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SUMMARY

Preservation of rivers and water resources is crucial in most environmental policies and many efforts are made
to assess water quality. Environmental monitoring of large river networks are based on measurement stations.
Compared to the total length of river networks, their number is often limited and there is a need to extend
environmental variables that are measured locally to the whole river network. The objective of this paper is to
propose several relevant geostatistical models for river modelling. These models use river distance and are based
on two contrasting assumptions about dependency along a river network. Inference using maximum likelihood,
model selection criterion and prediction by kriging are then developed. We illustrate our approach on two
variables that differ by their distributional and spatial characteristics: summer water temperature and nitrate
concentration. The data come from 141 to 187 monitoring stations in a network on a large river located in the
Northeast of France that is more than 5000 km long and includes Meuse and Moselle basins. We first evaluated
different spatial models and then gave prediction maps and error variance maps for the whole stream network.
Copyright © 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Preservation of aquatic biotopes and ecosystem management of river networks are major issues in public
policies. For example, rivers and water resources may be subjected to intensive agriculture, causing
pollution such as nitrates or pesticides. Environmental monitoring of large river networks is often based
on measurement stations. Compared to the total length of river networks, the number of monitoring
stations is often limited and there is a need to extend environmental variables that are measured locally
to the whole river network.
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Aix-en-Provence, France.
†E-mail: garreta@cerege.fr

Received 31 October 2008
Copyright © 2009 John Wiley & Sons, Ltd. Accepted 3 February 2009



V. GARRETA, P. MONESTIEZ AND J. M. VER HOEF

Geostatistics can carry out this objective, and it seems natural to use a distance that is
meaningful for a river, i.e. calculated along the network. This distance is called ‘stream distance’
in Ver Hoef et al. (2006) and ‘river distance’ in Cressie et al. (2006). The adoption of standard
models and methods of geostatistics (e.g. Cressie, 1991; Chilés and Delfiner, 1999) cannot then
be carried out in a simple way for several reasons. Firstly, stationarity (i.e. the invariance in
distribution, mean and/or covariance by spatial translation) must be redefined according to the
support topology of river networks and distances. Secondly, for any set of points belonging to
a river network, it is necessary to have models that ensure positive-definiteness of the spatial
covariance function. Finally, different spatial patterns may result from different variables and
processes, so it is desirable to have enough valid spatial covariance models to fit the different
processes.

Currently, two broad classes of models answer these conditions and were proposed independently.
They involve different assumptions on the nature of the mechanisms that generate spatial variation in
the data. Monestiez et al. (2005) proposed a first kind of geostatistical model based on conditional
independence at branching points, while Ver Hoef et al. (2006) and Cressie et al. (2006) proposed a
family of models with total independence between branches.

First, consider the models that are defined by conditional independence at branching points. Branches
are modelled conditionally on what happens downstream. They are built from one-dimensional random
functions (RFs) and easy to simulate using standard conditional simulation methods. Bailly et al. (2006)
developed this kind of model to fit spatial variation of anthropogenic drainage networks. Their principal
limitation is the absence of an explicit model of covariance for points that are not in an upstream–
downstream relationship. The only way to calculate them is through simulation. Beyond the lack of a
simple characterization of the whole covariance, kriging can become very difficult, even impossible, for
important sets of data, except by removing most of the data for prediction (the same limitation appears
in Cressie and Majure (1997)).

Second, consider the models that are defined by kernel convolution (Ver Hoef et al., 2006) and
are characterized by independence between branches. Built from a unilateral convolution kernel
oriented upstream, they are not stationary by construction. Ver Hoef et al. (2006) provide a suite
of models and showed how to add conditions on confluences to ensure stationarity in variance,
and Cressie et al. (2006) used one set of confluence conditions and a particular model in a real
application. De Fouquet and Bernard-Michel (2006) propose another point of view with another
construction method of these models, extending them to the intrinsic hypothesis (variogram only
exists).

In this paper, we show that the first models can be obtained in a similar way as the second by
reversing the unilateral kernel downstream. Consequently, valid models of covariances can be given
explicitly for all pairs of points, thus eliminating the main problem with those models. In the following,
we call them down models in contrast to the models based on the upstream kernel which we call up
models. This generalization and the resulting explicit expressions of spatial covariance allow us to
implement classical methods in statistics, including maximum likelihood estimation, comparison and
selection of models using Akaike information criterion (AIC) and kriging (interpolation at any network
site).

