
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

CSE Conference and Workshop Papers Computer Science and Engineering, Department
of

2006

Router and Firewall Redundancy with OpenBSD and CARP Router and Firewall Redundancy with OpenBSD and CARP

Garhan Attebury
University of Nebraska-Lincoln, attebury@cse.unl.edu

Byrav Ramamurthy
University of Nebraska-Lincoln, bramamurthy2@unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/cseconfwork

 Part of the Computer Sciences Commons

Attebury, Garhan and Ramamurthy, Byrav, "Router and Firewall Redundancy with OpenBSD and CARP"
(2006). CSE Conference and Workshop Papers. 68.
https://digitalcommons.unl.edu/cseconfwork/68

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in CSE Conference and
Workshop Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/17210042?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/cseconfwork
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/cseconfwork/68?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages

Router and Firewall Redundancy with OpenBSD and
CARP

Garhan Attebury and Byrav Ramamurthy
Department of Computer Science and Engineering

University of Nebraska-Lincoln
Lincoln, NE 68588-0115

{attebury, byrav}@cse.unl.edu

Abstract— As more reliance is placed on computing and net-
working systems, the need for redundancy increases. The Common
Address Redundancy Protocol (CARP) protocol and OpenBSD’s
pfsync utility provide a means by which to implement redundant
routers and firewalls. This paper details how CARP and pfsync
work together to provide this redundancy and explores the
performance one can expect from the open source solutions.
Two experiments were run: one showing the relationship between
firewall state creation and state synchronization traffic and the
other showing how TCP sessions are transparently maintained in
the event of a router failure. Discussion of these simulations along
with background information gives an overview of how OpenBSD,
CARP, and pfsync can provide redundant routers and firewalls
for today’s Internet.

I. INTRODUCTION

The growing digital economy provides a perfect example
of the need for redundant systems. When the online store of
a company is not available, potential revenues are lost by the
second. Quality of service applications such as streaming video
are also very unforgiving towards service interruptions. Redun-
dant systems are often used to provide increased availability,
preventing such revenue loss and interruptions of service. In
complex systems such as the Internet there are often many
possible causes for loss of availability. One such cause is the
failure of routers. In the worst case, a failed router will cause a
complete outage of network communications if no other routes
are available. In other cases, the failure may be temporary
lasting only until new routes are discovered. However, even
in this second case, a router failure may introduce instabilities
into the Internet affecting both reliability and quality of service
on a much larger scale [1].

The concept of redundant routing is not new. In fact,
commercial solutions such as Cisco Systems’ Hot Standby
Routing Protocol (HSRP) [2], have existed for many years.
An additional and very similar protocol is the Virtual Router
Redundancy Protocol (VRRP) proposed by the IETF in the late
1990’s [3]. Both of these solutions are flawed in the sense that
they lack security and neither are free of patents. Specifically,
HSRP is patented by Cisco Systems, which also claims the
patent rights to the IETF’s VRRP standard due to similarities
between the protocols [4].

In August 2002 the OpenBSD community realized that Cisco
Systems’ claim to VRRP made it impossible to create a free

implementation of the protocol [5]. Having already created the
pfsync protocol to synchronize state between multiple firewalls,
and needing a way to provide transparency of those firewalls to
end hosts, the OpenBSD project [6] developed CARP. CARP,
the Common Address Redundancy Protocol, was intended to
solve the same problems as HSRP and VRRP while being
different enough technically to not fall under Cisco Systems’
patents.

Combined with the project’s packet filtering (pf) system
and pfsync utility, OpenBSD’s CARP protocol is well suited
to provide redundant routers and firewalls. In this paper we
provide a background of previous redundant routing protocols,
an overview of router and firewall redundancy using the above
mentioned OpenBSD technologies, and an analysis of state
sharing traffic and TCP session maintainability through experi-
mentation. In these experiments, two physical routers are used
to create a single virtual router. This virtual router performs
basic routing and stateful firewall functions between two end
host computers on separate subnets. The term router is used to
refer to this router and firewall combination from here on.

