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Space–time zero-inflated count models of Harbor seals‡

Jay M. Ver Hoef ∗,† and John K. Jansen

National Marine Mammal Laboratory, Alaska Fisheries Science Center, NOAA Fisheries, 7600 Sand Point Way NE, Building 4,
Seattle WA 98115-6349, U.S.A.

SUMMARY

Environmental data are spatial, temporal, and often come with many zeros. In this paper, we included space–time
random effects in zero-inflated Poisson (ZIP) and ‘hurdle’ models to investigate haulout patterns of harbor seals
on glacial ice. The data consisted of counts, for 18 dates on a lattice grid of samples, of harbor seals hauled out
on glacial ice in Disenchantment Bay, near Yakutat, Alaska. A hurdle model is similar to a ZIP model except it
does not mix zeros from the binary and count processes. Both models can be used for zero-inflated data, and we
compared space–time ZIP and hurdle models in a Bayesian hierarchical model. Space–time ZIP and hurdle models
were constructed by using spatial conditional autoregressive (CAR) models and temporal first-order autoregressive
(AR(1)) models as random effects in ZIP and hurdle regression models. We created maps of smoothed predictions
for harbor seal counts based on ice density, other covariates, and spatio-temporal random effects. For both models
predictions around the edges appeared to be positively biased. The linex loss function is an asymmetric loss function
that penalizes overprediction more than underprediction, and we used it to correct for prediction bias to get the best
map for space–time ZIP and hurdle models. Published in 2007 by John Wiley & Sons, Ltd.

key words: spatial statistics; time series; Poisson; Bernoulli; hurdle model; linex loss function

1. INTRODUCTION

Environmental data are spatial, temporal, and often come with many zeros. Statisticians are developing
models of increasing complexity to handle these data. Time series (e.g., Brockwell and Davis, 1991),
spatial statistics (e.g., Cressie, 1993), and zero-inflated Poisson (ZIP) regression (e.g., Lambert, 1992;
Welsh et al., 1996) are all becoming well-developed subjects. There are increasing numbers of examples
where models combine these subjects, such as space–time models for Gaussian data (Wikle et al., 1998),
temporal ZIP models (Dobbie and Welsh, 2001; Lee et al., 2006), and spatial ZIP models (Agarwal
et al., 2002; Rathbun and Fei, 2006). Wikle and Anderson (2003) developed a space–time ZIP model
for tornado counts that is very similar to our development. A hurdle model (Cragg, 1971) is similar
to a ZIP model except it does not mix zeros from the binary and count processes. In this paper, we
use the standard formulation of ZIP and hurdle models and develop Bayesian hierarchical models with
space–time errors to investigate haul-out patterns of harbor seals on glacial ice.
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‡This article is a U.S. Government work and is in the public domain in the U.S.A.
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698 J. M. VER HOEF AND J. K. JANSEN

We have two main objectives with this paper. First, we compare the space–time ZIP and hurdle models
and how they differ in terms of estimated parameters, predictions, and precision. Secondly, we use a
model diagnostic for these two space–time zero-inflated models, and we note that there are bias concerns
when using either the mean or median as a summary of posterior predictions for creating smoothed
maps. This leads us to investigate the linex loss function (Varian, 1975), which corrects for the bias.

2. DATA

The data consist of counts of harbor seals hauled out on glacial ice in Disenchantment Bay, near Yakutat,
Alaska. Aerial surveys were conducted twice a week, weather permitting, starting 27 May and ending
on 4 August in 2002, after the completion of pup rearing. These surveys were timed to facilitate a
comparison of seal abundance and distribution between periods of low and high numbers of cruise ship
visits to the bay. Surveys were flown between 13:00 and 15:00 h (Alaska Daylight Time) to coincide with
the daily peak in numbers of seals hauling out. A single engine aircraft (Cessna 206; Yakutat Coastal
Airways Inc., Yakutat, AK) was flown at a target speed of 90–100 knots and altitude of 305 m (1000 ft).
From the aircraft, digital video was taken of the entire study area. There are 18 time events (i.e., surveys)
that we index i = 1, 2, . . . , 18. Sample units were created on a lattice of 400 × 400 m cells for the entire
study area; the spatial locations were on a 19 by 41 grid that we arbitrarily number, j = 1, 2, . . . , m.

