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Approximation Algorithms for Survivable
Multicommodity Flow Problems with

Applications to Network Design
Ajay Todimala and Byrav Ramamurthy

Department of Computer Science and Engineering
University of Nebraska-Lincoln
Lincoln NE 68588-0115 U.S.A.

Email: {ajayt, byrav}@cse.unl.edu

Abstract— Multicommodity flow (MF) problems have a
wide variety of applications in areas such as VLSI circuit
design, network design, etc., and are therefore very well
studied. The fractional MF problems are polynomial time
solvable while integer versions are NP-complete. However,
exact algorithms to solve the fractional MF problems have
high computational complexity. Therefore approximation
algorithms to solve the fractional MF problems have been
explored in the literature to reduce their computational
complexity. Using these approximation algorithms and
the randomized rounding technique, polynomial time
approximation algorithms have been explored in the
literature.

In the design of high-speed networks, such as optical
wavelength division multiplexing (WDM) networks,
providing survivability carries great significance.
Survivability is the ability of the network to recover
from failures. It further increases the complexity
of network design and presents network designers
with more formidable challenges. In this work we
formulate the survivable versions of the MF problems.
We build approximation algorithms for the survivable
multicommodity flow (SMF) problems based on the
framework of the approximation algorithms for the MF
problems presented in [1] and [2]. We discuss applications of
the SMF problems to solve survivable routing in capacitated
networks.

Keywords: Multicommodity Flow, Linear
Programming, Approximation Algorithms, Network
Design.

I. INTRODUCTION

Multicommodity flow (MF) problems are used
to model a variety of problems in areas such as
VLSI circuit design, network design etc. The
following are the most popular versions of the
MF problems, maximum multicommodity flow (MMF)
problem, maximum concurrent flow (MCF) problem and
minimum cost maximum concurrent flow (MC-MCF)
problem. For the definition of a flow in a network,

please see Section II or refer to [29]. Let us define
these problems. Given a directed graph G = (V,E)
with edge capacities c : E → R+ and a set of k
commodities with a node pair (si, ti) corresponding to the
ith commodity. The MMF problem is to compute a flow
for each commodity (si, ti) such that the sum of the flows
is maximized. An instance of the MCF problem includes
an instance of the MMF problem and a demand d(i) for
each commodity. The MCF problem is to determine the
maximum value of the parameter λ ≤ 1 such that the flow
fi for each commodity is at least λd(i). An instance of
the MC-SMCF problem includes an instance of the MMF
problem, edge cost function s : E → R+ and a constant
B. The objective of the MC-MCF problem, similar to the
MCF problem, is to compute a maximum concurrent flow
with the additional constraint that its cost is at most B.

The above discussed MF problems are fractional
versions where flow values are positive real numbers. The
fractional versions of the MF problems are polynomial
time solvable. However, the exact algorithms have high
computational complexity and are not practical for large
problem sizes. Recent research studies have focused on
developing efficient approximation schemes for the MF
problems. The integer versions of the MF problems
are NP-complete. They have applications both in
packet-switched and circuit switched network design and
more recently in the design of future generation optical
wavelength division multiplexing (WDM) networks.
MF problems are extensively used as the fundamental
problems in the design of circuit switched networks [3],
[4] [5] and also in reliable network design [6], [7]. The
MF problems are also used to solve the routing and
wavelength assignment problem in WDM networks and
routing in high-speed capacitated networks.

The authors in [8] and [9] model the routing and
wavelength assignment problem in WDM networks
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with the objective of maximizing the number of
connections as a maximum concurrent flow problem and
present an ILP formulation. They present algorithms
to solve the formulation based on the solution to
the fractional linear programming formulation of the
MCF problem. The author in [10] presents a
probabilistic approach (randomized rounding) to provide
a deterministic algorithm to the integral MF problem
using the approximation scheme for the fractional MF
problem. The authors in [11] and [12] model the routing
and wavelength assignment (RWA) problem in multi-fiber
WDM networks with limited wavelength conversion as
an integer multicommodity flow problem. They use the
approximation scheme for the fractional MMF problem
presented in [2] and improve the randomized rounding
scheme of [10] to provide a deterministic approximation
algorithm for the integer MF problem. Therefore
providing approximation schemes for fractional MF
problems is critical, as these schemes are used to build
approximation schemes for integral MF problems, which
in turn are used to model the routing problem in high-
speed networks.

Survivability, the ability to recover from failures,
is a critical issue in the design of optical WDM and
high-speed capacitated networks. Survivability further
increases the complexity of the design of optical WDM
networks. Survivable design of WDM networks under
static traffic was studied in [14], [15], [16], [17], [18],
[19], [20], and [21]. Most of the current approaches
solve the survivable routing problem in WDM networks
either by directly solving complex ILP formulations that
are extremely time consuming or by using heuristics or
meta heuristics such as tabu-search, which do not provide
any guarantee on the optimality of the solution obtained.
In this work we formulate the survivable versions of the
multicommodity flow problems (SMF) that are then used
to model survivable routing in WDM networks.

Several variations of the capacitated network design
problems have been studied in the literature. The authors
in [22] and [23] study a variation of the capacitated
network design problem with the objective of installing
additional capacity to route all the specified point-to-
point traffic demands at minimum cost. The authors
in [24] present a survey of models and algorithms for
multicommodity capacitated network design problems.
Survivable capacitated network design has received
little attention. The authors in [25] and [26] present
approximation algorithms for survivable static routing
using link-based protection for fast restoration in
capacitated networks. In link-based protection the traffic
is routed around the failed link to support fast restoration
but at the expense of lower resource utilization. In
this work we formulate survivable versions of the MF

problems that are then used to model the static routing
problem using shared path protection in capacitated
networks.

To the best of our knowledge this is the first work
that presents approximation algorithms to survivable
multicommodity flow problems. If all possible paths
between a given node pair (s, t) are considered valid
for pushing flow between (s, t) then even the fractional
survivable multicommodity flow problems are NP-
complete and also hard to approximate. In this work we
assume that the number paths that can be used to push
flow between a given node pair is limited and formulate
the survivable multicommodity problems accordingly.
The motivation for such an assumption stems from the
observation that not every path between a given node pair
satisfies the QoS constraints. Recent research studies on
network design with/without network survivability have
presented heuristics that use a limited number of paths
such as the K-shortest paths. We present approximation
schemes to these limited survivable versions of the
multicommodity flow problems.

The rest of the document is organized as follows.
In Section II, we define a survivable flow and a
survivable multicommodity flow under shared protection
in a network. In Section III, we discuss the general
idea to build an approximation scheme exploiting
primal-dual relationships in linear programming. The
primal-dual linear programming formulations and their
relationship are discussed in this section. Also in
Section III, we present a framework used in formulating
the survivable flow problems as a linear program
using a limited number of paths, popularly known
arc-chain formulations. In Section IV, we present
primal and dual arc-chain formulations of the Survivable
Maximum Multicommodity Flow (SMMF) problem. We
then present an approximation scheme, proof of its
approximation and an analysis of its running time. In
Sections V and VI, we formulate and present a similar
study of the Survivable Maximum Concurrent Flow
(SMCF) and Minimum Cost Survivable Concurrent Flow
(MC-SMCF) problems respectively. In Section VII,
we discuss applications of SMF problems in survivable
routing in capacitated networks under shared path
protection. In Section VIII, we present the concluding
remarks.

