
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

CSE Conference and Workshop Papers Computer Science and Engineering, Department
of

2001

DiffServer: Application Level Differentiated Services for Web DiffServer: Application Level Differentiated Services for Web

Servers Servers

Gautam Rao
San Jose, CA

Byrav Ramamurthy
University of Nebraska-Lincoln, bramamurthy2@unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/cseconfwork

 Part of the Computer Sciences Commons

Rao, Gautam and Ramamurthy, Byrav, "DiffServer: Application Level Differentiated Services for Web
Servers" (2001). CSE Conference and Workshop Papers. 80.
https://digitalcommons.unl.edu/cseconfwork/80

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Conference and
Workshop Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/17210054?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/cseconfwork
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/cseconfwork/80?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages

DiffServer: Application Level Differentiated Services for Web Servers

Gautam Rao*
Cisco Systems, 125 West Tasman Dr.

San Jose, CA 95 134

Byrav Ramamurthy
Department of Computer Science and Engineering

University of Nebraska-Lincoln
Lincoln, NE 68588-01 15

Email: grao@cisco.com, byrav@cse.unl.edu

ABSTRACT

Web content hosting, in which a Web server stores and provides
Web access to documents for different customers, is becoming
increasingly common. For example, a web server can host
webpages for several different companies and individuals.
Traditionally, Web Service Providers (WSPs) provide all
customers with the same level of performance (best-effort
service). Most service differentiation has been in the pricing
structure (individual vs. business rates) or the connectivity type
(dial-up access vs. leased line, etc.). This report presents
Dzjj?i’eerVer, a program that implements two simple, server-side,
application-level mechanisms (server-centric and client-centric)
to provide different levels of web service. The results of the
experiments show that there is not much overhead due to the
addition of this additional layer of abstraction between the client
and the Apache web server under light load conditions. Also, the
average waiting time for high priority requests decreases
significantly after they are assigned priorities as compared to a
FIFO approach.

1. Introduction
Due to the enormous growth of the World Wide

Web and the ever-increasing resource demands on the
servers, Web content hosting is an increasingly common
practice. The continuous growth of the Internet and emerging
multimedia applications place demands for higher bandwidth
on the Web Service Providers (WSPs). Companies cxpect
that the requests from their potential clients (users that access
their web pages) are serviced with a quality proportional to
the amount of money they pay for these hosting services.
Also, the system administrators may choose to give
preferential services to requests from certain hosts and
donlains. As a result, WSPs are finding it necessary to offer

their customers alternative levels of service. Besides meeting
new customer expectations, this allows the WSP’s to improve
their revenues through premium pricing and competitive
differentiation of service offerings, which in turn can h n d the
necessary expansion of the network. There is a need to
improve the web hosting technology in terms of performance,
scalability and delivery of new functionalities. Quality of
Service (QoS) has become a rallying cry for all forms of
communications on the Internet.

Three basic levels of end-to-end QoS can be
provided across a heterogeneous network:
> Best-effort service---Best-effort service is basic

connectivity with no guarantees (lack of QoS).
2. Differentiated service (also called soft QoS)---Some

traffic is treated better than the rest (faster handling,
more bandwidth on average, lower loss rate on average).

k Guaranteed service (also called hard QoS)---An
absolute reservation of network resources for specific
traffic.

Deciding which type of service is appropriate to deploy in the
network depends on several factors such as-
1. The application or problem the customer is trying to

solve.
2. The rate at which customers can realistically upgrade

their infrastructures.
3. Last, but not the least, the cost involved in implementing

these services.
In general, the cost of implementing and deploying

guaranteed service is likely to be more than that for
differentiated service.