These methods will be illustrated for a case study: the basin of the Meuse and the Moselle
in the North-East of France. The dataset has two environmental variables sampled at 141
and 187 sites. These variables, summer water temperature and nitrate rates, have different
characteristics. We model their spatial variation and map them everywhere on the river network by
kriging.

Copyright © 2009 John Wiley & Sons, Ltd. Environmetrics (2009)
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SPATIAL PREDICTION ON RIVER NETWORK

2. MODELS

Considering the modelling of a RF on river networks, the main difficulty is the proper specification
of the RF on a support that is both continuous, i.e. locally equivalent to a one-dimension line, and
topologically a tree with branching points. The spatial covariance structure must be positive definite for
any finite subset of points belonging to the network, whether they are located at or between branching
points. Most spatial covariance models used in R or R2 cannot be simply generalized to branching
supports without revisiting the stationarity hypothesis and what happens to the covariance function at
branching points (see an example of what can go wrong in Ver Hoef et al. (2006)).

2.1. Definitions and notations for RF on river networks

We first need to introduce some notation to facilitate the writing of further expressions. Some of them
are borrowed from Cressie et al. (2006). A site or a point on the river network—noted s below—is
indexed on a continuous support whether it is located at a branching point or between branching points.
A segment is the set of points between two branching points or confluences. A confluence is a node
of order 3 or more on the river network. Referring to the stream flow, upstream endpoints are named
sources and the downstream endpoint the outlet or the mouth of the stream network. To keep the network
simple, particular cases such as lakes or deltas are not considered here but remain possible since the
global topology remains a tree.

Reusing Cressie’s notation, we can define at any point s, the upstream domain noted ∨(s) and the
downstream domain noted ∧(s). For two points s and t, a distance � = d(s, t) is defined as the stream
distance along the river path if one of the two points belongs to the downstream domain of the other.
We note s → t when t belongs to ∧(s) and the two points are said to be flow-connected (Figure 1(a)).

When two points are flow-unconnected, then neither s belongs to ∧(t) nor t belongs to ∧(s). In this
case, let u be the upper common confluence in ∧(s) ∩ ∧(t). To be concrete, let s be at least as far, or
farther, upstream than t, but on a different branch. Then the relationship between s and t is denoted
s –→ t, and s → u, t → u and d(s, u) ≥ d(t, u) (Figure 1(b)). Then the distance d(s, t) depends on two
quantities �1 and �2 where �1 = d(s, u) and �2 = d(t, u) with �1 ≥ �2. The distance can be written
as the sum d(s, t) = �1 + �2 but in most cases the covariance function will depend on both terms �1
and �2 and not only on the sum.

Figure 1. Notation for distance function at a confluent point in a river network

Copyright © 2009 John Wiley & Sons, Ltd. Environmetrics (2009)
DOI: 10.1002/env
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2.2. General RF building method

A general method for building a RF (1-D) or a random field (2-D or more) consists in smoothing a white
noise by a kernel. The resulting RF is a Gaussian process with a spatial covariance function which is
the self convolution of the smoothing kernel.

For example, in R1, a RF can be defined by

Ys =
∫
R

g(x − s)dB(x)

where dB(x) is the derivative of a Brownian process, i.e. a white noise, and g is an integrable and square
integrable kernel.

The covariance of Y (·) is thus

Cov(Ys, Yt) =
∫
R

g(x − s)g(x − t)dx

For more details on the mathematical framework and direct applications, one can refer to Billingsley
(1995), Barry and Ver Hoef (1996), Higdon (2001), Cressie and Pavlicova (2002) or Øksendal (2003).

2.3. Down models

In the general approach previously defined, we used a kernel defined for downstream points of s

(Figure 2(a)). The integration is then performed on an unilateral 1-D kernel support:

Ys = µ(s) +
∫

∧s

g(x − s)dB(x)

where µ(s) is a mean term that may be assumed constant and B(x) is a Brownian process starting
from the outlet, progressing toward the sources, and separating themselves in independent Brownian
processes at confluences.