II. SURVIVABLE MULTICOMMODITY FLOW

PROBLEMS

In this section, we define a survivable flow and a
survivable multicommodity flow in a graph. A flow
between a pair of nodes (s, t) in a graph G is defined as an
assignment of values to directed edges of the graph also
called edge flows or flows, such that the flow on any edge
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does not exceed its capacity and for every node n in the
graph except s and t, the amount of incoming flow at the
node n is equal to the amount of outgoing flow from the
node n. The total outgoing flow from node s is equal to
the total incoming flow into node t and is called the flow
value. For more information on network flows and related
concepts, please refer to [29].

A. Survivable Flow

Given a graph G = (V,E) with edge capacities c :
E → R+ and a node pair (s, t), a survivable flow from
a source node s to a destination node t consists of two
flows, a primary flow and a secondary flow such that for
every primary flow of value f along a path p from s to t
there exists a distinct secondary flow also of value f along
a disjoint path q. The value of the survivable flow is the
sum of flows f along all such disjoint path pairs.

d
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(2,1)/3

(1,2)/4

(3,0)/4

(0,1)/2(1,0)/1

(2,0)/2

(0,2)/3
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a b
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Fig. 1. Illustration of a survivable flow.

Fig. 1 illustrates the survivable flow in a graph between
node pair (s, t). The primary flow pe and the secondary
flow se along an edge e with capacity ce is represented as
follows (pe, se)/ce. For example, as shown in Fig. 1, the
flow representation along the edge (s, d) with capacity 3
is (2, 1)/3 where the value of the primary and secondary
flows on the edge are 2 and 1 units respectively. Fig. 1
shows that a primary flow of value 2 units is pushed
along path

−−→
sdct and the corresponding secondary flow

is pushed along path
−−→
sabt. Similarly, a primary and its

corresponding secondary flow of value 1 unit is pushed
along the path pair (

−−→
sact,

−−→
sdbt). Fig. 1 shows the resultant

flow of pushing the primary and their secondary flows
along the path pairs (

−−→
sdct,

−−→
sabt) and (

−−→
sact,

−−→
sdbt). The

total survivable flow value is 3.
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Fig. 2. Illustration of a survivable flow under shared path protection.

A survivable flow under shared path protection is
defined such that for every pair of primary flows along
disjoint paths p1 and p2 with flow values f1 and f2

respectively, the corresponding secondary flows along a
common edge e need only max{f1, f2} amount of flow.
Fig. 2 illustrates a survivable flow under shared protection
between node pair (s, t). Let us push a survivable flow

of value 2 units along the path pair (
−−→
sdct,

−−→
sabt). Let

us push another survivable flow of value 2 units along
path pair (

−→
sat,
−−→
sdbt). Since the primary flow along path−−→

sdct is disjoint with the primary flow along path
−→
sat their

corresponding secondary flows can share the capacity on
the edge

−→
bt . Therefore, as shown in Fig. 2, the edge−→

bt has a total secondary flow of only 2 units while it
supports both the primary flows, each of value 2 units.
Shared protection thus reduces the amount of capacity
required on the secondary (protection) paths compared to
a dedicated protection scheme. In the rest of the paper,
we refer to ‘survivable flow under shared path protection’
as simply ‘survivable flow’. The problem of computing
disjoint path pairs under shared path protection can be
reduced to the problem of computing a survivable flow
with specific optimization criteria.

B. Survivable Multicommodity Flow under Shared
Protection

Given a graph G = (V,E) with edge capacities
c : E → R+ and k node pairs (si, ti). A survivable
multicommodity flow under shared protection is such
that for any primary flow of value f1 disjoint with any
other primary flow of value f2 the corresponding units of
secondary flows need only max{f1, f2} units of capacity
on a common edge e.

III. APPROXIMATION TECHNIQUE FOR LP
PROBLEMS

In this section we briefly describe the
general technique of designing approximation
algorithms/schemes for a problem based on its linear
programming formulation.

A. Primal-dual formulation

Let Fp be a linear programming formulation of
an optimization problem π. Fp is called the primal
formulation of π. For each primal formulation there exists
a corresponding dual formulation Fd. If the primal is
a maximization problem then its dual is a minimization
problem and vice versa. Given a feasible solution to the
primal formulation Fp, a solution for the dual formulation
Fd corresponding to the given feasible primal solution can
be computed in polynomial time in terms of number of
variables and constraints of the primal formulation. For
more information on the primal-dual relationship, please
refer to [27].
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B. Approximation Basis

Let us suppose that primal Fp is a maximization
problem and therefore its dual Fd is a minimization
problem. One of the important properties of the primal-
dual formulations is that the objective value of any
feasible solution for Fp is at most the objective value
of any feasible solution of its dual. We can conclude
from this property that if the objective value objp of
a feasible solution Sp of primal Fp is equal to the
objective value objd of a feasible solution Sd of Fd then
Sp and Sd are optimal solutions of the corresponding
primal and dual formulations. Comparing the objective
values of the primal and dual formulations we can
measure the closeness of a solution Sp to the optimal
solution. Therefore, if Sp and Sd are the feasible solutions
of the primal and dual formulations respectively and
their corresponding objective values are objp and objd

respectively then the feasible solution for the primal Sp

is at most ((objd − objp)/objd)% away from the optimal
solution.

C. Survey of Approximation Schemes for MF problems

Based on the above discussed technique, the authors
in [28] proposed an approximation scheme to the MMF
problem. The author in [2] presents a brief review
of the evolution of the approximation schemes for
the fractional multicommodity flow problems. The
authors in [1] presented approximation algorithms that
use shortest paths computations instead of minimum
cost flow computations. This work also suggested
simple modifications to the approximation algorithms to
determine a lower bound on the capacity of edges in
the graph such that approximate solutions to integral
MF problem can be computed in polynomial time.
The algorithms presented in [2] further improve the
run-time complexity of the approximation schemes
of multicommodity flow problems. The run-time
of the approximation algorithm for the maximum
multicommodity flow problem presented in this work is
independent of the number of commodities.

D. Node-arc and Arc-chain formulations

The multicommodity flow formulations can
be formulated using either node-arc or arc-chain
formulations. The node-arc formulation constraints
include the flow-conservation constraints [29] while arc-
chain formulations do not. The arc-chain formulations
use a set of paths as input to the formulation while
node-arc formulations consider all possible paths (though
not provided as explicit input to the formulation). In the
following section we present a framework that describes
the set of disjoint path pairs supplied as input to the

arc-chain formulations of the survivable multicommodity
flow formulations.