The remainder of this paper is organized as follows. Section
2 presents a background on other protocols related to CARP
and router redundancy. Section 3 provides the motivation for
the existence and use of CARP. Section 4 explains the CARP
protocol in greater detail and how it can be used for firewall
redundancy and/or load balancing. Section 5 details the ex-
periment used to evaluate CARP and Section 6 discusses the
results of that experiment. Section 7 presents suggestions for
future work and Section 8 concludes the paper.

II. RELATED PROTOCOLS

Router redundancy is not a new concept. Cisco Systems’
HSRP has been available in their networking products for many
years, and the IETF’s VRRP is available on the products of
many companies such as Juniper Networks, 3Com Corporation,
and Cisco Systems, Inc. VRRP has also been implemented on
many operating systems including Linux and BSD. HSRP and
VRRP are the two closest relatives to CARP and are discussed
in this section.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

1-4244-0355-3/06/$20.00 (c) 2006 IEEE

146

ICC '06. IEEE International Conference on Communications, 2006.
Volume: 1 Digital Object Identifier: 10.1109/ICC.2006.254719
Publication Year: 2006 , Page(s): 146 - 151

A. Hot Standby Router Protocol (HSRP)

HSRP is designed to provide non-disruptive fail-over routing
in networks which have fixed next hop routes such as Ethernet
LANs. Two or more routers are grouped together into a virtual
router (also called a HSRP group or hot standby group) which
presents a single host for the next hop route. Each of these
virtual routers has a single well-known MAC address and IP
address which are different from the addresses assigned to any
of the real router’s physical interfaces. While each router is
then capable of receiving packets destined to the virtual router,
only a single router, called the active router, actually forwards
packets. The active router and a second standby router are
chosen through an election process. Once the election process is
over, the active and standby routers periodically pass a heartbeat
message so that they can detect the failure of one another. If the
active router fails, the standby takes over and another standby
router is elected. If the standby router fails, the active router
remains active and another standby router is elected. HSRP
allows for multiple virtual routers to be created on a single
LAN and for load sharing to occur by distributing physical
hosts among different virtual router groups. A physical router
maintains separate state and timers for each group it participates
in. Communication between the routers of a group is optionally
protected by an 8 character plain text password.

B. Virtual Router Redundancy Protocol (VRRP)

VRRP is almost identical in functionality to Cisco Systems’
HSRP and Digital Equipment Corporation’s IP Standby Pro-
tocol (IPSTB) with only minor differences in its operation
[7]. Early versions of VRRP included not only the plain text
password authentication mechanism from HSRP but also a
HMAC authentication [8] scheme. However, experience showed
both schemes offered little to no additional security and have
been removed in the latest version of VRRP leaving no authen-
tication mechanism. A second difference in VRRP is the use
of ICMP redirects, a mechanism for routers to send routing
information to end hosts, allowing its use in non-symmetric
networks. A non-symmetric network is one where packets
flowing in one direction through the router group differs from
the other direction. Packets may leave a network through a
router group A but return to a router group B. It is possible for a
VRRP router to act as master for a group with addresses it does
not own. In this case, the router would need to determine which
group the packet was sent to when setting the redirect source
address. In symmetric networks with load sharing between
routers, this ICMP redirect ability is often disabled. HSRP
explicitly forbids the use of ICMP redirects to hide the primary
MAC addresses of routers in the virtual group.

VRRP also relies on an election process to determine which
routers becomes master and which routers become standbys.
This differs from HSRP in that HSRP only elects a single
backup router, whereas in VRRP different priorities get as-
signed to all backup routers with the router of highest priority
becoming master upon failure of the original master.

III. MOTIVATION

Link failures in an IP network cause surrounding routers to
react by updating their routing tables to reflect the change in
topology. These changes often propagate through the Internet
causing instabilities in the overall routing of data. Such in-
stabilities are referred to as route flaps and are one of many
pathologies affecting both the performance and the availability
between end to end hosts [9]. It has been shown through
empirical evidence that certain inter-domain routing protocols
such as BGP suffer from delayed routing convergence after
failures. These delays, which can last in the timescale of
minutes, may interrupt communication between end hosts by
reducing routing performance or preventing communication all
together [10], [11].