The number of seals was counted in each cell for each date from the digital video. Grid cells that did
not have ice had no possibility for seals to haul out, and not all grid cells had ice for each date. Any such
grid cells for that date were eliminated. In all there were 2489 records that contained ice over the 18
time periods for the 19 by 41 grid. Data for three dates in May 2002, are shown in Figure 1. The case for

Figure 1. Spatial distribution of harbor seals and ice cover for 3 of 18 dates during summer 2002. The range of seal counts per
grid cell is shown in three levels: small dot (<5 seals), medium dot (5–20 seals), and large dot(>20 seals). Increasing ice cover

is represented by three levels: scattered (light gray), intermediate (medium gray), and dense (dark gray)

Published in 2007 by John Wiley & Sons, Ltd. Environmetrics 2007; 18: 697–712
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SPACE–TIME ZERO-INFLATED COUNT MODELS 699

Figure 2. Histogram of all seal count data showing a high proportion of zeros

zero inflation can be seen from a histogram of all 2489 count values in Figure 2. We also had covariates
that varied both spatially and temporally. For each cell and each date, we had: (1) the percentage of the
cell covered with ice, in 10 classes at 10% intervals, (2) the closest distance between a ship’s path and
the cell, and (3) an activity index that combined the closest approach by a ship and the time that ships
spent near a cell. We call these the spatiotemporal covariates. In addition, we had five covariates that
varied only temporally (i.e., they applied to all cells for a given date): (1) the presence of a ship on the
day of a seal count, (2) number of ships within three days prior to a count, (3) total precipitation in the
6 h prior to a count, (4) maximum wind speed in 6 h prior to a count, and (5) the total number of cells
with ice. We call these the temporal covariates. Greater detail on the methods and data can be found in
Jansen et al. (2006).

3. MODELS FOR ZERO-INFLATED COUNT DATA

A simple space–time ZIP regression model can be constructed by using spatial conditional autoregressive
(CAR) models and temporal first-order autoregressive (AR(1)) models for random effects in a ZIP
regression model. A ZIP regression model is given by

Zi,j|Yi,j =
{

0 if Yi,j = 0,

Poi(λi,j) if Yi,j = 1.
(1)

where Poi(λi,j) is a conditionally independent Poisson random variable with mean function λi,j and Yi,j

is an independent Bernoulli random variable with mean function pi,j; Yi,j ∼ Bern(pi,j), for the ith time

Published in 2007 by John Wiley & Sons, Ltd. Environmetrics 2007; 18: 697–712
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700 J. M. VER HOEF AND J. K. JANSEN

and the jth spatial location. Now we use link functions, as is common for generalized linear models
(McCullough and Nelder, 1989) to relate the means of these distributions to a linear mixed model,

log(λi,j) = νi + x′
i,jβ + εi,j,

logit(pi,j) = µi + x′
i,jα + δi,j,

(2)

where logit(a) ≡ log( a
1−a

), νi and µi are separate means for each time, β and α are 12 × 1 vectors of
regression parameters (for ten ice classes and the distance and activity index), and xi,j are the afore-
mentioned spatio-temporal covariates. These covariates, such as per cent ice in a sample unit, change
spatially and temporally due to glacial activity, weather and tidal currents. The random errors εi,j and
δi,j are assumed to be spatially autocorrelated for a fixed time event i. In Equation (2), we assume that
each time period has a separate and independent realization of a spatial process for εi,j and δi,j . We use
a CAR model (see Besag, 1974 and Cressie, 1993, p. 407) for each time period,

δi = Gau(0, σ2
δ (I − ρδC)−1M)

εi = Gau(0, σ2
ε (I − ρεC)−1M)

(3)

where the spatial process for the ith time period δi is independent of the spatial process δi′ when i �= i′,
and similarly the spatial process εi is independent of the spatial process εi′ when i �= i′. Gau(·, ·) is a
(multivariate) Gaussian (normal) distribution. We defined a neighbor of a sample as any other sample
with its centroid within 1 km. We chose this distance because some cells could be isolated, and there is
often a checkerboard pattern to cells with ice (Figure 1), and to ensure some smoothing from neighboring
values, we wanted cells that were conditionally dependent on some neighbors. The weights in C were
row-standardized (Haining, 1990, p. 82); that is, each row in C contains all zeros except for columns
that indicate a neighbor, and the weights are the reciprocal of the number of neighbors for that sample.
The matrix M is a diagonal matrix where the diagonal elements contain the reciprocal of the number of
neighbors. Note that we allow the spatial autocorrelation parameters to be constant across time periods.
We believe this is reasonable as it represents the seals innate tendency to cluster as groups, and is not
likely to change with time.