There is a clear need for relatively simple and coarsc
methods of providing differentiated classes of service for
Internet traffic, to support various types of applications, and
specific business requirements. This paper presents,
Difflewev, a program that implements two simple, server-
side, application-level mechanisms (server-centric and client-
centric) to provide different levels of web service. The rest of

* This work was performed while the author was a graduate student at the University of Nebraska-Lincoln

0-7803-7097-1/01/$10.00 02001 IEEE 1633

IEEE International Conference on Communications, 2001. ICC 2001.
Volume 5, Digital Object Identifier: 10.1109/ICC.2001.937196
Publication Year: 2001 , Page(s): 1633 - 1637 vol.5

mailto:grao@cisco.com
mailto:byrav@cse.unl.edu

this paper is organized as follows: section 2 discusses
background and previous work. Section 3 discusses our
implementation, including the Dgjeewer model, priority
determination and the program flow. Section 4 examines the
performance and presents the results from our experiments of
the Dffleewer. Finally, section 5 presents our conclusions and
future work.

2. Background and Previous Work
The behavior of HTTP servers is quite unpredictable

in cases where there is a large burst of requests. Apart from
the fact that under such situations the servers tend to drop
requests indiscriminately, the requests to popular pages have
a tendency to overwhelm the requests for others, possibly
more important pages. Apache [11, one of the most used Web
servers, handles incoming requests in a first-come, first-
served (FCFS) manner. Furthermore, most implementations
of HTTP servers do not perform any discrimination between
requests. Therefore a site cannot enforce any kind of priority
scheme it may wish to implement. Since the possibility of the
backbone providing differentiated services is becoming all
thc more promising these days, it is imperative that the end-
servers also provide differentiated services to circumvent
some of the typical problems such as indiscriminate dropping
of requests, overwhelming of certain requests [2] etc.

J. Almeida, M. Ddbu, A. Manikutty and P. Cao [4]
have explored priority-based request scheduling by providing
differentiated levels of service at both the user and kernel
levels. They found that simple strategies such as controlling
the number of processes can improve the response time of
high-priority requests notably while preserving the system
throughput. They also found that the kernel-level approach
tends to penalize low-priority requests less significantly than
the user-level approach, while improving the performance of
high-priority requests similarly.

R. Pandey, J.F. Barnes and R. Olsson [2] have
presented a notion of a quality of service (QoS) model that
enables a site to customize how an HTTP server should
respond to external requests by setting priorities among page
requests and allocating server resources. As part of the QoS
model, they have devised a notation, which they call
WebQoSL that supports specifications such as

i. Allocation of a specific and relative amount of server
resources to specific page requests.

ii. Availability of groups of pages at all times.
111. Time-based and link-relation-based allocation of

resources.
iv. Specification of guarantees about byte transfer and

page request rates.

...

X. Chen and P. Mohapatra [5] studied approaches and
performance issues in providing differentiated services from
an Internet server. In their experiments on the effectiveness of
priority based scheduling they found that performance
degradation of high priority tasks happened at a much higher
utilization compared to the non-priority-based model. Also,
high priority requests incurred low delay even when the
system approached full utilization. Their studies proved that
under near-saturation of web server utilization, differentiated
services provide significantly bettcr services to high priority
tasks compared to a traditional web server.

Our DifJSeewer implementation runs in application
space and hence is very easy to set up and run. It eliminates
the need to deploy and provision expensive network devices
like routers, which are very challenging tasks. Also, unlike
the approaches in [2] , [4], [5] no modifications have been
made to either the client (Netscape Navigator, Internet
Explorer) or the Apache Web Server source code. Section 3
deals in detail with the model and program flow of
DijjSeewer.

3. Design and Implementation of DiffServer
We implemented a user-level program, DiSfSeewer [171,
which runs in application space and acts as a module around
the web server. Our implementation included both a server-
centric as well as a client-centric differentiated services
scheme.