Figure 2. Kernel shapes for (a) down model and (b) up model

Copyright © 2009 John Wiley & Sons, Ltd. Environmetrics (2009)
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It is then easy to deduce the spatial covariance structure; for all pair of points (Ys, Yt), with ∧s and
∧t their respective downstream domains, we express the covariance:

cov(Ys, Yt) =
∫

∧s∩∧t

g(x − s)g(x − t)dx

Considering the two different cases of Figure 1, the covariance becomes:

(i) If s → t, then

cov(Ys, Yt) =
∫

∧t

g(x)g(x − t + s)dx (1)

(ii) If s –→ t, then

cov(Ys, Yt) =
∫

∧u

g(x − u + s)g(x − u + t)dx =
∫

∧u

g(x − �1)g(x − �2)dx (2)

2.3.1. Conditional independence between branches. In order to show the conditional independence
property of down models let us define the conditional RF

Ys|yu =
∫

∧s\∧u

g(x − s)dB(x) + yu (3)

where ∧s\∧u is the set ∧s minus that of ∧u, i.e., the stream path between s and u, and where yu =∫
∧u

g(x − u)dB(x) is the entirely known (considered as constant) RF dowstream of u, and note the
probability as P[Ys|yu] = P[

∫
∧s\∧u

g(x − s)dB(x)].
Now consider two flow-unconnected points s� t given yu, exhaustive knowledge of the RF Y (·) on

the common downstream domain ∧u = ∧s ∩ ∧t

P[Ys, Yt|yu] = P

[∫
∧s\∧u

∫
∧t\∧u

g(x − s)g(z − t)dB(z) ∩ dB(x)

]

but this factors as

P[Ys, Yt|yu] = P[Ys|yu]P[Yt|yu] = P

[∫
∧s\∧u

g(x − s)dB(x)

]
P

[∫
∧t\∧u

g(z − t)dB(z)

]
(4)

by noting that ∧s\∧u and ∧t\∧u do not overlap, and the independence of the Brownian process
increments dB(x) and dB(z) among branch segments, and hence we have conditional independence.

Note that down models share the properties that define the models introduced in Monestiez et al.
(2005)—stationarity along the stream and conditional independence among branches. By construction
they are admissible and provide explicit covariance models for flow-unconnected points that was
previously missing.

Copyright © 2009 John Wiley & Sons, Ltd. Environmetrics (2009)
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2.3.2. Exponential model and isotropy. To obtain the exponential model of covariance, the kernel on
R is

g(x) =
√

2C1

r
e−x/r I{0≤x}

Equation (1) yields the exponential covariance function

C1e
−(�)/r if 0 ≤ � (5)

and Equation (2) yields the following expression:

C1e
−(�1+�2)/r if 0 ≤ �2 ≤ �1 (6)

By simply adding the two distances �1 and �2, Equation (6) does not differ from Equation (5) for
flow-connected pairs and thus this model features isotropy—covariance depends only on the distance
between points—in the network.

2.3.3. Explicit form of the spherical covariance model. The kernel associated with the spherical
covariance model is

g(x) =
√

3C1

r
(1 − x/r) I{0≤x<r}

For flow-connected points, using Equation (1) results in the well-known expression for the spherical
model of covariance

C1

(
1 −

(
3�

2r

)
+ 1

2

(
�

r

)3
)

if 0 ≤ � ≤ r and 0 when r ≤ � (7)

For flow-unconnected points Equation (2) gives a slightly more complex covariance model:

C1
(r − �2)2(2r + �2 − 3�1)

2r3 if 0 ≤ �1 ≤ �2 ≤ r (8)

whose plot is given in Figure 3.
Note that the actual range for flow-unconnected pairs is larger than the range for flow-connected

pairs.

2.3.4. Other covariances models. Beyond the basic models such as exponential, spherical or pure
nugget, other models of covariance can be developed for any down-sided integrable and square integrable
kernel. For example, in the flow-connected case, Table 1 gives the kernel and the associated covariance
function for three models: the one-dimensional linear-with-sill model, the Mariah model first given by
Ver Hoef et al. (2006), and a new one based on the Epanechnikov kernel. Table 2 gives the covariances
for flow-unconnected pairs using the same three kernels.

