardized set of covariate conditions for each year.

Linear regression was then used on these yearly sums to

estimate trend. When doing ‘‘statistics on statistics,’’

uncertainty from one analysis (parameter estimation)

was passed to the next (prediction) through resampling

(here a bootstrap).

We turn now to the (fully) Bayesian approach. Here,

we focus on discussing how hierarchical models are

fitted in the Bayesian paradigm, rather than on com-

parative inference. For a comparison of Bayesian and

likelihood-based methods of inference, see Browne and

Draper (2006) and references therein. The Bayesian

paradigm has a conceptually holistic approach to

inference, where the parameters are also given distribu-

tions, and we are interested in the distribution of the

process and parameters given the data: [E, PE, PD jD].

Our interest might be in inference on the parameters PE

and PD, or in prediction or forecasting of the process E.

In each case, we seek distributions of these variables,

given the data that were actually observed. We use

Bayes’ Theorem from probability theory:

½E;PE;PDjD� ¼ ½DjE;PE;PD�½E;PE;PD�=½D�

¼ ½DjE;PD�½EjPE�½PE;PD�=½D�

}½DjE;PD�½EjPE�½PE;PD� ð4Þ

where we have already named the left-hand side the

posterior distribution. The numerator on the right-hand

side of (4) is the hierarchical decomposition developed

above, and the proportionality constant, 1/[D], is the

inverse of the marginal distribution of the data.

Recall that the joint distribution of all uncertainties is

[D, E, PE, PD] ¼ [D jE, PE, PD][E, PE, PD]. We could

view [E, PE, PD] as the prior distribution on all

‘‘unknowns’’ (process and parameters) and the posterior

distribution, [E, PE, PD jD], represents what has been

learned about the unknowns from the data D. Should

new data come along, the posterior distribution can be

viewed as an updated prior distribution, and an updated

posterior distribution can be computed by considering

the expression for the joint distribution of all uncertain-

ties and replacing D with the new data and using the

updated prior. This is easily seen to be a coherent way of

updating information that arrives sequentially.

For the harbor seals study, if we assume that the

measurement error defining D ¼ fYijg has negative

binomial variation, then the measurement-error process

has a single parameter PD ¼ fjg. The parameters in PE

are mostly linear-regression coefficients of logfkijg,

along with one variance parameter r2 for a random

effect. Typically, either j or r2 have to have a peaked

prior. If it is j, the prior [PE] can be chosen to be very

diffuse and noninformative. Finally, inference is based

on [E, P jD]¼ [fkijg, PD, PE j fYijg], where PE¼fh, r2g.
For example, Fig. 3 shows the distribution of [h1i j fYijg];
i¼ 1, . . . , n, where fh1ig are the regression coefficients of

abundance regressed on years (temporal trend). This is

one summary of the ecological process that could alert

managers to a decline in abundance. Inference on the

parameter r2 based on [r2 j fYijg] would show how

variable the abundances are from site to site, which

would serve as a warning that a ‘‘one-size-fits-all’’

management practice would be unsuccessful.

In principle, [D] in Eq. 4 is obtained by integrating out

(in the continuous-distribution case) the process and the

parameters in the numerator, but in practice it is seldom

possible to obtain the constant analytically. As a result,

numerical methods must be used. The realization that

Markov chain Monte Carlo (MCMC) methods could be

used efficiently and generally for Bayesian hierarchical

models (Gelfand and Smith 1990) revolutionized such

computation, and it extended the applicability of these

models to ever-more-complicated modeling scenarios.

MCMC is a simulation-based method for drawing

samples from probability distributions, where a Markov

chain is constructed such that its stationary, or long-run,

distribution coincides with the distribution from which

random samples are desired. This distribution is some-

times called the ‘‘target’’ distribution which, for a

Bayesian analysis, is the posterior distribution. It follows

that after a sufficient number of realizations, or a ‘‘burn-

in,’’ the generated realizations of the chain comprise a

random sample from the posterior distribution.