A priority scheme based on the hostname and
domain of the client (client-centric) is enforced on the
incoming burst of requests. For each set of incoming
requests, a file name based priority (server-centric) scheme is
also enforced. Both these priority orders are “hard coded”
into a configuration file named opt ions . conf . Essentially
the DiSfServer architecture involves three kinds of threads, a
parent thread, Child threads and a Scheduler thread. The
parent first creates a Scheduler thread, which later picks a
Child Thread from the pool to handle an incoming request.
The parent thread assigns priorities to the incoming requests
according to the criteria listed in the options. conf file
and then the requests are inserted into a queue in the
ascending order of priorities. The requests are assigned
priorities based on the document they are requesting as well
the hostname and domain of the source of the requests. The
scheduling algorithm is a non-preemptive scheme, since at

0-7803-7097-1/01/$10.00 02001 IEEE 1634

DiffServer uriorihzes

DiffServer lidens at

HTTP requests from
clients at uort 80

requests based on Dmnn name

requesls to Apache in
sorted order Apache Web Server

and file name requested
DiffServer forwards

Apacheretriwes desired page

and returns it to DiffSaver

listens at port 8080

.1

DiffSaver recaves
&--

response from Apache

Fig. 1 : Conceptual Model of the DiffServer

the user level we cannot interrupt a running process and block
it in order to allow a new process to run.

3.1 Design of the DiffServer Architecture
Fig. 1 shows the conceptual model of the Diffseerver.

The DiJ'Sewer module listens on port 80 for requests coming
in from the clients. When a request is received, it is assigned
a priority based on its domain (client-centric approach) as
well thc filename requested (server-centric approach). The
position of the request in the queue is determined by its
priority. The Apache web server listens on port 8080 for the
sorted requests that are forwarded by the Diffewer module.
Apache returns the page requested to Dgflewer, which in
tum returns the response to the client.
3.2 Priority Determination

The system administrator assigns priorities to the
domains and files in the options. conf file. The priorities
are assigned on a scale of 1 (Lowest) to 10 (Highest). They
may also specify any subset of the hostnamedomain entry in
the URL, for example, entries in the options.conf file
could be of the form:
andes.unl.edu 10
unl.edu 8.5
edu 5.1

Hence, the administrators can provide differentiated
services to a very fine granularity since they are not just
restricted to a domain name when specifying priorities but
can also specify a host or machine name within that domain.
Priorities are also assigned to filenames and directories of the
requested documents. For example,
/imageslbackground.gif 9.5
/images/list.html 7
/images/ 4
/index. html 8

In the above example, the file background.gif and
list. html in the /images directory are treated differently
(assigned priorities 9.5 and 7 respectively) than any other
files under /images (assigned priority 4). If a priority value is
not entered next to the domain or file entry, it is assigned the

lowest priority of 1. If a match is not found in the
options.conf file, the request is assigned the lowcst
priority of 1. The final priority of the request is determined by
its domain based priority and file based priority. The
administrator specifies a DOMAINNAME-FACTOR
(DNF) and FILENAMEFACTOR (FNF), which are
multiplied by the domain based priority, and the file based
priority respectively to compute the Overall Priorit?, of the
request as given below. This Overall priority determines the
request's position in the queue.
Overall priority = DNF * domain priority + FNF *$le
priority

4. Evaluation
4.1 Experimental Setup
To generate the WWW workload, we used httpeif [lo], a
configurable load generator from Hewlett-Packard. It
provides a flexible facility for generating various HTTP
workloads and for measuring server performance. The
development and experiments for this project was carried out
in the Advanced Networking and Distributed Experimental
Systems (ANDES) Lab in the Department of Computer
Science and Engineering (CSE) at the University of
Nebraska-Lincoln (UNL). The network used for our tests was
a 100 Mb shared Ethernet with a network file system. Each of
the client nodes that ran htperf was an Intel Pentium I1 266
MHz or AMD 400 MHz with 128 MB of RAM running Red
Hat Linux 5.2 with version 2.2.10 of the Linux kemel. The
DiSJSeewer and the Apache web server were run on a Pentium
Celeron 333 MHz with 256 MB RAM. We initiated sessions
of 1500 connections each with both HTML (static) as well as
CGI (dynamic) content. The average HTML file sizes were
6401 bytes whereas the average CGI file sizes were 2204
bytes for the experiments. Testing with dynamic files is
necessary since more and more dynamic content is appearing
on the Web. In order to evaluate the overhead of the search
and insertion of the request in the sorted linked list, we ran
test cases for the DiffSeewer's scheduling algorithm both as a
FIFO list as well as a sorted priority list. A server access log

0-7803-7097-1/01/$10.00 02001 IEEE 1635

http://andes.unl.edu

file from the ANDES web server provided us with a trace that
was used by httpe$ to perform our experiments for different
rates of requestsisec.