Copyright © 2009 John Wiley & Sons, Ltd. Environmetrics (2009)
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Figure 3. Theoretical covariance plots in the flow-unconnected context: linear-with-sill, spherical, Mariah model, Epanechnikov
kernel model. Models are listed Tables 1 and 2 and Equations (7) and (8)

Table 1. Covariance functions resulting from different kernels for flow-connected pairs

Model Kernel g(x) Covariance function C(�)

Linear-with-sill g(x) =
√

C1
r

I{0≤x<r}

{
C1(1 − �/r) if 0 ≤ � ≤ r

0 if r < �

Mariah model
(Ver Hoef et al.,
2006)

g(x) =
√

C1
r

1
x/r+1 I{0≤x}

{
C1 if � = 0

C1 ·
ln
(

�
r +1

)
�/r

if 0 < �

Epanechnikov
kernel model

g(x) =
√

15C1
8r

×(
1 −

(
x
r

)2
)

I{0≤x<r}

{
C1

16r5 (� − r)2 · (16r3 + 17r2� − 2r�2 − �3) if 0 ≤ � ≤ r

0 if r < �

2.4. Up models

Ver Hoef et al. (2006) and Cressie et al. (2006) first proposed models built by kernel smoothing
of white noise. They use a unilateral kernel that points upstream of s (Figure 2(b)). Following

Copyright © 2009 John Wiley & Sons, Ltd. Environmetrics (2009)
DOI: 10.1002/env
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Table 2. Covariance functions for flow-unconnected pairs in Down models

Model C(�1, �2) flow-unconnected pairs

Linear-with-sill

{
C1(1 − �2/r) if 0 ≤ �1 ≤ �2 ≤ r

0 if r < �2

Mariah model




C1 if �1 = �2 = 0

C1 (ln(�2 + r) − ln(�1 + r)) r

�2−�1
if 0 < �2

C1

(
1

�2/r+1

)
if �1 = �2 > 0

Epanechnikov
kernel model




C1
16r5 (�2 − r)2

(
16r3 + 17�2r

2 − 15�1r
2 − 20r�2

1

−2r�2
2 + 10r�1�2 + 5�1�

2
2 − �3

2 − 10�2�
2
1

)
if 0 ≤ �1 ≤ �2 ≤ r

0 if r < �2

Cressie et al. (2006), a weighted integration is performed on the upstream branching kernel support:

Ys = µ(s) +
∫

∨s

g(x − s)

√
�(x)

�(s)
dB(x)

where �(x) are weights that check an additivity constraint to ensure stationarity in variance.
The weights ensure stationary variance in the following way. Without weighting, the variance of

a random variable will be
∫
∨s

[g(x − s)]2dx. Note that there can be many possible configurations of
branchings upstream of s. If we simply allow the function to go unweighted up all branches, then a
location with many branches upstream will have a larger variance than a location with few branches
upstream. Intuitively, if we weight the function g(x) with proportions that sum to 1 at each branch,
then we retain the same area under the function g(x) as we move upstream. Ver Hoef et al. (2006)
describe and construct their random variables this way, and note that weighting accumulates as we
move upstream. The additive function described by Cressie et al. (2006) is an equivalent and more
compact way to write the relationship (Money et al., in press; Ver Hoef and Peterson, in press). When
weights are arbitrarily defined for all source segments, the weight of any point s is defined as the
sum of the weights of upstream segments. For example, in Figure 4, for all points x of a segment i,
�(x) = wi. If one define all weigths for all source segments w1 = w2 = w3 = w4 = w5 = 1, then we
have w6 = w7 = 2, w8 = 4 and w9 = 5. This was the choice made by Cressie et al. (2006): the additive
function value is simply the number of upstream source segments.

The spatial covariance structure for all pair of points (Ys, Yt), is then

cov(Ys, Yt) =
∫

∨s∩∨t

g(x − s)g(x − t)
�(x)√

�(s)�(t)
dx (9)

leading to a null covariance for flow-unconnected s –→ t because ∨s ∩ ∨t = ∅. For the flow-connected
case, s → t, the integral is on one line:

cov(Ys, Yt) =
√

�(s)

�(t)

∫
R+

g(x)g(x − t + s)dx (10)

Copyright © 2009 John Wiley & Sons, Ltd. Environmetrics (2009)
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Figure 4. Weighting example for up models

with the weighting due to the additivity of � (Cressie et al., 2006). Other than the weights, model (10)
yields the same covariance functions among flow-connected sites as the down models Equations (5) and
(7), and those given in Table 1. However, the weighting clearly creates discontinuities at confluences.