Incorporating redundancy among routers reduces the proba-
bility of link failures and subsequently reduces the chance of
route flaps forming and the need for routing convergence to
even occur. Removing these pathologies increases the stability
and performance of the Internet as a whole thereby benefiting
providers and customers who rely on these traits for profit and
quality of service.

The earlier router redundancy protocols such as IPSTB and
HSRP are both proprietary and constrained from general use
by patent law. The IETF’s development of VRRP was intended
to provide an open and patent-free protocol of similar design.
While the VRRP standard has without a doubt enjoyed wide
acceptance by commercial and open source vendors alike, Cisco
Systems has claimed patent rights to it preventing it from being
used in true open form. As a result of this encumbrance, the
OpenBSD project designed and developed CARP to provide
the functionality of the previous protocols under the original
BSD license. CARP also introduces new features, the most
notable being the use of cryptography to increase security. The
OpenBSD project also has two more developments, namely the
packet filter (pf) and pfsync utilities, which allow the creation
of robust, free, and redundant combined router and firewall
systems. CARP, pf, and pfsync are discussed in the next section.

IV. CARP

This section introduces the operation and features of CARP,
pf, and pfsync in OpenBSD.

A. CARP standalone

CARP by itself provides redundancy between systems. These
systems need not be limited to routing, and can easily serve
other roles such as that of a web server. Like VRRP, CARP
is a multicast protocol which groups multiple systems together
into a virtual group called a CARP group. This group presents a
single shared MAC and IP address combination to the hosts of
a network. Just as in VRRP, a master is elected from the group
with the remaining systems being assigned priorities indicating
which takes over when the master fails. The inclusion of a clock
skew setting allows the manual assignment of priority. This can
be used to give a particular machine a greater chance of being
elected master, and to cause that machine to be re-elected as
master once it recovers from a failure. CARP requires each

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

147

system to have its own MAC and IP address in addition to the
virtual addresses and also requires all IP addresses of a group be
on the same subnet. Any service running on the systems can be
configured to use the virtual addresses of a group transparently
giving the benefit of redundancy. By itself, CARP does not
provide a mechanism for replicating data among the group.
This needs to be accomplished by other tools such as rsync for
file replication or pfsync for firewall state replication.

B. CARP, pf, and pfsync

The OpenBSD project has included packet filtering software
called pf in their releases since version 3.0 which can be
used to create advanced stateful firewalls. When using CARP
in a standalone mode to provide redundant stateful firewalls
a problem arises. If the master firewall goes down, all the
state information is lost and existing stateful connections will
be unknown to the backup and therefore be blocked and
terminated. The solution to this problem is pfsync.

pfsync is the OpenBSD project’s protocol to synchronize
firewall state tables between multiple systems. From the op-
erating system viewpoint, pfsync is a pseudo-interface which
can be configured in multiple ways such as to send the state
update information over a physical interface or through a VPN
tunnel. Like CARP, pfsync is a multicast protocol allowing state
updates on the master to be sent to all backup firewalls. When
the backups receive state updates over their pfsync interfaces,
the updates are inserted into their own internal state tables
thus synchronizing the state information between all firewalls.
pf does allow a no-sync keyword to be specified on firewall
rules such that state information created from that rule is not
passed to the backup systems. pfsync also automatically tries
to combine multiple state updates into a single update and to
use compression where possible.

C. Load balancing with CARP

The increased amount of traffic flowing over today’s net-
works means an increased demand in processing power for
the gateways, routers, and firewalls that manipulate it. This is
especially true in the cases where detailed packet inspection and
modification occur such as intrusion detection systems (IDS),
network address translation (NAT), and scrubbing [12], [13]. It
is not unreasonable for a large network to contain more traffic
than can be handled by single system. Load balancing is often
used to split demand among many systems, and CARP provides
a mechanism by which to accomplish this.