The graphs below (see Figures 2 , 3, 4 and 5) show
the results obtained. Fig. 2 depicts the comparisons of the
HTML connection times obtained for an Apache web server,
a FIFO wrapper* and the DifJewer. Fig3 depicts the same
for cgi-bin connections. We notice that the Connection time
is much higher in thc CGI case, since a CGI program runs as
a separate process in the server machine every time a CGI
document is requested and therefore is very costly. For
HTML connections for low values of requestsisec (<160) the
FIFO wrapper has better connection and response times than
the DiJJeiver. However, as the requestsisec increase, the two
curves practically overlap which indicates that all the Child
threads are busy servicing requests hence they have to wait
until one becomes available. Figures 4 and 5 compare the
average waiting times for file based and domain based
priorities. We compared thc average waiting time for a
request in the queue if it is serviced in the traditional FIFO
way (no priority assigned to requests) against the average
waiting time after it is assigned a priority based on the
domain name and filename. The average waiting time for a
high priority request in the queue was significantly decreased
(76% and 88% for file based and domain based priority
respectively). The average waiting time for low priority
requests increases by 115% (file based priority) and 60%
(domain based priority) as compared to the case where no
differentiated QoS policy is used. In both cases, as the load
(requestsisec) increases the curve for low priority requests
rises sharply showing an increase in waiting time whcreas the
waiting time for high priority requests is not severely
affected.

Fig. 2: Comparison of Connection Times for HTML Connections

8u *w 1zu $WO .eo

Requestslsec
Fig. 3: Comparison of Connection times for cgi-bin connections

Requestslsec

Fig. 5: Comparison of Average Waiting Time for Domain based Priority

0-7803-7097-1/01/$10.00 02001 IEEE

5. Conclusions and Future Work
The D$Sewer architecture presented in this report

is a multi-threaded, application-space and very scalable
module. DijServer is very easy to set up and run and also has
user configurable QoS parameters. This project implements
an original approach to provide differentiated services. The
results of the experiments show that there is not much
overhead due to the addition of this additional layer of
abstraction between the client and the Apache web server
under light load conditions. Also, the average waiting time

* The FIFO wrapper is an application-level program like the DiffSeewer, but
handles the incoming requests differently. The requests are forwarded to the
Apache web server on a first-come first-served basis unlike thc D&@eiver,
which assigns priorities to the incoming requests and then sorts them before
forwarding them to Apache.

1636

for high priority requests decreases significantly after they arc
assigned higher priorities as compared to a FIFO approach.

This D f j e w e r implementation has opened vistas
for further cnhancements. One area of research would be to
explore the possibility of a weighted priority queue to ensure
that all requests are handled and no starvation occurs. In this
paper, we limit our investigation to Web scrver systems only,
without addressing the different services issues in the
intemetworking infrastructure. In other words, we assume
that the order in which the request packets arrive at the server
and in which the packets are transmitted over the Internet are
completely out of the control of the Web server. Obviously, a
complete solution for this type of networking quality of
service would require a combination of networking
differcntiated services [7] [8] and differentiated services
supported by the Dijjjetver. Web servers now support
several means to create dynamic content (e.g. CGI, FastCGI,
vendor-dependent Web server APIs and Java servlets). These
methods involve complex computation on the Web server and
hence slow down its Connection time and Response time.
Hence, in cases like this where Web server processing per
request becomes more time-consuming, our differentiated
services approach can be complemented with a Web
Clustering approach [l l] [12] [13], which could help
alleviate the problem.

References:
[l] The Apache Server Foundation.

URL:http:/lwww.apache.org
[2] R. Pandey, J.F. Bames and R. Olsson, “Supporting

Quality of Service in HTTP servers“, Proc., Seventeenth
Annual SIGACT-SIGOPS Symposium on Principles of
Distributed Computing, Puerto Vallarta, Mexico, June
1998.

