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First-principles analysis of spin-disorder resistivity of Fe and Ni
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Spin-disorder resistivity of Fe and Ni and its temperature dependence are analyzed using noncollinear
density functional calculations within the supercell method. Different models of thermal spin disorder are
considered, including the mean-field approximation and the nearest-neighbor Heisenberg model. If the local
moments are kept frozen at their zero-temperature values, very good agreement with experiment is obtained for
Fe but for Ni the resistivity at elevated temperatures is significantly overestimated. Agreement with experiment
for Fe is improved if the local moments are made self-consistent. The effect of short-range order on spin-
disorder resistivity is more pronounced in Ni compared to Fe but it is too weak to explain the overestimation
of the resistivity for paramagnetic Ni; the latter is therefore attributed to the reduction in the local moments
down to 0.35�B. Overall, the results suggest that low-energy spin fluctuations in Fe and Ni are better viewed
as classical rotations of local moments rather than quantized spin fluctuations that would require an �S
+1� /S correction.

DOI: 10.1103/PhysRevB.80.224423 PACS number�s�: 75.47.�m, 75.50.Bb

I. INTRODUCTION

Electron scattering off of spin fluctuations in magnetic
metals results in an “anomalous” contribution to electric
resistivity.1–3 The analysis of this spin-disorder resistivity
�SDR� is of interest because it can provide material-specific
information on the character of spin fluctuations which is not
easily accessible by other means. Scattering on spin disorder
is also an important factor degrading the performance of
magnetoresistive nanostructures in spintronic devices.

The magnitude of the spin-disorder contribution to resis-
tivity is comparable to the phonon contribution near and
above the Curie temperature Tc.

1 �This is because magnetic
scattering amplitudes have no small parameter unless the ex-
change splitting is small compared to the bandwidth.� It is
usually assumed that SDR is constant well above Tc. In this
region Matthiessen’s rule is valid and the phonon contribu-
tion can be fitted to the Bloch-Grüneisen formula. The excess
resistivity in the whole temperature range may be attributed
to spin disorder,4 although one may expect deviations from
Matthiessen’s rule at low temperatures where transport is
carried by weakly interacting spin channels.5 In addition, it
was argued that in some cases �such as Ni� spin disorder may
change the character of states on the Fermi level and thereby
appreciably change the phonon contribution itself.1,2

Many authors have studied SDR theoretically using the
s-d model Hamiltonian.6–9 In this approach the 3d shells in
transition metals �or f shells in rare-earth metallic magnets�
are assumed to be localized at atomic sites and partially

filled, forming magnetic moments Ŝi that are coupled to the
current-carrying conduction electrons by exchange interac-

tion Hsd=−Jsd�iŜiŝi, where Jsd is the local s-d exchange cou-
pling constant and ŝi is the spin-density operator of the con-
duction electrons at site i. Thermal fluctuations of the
d-electron spins generate an inhomogeneous exchange po-

tential; in the Born approximation the SDR is then deter-
mined by the conduction-electron band structure and the
spin-spin correlation functions of d-electron spins.9 If the
scattering is approximated as being elastic, only equal-time
connected spin correlators have to be considered. Further, if
the mean-field approximation �MFA� is used for 3d spin sta-
tistics, the SDR behaves as �mag�T�=�0�1−M2�T� /S�S+1��,
where M�T�= �S�T�� is the magnetization at temperature T
and �0�Jsd

2 S�S+1�.6 Note that above Tc SDR is constant and
equal to �0. The shape of the Fermi surface of conduction
electrons is immaterial to this prediction as long as the scat-
tering is elastic.9

The effects of magnetic short-range order �MSRO� on
SDR have also been investigated within the s-d
model.7,8,10–15 This problem has attracted considerable atten-
tion in connection with a “bump” in the resistivity that is
observed near Tc in some magnetic metals �although it is
usually quite small�.1 The analysis of critical MSRO effects
showed that a cusp may appear near Tc due to long-wave
critical fluctuations,7 although it should usually be strongly
suppressed by finite mean-free path and cancellations due to
Fermi surface integration.10 It was also found that the effect
of MSRO and even its sign are sensitive to such details of
the model as the conduction-band occupation and the form of
the scattering �pseudo�potential.12–14

Although the s-d model provided physical insight into the
mechanism of SDR, it suffers from serious limitations. First,
the distinction between localized and conduction electrons is
not justified in transition metals where 3d electrons are itin-
erant and form the Fermi surface. Even if the current is
dominated by light s-like bands that can be distinguished
from heavy d-like bands, the relaxation rate is dominated by
interband �s-d� scattering.16 Second, at elevated temperatures
the scattering potential generated by spin disorder is of the
order of the exchange splitting, which is not small compared
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to the bandwidth. This raises the question of the validity of
the Born approximation, which is usually made in model
calculations. Third, the s-d model does not properly take into
account the change in electronic structure due to disorder.