2.5. Hybrid model

When building a hybrid RF model by summing independent RF, the resulting covariance model is the
sum of covariance models. We are interested in a hybrid covariance model that balances up and down
models

cov(Ys, Yt) = σ2
1δs=t + σ2

2

(
p

√
�(s)

�(t)
ρUp(s, t) + (1 − p)ρDown(s, t)

)
(11)

where δs=t is the Dirac mass applied at s = t, σ2
1 is the nugget effect, and σ2

2 is the variance of the
spatially autocorrelated part of the model. ρUp(s, t) and ρDown(s, t) are up and down autocorrelation
models and p is a parameter, constrained in [0, 1] to allow identifiability, representing up correlation
weight in the spatially autocorrelated part of the model. Note that Equation (11) is not isotropic; i.e.,
depending only on the distance between two points. It keeps the two main characteristics of up and down
models; a discontinuity at confluences like up models and conditional independence between branches
given all common downstream segments as in down models.

Copyright © 2009 John Wiley & Sons, Ltd. Environmetrics (2009)
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3. METHODS FOR ESTIMATION AND PREDICTION

Classical geostatistics fits a parametric variogram (covariance) to an empirical variogram (covariogram),
often obtaining variogram (covariance) parameter estimates by (weighted) least squares, mitigating
any distributional assumptions on the RF. Note that simple and robust computation of the empirical
variogram (all squared-differences among pairs of points plotted against distance) needs stationarity
and isotropy of the RF. However, note that down models, except the exponential, are not isotropic. To
fit this kind of model a partitioned variogram could be used for flow-connected and flow-unconnected
pairs (Ver Hoef et al., 2006). Up models also have nonstationary covariances, so a corrected empirical
covariogram would be necessary for inference (in the same way that weighting occurs in the models).
Instead, we chose maximum likelihood estimation, assuming a Gaussian RF distribution. This allowed
us to compare, in a consistent and robust way, different types of covariance models, especially through
the use of AIC (Akaike (1974)).

3.1. Maximum Likelihood estimation

We introduce the following notation: Y (sα) = Yα, with α = 1, . . . , n, are measurements of the RF
Y (·) at the sα points, and Y ≡ (Y1, . . . , Yn) is the vector of measurements. Let Y∗(s0) = Y∗

0 be the
predicted value at point s0. Also let C(sα, sβ, θ) = Cαβ(θ) be the covariance between Y (sα) and Y (sβ)
with parameter vector θ, also denoted Cαβ when the model is chosen and parameters are fitted.

Then the likelihood function of the gaussian RF Y (·) with C(·, ·, θ) covariance model and a constant
mean µ is given by

L(Y , µ, θ) = 1

(2π)n/2
√|	(θ)| exp

(
−1

2
(Y − µ1I)t	(θ)−1(Y − µ1I)

)

where 	(θ) is the covariance matrix with Cαβ(θ) as its α, β element and 1I the a vector of 1’s of length
n. Instead of maximizing the likelihood function, to reduce computing error we prefer to minimize the
function:

l(Y , µ, θ) ∝ −2 log(L(Y , µ, θ))

=
n∑

i=1

log(eigen(	(θ))) + (Y − µ1I)t	(θ)−1(YY − µ1I)

This function is minimized for each covariance model using a Newton type algorithm (nlm function
in R Development Core Team (2007)).

3.2. Model selection

The different RF models we proposed are intrinsically non-nested so the comparison of up and down
models as well as the different covariance functions requires the use of a selection criterion or a measure
of the model predictive quality.

3.2.1. AIC selection criterion. We choose to use the classic AIC selection criterion (Akaike, 1974;
Burnham and Anderson, 2002) which estimates the expected relative distance of each model to a ‘true’

Copyright © 2009 John Wiley & Sons, Ltd. Environmetrics (2009)
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unknown model. The AIC of a RF model is computed using

AIC = −2 log(L(Y , µ̂, θ̂)) + 2k

where L(Y , µ̂, θ̂) is the likelihood of the RF model computed at (µ̂, θ̂), the maximum likelihood estimates
of (µ, θ), and where k is the dimension of this parameter set.