The easiest MCMC algorithm to describe is the Gibbs

sampler (e.g., Gelfand and Smith 1990, Roberts and

Casella 2005). To sample from [E, PE, PD jD], we

simulate successively from the steps:

½EjPE;PD;D�
½PEjE;PD;D�
½PDjE;PE;D�

and repeat; at each step, we condition on the latest

values we obtained from the previous steps. The

conditional distributions just above are referred to as

the full-conditional distributions.

When one of these full-conditional distributions can

only be calculated up to a normalizing constant, we can

carry out the simulation in that step by performing a

Metropolis-type simulation (e.g., Tierney 1994, Roberts

and Casella 2005). For example, consider the first step

and suppose that [E jPE, PD, D] is given by the density:

gð� � � jPE;PD;DÞ
�R

gðEjPE;PD;DÞdE

where g is known but its integral is not. Let E0 be the

current value of E and suppose that E* is a simulated

random variable of the same dimension as E (from a
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distribution centered at E 0 with certain symmetry

properties), where it is easy to simulate E* (e.g., from

a normal distribution). Define

E 00 [
E� with probability; min½1; gðE�Þ=gðE 0Þ�
E 0 with probability; 1�min½1; gðE�Þ=gðE 0Þ�:

�

Then E00 is the update of E0 (given PE, PD,D) in that step

of the Gibbs sampler. The Metropolis algorithm can

slow up the MCMC procedure if the acceptance

probability for E* is not chosen carefully, so where

possible we avoid it in the Gibbs sampler. There is much

judgment involved in constructing an MCMC algorithm

that burns in quickly and yields stable samples from the

posterior distribution. Furthermore, given the large

number of variables whose posteriors we seek, MCMC

can be a challenge. In the harbor seals study, Ver Hoef

and Frost (2003) had to use Metropolis-Hastings

algorithms for each of the Gibbs sampling steps, [E jPE,

PD, D], [PE jE, PD, D], and [PD jE, PE, D].

We note that MCMC differs from standard Monte

Carlo integration in that the samples are dependent,

since they are realized paths of a Markov chain. Some

care should be taken when doing data analysis on the

samples to produce the desired summaries of the

posterior distribution. Instead of describing how an

MCMC algorithm can be set up for a particular model,

we refer the reader to some of the excellent overviews in

the literature (e.g., Casella and George 1992, Chib and

Greenberg 1995, Gilks et al. 1996, Chen et al. 2000,

Gelman et al. 2004). For an introduction to MCMC in

the ecological literature, see Link (2002).

In order to summarize inferences on the unknowns in

a hierarchical Bayesian model using the output from an

MCMC simulation, the sampled values from the

posterior distribution are used to calculate common

distributional summary statistics, such as histograms,

means, and variances, of the marginal distributions of

the unknowns, conditional on the observations D. For

example, the samples of a particular unknown E1, from

the posterior distribution, can be averaged to approx-

imate the center of the marginal posterior distribution of

E1, which is E(E1 jD), where E(�) denotes expectation. In
addition to the mean of the samples, it is also common

to characterize the uncertainty in the marginal posterior

distribution of each unknown using the 2.5th and 97.5th

percentiles of the posterior samples. The interval defined

by these two percentiles approximates the 95% credible

interval of each unknown. The interpretation of a 95%

credible interval for an unknown E1 is: the posterior

probability that E1 falls inside its 95% credible interval is

0.95. Thus, the widths of the credible intervals summa-

rize the uncertainty in inferences on E1. For the harbor

seals study (Ver Hoef and Frost 2003), E1 contains the

temporal-trend parameters fh1ig and h1A, and the

marginal distributions of the MCMC samples are given

in Fig. 3, from which means, credible intervals, and so

forth, can be computed.