The first-principles approach to SDR is free from all these
limitations and can be used for quantitative calculations of
SDR. This is of particular interest for the theory of itinerant
magnets because, as mentioned above, SDR depends on
spin-spin correlation functions. Different theories of itinerant
magnetism make conflicting predictions for such properties
as the degree of MSRO, the mean-squared magnetic mo-
ment, and their temperature dependence;17–21 these quantities
are quite hard to measure directly. By calculating SDR for a
particular model of spin fluctuations and comparing the re-
sults with experiment, one can attempt to validate or rule out
different spin-fluctuation models.

Earlier we have calculated the temperature dependence of
SDR in Fe and Ni using supercell calculations within the
tight-binding linear muffin-tin orbital �TB-LMTO� method
using the mean-field distribution for spin-orientation
statistics.22 Good agreement with experiment was obtained
for Fe but for paramagnetic Ni the SDR was found to be
significantly overestimated. In this paper we analyze the tem-
perature dependence of SDR for Fe and Ni in greater detail.
We focus on noncritical behavior and consider the effects of
magnetic ordering, MSRO, and local moment reduction. The
accuracy of the calculations is checked by varying the basis
set size; the effect of self-consistency of the atomic poten-
tials is also considered.

II. GENERAL APPROACH AND METHODS

Our approach is based on noncollinear density functional
theory �DFT�. All the valence electrons are treated on the
same footing while the scattering potentials are determined
by the self-consistent electron charge and spin densities. We
use the TB-LMTO method23 which represents the electronic
density of the crystal as a superposition of overlapping
atomic spheres; the electronic density inside each sphere is
spherically symmetric. This method is known to work very
well in close-packed materials, and it allows us to introduce
spin disorder in various ways. In this work we used the rigid
spin approximation which assumes that the spin density in
each atomic sphere remains collinear while the spin densities
of different atomic spheres become noncollinear at finite
temperatures. In the simplest model the electron charge and
spin densities in all atomic spheres are taken from the ground
state and frozen while the directions of the spin moments in
different spheres are randomized with the angular distribu-
tion function taken from MFA at the given temperature. This
model is expected to work reasonably well for Fe which has
a fairly stable local moment.17,24 In Sec. III we show that this
is indeed the case; however, for Ni the paramagnetic SDR
calculated in this way is about twice too large. In order to
explain this discrepancy, the dependence of SDR on the de-
gree of MSRO and on the magnitude of the local moment is
studied in Secs. IV and V.

We use the supercell approach and calculate the areal con-
ductance of a layer of spin-disordered metal FM�D� sand-

wiched between fully ordered semi-infinite leads FM�O�
made of the same metal �see Fig. 1�. The resistivity is then
proportional to the slope of the inverse conductance as a
function of the disordered layer thickness, once the Ohmic
limit is reached. For the given thickness of the FM�D� layer,
the conductance of the system was averaged over several
disorder configurations �typically 15�. The planar system is
represented by a laterally periodic prism with an axis along
the �001� crystallographic direction, and care is taken to
make sure that the conductance scales as the cross section of
the prism. To calculate the conductance we use the principal-
layer Green’s function technique25,26 and the Landauer-
Büttiker formalism27 in the implementation allowing for
noncollinearity in the active region.28 This technique was
employed before to study the effects of substitutional disor-
der on transport in magnetic multilayers;29 it is similar to the
supercell Kubo-Greenwood method used to calculate
the residual resistivity of binary alloys.30 We used
experimental lattice constant both for Fe �a=2.8665 Å� and
Ni �a=3.524 Å�. For N�N lateral supercell we used
60 /N�60 /N uniform k-point mesh for conductance calcula-
tions for both Fe and Ni.