In a fixed effects model, we would assume that νi and µi are separate means for each time; here
we treat them as separate linear models for temporal covariates, such as the weather on the day of the
photograph that affects all spatial locations equally,

νi = ν0 + t′iη + ξi,

µi = µ0 + t′iγ + τi,
(4)

where ti are the temporal covariates. It is here that we allow temporally autocorrelated errors, which
are modeled with AR(1) models,

ξi = φξξi−1 + σξWξ,i; i > 1,

τi = φττi−1 + στWτ,i; i > 1,
(5)

where Wξ,i and Wτ,i are independent, standard Gaussian random variables.

Published in 2007 by John Wiley & Sons, Ltd. Environmetrics 2007; 18: 697–712
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SPACE–TIME ZERO-INFLATED COUNT MODELS 701

3.1. A nonmixture model

The ZIP model is important when zeros are a mixture of two distributions; a binary distribution and
a count distribution that includes zero. In other words, an observed zero in the ZIP model could be a
one from the binary distribution but the count distribution created the observed zero. When considering
harbor seal counts on ice, as in our application, the binary distribution is the absence or presence of
harbor seals, and the count distribution is the number of seals. If there are detectability issues, this
model is appropriate because it expresses the idea that an observed count can be zero even though seals
are present; i.e., some seals are undetected. However, in our application, we have good quality video
showing a high contrast between the dark seals and the lighter-colored ice on which they are hauled
out; seals are thus highly likely to be detected. Hence, we consider models that completely specify
and separate the binary distribution from the count distribution, which have been called hurdle models
or two-stage models in econometrics (Cragg, 1971; Mullahy, 1986; Heilbron, 1994). Hurdle and ZIP
models are reviewed in Ridout et al. (1998), with a recent comparison of hurdle and ZIP models in Potts
and Elith (2006). The hurdle models arise naturally in botany and economics. For example, purchasing
patterns of individuals may be modeled where a person decides to purchase items (the binary model is a
purchase decision), and then a count model (now defined on positive integers) for the number of items
purchased. These models are no longer a mixture, but there is clearly an overabundance of zeros when
compared to a simple Poisson distribution, so hurdle models are logically tied to ZIP models and can be
compared to them on a purely model-fitting basis. We term our hurdle model as ‘(Poisson + 1)/Binary’
and denote it P1B. For its formulation as a space–time model, we modify Equation (1) to be,

Zi,j|Yi,j =
{

0 if Yi,j = 0,

Poi(λi,j) + 1 if Yi,j = 1.
(6)

The rest of the model follows exactly as in the ZIP, using Equations (2–5). The dependencies of the
model parameters for both ZIP and P1B are shown as a directed graph in Figure 3.

Figure 3. Directed graph of parameter dependencies in ZIP and P1B hierachical model. All prior distributions are denoted by
π( ) and are described in the text

Published in 2007 by John Wiley & Sons, Ltd. Environmetrics 2007; 18: 697–712
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702 J. M. VER HOEF AND J. K. JANSEN

We note that other distributions could be used in these zero-inflated models. In Equations (1) and
(6), we could replace the Poisson distribution with a negative binomial or generalized Poisson (Consul,
1989). Either of these distributions allows for models that are overdispersed relative to a Poisson
distribution. With zeros removed, the mean of the rest of the count data is 5.4 after subtracting 1 from
all of them. Assuming a Poisson distribution with a mean of 5.4 on these data, the probability of getting
a value greater than 20 is 2.8 × 10−7, yet it is apparent from Figure 2 that there are many values above
20. On the other hand, the fixed covariate effects and the spatial and temporal random effects can
absorb some overdispersion. We tried using a negative binomial, NB(µ, κ), parameterized such that if
Y ∼ NB(µ, κ), then E(Y ) = µ and var(Y ) = µ + κµ2. The estimated value of κ was very near to zero,
indicating a linear variance relation to the mean, just like a Poisson, so we do not consider it further.
Other distributions could be used in Equation (6), such as a truncated Poisson. Any distribution with
support on the positive integers would be mathematically appropriate. We used the ‘Poisson plus one’
because it was easy to implement and has readily interpretable parameters. The main point of the paper
is not an exhaustive comparison of all the models, but rather the comparison of a model where zeros
are mixed from the Poisson and Bernoulli distributions, versus when there is no mixture.