There are a variety of different software packages

available for fitting Bayesian hierarchical models using

MCMC methods. Several of these packages are based

on the Bayesian inference Using Gibbs sampling

(BUGS) language, including its Windows implementa-

tion (WinBUGS; available online)6 and an open-source

version (OpenBUGS; available online).7 Another open-

source software package for posterior simulation is Just

Another Gibbs Sampler (JAGS; available online).8 The

JAGS model-specification syntax is nearly identical to

BUGS, however the implementation is different. While

all of these MCMC software packages can greatly

facilitate the fitting of Bayesian hierarchical models,

many researchers choose to write their own MCMC

code in languages such as R/S, C/Cþþ, and FORTRAN.

This option provides increased flexibility over the

various packages, but it can be considerably more

tedious to implement and debug. For their analysis of

the harbor seals data, Ver Hoef and Frost (2003) used

WinBUGS to obtain samples from the posterior

distribution.

A considerable amount of research in quantitative

ecology has been devoted to model selection. We now

reconsider this part of inference in the context of

hierarchical statistical modeling. For a simple example

of model selection, consider again the general problem

of ‘‘curve fitting.’’ Our goal is to select the ‘‘best’’ curve.

How do we define best, and how do we decide which is

best? Most methods try to find a balance or can be

viewed as a balance between parsimony (simpler is

better) and goodness of fit (we want enough complexity

to capture the essential features of the data). For

prediction, we can consider ‘‘averaging’’ over models,

rather than trying to select the ‘‘best’’ one (e.g., Hoeting

et al. 1999), which has the effect of combining the

advantages from all models under consideration. These

same considerations apply when trying to capture

uncertainty in process models and parameter models.

Textbook treatments of model selection can be found in

Linhart and Zucchini (1986), McQuarrie and Tsai

(1998), and Burnham and Anderson (2002).

For the harbor seals study, we might want to simplify

the model as much as possible by selecting among

models that include year and a subset of tide, date, and

time. A traditional approach is to use stepwise

regression, but more popular recently is an informa-

tion-theoretic approach, such as AIC (Akaike 1973) or

BIC (Schwarz 1978). These approaches are especially

useful when comparing non-nested models. For exam-

ple, suppose that we want to use all covariates, year,

tide, date, and time in our model, but we want to

compare a Poisson distribution vs. a negative binomial

distribution for the measurement errors. Then a stepwise

approach is not appropriate, however the information-

6 hhttp://www.mrc-bsu.cam.ac.uk/bugs/i
7 hhttp://mathstat.helsinki.fi/openbugs/i
8 hhttp://www-fis.iarc.fr/;martyn/software/jags/i
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theoretic approach handles the comparison easily. The

information-theoretic approach uses the notion of

maximizing the model likelihood (which can never get

worse by adding more parameters), but with a penalty

for the number of parameters. However, the counting of

parameters can become difficult for hierarchical statis-

tical models, so Spiegelhalter et al. (2002) introduced

DIC; DIC would be useful in the harbor seals study,

especially when trend over years is considered. Small,

Pendleton, and Pitcher (2003) used an information-

theoretic approach on a non-hierarchical analysis of the

harbor seals data.

CHALLENGES FOR HIERARCHICAL STATISTICAL MODELING

Hierarchical models address complex problems for

which there may be several sources of information and

hidden variables (Wikle et al. 1998, Abbitt and Breidt

2002, Brooks et al. 2004, Ogle et al. 2004, Clark 2005,

Royle and Dorazio 2006). Goals may include estimation

of parameters for a process model (Hille Ris Lambers et

al. 2005, Ibanez et al. 2006), inference on hidden states

(Dupuis 1995, Ver Hoef and Cressie 1997, de Valpine

2003, Dorazio and Royle 2003, Stenseth et al. 2003,

Clark and Bjornstad 2004, Gelfand et al. 2004, Maunder

2004, Clark et al. 2005, Thomas et al. 2005), quantifying

the importance of interactions (Coulson et al. 2001, Cam

et al. 2002, Clark et al. 2003, 2004, LaDeau and Clark

2006, Mohan et al. 2007), prediction (Beckage and Platt

2003, Clark et al. 2007, Hooten et al. 2007), and

specifying species diversity and patterns (Gelfand et al.