If the atomic potentials in the supercell are not converged
to self-consistency with the given spin-disorder configura-
tion, care needs to be taken to ensure local charge neutrality.
Indeed, FM�D� and FM�O� materials have different Fermi
levels that must normally be matched by the contact voltage.
In order to enforce charge neutrality in the FM�D� region, a
constant potential shift was introduced in this region so that
the charge in the central part of FM�D� averaged over disor-
der realizations was zero. This �small� potential shift plays
the role of the contact voltage. Note that no matter how the
FM�O�/FM�D� interfaces are treated �self-consistently or
not�, they add contact resistances to the circuit. However,
since the resistivity of the FM�D� material is extracted from
the thickness dependence of the resistance in the Ohmic
limit, the simplified treatment of interfaces has no effect on
the results.

III. SPIN-DISORDER RESISTIVITY IN THE MEAN-FIELD
APPROXIMATION

A. Paramagnetic state

In this section we analyze the temperature dependence of
SDR for iron and nickel using MFA for thermal spin disor-
der; the connected spin-spin correlator is purely local in this
approximation. First we consider the paramagnetic state

FIG. 1. �Color online� The schematic picture of the system used
in the calculations. Vertical lines indicate the embedding planes.
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where the angular distribution function is isotropic and the
resulting SDR is temperature independent.

We need to make a physically reasonable choice of atomic
potentials for the conductance calculations. It is known that
the local moments in Fe are quite stable;17 in particular, the
DLM method, which employs the coherent-potential ap-
proximation for spin-disordered states, shows only a small
reduction in the local moment in paramagnetic Fe compared
to its ground-state value.24 As seen below, direct averaging of
self-consistent local moments in the paramagnetic states
gives a similar result. Therefore, for Fe it is reasonable to use
frozen atomic potentials taken from the zero-temperature
ground state in all calculations. We have also checked the
effect of self-consistency on SDR in Fe and found it to be
small �see below�. The situation is entirely different for Ni,
where the local moment depends on the magnetic state; in
particular, it vanishes altogether in the paramagnetic disor-
dered local-moment �DLM� approximation.31 Since longitu-
dinal spin fluctuations �that are absent in our approach� can
at least partially restore the local moments,17 it is not a priori
clear how the atomic potentials should be modified for Ni. In
this section we use frozen atomic potentials; the necessary
corrections are discussed later.

Figure 2 shows the inverse areal conductance for para-
magnetic Fe and Ni as a function of the disordered FM�D�
region thickness. Here we used the frozen ground-state
atomic potentials and the LMTO basis including s, p, and d
orbitals �lmax=2�. The supercell cross sections contained
4�4 �for Fe� and 3�3 �for Ni� cubic unit cells with edges
oriented along the �100� directions. Almost perfect Ohmic
behavior is apparent for both Fe and Ni, which establishes
the validity of our approach.

Table I lists the values of SDR found for paramagnetic Fe

and Ni using different supercell cross sections, LMTO bases
truncated at lmax=2 and lmax=3 �the latter includes f orbit-
als�, as well as the value found using self-consistent �rather
than frozen� atomic potentials for Fe. It is seen that the re-
sults are well converged with respect to the supercell cross
section, and even 2�2 supercells provide sufficient accu-
racy. This is reasonable because the mean-free path in the
paramagnetic state is short.

The calculations with self-consistent atomic potentials
were performed as follows. In order to reduce the statistical
error, the averaging of the conductance was performed using
the same sets of random spin-disorder configurations as in
the calculation with frozen potentials. For each individual
spin configuration the atomic potentials were iterated to self-
consistency including the Fermi distribution function corre-
sponding to the experimental Tc of Fe. For 2�2 lateral cell
for Fe we used 6�6�1 k-point grid. The resulting distribu-
tion of the sites over the magnitude of the local magnetic
moment is shown in Fig. 3; this distribution is Gaussian with
a rather small width. The average local moment is only re-
duced by 3–4 % from its ground-state value. This small re-
duction appears to be similar to the DLM calculations of Ref.

TABLE I. Spin-disorder resistivity in �� cm for paramagnetic
bcc Fe and fcc Ni. The calculated values are given for basis sets
with lmax=2 and 3, as well as for different lateral cell sizes with
edges along the �100� directions. SC denotes calculations with self-
consistent potentials. Standard deviations of SDR due to limited
disorder sampling are included. The experimental value is from Ref.
4.

Metal and basis
M

��B� 2�2 3�3 4�4 Expt.