The best model is the one with the smallest AIC, meaning that its likelihood is the highest,
downweighted by its number of parameters. This criterion, based on logarithm, is used to compare
models based on their difference. So we will look at �AIC, defined as the difference between AIC and
minimum of AIC over candidate models. In the case of nested models, Burnham and Anderson (2002)
suggest an empirical rule to discriminate or elect nested models: a �AIC of 0–2 means that both the
minimal AIC model and the considered model are supported by data, a 4–7 difference means that the
model with minimal AIC is considerably more accurate, and a difference of more than 10 discriminates
totally for the model. This guideline may be somewhat larger for non-nested models. Note that, in the
geostatistical context where we have dependent data, criterions such as Bayesian information criterion
(BIC, Schwarz, 1978) and all corrected AIC, which use sample size for weighting, should be avoided.

3.2.2. Mean square prediction error measure. Mean-square-prediction-error (MSPE) is a measure of
the predictive power of a model. It is estimated by leave-one-out cross-validation after estimating the
covariance parameters. That is, we fit θ covariance parameters by maximum likelihood using the whole
dataset of size n, and then predict by kriging each point in turn using all the others and the previously
estimated covariance function. Each prediction is compared to its associated ‘left-out’ real value and
the MSPE is computed as

MSPE = 1

n

n∑
i=1

(Yi − Y∗
i )2

where Y∗
i is the ith point kriged using all the other n − 1 points. This measure does not account for

parsimony of the considered model (the task of AIC) but gives us an idea of its predictive ability.

3.3. Kriging on river networks

After estimating covariance parameters and choosing a model, the covariance between Y (sα) and Y (sβ)
is denoted Cαβ. We interpolate unknown Y∗

0 at point s0 of the RF Y (·) by ordinary kriging (Cressie,
1991) which gives us best linear unbiased predictor (BLUP).

Y∗
0 is a linear predictor

Y∗
0 =

n∑
α=1

λαYα
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Assuming the unbiasedness constraint
∑n

α=1 λα = 1 and noting µ the unknown constant mean of Y (·),
we have

E
[
Y∗

0

] = E

[
n∑

α=1

λαYα

]
=

n∑
α=1

λαE [Yα] = µ

(
n∑

α=1

λα

)
= µ

The variance of prediction error, written as Var(Y∗
0 − Y0) = E[(Y∗

0 − Y0)2], is

Var(Y∗
o − Yo) =

n∑
α=1

n∑
β=1

λαλβCαβ + σ2
o − 2

n∑
α=1

λαCαo

where σ2
o is the unknown variance of Yo.

Minimizing Var(Y∗
o − Yo), including the unbiasedness constraint, we obtain the λα kriging weights,

using a Lagrange multiplier η to solve the linear system of n + 1 equations:

{∑n
β=1 λβCαβ − η = Cαo for α = 1, . . . , n,∑n
α=1 λα = 1

(12)

involving an (n + 1) dimensional matrix inversion and one matrix vector multiplication.
The variance of the ordinary kriging predictor is computed as

Var(Y∗
0 − Y0) = σ2 −

n∑
α=1

λαCαo + η (13)

where σ2 is the variance of Y (·) already inferred and η is a solution from Equation (12).

4. RIVER NETWORK CASE STUDY

4.1. River network characteristics and monitored variables

The spatial river network analysis was applied to the Meuse and Moselle basins, which are limited
to the northeast of France by the German border (East and North), the Luxembourg border (North)
and the Belgium border (North). These borders define eight sub-river networks which are considered
independent since we do not know their confluence. Altogether, they accumulate more than 5000 km
of river network. Both summer temperature and nitrate rates were measured at 141 monitoring stations
plotted in Figure 5. Summer temperature was also measured on additional stations giving a total number
of 187 sites for temperature. The different models were fitted and compared on the whole data set
for each variable. Summer temperature is approximatively normally distributed while asymmetry in
the distribution of nitrate rates required a log transformation of the raw data before analysis. In the
following, in order to show more readable maps, kriging is illustrated only on the Moselle subnetwork;
however all analyses were computed on the whole network.
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Figure 5. Map of the Meuse and Moselle network. Filled symbols locates temperature and nitrate monitoring stations. Empty
symbols denotes additional sites where only temperature were available. Coordinates for x and y axes are in Lambert II and unit