E. Disjoint-path pair framework for Arc-chain
formulations of MF

For each node pair (si, ti) a set of candidate primary
and secondary path pairs are already chosen that satisfy
the quality of service constraints such as delay, signal
strength etc., and denoted by Γi. The universal set
of path pairs Γ is defined as the union of the set of
candidate paths pairs for all the node pairs (si, ti) i.e.,
Γ = ∪iΓi. The set of path pairs whose secondary path
uses the link e is defined as Ψe = {(p, q)|(p, q) ∈
Γ ∧ e ∈ q}. The set of path pairs Ψe are partitioned
into a minimal number of sub-sets/partitions such that
primary paths of the path pairs belonging to a partition
are pair-wise disjoint. Let the set of partitions of Ψe be
represented as Π(Ψe). The problem of computing such
a partitioning into least number of partitions is NP-hard.
This problem can be solved by recursively solving the
maximum independent set problem. But the maximum
independent set problem is NP-hard and also hard to
approximate. Simple heuristics can be used to compute
such a partitioning of Ψe.

Let us define two parameters based on the partitioning
of the set Ψe for all e ∈ E that are later used
in the analysis of the approximation schemes for the
SMF problems. Let k1 be the maximum number
of disjoint path pairs in any partition Q of Ψe

for all edges e in the graph. Formally, k1 =
max{|Q| | ∀Q ∈ Π(Ψe) ∧ ∀e ∈ E}where |Q| is the size
of the setQ. Let k2 be the maximum number of partitions
of Ψe for all edges e in the graph G. Formally, k2 =
max{|Π(Ψe)| | ∀e ∈ E}.

IV. SURVIVABLE MAXIMUM MULTICOMMODITY

FLOW (SMMF)

In this section, we present an approximation algorithm
for the survivable maximum multicommodity flow
problem. The problem is defined as follows. Given a
graph G = (V,E) with edge capacities c : E → R+

and k node pairs (si, ti). The problem is to compute
a survivable flow for each commodity i under shared
protection such that the sum of the flows of all the
commodities is maximized.

The flow along a path pair P is denoted by w(P ). To
push a survivable flow f of value |f | along a path pair
P = (p, q) implies pushing a primary flow of value |f |
along the primary path p and the supporting secondary
flow of value at most |f | along disjoint secondary path
q. Notice that for primary flow of value |f | pushed
along the primary path p the supporting secondary flow
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along path q need not always be equal to |f |, for the
following reason. The amount of secondary flow that
is assigned to an edge e for protecting the primary flow
along the path pairs belonging to a partition Q ∈ Ψe

is defined as b(e,Q). Since all the primary paths of the
path pairs in a partition Q are pair-wise disjoint, their
secondary flows along secondary paths can share capacity
on a common edge e. Therefore, for pushing secondary
flow of value |f |, equivalent to support the primary flow,
along the secondary path q, only the difference flow of
value |w(P )− b(e,Q)| is pushed along edge e ∈ q where
w(P ) is the total flow along path pair P after pushing a
flow of value |f | andQ ∈ Ψe s. t. P ∈ Q. This difference
flow is called the exclusive flow pushed along edge e for
supporting primary flow along the path p ∈ P s.t. P ∈ Q
and Q ∈ Ψe. The amount of secondary flow along a link
e, b(e), is the sum of the secondary flows assigned to link
e for all partitionsQ,Q ∈ Ψe. The objective of the primal
is to maximize the sum of the surivable flows along all the
path pairs in the set Γ. The arc-chain primal formulation
PSMMF of the SMMF problem follows.

Maximize
∑
P∈Γ

w(P )

∀e ∈ E :
∑

P=(p,q):e∈p

w(P ) +
∑

Q∈Ψe

b(e,Q) ≤ c(e)

∀e ∈ E ∧ ∀P ∈ Q s.t.Q ∈ Ψe : w(P )− b(e,Q) ≤ 0
∀P ∈ Γ : w(P ) ≥ 0
∀Q and e s.t. Q ∈ Ψe : b(e,Q) ≥ 0

The dual of the problem is to assign primary lengths
l
p

(e) to the edges of the graph for carrying primary flow
and secondary lengths ls(e, P ) to the edge e for carrying
secondary flow for the path pair P that belongs to set of
path pairs Q ∈ Ψe. Let us define D(l

p

) =
∑

e l
p

(e)c(e)
where l

p

is the length function. The objective of the dual
formulation is to minimize D(l

p

). The dual formulation
DSMMF follows.

Minimize
∑
e∈E

l
p

(e)c(e)

∀P ∈ Γ :
∑
e∈p

l
p

(e) +
∑
e∈q

ls(e, P ) ≥ 1

∀Q and e s.t. Q ∈ Ψe : l
p

(e)−
∑
P∈Q

ls(e, P ) ≥ 0

∀e ∈ E : l
p

(e) ≥ 0
∀e ∈ E ∧ ∀P ∈ Q s.t.Q ∈ Ψe : ls(e, P ) ≥ 0

The cost of a path pair P , C(P ) =
∑

e∈p l
p

(e) +∑
e∈q ls(e, P ). Let Pmin(l

p

, l
s

) be the path pair P ∈ Γ
with minimum cost and let γ(l

p

, l
s

) = C(Pmin(l
p

, l
s

)) be
its cost. Now the dual problem is equivalent to finding

length functions (l
p

, l
s

) such that D(l
p

)/γ(l
p

, l
s

) is
minimized. Since if length function (l

p

, l
s

) that satisfies
the constraints of the dual formulation DSMMF then the
length function (l

p

/γ(l
p

, l
s

), l
s

/γ(l
p

, l
s

)) also satisfies the
constraints of the formulation DSMMF and has lower
objective value. Let β be the optimal objective value,
therefore by definition β ≤ D(l

p

)/γ(l
p

, l
s

). Let γp(l
p

) be
the cost of the primary path of the path pair Pmin(l

p

, l
s

),
therefore γ(l

p

, l
s

) ≥ γp(l
p

). Hence β ≤ D(l
p

)/γ(l
p

, l
s

) ≤
D(l

p

)/γp(l
p

). Let α(l
p

) = mini{disti(l
p

)} where
disti(l

p

) is the length of the shortest primary path among
the path pairs P ∈ Γi between node pair (si, ti) with
length function l

p

. Therefore α(l
p

) ≤ γp(l
p

). And hence
β ≤ D(l

p

)/γp(l
p

) ≤ D(l
p

)/α(l
p

).