Load balancing with CARP is done through ARP based
hashing only. This requires a CARP group to be setup for each
physical host with the groups sharing a common virtual IP
address but having unique virtual MAC addresses. As every
virtual interface sees the traffic on its side of the network, it is
simple to perform a hash on the source address of a connection
to determine which group (or physical machine) acts on that
connection. While primitive, this form of load balancing has
the advantage of simplicity in that multiple connections from
a end host always get passed through the same CARP system.

This type of load balancing with CARP need not be restricted
to firewalls and routers, and can be used equally as well for
other services such as a pool of web servers.

V. IMPLEMENTATION

To observe the usage and behavior of CARP, pf, and pfsync
in operation, a small network consisting of two routers and
two end hosts was created. This section describes the network
layout and the configuration used to achieve router redundancy.
In addition, details of the testing methods are given at the end
of this section.

A. Network Layout

The two routers acted as both a gateway and a firewall
between the two subnets, and for the remainder of this paper
the term router shall refer to this combination. The end hosts
used were standard computers running Linux with one running
the Apache web server [14] and the other making HTTP GET
requests using Siege [15]. The topology of this network is
depicted in Fig. 1.

B. Router Configuration

The two routers, labeled Router A and Router B, were
physically identical computers each with three physical
network interfaces. Using physically identical computers is
not necessary to achieve router redundancy with OpenBSD
and CARP. On both machines, OpenBSD 3.6 was installed
with all default settings except for the following change to
/etc/sysctl.conf :

net.inet.ip.forwarding = 1

This change was required to allow forwarding of packets
between the interfaces. Two of the three physical interfaces,
dc0 and dc1, were given unique addresses on the web client
subnet and the web server subnet respectively. In order for
CARP to function, each participating machine in a virtual
group needs to be able to receive and see the same network
traffic. This was accomplished by creating a new CARP
interface with a shared IP address on both routers. The two
interfaces, one for each of the two subnets, were created as
follows:

ifconfig carp0 create
ifconfig carp0 vhid 1 pass df2m1 10.1.1.1
ifconfig carp1 create
ifconfig carp1 vhid 2 pass q3c4m 10.1.2.1

This created two virtual interfaces, one with the IP ad-
dress 10.1.1.1 and the other with the IP address 10.1.2.1. As
the routers share these IP addresses, traffic sent from other
computers on the subnets gets seen by both. Refer to Fig. 1
for a complete view of the layout including the IP addresses
for each interface. Only the master of the group actually
takes action on the traffic when not using load balancing.
Note the inclusion of a simple five character password (df2m1
and q3c4m) in the CARP interface creation command. This

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

148

pf
sy

nc
0

10.1.2.2

10.1.2.3

10.1.1.2

10.1.1.3

dc1dc0

10.1.1.1 10.1.2.1

10.1.3.2
dc2

dc2
10.1.3.1

dc0 dc1

Web Client Subnet Web Server Subnet10.1.1.4 10.1.2.4

Siege HTTP Utility Apache HTTP Server

��
��
��

��
��
��

��
��
��

��
��
��

Router A

Router B

Fig. 1. Example CARP Topology

password is similar to that found in HSRP and what previously
existed in VRRP. If provided, the password is used to encrypt
all CARP communication packets between the routers with an
SHA-1 HMAC scheme [8].

In addition to the carp0 and carp1 interfaces, an interface
for pfsync to transfer state information between the routers
was created with the following:

ifconfig pfsync0 syncif dc2

This pfsync0 interface was tied to the third physical interface,
dc2, of each router. By default the state information sent over
the pfsync0 interface is multicast and encrypted. In production
environments this would most likely be a truly private and
secure network, perhaps a single crossover cable in the case
of two routers. The pfsync utility also provides a mechanism
for unicasting the state traffic which could be used with other
security mechanisms such as IPSec tunneling to share state
information between distant routers.