in km

4.2. Model selection

Likelihood estimates and AIC criteria were computed for four different models; two down models with
isotropic exponential covariance and spherical covariance respectively, one up model with exponential
covariance using weights as described by Cressie et al. (2006), and finally a hybrid up and down model
with exponential covariances. We limited our comparison to a small number of potential models, one
for each category: up, down isotropic, down nonisotropic and hybrid. Results for AIC and MSPE are
summarized in Table 3. Note that for nitrates, the MSPE is computed on back-transformed predictions
and given in (mg/l)2.

For summer temperature, both criteria give a clear advantage to the up model compared to the down.
Meanwhile, it is the hybrid model that shows the best fit to spatial variation in summer temperature.

Table 3. Relative differences on AIC criterion and computed MSPE by cross validation for temperature in (◦C)2

and nitrate rates in (mg/L)2

�AIC MSPE

Temperature Nitrate Temperature Nitrate

Down model exp. isotropic 74.3 32.2 2.21 10.67
Down model spherical 77.1 31.2 2.20 10.68
Up model, Cressie’s weights 19.4 40.3 1.65 13.73
Hybrid model up and down 0 0 1.25 9.30
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Table 4. Fitted parameters for the two selected hybrid models

Hybrid model up and down Nugget Var. up Var. down Range up Range down

Summer temperature 0.311 1.122 1.533 ∞ 44.3
10.5% 37.8% 51.7%

Nitrate rates 0.014 0.085 0.273 ∞ 5.51
3.7% 22.8% 73.5%

Percentages of variance between nugget effect, up part and down part are given followed by respective scale parameters which
are about one third of the effective range for these exponential covariance models.

The hybrid model is also preferred for nitrate rates with a significant �AIC, but differences between
down and hybrid models remain low in term of MSPE.

Table 4 gives the estimated parameters for the two selected hybrid models. For both variables the
estimated range for the up part of the model is infinity, corresponding to a RF that is simply a step
function with discontinities at confluences. Because more than one measurement rarely exists between
two successive confluences, the range parameter is very poorly estimated. Essentially, the weights
capture all spatial variation.

For temperature, the up and down components are quite well balanced even if the up type seems to
be preferred at the selection step. The effective range of the down part is around 150 km, which is large
compared to the largest distance computed between flow-connected points.

For nitrates, the up component explains considerably less variation than the down component,
confirming the ranking obtained from AIC. The down part shows a limited effective range of 10–20 km,
highlighting local spatial variation.

Figure 6. Map of kriged summer temperatures on the Moselle subnetwork (left) and map of standard error of prediction. Black
dots are located at data sites and grey dots features interpolated points. Measured and predicted values of temperatures control
the symbol sizes on the left and predicted errors on the right. Coordinates for x and y axes are in Lambert II and unit in kilometre
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4.3. Kriged maps and error prediction

Maps were obtained by plotting kriged values (Figure 6, left) and predicted errors (Figure 6, right) at
equidistant points laid along the network. Kriging values for Temperature were obtained for each point
by solving the system (12) with the selected hybrid model. The standard errors of the predictions were
computed as the square root of the corresponding kriging variance (13).

Temperature discontinuities at confluences, which are associated with the up model, are not highly
visible except at a few confluences (Figure 6, left). These discontinuities are somewhat masked by
the resolution of mapping, but also by a long range trend which is modelled here by the down range
parameter. This could also be modelled as a non-stationarity mean trending from a mountainous area
to plains.

The map of predicted error (Figure 6, right) shows several interesting patterns of the up model:

� segments with measurements have low prediction errors due to the infinity range in the up model
part, the error resulting only from the down part of the model,

� the prediction error shows steps between segments with and without measurements because of the
weighting system which creates discontinuities at confluences,

Figure 7. Map of kriged nitrate rates on the Moselle subnetwork. Black dots are located at data sites and grey dots features
interpolated points. Measured and predicted values of nitrate control the symbol sizes. Coordinates for x and y axes are in

Lambert II and unit in kilometre
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� the step between a measured segment and a non-measured one is higher when the latter has
little weight. This is apparent when a source segment has a confluence with stream of higher
order.