3.2. Priors

We put diffuse priors on all regression parameters: α, β, γ , and η as defined in Equations (2) and (4).
By ‘diffuse,’ we mean as noninformative as we could make them; however, because these parameters
are modeled on a log scale, there are computational instabilities if they are allowed to get too large.
Hence, we let each regression parameters have a normally distributed prior with a variance of ten. To
maintain stationarity, the autoregression parameters for both space (ρδ and ρε) and time (φτ and φξ)
are bounded from −1 to 1 and may have a uniform prior on this range (e.g., Hay and Pettitt, 2001).
We did not expect any negative autocorrelation, however, so we used uniform priors from 0 to 1. For
the variance parameters of the random effects (σ2

δ , σ2
ε , σ2

ξ , and σ2
τ ), we let the square root be uniformly

distributed between 0 and 10; again, to keep the random effects from becoming too large and causing
numerical instability. Uniform priors on the square root of variance parameters in hierarchical models
has recently been suggested by Gelman (2006), and a simulation study (Lambert et al., 2005) shows
that they compare favorably to others and allow the range to be restricted to reasonable values.

3.3. Estimation

Models were fit using Markov Chain Monte Carlo (MCMC) in WinBUGS software§ (Version 1.4,
Imperial College and MRC, UK). We used a burn-in of 5000 iterations, and then used 50 000 iterations
for estimates and 95% credibility intervals on all parameters and functions of parameters. Because
of storage issues (approximately 2500 parameters each for λi,j , pi,j , and their product), we thinned
the chain by storing every 50th iteration, resulting in 1000 stored values per parameter. The MCMC
chains moved freely within their range (they were mixing well), and all parameters passed the test for
stationarity using the method of Heidelberger and Welch (1983), as implemented in the CODA package
(Best et al., 1995) in R (R Development Core Team, 2006). During the MCMC sampling, the parameters
rarely approached the bounds of the prior distributions as described in the previous section.

§Reference to tradenames does not imply endorsement by the National Marine Fisheries Service, NOAA.
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Figure 4. Posterior distributions of the autoregressive parameters for the ZIP model

4. RESULTS

4.1. Autoregressive parameters

The posterior distributions of the autoregressive parameters in the AR(1) model and the CAR model, for
both the Bernoulli and Poisson parts of the ZIP model, are shown in Figure 4. The posterior distributions
of the autoregressive parameters in the AR(1) model and the CAR model, for both the Bernoulli and
Poisson parts of the P1B model, are shown in Figure 5. These figures show that there is not a great deal
of difference between the models for the autocorrelation parameters. For the P1B model (Figure 5),
the spatial autocorrelation parameter for the Poisson distribution appears to be centered around 0.8,
whereas the same parameter for the ZIP model is nearer to 0.95 (Figure 4). Also, there appears to be
more evidence of positive temporal autocorrelation for the Poisson distribution in the P1B model than
the ZIP model.

Figure 5. Posterior distributions of the autoregressive parameters for the P1B model

Published in 2007 by John Wiley & Sons, Ltd. Environmetrics 2007; 18: 697–712
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704 J. M. VER HOEF AND J. K. JANSEN

4.2. Standardized selection coefficients

We obtained the posterior distributions of all regression parameters β, α, η, and γ . Most of them
contained zero in the 95% credibility interval. By far the most significant effect was the proportion of
ice in the cell. From now on, we consider only this effect. Our conclusions about comparing P1B versus
ZIP models for this effect apply equally to all of the others. For a full biological interpretation of all
regression effects, see Jansen et al. (2006).

When working with categorical covariates in logistic regression, coefficients are often interpreted on
the logit scale, which are the ‘log odds,’ or by exponentiating, which are the ‘odds ratio’ (see Hosmer and
Lemeshow, 1989, pp. 40–41). Let us denote ice cover parameters as the first fixed effect with subscript
1: α

[k]
1 for the kth category of ice cover, where k = 1, . . . , 9 (there were no cells with 90–100% ice).