The following rules which prevent the blocking of CARP
and pfsync traffic were added to the pf configuration.

pass quick on { dc2 } proto pfsync
pass on { dc0 dc1 } proto carp keep state

In addition, the following rule was added to maintain the
state of standard TCP connections between the subnets. No
additional pf rules were specified.

pass on { dc0 dc1 } proto tcp keep state

C. Web server and Web client

The web server and web client computers ran Linux and
each contained one physical network interface configured
to a unique address on the subnet to which each computer
belonged. The web server software used was Apache 2.0.52
[14] and the web client software used was Siege 2.61 [15].
Siege is a HTTP stress testing utility which was used to
generate new HTTP requests many times a second. Each
new HTTP request created two new TCP states, one for each

direction of traffic, on the master router. This was a reliable
and simple method of creating new states thereby causing
pfsync to create state traffic on the pfsync0 interface. The
only additional configurations to the web server and web
client were the manual addition of the carp0 and carp1 group
IP addresses as routes for the corresponding subnets as follows:

(on the web client) route add default gw 10.1.1.1
(on the web server) route add default gw 10.1.2.1

D. Packet Capture and State Monitoring

Both the public interfaces with the CARP protocol traffic
and the pfsync interfaces with the state update traffic were
monitored using Ethereal [16]. During the course of the exper-
iments, all traffic on these interfaces was captured and stored.
The results of this packet capturing are discussed in Section
VI.

The state tables on each router were monitored periodically
during both tests using the pfctl utility included with OpenBSD
using the following command:

pfctl -s info

This command gives, amongst other items, the current num-
ber of state table entries and the number of state table inserts,
removals, and searches.

E. Testing

Two tests were performed on this network setup. The first test
measured the amount and characteristics of the traffic generated
on the pfsync0 interfaces during a period where new states were
generated by Siege. The creation of new states, two for each
HTTP GET connection, causes the need to synchronize these
state tables between the master and backup routers. Siege was
stopped before packet capture ended as states will eventually
expire on the master, again requiring pfsync updates to be sent
to the backup.

The second test was to show that stateful connections such
as SSH will be maintained even upon the failure of the
master router providing transparent fail-over from the end user’s

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

149

TABLE I

pfsync0 TRAFFIC STATISTICS

Parameter Value
Total number of packets 3827

Average packets per second 81.75
Average packet size in bytes 465.68

Total bytes transfered 1782170
Average bytes per second 38067.81
Average Mbits per second 0.31

perspective. This test consisted of starting various SSH sessions
between the web client and web server machines and literally
“pulling the plug” on the master router causing the backup to
take over while maintaining the active SSH sessions.

VI. DISCUSSION

A. pfsync0 Traffic Analysis

The packets captured over the pfsync0 interfaces of the two
routers can be categorized into two types. The first is the state
table update information generated by pfsync when a new state
is created on the master router. These updates are sent over the
pfsync0 interface almost immediately to keep a high level of
synchronization between the routers. The second of these types
is the revocation updates which remove expired states from the
backup routers. These updates are grouped together in batches
so as to minimize the amount of traffic on the pfsync0 interface.

During the Siege/Apache test, a total of 1269 unique HTTP
transactions (HTTP GETs) were created over a period of 46
seconds, an average of 27.53 transactions per second. Each
HTTP transaction created two states in the pf state table
meaning 2538 states were generated at an average rate of 55.2
states per second. In addition to the packets required to update
the state tables, pfsync generates periodic packets on the pfsync0
interface which are 180 bytes in size. In the 46 second test
period, 92 of these packets were sent totaling approximately
16 kilobytes of data. Fig. 2 shows a plot of the packets per
second transmitted over the pfsync0 interface during the test
period. Important periods include 14-60 seconds which is when
Siege was generating HTTP GET requests, 60-108 seconds
when no state updates occurred, and 108-152 seconds when
the batch state revocation updates occurred. The period of 0-
14 seconds is where packet capture had begun but the Siege
request generation had not. Table 1 displays the traffic statistics
for the period of state creation only, that is during time of 14-60
seconds.