2005a, b, Latimer et al. 2006). In this section, we begin a

discussion of the issues surrounding hierarchical sta-

tistical modeling. It is expected that in follow-up

discussion, these and other issues will be explored more

deeply than we are able to do here.

There are many challenges with building complicated

models, with the associated inference, and with compu-

tational efficiency (Clark 2005, Clark and Gelfand 2006,

and Buckland et al. 2007 provide ecological examples).

Like any model-building exercise, there must be consid-

erable thought and effort devoted to the specification of

the component distributions in the hierarchical frame-

work. In some sense, model complexity is related both to

data richness and ‘‘scientific richness,’’ which is simply

the knowledge one has about the process (and param-

eters) of interest. The situation is only made more

complex when the model is also Bayesian.

Subjectivity of a Bayesian analysis

A historical criticism of Bayesian methods is that it

requires ‘‘subjective’’ specification of prior information

on the parameters. Can a Bayesian get any answer he or

she desires by tuning the prior distribution? Technically,

the answer to this question is yes; the Bayesian approach

can be ‘‘gamed,’’ but so can the classical/frequentist

approach to inference. In fact, the elicitation of prior

distributions can be turned into a (social) science.

Subjective judgments within a group of expert ecologists

can lead to a subjective prior where both the consensus

opinion and the diversity of opinions is recognized (e.g.,

McCarthy 2007: Chapter 10).

There is also a sizable literature on ‘‘objective

Bayesian’’ analysis, which develops prior distributions

for classes of models that do not impact the posterior

distribution. Such noninformative priors are often

termed ‘‘vague,’’ ‘‘flat,’’ or ‘‘diffuse.’’ For some models,

appropriate noninformative priors are readily available,

while for others they are not. For a thorough discussion

of issues related to the specification of prior distribu-

tions, see Berger (1985). Alternatively, it is common

practice to perform sensitivity analyses, or robustness

assessments, to ascertain the influence of prior assump-

tions. This is done by refitting the hierarchical model

under different prior assumptions and comparing the

resulting inferences. Not only does this exercise provide

information on the influence of prior assumptions on

inferences, but it gives insight into the amount of

information in the data.

Of course, there is subjectivity in the specification of

the likelihood in a classical statistical approach. In fact,

a broader perspective is that there is subjectivity

involved with the specification of all of the model

components: data models, process models, and param-

eter models. For example, it might be ‘‘subjective’’ to

specify a stochastic model for tropical winds (e.g., Wikle

et al. 2001), but the science comes from Newton’s laws

of motion! There has always been subjectivity present in

the physical sciences; now, instead of having to be

certain about a physical model, scientists can quantify

their uncertainty about their model in a way that

disentangles it from their uncertainty about their data.

Thus, from our perspective, it is better to ask about the

sensitivity of results to model choices and whether such

choices make sense scientifically.

There are cases where one tries to make the posterior

distribution in a Bayesian hierarchical statistical model

less sensitive to model specifications. Central to the

Bayesian paradigm is the notion that as the data

quantity and quality increase, the posterior is less

sensitive to prior assumptions. This feature of Bayesian

inference is often compared philosophically to ‘‘scientific

learning,’’ in that knowledge is continuously updated in

light of new information, in a coherent fashion.

Convergence of the MCMC algorithm

Based on the discussion above, before the sample path

of a Markov chain produces a sample from the posterior

distribution, the MCMC algorithm must be run for a

certain number of burn-in iterations. While this number

must be finite, the exact number of burn-in iterations is

rarely known. The process by which the chain moves

from its starting value to values that are representative

of the distribution is termed convergence of the

algorithm.