For identifiability, suppose that α
[1]
1 = 0. Then, the odds ratio of seals selecting the kth ice category

over the first category is exp(α[k]
1 ). However, this really only facilitates comparing a single category to a

reference category for a given model. Here, we will want to compare the coefficients between models.
In the resource selection literature, authors often create standardized selection coefficients (e.g., Manly
et al., 2002, p. 51), which, when applied to logistic regression, are odds ratios that sum to one,

α̃
[k]
1 = eα

[k]
1∑9

k=1 eα
[k]
1

. (7)

Note that these are invariant to the choice of a reference category. That is, if we set α̌
[k]
1 = α

[k]
1 + C for

all k and any C, Equation (7) will remain unchanged. In addition, because the coefficients sum to one,
they can be viewed as probabilities. The standard interpretation is that they represent the probability that
an animal will select a particular category of a resource, given that each category is equally available.
Likewise, for the Poisson part of the model,

β̃
[k]
1 = eβ

[k]
1∑9

k=1 eβ
[k]
1

. (8)

The standardized selection functions can be seen in Figure 6, which suggests that seals tend to
prefer ice coverage classes between 5 and 7 (40–70% ice cover). The most interesting comparison
of ZIP versus P1B occurs in Figure 6B; note that the 95% credibility intervals are much wider for
the ZIP model than for the P1B model. This makes sense because the zeros are mixtures of Poisson
and Bernoulli distributions under the ZIP model, so we are less certain about any effect on Bernoulli
probabilities. One might also expect slightly narrower credibility intervals for P1B models because we
used ‘Poisson(λ) + 1.’ Thus, for a fixed count value the λ parameter is smaller, and thus the variance
is smaller, for the P1B than for the Poisson(λ) from the ZIP model. However, this effect is not readily
apparent in Figure 6A.

4.3. Smoothed predictions

For the ZIP model, predictions for each cell at each time may be formed by employing the posterior
distribution of the Bernoulli probabilities pi,j , the expected Poisson count λi,j , and their product λi,jpi,j .
For the P1B model we replace λi,j with (λi,j + 1). The spatial and temporal autocorrelation in the models

Published in 2007 by John Wiley & Sons, Ltd. Environmetrics 2007; 18: 697–712
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Figure 6. Posterior distributions of standardized selection coefficients of ice type for Poisson (A) and Bernoulli (B) parts of the
ZIP and P1B models. The ZIP model estimates are shown as dashed lines, and the P1B are shown as solid lines. The vertical
lines are the 95 per cent credibility intervals for each estimate for each ice class. The horizontal dotted line is the hypothesis of

equal selection for each type (=1/9)

causes these predictions to rely on neighboring values, so they tend to be ‘smooth,’ especially in relation
to the original data. In Figures 7–11 all cells for the i = 3 time period that had ice have a predicted
value. Obviously, we could do this for any of the 18 time periods. Note that it would be difficult to
project into the future without some models for projecting all of the covariates into the future as well.
In Figures 7–11, we sized each circle taking the median divided by the interquartile range (75% value
minus the 25% value), from the MCMC sample; in that way, values where we have more confidence
are larger and more dominant to the eye.

In Figure 7, we show the Bernoulli predictions p3,j for all cells. One of the distinctions between
ZIP and P1B is in the estimates of the Bernoulli probabilities. An observed zero for the P1B model is
a zero for the Bernoulli distribution. However, an observed zero in the ZIP model could be a one from
the Bernoulli distribution but the Poisson distribution created the observed zero. Hence, the ZIP model
tends to estimate a higher pi,j than the P1B model, which can be seen from the legends in Figure 7.

In Figure 8, we show the Poisson predictions λ3,j for all cells. The count distribution for a P1B
begins at one, rather than at zero for the ZIP. Hence, in contrast to the Bernoulli distribution, the count

Published in 2007 by John Wiley & Sons, Ltd. Environmetrics 2007; 18: 697–712
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706 J. M. VER HOEF AND J. K. JANSEN

Figure 7. Comparison of (A) P1B versus (B) ZIP estimation of the Bernoulli parameter pi,j for the i = 3 time period. The mean
of the posterior distribution for pi,j is shaded, with lower values getting whiter shades and higher values getting blacker shades.