Fe: lmax=2 2.29 106�1.8 101�1.3 102�1.0 80

lmax=3 2.22 86�1.6 87�7.1 85�7.4 80

lmax=2, SC 2.21 88�3.7 80

Ni: lmax=2 0.66 34�0.6 35�0.4 15

lmax=3 0.63 29�0.6 15

FIG. 2. �Color online� The area-resistance product AR of the
FM�O�/FM�D�/FM�O� systems as a function of the FM�D� layer
thickness for bcc Fe �black filled symbols� and fcc Ni �red or gray
empty symbols� obtained with lmax=2. Circles and squares corre-
spond, respectively, to the paramagnetic state and to the lowest
temperature for which the calculations were made �T=0.27Tc for Fe
and T=0.58Tc for Ni�. 4�4 and 3�3 supercells were used for Fe
and Ni, respectively, with edges along the �100� directions. Straight
lines show the linear fitting; error bars are smaller than the size of
the symbols.

FIG. 3. �Color online� Distribution of the local magnetic mo-
ment in self-consistent fully spin-disordered bcc Fe. The Fermi tem-
perature is equal to the experimental Tc. The vertical line shows the
local moment at T=0. The red �solid� curve shows the Gaussian fit
to the data.
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20 while Ref. 24 obtained a somewhat larger reduction. The
self-consistent density of states �DOS� �not shown� is very
similar to the one generated by the frozen ground-state
atomic potentials �see Fig. 4�e� below�.

The addition of f orbitals to the LMTO basis reduces the
calculated SDR by approximately 15% for both Fe and Ni.
Self-consistency in the paramagnetic state of Fe results in a
similar reduction. This similarity suggests that the main rea-
son for this SDR decrease is the reduction in the local mo-
ment, which is, incidentally, very similar in both cases. In
order to check this, we performed additional calculations for
Fe in which the f channel was added to the basis while the
charge density was kept unchanged from the self-consistent
one with lmax=2. For the frozen potential case, SDR reduced
slightly from 106 to 100 �� cm; for the self-consistent
paramagnetic case, it only reduced from 88 to 86 �� cm,
which is within the error bar. Thus, the effect of increased
lmax on SDR is mainly indirect through the local moment

reduction. This is somewhat different from the binary alloy
systems considered by other authors using both TB-LMTO
and KKR �Korringa-Kohn-Rostocker� methods, where a
larger effect of adding f states was found.32,33 In view of the
weak dependence of SDR on lmax, below we use lmax=2 in
all calculations for T�Tc.

The experimental estimates of SDR in the paramagnetic
state4 are listed in the last column of Table I. The agreement
with experiment for Fe is quite satisfactory, and it is in fact
improved if the reduction in the local moment is included. In
Ni the SDR calculated with frozen atomic potentials is over-
estimated by a factor of 2. This is not surprising because, as
mentioned above, the use of frozen atomic potentials is not
justified for Ni. In order to understand the origins of the
disagreement with experiment for Ni, possible modifications
of the statistical model for the paramagnetic state must be
considered; this is done below in Secs. IV and V.

Recently, Buruzs et al.34 calculated the SDR for Fe and
Co using the DLM approach within the Korringa-Kohn-
Rostocker method and found that their method significantly
overestimates the paramagnetic SDR in these metals. The
source of disagreement with our supercell method for Fe is
unknown to us.

B. Temperature dependence in the ferromagnetic state

In this section we consider the ferromagnetic state of Fe
and Ni. We use frozen ground-state potentials and the basis
with lmax=2. As mentioned above, this approximation is rea-
sonable for Fe while for Ni it is not applicable at high tem-
peratures; nevertheless, comparison of these two systems
will allow us to draw important conclusions. For the ferro-
magnetic state the spin configurations were generated using
the mean-field distribution function,

p�	� � e−
Heff·�, Heff�T� =
3M�T�Tc

�M�0�
, �1�

where 	 is the angle between the local moment � and the
magnetization axis, M�T� is the magnetization at temperature
T= �k
�−1 in MFA, and Heff is the Weiss field. This distribu-
tion function depends only on T /Tc.