A. The SMMF Algorithm

We term the algorithm for solving the maximum
multicommodity flow (MMF) problem presented in [1]
as the MMF Algorithm. We build our SMMF Algorithm
for solving the SMMF problem based on the MMF
Algorithm. The SMMF Algorithm is outlined in Figure
3. The length function of all the edges e in the graph
is initialized to δ1, a constant to be determined later.
The length function corresponding to the secondary flow
that is reserved on edge e for protecting flow along
disjoint path pair P ∈ Q where Q ∈ Ψe, ls(e, P ), is
initialized to δ2. The SMMF Algorithm iterates steps 4-9
until the stopping condition is satisfied. In one iteration
only the flow along the disjoint path pair P is changed.
Though the flow along the path pair is increased, actually
only the flow along the primary path p of the path pair
P is incremented. The exclusive flow pushed on the
links e along the secondary path q is only the difference
between the required secondary flow of value w(P ) and
the existing secondary flow value b(e,Q). The sum of
all the exclusive secondary flows pushed through edge
e by the SMMF Algorithm for protecting the primary
flow along path pair P is b(e,Q, P ). Let b(e,Q) be the
secondary flow through edge e for protecting the primary
flow along the primary paths of the disjoint path pairs in
Q. Therefore,

∑
P∈Q b(e,Q, P ) = b(e,Q) and for all

path pairs P ∈ Q, w(P ) ≤ b(e,Q).
The length of the links along the the primary path

p are increased exponentially proportional to the flow
increment c. The length of the links along the
secondary path is incremented exponentially proportional
to exclusive flow increment, w(P ) − b(e,Q). The
constants ε, δ1 and δ2 are determined in the analysis of the
SMMF Algorithm based on the required approximation
guarantee.
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SMMF Algorithm
1: Initialize ∀e : l

p

(e) = δ1 ;w = 0
2: Initialize ∀e ∈ E ∧ ∀P ∈ Q s.t.Q ∈ Ψe : ls(e, P ) =

δ2 ; b = 0
3: while P = (p, q) ∈ Γ with l(p) < 1 exists do
4: select a path pair P = (p, q) ∈ Γ with l(p) < 1
5: c← mine∈p∨e∈q{c(e)}
6: w(P )← w(P ) + c
7: ∀e ∈ p : l

p

(e)← l
p

(e)(1 + εc/c(e))
8: for ∀e ∈ q ∧Q ∈ Ψe s.t. P ∈ Q do
9: b(e,Q)← max{w(P ), b(e,Q)}

10: if (w(P ) > b(e,Q)) then
11: ls(e, P )← ls(e, P )(1 + ε (w(P )−b(e,Q))

c(e) )
12: end if
13: end for
14: end while

Fig. 3. The outline of the SMMF Algorithm.

B. The Analysis

The following two lemmas of the MMF Algorithm
also hold for the SMMF Algorithm.

Lemma 1: If ft is the flow computed by the SMMF
Algorithm at the end of t iterations when the stopping
condition is satisfied then it holds that β

ft
≤ ε

ln (δ1n)−1

Lemma 2: Let e be any edge in the graph and if the
SMMF Algorithm stops at the end of t iterations when
the stopping condition is satisfied then the primary flow
through edge e, w(e), is at most c(e) log1+ε

1+ε
δ1

.
Lemma 3: Let e be any edge in the graph and if the

SMMF Algorithm stops at the end of t iterations when
the stopping condition is satisfied then b(e,Q) is at most
c(e)k1 log1+ε

(1+ε)
k1δ2

.
Proof: For every c(e) units of the exclusive

secondary flow pushed along the link e for protecting flow
along the primary path P ∈ Q and Q ∈ Ψe the length
ls(e, P ) is incremented by a factor of at least 1 + ε. If
at the end of t iterations bt(e,Q, P ) is the total exclusive
secondary flow pushed along link e for protecting flow
along primary path P ∈ Q and Q ∈ Ψe then lst (e, P ) ≥
ls0(e, P )(1 + ε)

bt(e,Q,P )
c(e) = δ2(1 + ε)

bt(e,Q,P )
c(e) . Let us

define ls(e,Q) =
∑

P∈Q ls(e, P ). Therefore,

lst (e,Q) =
∑
P∈Q

lst (e, P )

≥ δ2

∑
P∈Q

(1 + ε)
bt(e,Q,P )

c(e)

≥ δ2k1(1 + ε)
bt(e,Q)
k1c(e)

From the proof of Lemma 2, we know that l
p

(e) is
at most 1 + ε. Imposing the constraint of the dual
problem that l

p

(e) ≥ ls(e,Q). Therefore 1 + ε ≥

δ2k1(1 + ε)
bt(e,Q)
k1c(e) leading to conclude that b(e,Q) is at

most c(e)k1 log1+ε
(1+ε)
k1δ2

.
Lemma 4: The SMMF problem has a feasible flow of

value ft/
(
log1+ε

1+ε
δ1

+ k1k2 log1+ε
(1+ε)
k1δ2

)
.

Proof: From Lemma 2 and Lemma 3 the total
amount of flow through link e is at most c(e) log1+ε

1+ε
δ1

+

c(e)k1k2 log1+ε
(1+ε)
k1δ2

where k2 is the maximum number
of partitions of set Ψe.

Therefore scaling the flow by
log1+ε

1+ε
δ1

+ k1k2 log1+ε
(1+ε)
k1δ2

we get a feasible
flow.

Theorem 1: The SMMF Algorithm is a 2(1 + ω)
approximation algorithm for the SMMF problem.

Proof: Let γ be the ratio of the dual and primal
solutions, then

γ ≤ β

ft

(
log1+ε

1 + ε

δ1
+ k1k2 log1+ε

(1 + ε)
k1δ2

)

=
ε
(
log1+ε

1+ε
δ1

+ k1k2 log1+ε
(1+ε)
k1δ2

)
ln (δ1n)−1

=
ε

ln (1 + ε)

(
ln 1+ε

δ1

ln (δ1n)−1 + k1k2

ln (1+ε)
k1δ2

ln (δ1n)−1

)

If δ1 = (1 + ε)((1 + ε)n)−1/ε, we get ln 1+ε
δ

ln (δn)−1 =

1/(1− ε). And if δ2 = (1+ε)
k1

(δ1n)1/(k1k2(1−ε)), we get

k1k2
ln

(1+ε)
k1δ2

ln (δ1n)−1 = 1/(1− ε). Therefore,

γ ≤ 2ε

(1− ε) ln (1 + ε)
≤ 2ε

(1− ε)(ε− ε2/2)

≤ 2(1− ε)−2

Let ε be chosen such that 1 + ω ≤ (1− ε)−2, then the
SMMF Algorithm is a 2(1+ω) approximation algorithm.

C. Running Time

Let cmin be the minimum capacity of all the links in
the graph. We define the capacity ratio of an edge e, η

e
,

as the ratio of its capacity and minimum capacity in the
graph, c(e)/cmin. We also define capacity ratio of a graph
G, η

G
, as the ratio of the sum of capacities of all the edges

in the graph and its minimum capacity,
∑

e c(e)/cmin.
Theorem 2: The number of iterations of the SMMF

Algorithm is bound by 	η
G

	 1ε log1+ε n
.