The size of the circle is inversely proportional to the posterior range scaled by the posterior median

distribution means for the P1B (having a one added to a Poisson random variable) tends to be higher
than the mean of the count distribution for the ZIP.

One of the most interesting features in Figure 8 is an edge effect. Notice that the most observed
nonzero counts (see Figure 1) occur in the areas where the circles are largest in Figure 8, which is near
the upper center. Yet some of the highest predicted values occur along the edges in Figure 8, which
cannot be explained by the ice covariate (see Figure 1). We propose the following explanation. All of
the modeling is occuring on the log scale. There is greater prediction uncertainty near the edges than
near the observed nonzero counts. This is a feature that is often found in prediction methods such as
kriging; the farther away you get from the observed data, the higher the prediction variance. We want
to make inference on the original scale of the data, so we exponentiate the MCMC values and then
average. However, it is well known that if Z1 and Z2 are random variables, and E(Z1) = E(Z2) but
var(Z1) > var(Z2), then E(eZ1 ) > E(eZ2 ). This is clearly causing bias around the edges where there is
high prediction variance. We might consider the median instead, as quantiles are unaffected by monotone
transformations. Indeed, that corrects the problem seen at the edges of Figure 8. We return to this issue
in the next subsection.

Published in 2007 by John Wiley & Sons, Ltd. Environmetrics 2007; 18: 697–712
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SPACE–TIME ZERO-INFLATED COUNT MODELS 707

Figure 8. Comparison of (A) P1B versus (B) ZIP estimation of the Poisson parameter λi,j for the i = 3 time period. The mean
of the posterior distribution for λi,j is shaded, with lower values getting whiter shades and higher values getting blacker shades.

The size of the circle is inversely proportional to the posterior range scaled by the posterior median

The P1B Bernoulli distribution had a lower mean than the ZIP Bernoulli distribution, but the P1B
Poisson distribution had a higher mean than the ZIP Poisson distribution. As a consequence, the
smoothed predictions obtained from the posterior means of λ3,jp3,j can look quite similar. However,
notice the same edge effect in Figure 9 that occurs for the Poisson distribution seen in Figure 8. All in
all, these maps are not satisfactory, so we investigate alternatives.

4.4. A model diagnostic and linex loss

Model diagnostics are important in any data analysis. In this section we concentrate on a simple
diagnostic for the smoothed prediction maps. Our main concern is with the edge effects described in the
previous section. Compare the observed data in Figure 1 for 7 May 2002 to the smoothed predictions in
Figure 9B. The predictions in Figure 9B are neither as high as the highest observed values, nor as low as
the lowest observed values, which justifies the use of the word ‘smooth.’ However, we might expect that
the total of the observed counts for 7 May 2002 to be approximately equal to the total of the predictions
in Figure 9B. One very simple model diagnostic then is to sum the predicted values as in Figure 9, but
for each time period. Then, we can sum the observed values for each time period, and compare them.

Published in 2007 by John Wiley & Sons, Ltd. Environmetrics 2007; 18: 697–712
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708 J. M. VER HOEF AND J. K. JANSEN

Figure 9. Comparison of (A) P1B versus (B) ZIP predictions for the i = 3 time period. The mean of the posterior distribution
for λi,jpi,j is shaded, with lower values getting whiter shades and higher values getting blacker shades. The size of the circle is

inversely proportional to the posterior range scaled by the posterior median

A scatterplot of the sum of the smoothed predicted values versus the sum of the observed values for all
18 time periods is given in Figure 10. Notice that when smoothing by using the mean of the posterior
distribution, the summed predictions are greater than the summed observations for all time periods.
If we smooth by using the median of the posterior distribution, the summed predictions are less than
the summed observations for all time periods. The mean of the posterior is the optimal predictor when
using squared-error loss, and the median is the optimal predictor when using absolute deviation loss
(see, e.g., Bain and Engelhardt, 1987, pp. 297–298). Because of the skewness of lognormal processes,
we decided to use the linex loss function instead.