Before we turn to the temperature dependence of SDR, let
us look at the electronic structure of Fe and Ni with spin
disorder. The spin-resolved DOS of Fe and Ni is shown in
Figs. 4 and 5 for several temperatures. These data were ob-
tained by projecting the site-resolved DOS onto local spin-up
and spin-down states �in the local reference frame where the
z axis is parallel to the local moment� and subsequent aver-
aging over bulklike sites and spin-disorder configurations
generated according to Eq. �1�. The paramagnetic DOS of Fe
is very similar to the KKR-DLM results.24 As the tempera-
ture is increased from 0 to Tc, the spin-up and spin-down
states randomly hybridize with each other, the peaks
broaden, and the van Hove singularities are washed out. The
mean-squared deviation of the DOS from its average �shown
by dashed lines� is quite small, which is a direct consequence
of the large coordination number. In Fe the spin splitting is
almost independent of temperature while in Ni it is much
reduced as T gets close to Tc. Note that the frozen atomic

FIG. 4. Spin-resolved density of states �solid lines� for bcc Fe
averaged over random spin configurations with the mean-field dis-
tribution function �Eq. �1��; �a� T=0, �b� T=0.25Tc, �c� T=0.5Tc,
�d� T=0.75Tc, and �e� T=Tc. Dashed lines show the mean-square
deviation of the DOS on a given site from its ensemble average.
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potentials in Ni are very far from self-consistency at elevated
temperatures but a self-consistent treatment neglecting lon-
gitudinal spin fluctuations would be meaningless. We will
return to this issue in Sec. V.

Let us now discuss the temperature dependence of SDR.
While we found above that 2�2 supercells were sufficiently
large for the paramagnetic state, additional care needs to be
taken at lower temperatures where the mean-free path be-
comes longer. We found that 4�4 supercells for Fe and
3�3 for Ni demonstrate linear dependence of the area-
resistance product on the length of the active region for all
temperatures down to about Tc /3 �see Fig. 2�. This Ohmic
behavior is consistent with a simple mean-free path estimate
using the free-electron formula l= 3

4ARbal /�, where ARbal is
the ballistic area-resistance product. According to this esti-
mate, l does not exceed the lateral cell size in this tempera-
ture range. An additional indication of the Ohmic behavior
comes from the distribution of the current over the spin
channels. The conductance of the FM�O�/FM�D�/FM�O� sys-
tem is a sum of four partial conductances, G↑↑, G↓↓, G↑↓, and
G↓↑ �the latter two are equal�. Spin-conserving and spin-flip

scatterings have similar rates in our spin-disorder problem
�as long as the temperature is not too low�, and therefore the
electrons “forget” their spin over their mean-free path.
Therefore, in the Ohmic limit we should have
G↑↑ /G↑↓=G↓↑ /G↓↓. This relation does indeed hold down to
T�Tc /3 unless the thicknesses of the FM�D� region is very
small.

The dependence of the calculated SDR for Fe and Ni on
the magnetization is plotted in Fig. 6 along with the experi-
mental data4 �those for M�T� were taken from Ref. 35�. The
results for Fe agree rather well with experiment �see below
for further analysis�, especially at lower temperatures where
the magnetic excitations are dominated by spin waves and
our classical approach might be expected to be invalid. This
surprising finding is due to the fact that SDR in Fig. 6 is
plotted as a function of the long-range order parameter and
that, as we show below in Sec. IV, the SDR in Fe is quite
insensitive to MSRO. We expect that the temperature depen-
dence of SDR should cross over to a distinct spin-wave re-
gime at temperatures that are sufficiently low to restrict the
scattering momentum transfer. Since the magnon dispersion
is quadratic at low energies, �=Dq2 �where D is the spin-
wave stiffness�, and the typical scattering event involves
���kT, the maximum allowed momentum transfer
qmax�	T. Therefore, qmax becomes comparable to the size of
the Fermi surface already at low temperatures, and the cross-
over temperature should be relatively low, consistent with
our findings. The calculated SDR exhibits linear dependence
on M2�T� up to Tc while the experimental data deviate down-
ward from the straight line. This deviation may be attributed
to a small reduction in the local moment at elevated tempera-
tures, as discussed in the previous section.

For Ni the deep low-temperature region could not be ac-
cessed due to the increased mean-free path. Still, the agree-

FIG. 5. Same as in Fig. 4 but for fcc Ni.