In practice, convergence is usually assessed using a set

of diagnostic tools on the sample path of the Markov
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chain. While this type of output analysis is not able to

‘‘prove’’ that the chain has converged, it can provide

insight into the issue. Output analysis can be numerical

and graphical and can involve both comparing chains

with multiple starting values and assessing differences in

different segments of a single chain (e.g., Cowles and

Carlin 1995, Brooks and Roberts 1998, Gelman et al.

2004). Software for assessing convergence of MCMC

algorithms includes the convergence diagnosis and

output analysis software of Gibbs sampling output

(CODA; Best et al. 1995, Plummer et al. 2005) and

Bayesian output analysis (BOA; available online).9

Adequacy of the number of MCMC samples

The sequences of samples from the joint posterior

distribution generated by an MCMC algorithm are by

construction correlated. As a result, inferences based on

MCMC samples (assuming the chain has converged) will

generally be less precise than independent samples from

the posterior. By examining the variance of the sample

paths for a single parameter, marginal estimates of the

‘‘effective’’ number of iterations can be obtained. If there

is limited availability of storage for the output of an

MCMC algorithm, the chain can be ‘‘thinned’’ by saving

only every kth sample. The autocorrelation of the

resulting thinned chain will likely be less than the

original chain. Therefore, the precision of posterior

inferences based on the thinned chain will be better than

those based on an equal-length unthinned portion of the

chain.

Parameter identifiability

When building large hierarchical models, it is not

always apparent that all model parameters are identifi-

able. In order to motivate the issue of parameter

identifiability, consider the following simple example.

Let y1, . . . , yn be independent samples from a normal

distribution with unknown mean l and variance r2.

Clearly, from a classical/frequentist perspective, the

observations contain information about the unknown

parameters. In fact, the sample mean and variance

provide unbiased estimates of l and r2, respectively.

Instead of parameterizing the sampling distribution in

terms of l and r2, assume that the data were generated

from a normal distribution with unknown mean l1þ l2
and variance r2. While there is information in the data

about the sum, l1 þ l2, there is no way to identify the

components separately, which means that l1 and l2 are
not identifiable.

From a Bayesian perspective, as long as proper prior

distributions are assigned to all model parameters, all of

them are technically identifiable. To illustrate, consider

the example above, now within the Bayesian paradigm.

Assuming proper prior distributions on l1, l2, and r2,

we can determine the posterior distribution of all three

parameters, making them all technically identifiable.

However, unless there is very strong prior information

on l1 and l2, it will be difficult to see very much

difference in the posterior distributions of these param-

eters. In practice, lack of identifiability can be problem-

atic in the Bayesian setting (Gelfand and Sahu 1999).

For example, when running MCMC algorithms, the

sample paths of nonidentifiable parameters will ‘‘trade

off’’ their values, leading to numerical and convergence

problems. Generally speaking, if identifiability problems

go undiagnosed, inferences on these model parameters

and possibly others can be misleading. This can some-

times be anticipated, in which case a sampling design

(Statistical inference in ecological analyses) might be

formulated that avoids identifiability problems in mak-

ing inference from Eq. 3.

Assessing model fit and diagnosing lack of fit

We have already discussed the importance of assess-

ing the influence of prior assumptions on inferences in

Bayesian models. In addition to performing these

sensitivity analyses, it is important to assess the fit of a

model. There are both numerical and graphical tools for

model checking, which are primarily based on the

posterior predictive distribution, specifically the distri-

bution of a new (replicate) observation, Drep, condi-

tional on the observed data, D (see Gelman et al.

2004: Chapter 6). The posterior predictive distribution

is given by

½DrepjD� ¼
R
½DrepjE;PE;PD�½E;PE;PDjD� dE dPE dPD

where the distribution is obtained numerically by taking

an MCMC sample from the posterior distribution, [E,

PE, PD jD], and plugging the sampled values of E, PE,

and PD into [Drep jE, PE, PD] to then generate a sample

from [Drep jD].