The linex loss function (Varian, 1975) is an asymmetric loss function given by

L(θ) = eaθ − aθ − 1. (9)

The parameter a controls the amount of asymmetry, with the higher the value of a, the more asymmetry.
This loss function penalizes positive deviations from zero more than negative deviations from zero. The

Published in 2007 by John Wiley & Sons, Ltd. Environmetrics 2007; 18: 697–712
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Figure 10. Scatterplot of the summed smoothed predictions vs. the summed observations for each time period for P1B model.
The open circles are the sums when the prediction at each location is based on the mean of the MCMC sample. The crosses are
the sums when the prediction at each location is based on the median of the MCMC sample. The solid circles are the sums when

the prediction at each location is based on the Varian predictor (10) from the MCMC sample

optimal predictor for the linex loss function, Equation (9) is given by Zellner (1986);

θ̂ = −(1/a) log(Eθe
−aθ), (10)

and we will call this the Varian predictor. For any parameter θ, we replace the expectation Eθe
−aθ with

an average of e−aθk , where θk is the kth sample of θ from the MCMC sampler. We applied θ̂ to all cell
predictions for all dates for various values of a in Equation (10). By trying to match the sum of the
smoothed predictions to the sum of the observed values for each date, we determined that a = 0.05 to
be a reasonable value, as shown in Figure 10.

In Figure 11, we show the Poisson predictions p3,j and the product predictions p3,j(λ3,j + 1) using
Equation (10) with a = 0.05 for all cells of the P1B model only. The optimal predictions using the linex
loss function in Figure 11 has lowered the values around the edges seen in Figure 9, and hence corrected
the edge effects. The sum of the smoothed values in Figure 11B is now also close to the sum of the
observed values as shown in Figure 10.

5. DISCUSSION AND CONCLUSIONS

Zero-inflated models for count data are appropriate in many situations, and it is important to begin to
incorporate space–time dependencies in these models. Such models have been developed for the ZIP
regression by Wikle and Anderson (2003). Here, we add the P1B model, which is a simpler approach
because there is no mixture of the Bernoulli and Poisson distributions, which could allow for separate
analyses of count and binary data. The P1B model is more appropriate for plant or animal counts when

Published in 2007 by John Wiley & Sons, Ltd. Environmetrics 2007; 18: 697–712
DOI: 10.1002/env



710 J. M. VER HOEF AND J. K. JANSEN

Figure 11. Spatial predictions for P1B model for the i = 3 time period by using the Varian predictor (10). (A) Estimation of
the Poisson parameter λi,j for the P1B model. (B) Predictions using λi,jpi,j for the P1B model. For both plots, lower values get
whiter shades and higher values get blacker shades. The size of the circle is inversely proportional to the posterior range scaled

by the posterior median

there is little chance of missing any items in the counts. When detectability is high, one could do separate
analyses using a space–time Poisson regression and a space–time logistic regression. However, often
the inference, such as prediction, concerns the combination of the Poisson and Bernoulli parts. Potts and
Elith (2006) also preferred a hurdle model like P1B to a ZIP model based on a model-fitting evaluation.
The Bayesian hierarchical model for a P1B retains the same framework as for ZIP and provides a logical
framework for prediction. It is also possible to form functions of parameters, such as the standardized
selection coefficients, and obtain their posterior density.

The comparison of ZIP to P1B suggested that Bernoulli probabilities will be lower for the P1B
model, but the P1B will have higher mean values for the Poisson part of the model. There are some
advantages of using the P1B model. Because there is no mixing of zeros in the P1B model, it had higher
precision when making inference on fixed effects in the Bernoulli part of the model. It would also be
easier to form residual diagnostics using the P1B model.

Both ZIP and P1B models were strongly biased when predicting smoothed values around the edges.
This has not been widely observed in ‘disease mapping’ literature (e.g., Lawson and Williams, 2001)
largely because there are usually counts from every cell. The problem is highlighted in the zero-
inflated models because counts are ‘covered up’ by the zeros of the Bernoulli distribution and we
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are predicting at some distance from the observed nonzero counts. The problem of prediction bias when
back-transforming log data is well-known in kriging (see Cressie, 1993, p. 135), but one also needs to
take care when using spatial, temporal, or spatio-temporal models as random effects in a generalized
linear model framework (e.g., Diggle et al., 1998) with a log link function. The estimator arising from
a linex loss function appears to be a good way to correct for bias when back-transforming predictions
from a log link function.
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