FIG. 6. �Color online� Dependence of spin-disorder resistivity
on the magnetization for �a� Fe and �b� Ni. Black circles denote
experimental data combining Ref. 4 for �mag�T� and Ref. 35 for
M�T�. �Blue� squares show mean-field calculations, filled �red� tri-
angles denote Monte Carlo results, and �green� diamonds show re-
verse Monte Carlo calculations. The empty �red� triangles show
Monte Carlo results with larger cells: 6�6 for Fe and 4�4 for Ni.
The upper axis shows the MFA temperature corresponding to the
given magnetization. All results are for lmax=2. For MC results,
M�T� means the effective magnetization �see text�.
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ment with experiment at lower temperatures is good while at
higher temperatures the calculated SDR increases too rapidly
with 1−M2�T� /M2�0�. This deviation indicates the inad-
equacy of our spin-fluctuation model; its possible modifica-
tions are studied in the following sections.

The qualitative features of the calculated temperature de-
pendence of SDR �with frozen atomic potentials� are differ-
ent for Fe and Ni. If the spin fluctuations are treated classi-
cally within MFA and the scattering is treated perturbatively
�within the Born approximation�, the scattering potential
scales in proportion to the local moment. These approxima-
tions applied to the s-d model predict that the SDR is pro-
portional to 1−M2�T� /M2�0�. It is seen in Fig. 6 that for Fe
it is indeed proportional to 1−M2�T� /M2�0�. However, this
relation does not hold for Ni. This indicates that the change
in electronic structure owing to spin disorder, which the per-
turbative treatment does not include, has a large effect on
SDR in Ni.

As seen in Figs. 4 and 5, the densities of states change
quite appreciably with temperature for both Fe and Ni.
Therefore, it may seem surprising that for Fe the temperature
dependence of SDR agrees with the s-d model. Still, one can
understand the difference between Fe and Ni using the fol-
lowing considerations. First, the exchange splitting in Ni is
strongly reduced at elevated temperatures �see Fig. 5�; this
reduction causes the heavy majority-spin 3d bands to rise to
the Fermi level. Scattering into these final states from the
light bands becomes possible, which decreases the lifetime
of the latter. This mechanism was invoked by Mott2 to argue
that the reduction in the spin splitting in Ni can result in an
anomalous temperature dependence of the phonon resistivity.
The same argument applies to SDR considered here. Accord-
ing to Fig. 5, this happens approximately at T=0.75Tc, which
roughly corresponds to the upturn of SDR seen in Fig. 6�b�.
On the other hand, for Fe, as seen in Fig. 4, the exchange
splitting is essentially constant, and no new bands are ex-
pected to appear at the Fermi level. Consequently, no addi-
tional temperature dependence is introduced and SDR scales
as 1−M2�T� /M2�0�.

While plausible, the above arguments are not conclusive
because they assume without proof that the scattering matrix
elements between the light and heavy bands are large. On a
more subtle level, one may speculate that the difference be-
tween Fe and Ni can be understood based on the relation
between disorder broadening and spin splitting. At the given
wave vector, the spectral function consists of delta-function
peaks corresponding to majority- and minority-spin states. In
the presence of spin disorder, the spin states on neighboring
sites are allowed to hybridize with random matrix elements,
and the delta-function peaks broaden. At low temperature the
broadening is small, and the peaks corresponding to different
spins are well separated in energy from each other. However,
at higher temperatures some of these peaks can merge and
form common, “virtual-crystal-like” bands. Calculations of
the paramagnetic spectral functions using the DLM method
indicate that in Fe the majority- and minority-spin states re-
main separated through large portions of the Fermi surface
even above Tc.

36 On the other hand, in Ni the majority- and
minority-spin states are mixed in the paramagnetic state.36

Therefore, at certain temperature below Tc there is a cross-

over from separated to mixed-spin bands. The lifetime is
expected to decrease as the bands merge, which again ex-
plains the upturn of SDR from the straight line in Fig. 6�b�.

IV. EFFECT OF MAGNETIC SHORT-RANGE ORDER

As mentioned above, short-range order can sometimes
have a significant effect on resistivity. In this section we
analyze the effect of MSRO on SDR in Fe and Ni. In par-
ticular, it is important to check whether the MFA �which
neglects MSRO� is responsible for the large disagreement
with experiment in Ni found in Sec. III. This is especially
interesting because strong MSRO in Ni has been suggested
by some experiments17,37 and theories.18,19