With any model-checking procedure comes the oppor-

tunity to perform cross-validation. That is, the ith

observation Di (or a carefully chosen subset of observa-

tions) in D is deleted, leaving the remaining data, D�i, to

predict what should have been observed assuming the

model is correct. A Bayesian model allows the posterior

distribution [Drep
i jD�i] to be computed, which can then

be compared to the observation Di that was deleted (e.g.,

Stern and Cressie 2000). For example, if Di is in the tails

of the distribution of [Drep
i jD�i], there would be cause to

doubt the model’s ability to fit well to the ith datum.

Consequently, if cross-validation is used as an informal

model-selection procedure, it tends to reject overly

complicated models, since such models perform poorly

when predicting beyond the observed data.

While conceptually straightforward, in practice, mod-

el checking using the posterior predictive distribution for

large hierarchical models can be tedious. The distribu-

tion [Drep jD] can be high-dimensional and likely will

have a complex dependence structure. Finding distribu-

tional summaries that adequately convey the extent to

which the data fit the model can be a difficult task. Still,9 hhttp://www.public-health.uiowa.edu/boai
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if inferences and forecasts are going to be trusted, these

checks must be performed. In the harbor seals study,

Ver Hoef and Frost (2003) used [Drep jD] to average

(observedij� expectedij)
2/expectedij, over j, for each site

i, which should be near one. This is a generic goodness-

of-fit statistic that is not tailor-made for any particular

departure from the model for which expectedij is

calculated. They found lack of fit for models without a

random effect to account for overdispersion. That is, for

the models given in Fig. 2, the parameters r2 or r2
i

� �

are important for accounting for dispersion about the

‘‘curves’’ flijg.

Bayesian inference in space and time

In a spatiotemporal setting, process and parameter

models are less influential on smoothing and filtering,

because the data redeem us from misspecification. This

is because spatiotemporal dependencies act to reinforce

the information in current and past data about current

values of the process and values of the parameters. But

process and parameter models can matter a lot when we

are forecasting, particularly when there is long-range

temporal dependence. The Bayesian part of all this

captures the variability in the parameters, whereas if

they are estimated and plugged into summaries for

inference on the process component, those inferences do

not account properly for the variability in the parameter

estimates. Frequentist-based approximations (e.g., Rao

2003: section 6.2) are available for simple cases, but a

dynamic, non-stationary, spatiotemporal hierarchical

model is far from simple. In contrast, Bayesian inference

on the spatiotemporal process accounts for parameter

variability coherently (e.g., Waller et al. 1997, Wikle et

al. 1998, 2001, Berliner et al. 2000, Xu et al. 2005, Calder

2007, Hooten and Wikle 2007, Hooten et al. 2007, Ver

Hoef and Jansen 2007).

Multivariate hierarchical statistical models

Ecology is about relationships among natural phe-

nomena that include interactions among species and

how species relate to their environment. It would seem,

then, that multivariate models would be among the most

commonly used. However, such models are notoriously

difficult to fit; Ver Hoef and Barry (1998) outline some

of the difficulties. Just as a complex univariate problem

can be broken into a sequence of simpler ones through

conditional distributions, multivariate ecological prob-

lems can also benefit from a hierarchical statistical

specification. Recent progress in this area can be found

in Royle and Berliner (1999), Johnson et al. (2006),

Barber and Gelfand (2007), Furrer et al. (2007), Sain

and Cressie (2007), and Sims et al. (2008).

To sum up, we have featured the hierarchical

statistical modeling approach for dealing with uncer-

tainty in ecological analysis. When modeling the sort of

complex problems found in ecology, we present it as a

coherent approach to deal with uncertainty in measure-

ment, in sampling, in specification of the process, in

knowledge of the parameters, and in initial and

boundary conditions. While the approach is very

powerful, there remain challenges for its practical

implementation. This last section discusses a number

of these challenges; it is our hope that our article will

engender more discussion and promote further research

in hierarchical statistical modeling in ecology.
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