Proof: For c(e) units of primary flow routed through
edge e the primary length increases by at least 1 + ε.
From Lemma 2 the amount of primary flow through edge
e is at most c(e) log1+ε

1+ε
δ1

. Undoing the flow pushed
in the previous iteration which resulted in satisfying the

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on June 17,2010 at 19:17:29 UTC from IEEE Xplore.  Restrictions apply. 



stopping condition, the amount of flow through edge e is
at most c(e) log1+ε

1
δ1

. Therefore the maximum number
of iterations needed to route c(e) log1+ε

1
δ1

amount of

primary flow is 	 c(e)
cmin

log1+ε
1
δ1

 = 	ηe

ε log1+ε n
.
In each iteration a primary flow of value at least
cmin is pushed along at least one edge. Therefore,
summation over all the m edges in the graph, we get the
upper bound on the number of iterations of the SMMF
Algorithm as 	ηe1

ε log1+ε n
 + . . . + 	ηem

ε log1+ε n
 ≤
	 1ε log1+ε n
	(ηe1 + . . .+ηem

)
 = 	η
G

	 1ε log1+ε n
.

In Step 4 of the SMMF Algorithm we need to compute
a path pair (p, q) among all the path pairs for every node
pair such that l(p) is shortest. The simplest algorithm to
compute such a path pair (p, q) assuming that the number
of path pairs for a given node pair is an arbitrary constant
c takesO(kn) since the maximum number of edges along
any loop less path is limited by the number of nodes n
and k is the number of commodities. From Theorem 2
the run-time of the algorithm is O(	η

G

	 1ε log1+ε n
kn).

V. SURVIVABLE MAXIMUM CONCURRENT FLOW

(SMCF)

In the following section, we adopt a similar
approach to the one described above, for developing an
approximation algorithm for the SMCF problem. We are
given a graph G = (V,E) with edge capacities c : E →
R+, k node pairs (si, ti) corresponding to k commodities
and a demand d(i) is associated with each commodity i.
The problem is to find the largest λ such that there are at
least λd(i) units of survivable flow for each commodity i
under shared protection. The primal formulation PSMCF

follows.

Maximize λ

∀e ∈ E :
∑

P=(p,q):e∈p

w(P ) +
∑

Q∈Ψe

b(e,Q) ≤ c(e)

∀j :
∑

P∈Γj

w(P ) ≥ λd(j)

∀e ∈ E ∧ ∀P ∈ Q s.t.Q ∈ Ψe : w(P )− b(e,Q) ≤ 0
∀P ∈ Γ : w(P ) ≥ 0
∀e ∈ E,∀Q ∈ Ψe : b(e,Q) ≥ 0;λ ≥ 0

The dual of the problem is to assign primary lengths
l
p

(e) to the edges of the graph for carrying primary flow
and secondary lengths ls(e, P ) to the edge e for carrying
secondary flow for the path pair P that belongs to set of
path pairs Q ∈ Ψe. Let us define D(l

p

) =
∑

e l
p

(e)c(e)
where l

p

is the length function. The objective of the dual
formulation is to minimize D(l

p

). The dual formulation

DSMCF follows.

Minimize
∑
e∈E

l
p

(e)c(e)

∀P ∈ Γ :
∑
e∈p

l
p

(e) +
∑

e∈q∧Q∈Ψe,s.t.P∈Q
ls(e, P ) ≥ zj

∀e ∈ E ∧ ∀Q ∈ Ψe : l
p

(e)−
∑
P∈Q

ls(e, P ) ≥ 0

∑
j

zjd(j) ≥ 1

∀e ∈ E : l
p

(e) ≥ 0
∀e ∈ E ∧ ∀P ∈ Q s.t.Q ∈ Ψe : ls(e, P ) ≥ 0
∀j : zj ≥ 0

We know that the cost of a path pair P , C(P ) =∑
e∈p l

p

(e) +
∑

e∈q ls(e, P ). Let Pmin
j (l

p

, l
s

) be the
path pair P ∈ Γj with minimum cost and let
γ(l

p

, l
s

) be the sum of the costs of pushing d(j)
units of flow for jth commodity along the path pair
Pmin

j (l
p

, l
s

), for all commodities. Therefore γ(l
p

, l
s

) =∑
j d(j)C(Pmin(l

p

, l
s

)). The dual formulation now
reduces to finding primary and secondary length functions
(l

p

, l
s

) such that D(l
p

)/γ(l
p

, l
s

) is minimized where
D(l

p

) =
∑

e∈E l
p

(e)c(e). Let β be the optimal objective
value, then β ≤ D(l

p

)/γ(l
p

, l
s

). Let γp(l
p

) be the
sum of the costs of pushing d(j) units of flow along
the primary path of the path pair Pmin(l

p

, l
s

), for all
commodities. Therefore γ(l

p

, l
s

) ≥ γp(l
p

). Hence β ≤
D(l

p

)/γ(l
p

, l
s

) ≤ D(l
p

)/γp(l
p

). Let α(l
p

) be the sum
of costs of pushing d(j) units of flow along the shortest
primary path among the path pairs P ∈ Γi between node
pair (si, ti) with length function l

p

. Therefore α(l
p

) ≤
γp(l

p

). And hence β ≤ D(l
p

)/γp(l
p

) ≤ D(l
p

)/α(l
p

).

A. The Algorithm

In this section, we describe the SMCF Algorithm
for approximating the SMCF problem. The outline of
the SMCF Algorithm is shown in Fig. 4. The SMCF
Algorithm is built based on the MCF Algorithm [1] for
the maximum concurrent flow problem that uses shortest
path computation instead of min-cost flow computations.
The length function of all the edges e in the graph
is initialized to δ1/c(e), where δ1 is a constant to be
determined later. The length function corresponding to
secondary flow that is reserved on edge e for protecting
flow along disjoint path pair P ∈ Q where Q ∈ Ψe,
ls(e, P ), is initialized to δ2/c(e). The algorithm now
runs in phases and each phase has k iterations. In each
iteration i, the SMCF Algorithm survivably routes d(i)
units of ith commodity in sequence of steps along the
path pair (p, q) with shortest primary path p. It updates
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the primary and secondary length functions, l
p

(e) and
ls(e, P ) accordingly (similar to SMMF Algorithm).

SMCF Algorithm
1: Initialize ∀e : l

p

(e) = δ1/c(e) ;w = 0
2: Initialize ∀e ∧ ∀Q ∈ Ψe ∧ ∀P ∈ Q : ls(e, P ) =

δ2/c(e) ; b = 0
3: while (D(l

p

) < 1) do
4: for j = 1 . . . r do
5: d′j ← dj

6: while (D(l
p

) < 1) ∧ (d′j > 0) do
7: select a path pair P = (p, q) ∈ Γj where p is

shortest
8: c← min{c(e) | e ∈ p ∨ e ∈ q} ∪ {d′j}
9: d′j ← d′j − c

10: w(P )← w(P ) + c
11: ∀e ∈ p : l

p

(e)← l
p

(e)(1 + εc/c(e))
12: for ∀e ∈ q ∧Q ∈ Ψe s.t. P ∈ Q do
13: b(e,Q)← max{w(P ), b(e,Q)}
14: if (w(P ) > b(e,Q)) then
15: ls(e, P ) ← ls(e, P )(1 + ε(w(P ) −

b(e,Q))/c(e))
16: end if
17: end for
18: end while
19: end for
20: end while

Fig. 4. The outline of the SMCF Algorithm.