We studied the effect of MSRO on SDR using the Monte
Carlo �MC� method for the classical Heisenberg model with
nearest-neighbor exchange interaction on bcc and fcc lattices
�for Fe and Ni, respectively�. For a given temperature we
built a MC supercell of the size of the disordered region
�FM�D��. For Fe the lateral size of the FM�D� was usually
4�4 while for Ni we used both 3�3 and 4�4 lateral sizes
�all measured in cubic unit cells�. MC simulations were per-
formed for these supercells using periodic boundary condi-
tions and the standard Metropolis algorithm.38–40 The system
was equilibrated �usually for 20 000 MC steps per site�, and
subsequently several spin configurations were produced
�usually with a delay of 10 000 steps per site between the
snapshots�. These spin configurations were then used to cal-
culate SDR as described above. In order to reduce FM�O�/
FM�D� interface resistance �and thus the variance of the cal-
culated resistance�, the spin configurations were uniformly
rotated in spin space to make the total magnetic moment
parallel to the ordered FM�O� regions. Similar to the case of
MFA configurations, linear dependence of resistance on the
thickness of FM�D� layer was observed.

In order to study the effect of MSRO on SDR we need to
compare the results obtained in MFA with those from MC.
This comparison is complicated by the fact that the resistiv-
ity calculations are only available for supercells of limited
size. We would like to identify the effect of MSRO at the
fixed magnetization but the latter is undefined for a system of
finite size. One could use the root-mean-squared total mag-
netic moment as a substitute for the long-range order param-
eter as is commonly done in MC simulations38 but there is no
reason to expect that the resistivity should depend on this
quantity; it rather must depend on the connected spin corr-
elators, which are also not known because they contain the
subtracted term M2. Moreover, since the root-mean-squared
magnetization contains a statistical variance term scaling as
1 /N, close to and above the thermodynamic Tc it changes
appreciably depending on the thickness of the FM�D� layer.
Since the finite size of the supercell affects all statistical
properties due to the corruption of the long-range fluctua-
tions, one would not be justified in using the finite-size-
scaled value of the magnetization for comparison with MFA
results.

For these reasons, we adopt a different procedure. First,
we notice that the set of all spin correlators �e0en�, where
en=Sn /S, contains the same information as the set of all
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connected correlators �because it contains the value of mag-
netization in its large-distance limit�. However, it is clear that
the cutoff at the mean-free path and the averaging over
neighbor pairs and over the Fermi surface10 make the long-
distance behavior of the correlation function irrelevant for
the resistivity. Therefore, it is physically reasonable to as-
sume that the resistivity should depend at most on the first
few spin correlators. These correlators are directly comput-
able in MC simulations, and moreover converge very quickly
as the simulation cell is increased. In particular, they are
almost independent of the third dimension of the supercell
with the given cross section.

Under the assumption that the first few correlators com-
pletely determine the resistivity, we proceed to establish a
correspondence between the given finite-size supercell and
an infinite system with the same Hamiltonian but at a slightly
different temperature in such a way that several first correla-
tors are matched. In practice, we tabulated the temperature
dependence of the first three spin correlators for a large
12�12�12 supercell; the correlators are well converged for
all considered temperatures for this cell size. In spite of the
relatively small size of the supercells used in resistivity cal-
culations, the correlators found in MC simulations for these
supercells were found to be almost but not quite converged
to the tabulated infinite-lattice values. Naturally, the devia-
tions get larger in the immediate proximity of Tc. Impor-
tantly, although the correlators vary slightly as a function of
the supercell length �at the fixed cross section�, this variation
does not contain a systematic trend and usually converges
rather quickly. We also found that in the range of supercell
aspect ratios used in our calculations there are no signs of a
crossover to an effectively one-dimensional behavior. Such a

crossover is clearly observed in the magnetization curve but
it sets in at a larger aspect ratio; our results are therefore free
of the corresponding artifacts.

We then find the effective temperature at which the exact
tabulated first nearest-neighbor correlator matches its value
for the given supercell cross section averaged over its third
dimension �length�. We found that the second and third cor-
relators automatically match with the tabulated values very
accurately, which lends more credence to the whole proce-
dure. The effective temperature is somewhat smaller than the
actual one, the difference decreasing quickly with the in-
creasing size of the supercell �see Table II�. Finally, we use
the magnetization in the thermodynamic limit at the effective
temperature for comparison with MFA results. To find this
magnetization, we first find Tc using the fourth-order cumu-
lant method.39 If the effective temperature is above Tc, the
magnetization is set to zero; otherwise it is found using
finite-size scaling. Since we are away from the critical re-
gion, we assumed in most cases a simple scaling form
ML

2�T� /M�0�=M
2 �T� /M�0�+A /N, where N is a number of

atoms and A is some constant. Using L=8,10,12,14 for
both bcc and fcc lattices we found that this scaling form
holds. The magnetization defined in this way can be called
the effective magnetization.