Patterns induced by the down part of the model are not as visible due to the long effective range.
Kriging of nitrate rates (Figure 7) are performed on log-transformed values using the selected hybrid

covariance model and then back-transformed by exponentiating before mapping. This is equivalent to
kriging the median, which has been recommended over lognormal kriging (see, e.g. Chilés and Delfiner
(1999)). Back-transforming the confidence interval end-points maintains the proper coverage as well.
The corresponding ‘error’ maps are then the 95% confidence interval spans measured in mg/L (Figure 8,
left), and we also present the confidence interval span as a per cent of the predicted value (Figure 8,
right).

For kriged nitrates (Figure 7), the discontinuities associated with the up model part are small but
visible at some confluences. The main variation from the down model part shows strong regionalization
in small watersheds (15–20 km) which results from geographic structuring of pollution sources. It may
be caused by agricultural practices whose spatial structuring are linked to stream segments, but in a
complicated way throughout the river network.

The predicted error confidence interval spans (Figure 8, left) are mapped as absolute. This
representation mostly hides errors in regions of low nitrate rates. When mapping error interval span
relative to the kriged value (Figure 8, right), we obtain a more informative map of the prediction quality.
Errors increase dramatically for non-measured source segments due to the mix of the down type model
with short range and the up type model.

Figure 8. Map of 95% confidence interval span for nitrate prediction (left) and of relative confidence interval span
(CI span/predicted value) (right). Black dots are located at data sites and grey dots features interpolated points
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5. DISCUSSION

Both up and down models show a real efficiency in spatial predictions along the river network. When
compared to a geostatistical approach solely based on geographical distance, the proposed models can be
directly related to the river based on physical and chemical processes within a network. For example Ver
Hoef et al. (2006) interpret their up covariance model as diffusion of a passive element following stream
flow and mixed at each confluence. The down isotropic exponential model is intuitively interpreted as
corresponding to a diffusion without taking the stream flow into account, etc.

In practice, it seems desirable to systematically test the mixture of the up and down models for real
data. For actual environmental variables, a pure up or a pure down model is highly improbable due to
the fact that these variables are generally influenced by several natural processes.

The way our covariances are built using unilateral kernels give only covariance models with strictly
negative slope at the origin. Smoother models that are twice differentiable at the origin could be obtained
by bilateral kernels differentiable at the origin.

The up model, which forms part of the hybrid model as well, introduces discontinuities in covariance
and in the RF at each confluence. It is a rather atypical characteristic for covariance functions, which
arises due to the desire to maintain stationarity in the variance. The choice made by Ver Hoef et al. (2006)
and Cressie et al. (2006), maintaining stationarity in variance seems natural when modelling bounded
processes such as mixing of a pollutant. When considering other processes showing an accumulation it
may be useful to consider the opposite balance: a stationary covariance and non-stationnary variance.
In theory, this could be handled by a different weighting scheme.

A problem with the up models is their identifiability when spatial samples are homogeneously
distributed and rarely with more that one point between two confluences. This can lead to estimates of
infinite range and the RF is modelled with constant values between confluences and discontinuities at
confluence, giving a crucial role to the weighting system of �’s.

This indicates that more work needs to be done on the spatial sample scheme. For exemple, several
sampled sites between confluences should improve up part estimation, sampled sites surrounding a
confluence will give more information on the system of � weights, and sampling the periphery of the
network close to sources should give good overall error maps. Finding a good compromise with limited
sample size on large network is a complex optimization problem.

Another perspective is to generalize the different models, up, down and hybrid, within the general
framework of bilateral kernels. However, deriving analytical expressions of covariance becomes a
challenging problem and interpretation of covariance structures by natural mechanisms becomes less
straightforward.

A final extension of these models is to use them as latent variables in hierarchical spatial models. For
example, we could consider modelling the spatial distribution of a disease potential along a river network,
using these kinds of models as a latent variable for the mean (using the appropriate link function) of a
Poisson distribution for count data, or the mean of a Bernoulli distribution for presence/absence data.
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