B. The Analysis

Let l
p

i,j−1(e) and lsi,j−1(e, P ) be the primary and
secondary length functions at the beginning of jth

iteration in the ith phase. Let l
p

i,j−1,s−1(e) and
lsi,j−1,s−1(e, P ) be the primary and secondary length
functions at the beginning of sth step in the jth iteration
and ith phase. In the jth iteration dj units of flow is
routed along the shortest path given by primary length
function l

p

. Let fi,j,s(e) be the primary flow routed
through edge e in the sth step of jth iteration and the
ith phase. The primary length of edge e is incremented
as l

p

i,j−1,s(e) = l
p

i,j−1,s−1(e)(1 + εfi,j,s(e)/c(e)). Let
bi,j−1,s(e,Q) be the exclusive secondary flow pushed
through edge e in the sth step of jth iteration and
the ith phase for protecting the primary flow along the
path pair (p, q) in the set Q. The secondary length
function is incremented as follows, lsi,j−1,s(e, P ) =
lsi,j−1,s−1(e, P )(1 + εbi,j−1,s(e,Q)/c(e)). Let l

p

i,j−1

(l
p

i,j−1,0) be the primary length function at the beginning
of the jth iteration of the ith phase and let l

p

i,j be the
primary length function at the beginning of the (j + 1)th

iteration. Note that length function at the end of iteration i
is same as the length function at the beginning of the next

iteration. Since the primary lengths are monotonically
increasing, l

p

i,j(e) = l
p

i,j−1(e)(1 + εfi,j(e)/c(e)) where
fi,j(e) is the primary flow routed through edge e in the
jth iteration of the ith phase.

D(l
p

i,j) =
∑
e∈E

l
p

i,j(e)c(e)

≤ D(l
p

i,j−1) + εd(j)distj(l
p

i,j−1)

Let the primary length function at the end of k iterations
of the jth phase be l

p

i,k.

D(l
p

i,k) ≤ D(l
p

i,0) + ε

k∑
j=1

d(j)distj(l
p

i,j−1)

The following two Lemmas from the analysis of the
MCF Algorithm in paper [1] also hold true for the SMCF
Algorithm.

Lemma 5: If β ≥ 1 and the SMCF Algorithm
terminates in the phase t when D(l

p

t,k) ≥ 1 then β
(t−1) ≤

ε
(1−ε) ln 1−ε

mδ1

.

Lemma 6: Let e be an edge and the SMCF Algorithm
stops in the phase t when the stopping condition is
satisfied then the primary flow through edge e is at most
c(e) log1+ε 1/δ1.

Lemma 7: Let e be an edge and the SMCF Algorithm
stops in the phase t when the stopping condition is
satisfied then the secondary flow through edge e for
protecting primary flow along the path pairs in set Q,
bt−1,k(e,Q), is at most c(e)k1 log1+ε 1/k1δ2.

Proof: Following the same lines of argument as in
proof of Lemma 3, If bt−1,k(e, P ) is the total exclusive
secondary flow pushed through edge e for protecting the
primary flow along the path pair P ∈ Q, Q ∈ Φe then

lst−1,k(e, P ) ≥ ls0,0(e, P )(1 + ε)
bt−1,k(e,P )

c(e)

= δ2/c(e)(1 + ε)
bt−1,k(e,P )

c(e) .
Let us define ls(e,Q) =

∑
P∈Q ls(e, P ). Therefore,

lst−1,k(e,Q) =
∑
P∈Q

lst−1,k(e, P )

≥ δ2/c(e)
∑
P∈Q

(1 + ε)
bt−1,k(e,Q,P )

c(e)

≥ δ2k1/c(e)(1 + ε)
bt−1,k(e,Q)

k1c(e)

From the proof of Lemma 6, we know that l
p

t−1,k(e)
is at most 1/c(e). Imposing the constraint of the dual
problem that l

p

t−1,k(e) ≥ ls(e,Q). Therefore 1/c(e) ≥
δ2k1/c(e)(1 + ε)

bt−1,k(e,Q)
k1c(e) leading to conclude that

bt−1,k(e,Q) is at most c(e)k1 log1+ε 1/k1δ2.
Lemma 8: The objective of the primal, λ, is at least

(t− 1)/
(
log1+ε 1/δ1 + k1k2 log1+ε 1/δ2k1

)
.
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Proof: From Lemma 6 and Lemma 7 the
total amount of flow through link e is at most
c(e) log1+ε 1/δ1 + c(e)k1k2 log1+ε 1/k1δ2 where k2 is
the maximum number of partitions of set Ψe.

Therefore scaling the flow by log1+ε 1/δ1 +
k1k2 log1+ε 1/k1δ2 we get a feasible flow.

Theorem 3: The SMCF Algorithm is a 2(1 + ω)
approximation algorithm for the SMCF problem.

Proof: Let γ be the ratio of the primal and dual
solutions, then

γ ≤ β

t− 1
(
log1+ε 1/δ1 + k1k2 log1+ε 1/k1δ2

)
≤ ε

(1− ε) ln 1−ε
mδ

(
log1+ε 1/δ1 + k1k2 log1+ε 1/k1δ2

)
=

ε

(1− ε) ln (1 + ε)

(
ln 1/δ1

ln 1−ε
mδ

+
k1k2 ln 1/k1δ2

ln 1−ε
mδ

)

If δ1 = (m/(1− ε))−1/ε, we get ln 1/δ1

ln 1−ε
mδ1

= (1− ε)−1.

And if δ2 = 1
k1

(
mδ1
1−ε

) 1
k1k2(1−ε)

, we get k1k2
ln 1/k1δ2

ln 1−ε
mδ1

=

(1− ε)−1. Therefore,

γ ≤ 2ε

(1− ε)2 ln (1 + ε)
≤ 2(1− ε)−3

Let ε be chosen such that 1 + ω ≤ (1− ε)−3, then the
SMCF algorithm is a 2(1 + ω) approximation algorithm.

C. Running Time

Theorem 4: If β ≥ 1 and the SMCF
Algorithm terminates after at most 1 +
β
ε

(
2 log1+ε

m
1−ε + ε

1−ε log1+ε
1−ε
m

)
phases.

Proof: By the definition of γ in Theorem 3, we
know,

1 ≤ γ ≤ β
t−1

(
log1+ε 1/δ1 + k1k2 log1+ε 1/k1δ2

)
.

We get t ≤ 1 + β
(
log1+ε 1/δ1 + k1k2 log1+ε 1/k1δ2

)
.