[3] T.S. Sankaravadivelu, “Quibs: Incorporating QoS into
Web Surfing“, A Project Report for the Advanced
Computer Networks course, Dept. of Computer Science
and Engineering, University of Nebraska-Lincoln,
Lincoln, December 1999.

[4] J. Almeida, M. Dabu, A. Manikutty and P. Cao,
“Providing differentiated levels of service in web content
hosting“, 1998 Workshop on Internet Sewer
Performance, Madison, Wisconsin, June 1998.

[5] X. Chen and P. Mohapatra, “Providing Differentiated
Services from an Internet Server”, 1998 Workshop on
Internet Sewer Performance, Madison, Wisconsin, June
1998.

[6] Differentiated Services Working Group (diffserv)
URL: http:l/www.ietf.org/html.charters/

diffserv-charter.htm1
[7] Y. Bemet, J. Binder, S. Blakc, M. Carlson, B. Carpenter,

S. Keshav, E. Davies, B. Ohlman, D. Verma, Z. Wang
and W. Weiss, “A Framework for Differentiated
Services”, IETF Intemet Draft, February 1999.
URL: http:l/search.ietf.org/internet-drafts/
draft-ietf-diffserv-model-02.txt

[8] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang and
W. Weiss, “An Architecture for Differentiated Services”,
RFC 2475, December 1998.
URL:http://www.hypermail.orglrfcsl rfc2475.html

[9] B. Lewis and D. Berg, Multithreaded Programming with
Pthreads, New Jersey, Prentice Hall, December 1997.

[lo] D. Mosberger and T. Jin, “httperf - A tool for measuring
web server performance”.
URL: http://www. hpl.hp.com/personal/David-Mosberger
/httperf. html

[I l]X. Gan, “A Prototype of a Web Server Clustering
System”, M.S. Project Report, Dept. of Computer
Science and Engineering, University of Nebraska -
Lincoln, April 1999.

[12]X. Gan, T. Schroeder, S. Goddard and B. Ramamurthy,
“LSMAC vs. LSNAT: Scalable Cluster-based Web
Servers”, Cluster Computing: The Journal of Networks,
Software Tools and Applications, 2000.

[131 T. Schroeder, S. Goddard, B. Ramamurthy, “Scalable
Web Server Clustering Technologies”, IEEE Network
Magazine (Special issue on Web Perjormance)), vol. 14,
May 2000.

[14]X. Gan and B. Ramamurthy, “LSMAC: An Improved
Load Sharing Network Service Dispatcher”, The World
Wide Web Journal, vol. 3, 2000.

[151 L Eggert and J. Heidemann, ” Application-Level
Differentiated Services for Web Servers”, World Wide
Web Journal, vol. 3, 1999.

[16]R. Stevens, (/nix Network Programming, vols. I & 11,
New Jersey, Prentice Hall, December 1998.

[171 G. Rao, “DiffServer : Application Level Differentiated
Services for Web Servers”, MS. Project Report, Dept. of
Computer Science and Engineering, University of
Nebraska - Lincoln, May 2000.

[181 Beej‘s Guide to Network Programming.
URL:http://www.ecst.csuchico.edu/-beej/ guidelnetl

[191 A.D. Marshall, ”Programming in C, UNIX System Calls
and Subroutines using C“, March 1999.
URL:http:/lwww.cm.cf.ac.uklDave/Cl CE.htm1

[20] D. Butenhof, Programming With Posix Threads,
Addison-Wesley Professional Computing Series, May
1997.

0-7803-7097-1/01/$10.00 02001 IEEE 1637

http://URL:http:/lwww.apache.org
http:l/www.ietf.org/html.charters
http:l/search.ietf.org/internet-drafts
http://www

	DiffServer: Application Level Differentiated Services for Web Servers
	

	Diffserver: application level differentiated services for web servers - Communications, 2001. ICC 2001. IEEE International Conference on