Traffic statistics show that during the creation of new states,
which occurred at the rate of 55.2 states/sec, the average amount
of pfsync traffic generated was only 0.31 Mbits/sec. As the size
of the packets containing state change information does not
vary greatly, it can be said that the amount of traffic generated
on the pfsync0 interface of the master router scales linearly
with the amount of state changes occurring. Scaling up the
0.31 Mbits/sec to a full 100 Mbits/sec gives a rough value of
over 17,000 states needing to be created per second to saturate
such a link. While a 100 Mbits/sec link would be common

for installations where the physical routers are located near
one another, other cases exist where the pfsync link capacity
may become an issue. Take for example the case of a large
campus where border routers may be located miles apart. A
1.5 Mbits/sec T1 link may be used to share state information
reducing the above number to around 250 new states/sec. Add
the fact that the pfsync link can be easily tunneled with IPSec
over the Internet and that using unicast instead of multicast
scales the amount of traffic by a factor of n where n is the
number of routers, it is clear that cases exist where the pfsync
link capacity affect the synchronization of state tables among
the routers.

B. SSH Sessions Maintained

The purpose of synchronizing firewall state information
between the routers is to ensure no existing connections get
broken when a failure occurs. Starting SSH sessions between
the web client and web server computers created multiple
persistent TCP sessions through the routers. Each SSH session
created two state entries in the master which were replicated
on the backup as expected. Failing the master and letting the
backup take over did not interrupt the SSH sessions as the
TCP sessions already existed on the backup router letting the
traffic associated with the sessions flow freely. However, the
solution is not flawless. By default the time period between
advertisements of the master’s operation is three seconds.
During this period no packets are being routed because while
the master has failed, the backup(s) have not yet realize it.
Configuring the period between advertisements to a lower value
will decrease this period allowing much quicker response. As
TCP is a reliable transport protocol, this delay will generally
not cause termination of the connection or loss of data. UDP
traffic, however, may be lost during this delay period as it is
an unreliable datagram protocol.

VII. FUTURE WORK

The scope of this paper is limited to OpenBSD’s CARP and
pfsync protocols with a focus on their performance in a simple
two host network. More network intensive tests could be done,
such as generating multiple types of traffic (multicast, video
streams, etc.) which would be more indicative of real world
data. Also, future tests could include other pf features such as
queueing priorities and focus not only on data passed over the
pfsync0 interface but also network processing time. Even more
complex cases remain to be explored, such as the use of load
balancing among routers.

In a load balancing scenario, all routers would need to share
their states while different routers operate on different subsets
of connections. This technique would distribute the processing
of traffic among all the routers in a virtual group, the obvious
benefit being that increased demands from more traffic could be
met with the addition of more routers. This would be especially
true in cases where the routers are doing complex tasks such
as intrusion detection or the processing of large firewall rule
sets. While CARP on OpenBSD includes an ARP balancing
feature, it is not well suited for this task. First, the balancing

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

150

 0

 20

 40

 60

 80

 100

 120

 140

 20 40 60 80 100 120 140 160

Pa
ck

et
s

pe
r

se
co

nd

Time in seconds

Fig. 2. pfsync0 traffic graph

is accomplished through a simple hash of IP addresses, which
in practice will not give 50/50 load splits. Second, the ARP
balancing feature is intended to pass traffic along to a secondary
set of servers on an inside subnet protected by the routers. It
is not readily apparent that load balancing among the pf and
pfsync systems on the routers themselves is possible with the
current implementations.

Finally, a comparison between Cisco Systems’ proprietary
HSRP and the IETF’s VRRP standard to CARP and pfsync is
needed to see which of the three options is best for a given
application. Measuring HSRP would best be done on Cisco
hardware itself. VRRP implementations are however available
in both hardware and software implementations, the latter of
which is free to acquire but still restricted by patents.