Again from the definitions of, δ1 and δ2 in
Theorem 3, we get, log1+ε 1/δ1 = 1

ε log1+ε
m

1−ε and
k1k2 log1+ε

1
k1δ2

= 1
1−ε log1+ε

1−ε
(mδ1)

= 1
1−ε

(
log1+ε

1−ε
m + log1+ε

1
δ1

)
. Therefore,

t ≤ 1 + β
(
log1+ε 1/δ1 + k1k2 log1+ε 1/k1δ2

)
≤ 1 + β

ε

(
log1+ε

m
1−ε + ε

1−ε log1+ε
1−ε
m + ε

1−ε log1+ε
1
δ1

)
< 1 + β

ε

(
2 log1+ε

m
1−ε + ε

1−ε log1+ε
1−ε
m

)
Hence proved.

From Theorem 4, note that the number of phases of
the SMCF Algorithm depends on β. Therefore run-time

of the SMCF Algorithm depends on β. Following the
same enhancements discussed in [1] using the technique
proposed in [30] to eliminate the dependence of the run-
time on β, we get the number of phases of the SMCF
Algorithm is T log2 k phases where

T = 2
⌈

1
ε

(
2 log1+ε

m
1−ε + ε

1−ε log1+ε
1−ε
m

)⌉
= 2

⌈
1
ε

(
log1+ε

(
m

1−ε

)2

+ log1+ε

(
1−ε
m

) ε
1−ε

)⌉

= 2
⌈

1
ε

(
log1+ε

(
m

1−ε

)−2ε
1−ε

)⌉

= 4
⌈
log1+ε

(
m

1−ε

)⌉

VI. MINIMUM COST SURVIVABLE MAXIMUM

CONCURRENT FLOW (MC-SMCF)

In this section, we present an approximation algorithm
for the minimum cost survivable maximum concurrent
flow (MC-SMCF) problem. Given a graph G = (V,E)
with edge capacities c : E → R+, edge costs s :
E → R+, k node pairs (si, ti) and a bound B. The
problem is to find the largest λ such that there are at
least λd(i) units of survivable flow for each commodity
i under shared protection and the cost of the flow is no
more than B. The primal formulation PMC−SMCF of
the MC-SMCF problem is very similar to the primal of
the SMCF problem with the additional constraint that the
cost of the survivable multicommodity flow must be at
most B. The primal follows.

Maximize λ

∀e ∈ E :
∑

P=(p,q):e∈p

w(P ) +
∑

Q∈Ψe

b(e,Q) ≤ c(e)

∑
∀e∧P :e∈p

w(P )s(e) +
∑

∀e∧Q∈Ψe

b(e,Q)s(e) ≤ B

∀j :
∑

P∈Γj

w(P ) ≥ λd(j)

∀e ∈ E ∧ ∀P ∈ Q s.t.Q ∈ Ψe : w(P )− b(e,Q) ≤ 0
∀P ∈ Γ : w(P ) ≥ 0
∀e ∈ E,∀Q ∈ Ψe : b(e,Q) ≥ 0;λ ≥ 0

The dual formulation DMC−SMCF of the MC-SMCF
problem is again similar to the dual of the SMCF problem
except that we introduce a pseudo-edge with capacity B.
As before let l

p

(e) and l
s

(e) be the primary and secondary
length functions of edges in G respectively and φ be the
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length of the pseudo edge.

Minimize
∑
e∈E

l
p

(e)c(e) + φB

∀P ∈ Γ :
∑
e∈p

[l
p

(e) + φs(e)] +
∑

e∈q∧Q∈Ψe,s.t.P∈Q
ls(e, P ) ≥ zj

∀e ∈ E ∧ ∀Q ∈ Ψe : l
p

(e) + φs(e)−
∑
P∈Q

ls(e, P ) ≥ 0

∑
j

zjdj ≥ 1

∀e ∈ E : l
p

(e) ≥ 0
∀e ∈ E ∧ ∀P ∈ Q s.t.Q ∈ Ψe : ls(e, P ) ≥ 0
∀j : zj ≥ 0;φ ≥ 0

Let D(l
p

, φ) =
∑

e∈E l
p

(e)c(e) + φB. The cost
of a path pair P , C(P ) =

∑
e∈p [l

p

(e) + φs(e)] +∑
e∈q ls(e, P ). Let Pmin

j (l
p

+ φ, l
s

) be the path pair

P ∈ Γj with minimum cost and let γ(l
p

+ φ, l
s

)
be the sum of the costs of pushing d(j) units of
flow for jth commodity along the path pair Pmin

j (l
p

+
φ, l

s

), for all commodities. Therefore γ(l
p

, l
s

) =∑
j d(j)C(Pmin(l

p

, l
s

)). Let β be the optimal objective

value, therefore β ≤ D(l
p

)/γ(l
p

, l
s

). Let γp(l
p

) be the
sum of the costs of pushing d(j) units of flow for along
the primary path of the path pair Pmin(l

p

, l
s

), for all
commodities. Therefore γ(l

p

+φ, l
s

) > γp(l
p

+φ). Hence
β ≤ D(l

p

+ φ)/γ(l
p

+ φ, l
s

) < D(l
p

+ φ)/γp(l
p

+ φ).
Let α(l

p

+φ) be the sum of costs of pushing d(j) units of
flow along the shortest primary path among the path pairs
P ∈ Γi. Therefore α(l

p

+ φ) ≤ γp(l
p

+ φ). And hence
β < D(l

p

+ φ)/γp(l
p

+ φ) ≤ D(l
p

+ φ)/α(l
p

+ φ).

A. The Algorithm and its Analysis

The MC-SMCF Algorithm is outlined in Figure 5. Let
l
p

i,j−1(e) and lsi,j−1(e, P ) be the primary and secondary
length functions and φi,j−1 be the length function of
the pseudo edge at the beginning of jth iteration in
the ith phase. Similar to the SMCF Algorithm, the
dj units of flow is routed in jth iteration of any phase
along the shortest path given by primary length function
l
p

. After each step in the iteration the length functions
along the primary and secondary paths of the path pair
are incremented. Let l

p

i,j−1,s−1(e) and lsi,j−1,s−1(e, P )
be the primary and secondary length functions and
φi,j−1,s−1 be the length function of the pseudo edge
before the sth step in the jth iteration of the ith phase.
Let fi,j,s(e) be the primary flow routed through the
edge e in the sth step of the jth iteration and ith

phase. The primary length of edge e is incremented
as l

p

i,j−1,s(e) = l
p

i,j−1,s−1(e)(1 + εfi,j,s(e)/c(e)) and
pseudo length function is incremented as φi,j−1,s =