VIII. CONCLUSION

The goal of this work was to provide an overview into
how the OpenBSD Project’s CARP protocol can be used in
conjunction with the pf and pfsync firewall utilities to create
redundant stateful firewalls. Also touched on were the possi-
bilities of using CARP by itself to provide redundant routers
without firewalls, to provide load balancing, and to provide
redundancy in general purpose server scenarios. Experiments
were conducted and results were provided quantifying how
traffic on the pfsync interface may limit the number of new
firewall state creations per second and how reliable traffic
flows such as TCP remain uninterrupted during a fail-over.
Also discussed was the flexibility provided by CARP and
pfsync such as the case where routers at distant locations can
securely share firewall state information to provide transparent
redundancy. The need for such redundancy has become more
apparent in recent years as heavy reliance is put on the Internet
to support applications demanding both quality of service and
high availability. As OpenBSD and the tools discussed here are
available freely under the BSD licence they provide a robust
and accessible solution for router and firewall redundancy.

ACKNOWLEDGEMENTS

This work is partially supported by NSF Grant No. CCR-
0311577.

REFERENCES

[1] G. Iannaccone, C. Chuah, R. Mortier, S. Bhattacharyya, and C. Diot,
“Analysis of link failures in an ip backbone,” Internet Measurement
Workshop, 2002.

[2] T. Li, B. Cole, P. Morton, and D. Li, “Cisco Hot Standby Router
Protocol (HSRP),” RFC 2281 (Informational), Mar. 1998. [Online].
Available: http://www.ietf.org/rfc/rfc2281.txt

[3] R. Hinden, “Virtual Router Redundancy Protocol (VRRP),”
RFC 3768 (Draft Standard), Apr. 2004. [Online]. Available:
http://www.ietf.org/rfc/rfc3768.txt

[4] “http://www.ietf.org/ietf/ipr/vrrp-cisco.” [Online]. Available:
http://www.ietf.org/ietf/IPR/VRRP-CISCO

[5] OpenBSD release song lyrics. [Online]. Available:
http://openbsd.org/lyrics.html#35

[6] The OpenBSD Project. [Online]. Available: http://openbsd.org/
[7] A. Srikanth and A. A. Onart, VRRP: Increasing Reliability and Failover

with the Virtual Router Redundancy Protocol. Pearson Education,
September 2002.

[8] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-Hashing
for Message Authentication,” RFC 2104 (Informational), Feb. 1997.
[Online]. Available: http://www.ietf.org/rfc/rfc2104.txt

[9] C. Labovitz, G. R. Malan, and F. Jahanian, “Internet routing instability,”
in SIGCOMM ’97: Proceedings of the ACM SIGCOMM ’97 conference
on Applications, technologies, architectures, and protocols for computer
communication. New York, NY, USA: ACM Press, 1997, pp. 115–126.

[10] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “Delayed internet
routing convergence,” IEEE/ACM Trans. Netw., vol. 9, no. 3, pp. 293–306,
2001.

[11] X. Zhao, D. Massey, D. Pei, and L. Zhang, “A study on the routing
convergence of latin american networks,” in LANC ’03: Proceedings
of the 2003 IFIP/ACM Latin America conference on Towards a Latin
American agenda for network research. New York, NY, USA: ACM
Press, 2003, pp. 35–43.

[12] T. Verdickt, W. V. de Meerssche, and K. Vlaeminck, “Modeling the
performance of a nat/firewall network service for the ixp2400,” in WOSP
’05: Proceedings of the 5th international workshop on Software and
performance. New York, NY, USA: ACM Press, 2005, pp. 137–144.

[13] D. Watson, M. Smart, G. R. Malan, and F. Jahanian, “Protocol scrubbing:
network security through transparent flow modification,” IEEE/ACM
Trans. Netw., vol. 12, no. 2, pp. 261–273, 2004.

[14] Apache HTTP Server Project. [Online]. Available: http://httpd.apache.org/
[15] J. Fulmer. Siege HTTP Utility. [Online]. Available:

http://www.joedog.org/siege/
[16] Ethereal. [Online]. Available: http://ethereal.com/

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

151

	Router and Firewall Redundancy with OpenBSD and CARP
	

	tmp.1277307608.pdf.dCctd