MC-SMCF Algorithm
1: Initialize ∀e : l

p

(e) = δ1/c(e) ;φ = δ1/B;w = 0
2: Initialize ∀e ∧ ∀Q ∈ Ψe ∧ ∀P ∈ Q : ls(e, P ) =

δ2/c(e) ; b = 0
3: while (D(l

p

, φ) < 1) do
4: for j = 1 . . . r do
5: d′j ← dj

6: while (D(l
p

, φ) < 1) ∧ (d′j > 0) do
7: select a path pair P = (p, q) ∈ Γj with least

cost
8: c← min{c(e) | e ∈ p ∨ e ∈ q} ∪ {d′j}
9: K ←∑

e∈q s(e)min{c, (b(e,Q)− w(P ))}
10: Bj ← c

∑
e∈p∨e∈q s(e)−K

11: if Bj > B then
12: c← c B

B(j)+K

13: K ←∑
e∈q s(e)min{c, (b(e,Q)− w(P ))}

14: Bj ← B −K
15: end if
16: d′j ← d′j − c
17: w(P )← w(P ) + c
18: ∀e ∈ p : l

p

(e)← l
p

(e)(1 + εc/c(e))
19: φ← φ(1 + εBj/B)
20: for ∀e ∈ q ∧Q ∈ Ψe s.t. P ∈ Q do
21: b(e,Q)← max{w(P ), b(e,Q)}
22: if (w(P ) > b(e,Q)) then
23: ls(e, P ) ← ls(e, P )(1 + ε(w(P ) −

b(e,Q)/c(e)))
24: end if
25: end for
26: end while
27: end for
28: end while

Fig. 5. The outline of the MC-SMCF Algorithm.

φi,j−1,s−1(1 + εBi,j/B). Let bi,j−1,s(e,Q) be the
exclusive secondary flow pushed through edge e for
protecting the primary flow along the path pairs in the
set Q. The secondary length function is incremented
as follows, lsi,j−1,s(e, P ) = lsi,j−1,s−1(e, P )(1 +
εbi,j−1,s(e,Q)/c(e)).

Based on the analysis of the MC-MCF Algorithm in
[1] and then following a similar analysis as in Section V-
B leads to the equivalent approximation guarantee for the
MC-SMCF Algorithm.

Theorem 5: The MC-SMCF Algorithm is a
2(1− ε)−3 approximation algorithm for the MC-SMCF
Problem.

VII. INTEGRALITY

A multicommodity flow has integrality fg if the
flow of every commodity on every edge is a non-
negative integer multiple of fg . A multicommodity flow
problem formulated using arc-chain linear programming
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formulation has integrality fg if the flow of every
commodity on every path considered for that commodity
is a non-negative integer multiple of fg . In this
section, we address the consequences of such integrality
constraints on the three survivable MCF problems.
We also explore the applications of the SMMF and
SMCF problems to the problem of survivable routing in
capacitated networks.

A. The SMMF Problem

The SMMF Algorithm can be modified to compute
an approximation of the fractional multicommodity flow
computed with an integrality. Instead of pushing c units
of flow, if we push q units of flow where q ≤ c(e) for all
e ∈ E. Let call this algorithm the SMMF-I Algorithm
computes a multicommodity flow of integrality qε

log1+ε n

[1]. The following Theorem is proved in [1].
Theorem 6: If all the edges in the graph have capacity

at least
log1+ε n

ε then there exists a 2(1+ω)-approximation
to integral maximum multicommodity flow.

B. The SMCF Problem

In this section we discuss the modification suggested
in [1] to compute the integrality of the concurrent flow
problem. Instead of routing c units of flow computed in
Step 8 of the SMCF Algorithm we route q units where
q is selected such that q is less than the capacity of the
minimum capacity edge in G and all the demands can be
expressed as a non-negative integral multiple of q. The
primary and secondary length functions are incremented
corresponding to the q units of flow routed. Let us
call this modified algorithm the SMCF-I Algorithm.
The approximation analysis of the SMCF-I Algorithm is
similar to the SMCF Algorithm. However, it has worse
computational complexity. The number of phases for an
instance of the SMCF problem is same for the SMCF
and SMCF-I Algorithms. However the increase in the
complexity is due to the fact that the number of steps in a
iteration of any phase of the SMCF-I Algorithm increases
depending upon the value of q. The proof of the following
Theorem follows directly from the proof of the integrality
of the MCF Algorithm in [1].

Theorem 7: If q is selected such that all the demands
d(i) are integral multiples of q and is at most the capacity
of the minimum capacity link in G then the SMCF-
I Algorithm computes a 2(1− ε)−3-approximation to
the maximum concurrent flow and has integrality

qε
log1+ε m/(1−ε) .

Corollary 1: If all the edges in the graph have capacity

at least
log1+ε m/(1−ε)

ε and all demands are integral

multiples of
log1+ε m/(1−ε)

ε then there exists a 2(1 + 3ε)-
approximation algorithm to integral maximum concurrent
flow problem.

C. Applications to Survivable Routing in Capacitated
Networks

Let us model the survivable pre-provisioning of static
routing in capacitated networks as a multicommodity
flow problem. We are given a capacitated network and
a set of k path pairs corresponding to k commodities.
The problem to maximize the sum of the survivable
multicommodity flow. This problem can be modeled as an
SMMF problem. If the flow is not required to be integral
then the SMMF Algorithm can be used to compute a
2(1 + 3ε) approximate solution. If the multicommodity
flow is required to be integral, then ε can be selected
such that the capacity of the minimum capacity edge
is at least

log1+ε n

ε . Then the SMMF-I Algorithm can
be used to compute a 2(1 + 3ε)-approximate integral
multicommodity flow. Alternately, a lower bound on
the minimum capacity edge in the graph is

log1+ε n

ε for
2(1 + 3ε)-approximate integral multicommodity flow.

We are given a capacitated network and traffic
demands between a set of path pairs. The problem is
to survivably provision a maximum fraction λ of all the
demands. The problem can be modeled as an SMCF
problem. The capacitated network is represented as a
graph G = (V,E) with capacities c(e) for each edge e ∈
E. The traffic demand as d(i) between node pair (si, ti)
as ith commodity. If the capacities and demands are real
numbers the SMCF Algorithm can be directly used to
compute approximate solution. The SMCF-I Algorithm
can be used to compute an 2(1+3ε) approximate solution
with integrality qε

log1+ε m/(1−ε) .

VIII. CONCLUSIONS

In this work we formulate and study the fundamental
problems used to model and solve survivable routing in
multi-fiber wavelength division multiplexing network
design and capacitated network design. We define
a survivable flow under shared protection in a
directed graph. We formulate survivable versions of
multicommodity flow (MF) problems, namely, survivable
maximum multicommodity flow (SMMF), survivable
maximum concurrent flow (SMCF) and minimum cost
maximum survivable concurrent flow (MC-SMCF)
problems. Assuming that the choice of paths that are
used to push a flow between any node pair in the graph
is limited, we present approximation algorithms for the
fractional SMF problems.

We modeled the survivable routing problem in
capacitated networks as an SMF problem. We discuss
the modifications to the approximation algorithms to
the fractional SMF problems presented in this paper to
solve the problem of survivable routing in capacitated
networks.
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