Thanks to this procedure we are able to avoid difficult
issues related to the analysis of critical behavior in our finite-
size supercells. Our results represent the relation between the
magnetic state and the resistivity, and not the magnetic ther-
modynamics. In this sense, they are more general than the
particular thermodynamic model that is used to generate
magnetic configurations.

The calculated SDR is shown in Fig. 6 as a function of the
effective magnetization. In addition, the effective tempera-

TABLE II. The effective temperatures Teff and the connected spin-spin correlators C0n �up to the third
neighbor shell� for Fe and Ni for the Monte Carlo and reverse Monte Carlo models. The values of SDR are
compared with the corresponding MFA results. These values include the statistical uncertainties related to the
limited disorder sampling.

Metal,
cross section T /Tc Teff /Tc

C0i= �e0ei�−meff
2 �mag ��� cm�

i=0 i=1 i=2 i=3 MC or RMC MFA

Fe, 4�4   1 0 0 0 101.9�1.0 101.9�1.0

Fe, 4�4 1.217 1.177 1.000 0.184 0.110 0.073 96.6�1.9 101.9�1.0

Fe, 4�4 0.974 0.958 0.871 0.206 0.144 0.111 81.6�2.1 88.1�0.5

Fe, 6�6 0.974 0.965 0.882 0.209 0.144 0.112 81.4�2.3 88.9�0.5

Fe, 4�4 0.852 0.848 0.703 0.156 0.107 0.079 69.6�1.8 71.3�0.4

Fe, 4�4 0.730 0.724 0.564 0.126 0.087 0.066 54.6�1.8 57.5�0.3

Fe, 4�4 0.487 0.482 0.352 0.083 0.059 0.045 33.8�0.7 35.8�0.2

Fe, 4�4 RMC RMC 1.000 0.309 0.167 0.060 88.2�1.3 101.9�1.0

Ni, 3�3   1 0 0 0 34.9�0.4 34.9�0.4

Ni, 3�3 1.269 1.234 1.000 0.146 0.071 0.052 33.1�0.8 34.9�0.4

Ni, 4�4 1.269 1.262 1.000 0.140 0.064 0.045 33.6�0.7 34.9�0.4

Ni, 3�3 1.110 1.063 1.000 0.205 0.129 0.104 29.5�1.3 34.9�0.4

Ni, 4�4 1.110 1.089 1.000 0.190 0.110 0.087 30.8�1.2 34.9�0.4

Ni, 3�3 0.952 0.943 0.833 0.172 0.104 0.086 22.9�0.9 22.4�0.6

Ni, 4�4 0.952 0.947 0.841 0.175 0.106 0.085 19.9�1.3 22.7�0.6

Ni, 4�4 RMC RMC 1.000 0.335 0.140 0.114 25.8�0.8 34.9�0.4
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tures and the magnitude of MSRO can be inferred from
Table II where the connected spin correlators for the first
three shells of nearest neighbors are shown. They are calcu-
lated using the effective magnetization as well; therefore
they correspond to the infinite system to which our finite-size
spin ensembles are mapped.

For Fe the presence of MSRO leads only to a slight de-
crease in SDR. In order to verify the convergence with re-
spect to the supercell size, we performed an additional cal-
culations for Fe with a larger 6�6 supercells. In this case the
effective temperature is almost equal to the actual tempera-
ture, the root-mean-squared magnetization does not depend
strongly on the FM�D� thickness, and it is closer to the ef-
fective magnetization. The calculated SDR is shown as an
empty triangle in Fig. 6�a�. We can see that the result is
essentially identical to the one obtained using 4�4 super-
cells, proving that it is already converged.

For Ni the presence of MSRO also leads to a decrease in
SDR which, while still relatively small, is noticeably larger
than for Fe. Several points at M =0 represent different calcu-
lations for the paramagnetic state; the corresponding effec-
tive temperatures can be found in Table II. Note that in gen-
eral MSRO in the nearest-neighbor Heisenberg model is
weaker for fcc lattice than for bcc �see Table II� due to larger
coordination number of fcc lattice. Clearly, the effect of
MSRO on SDR is significantly stronger in Ni compared to
Fe.

These results show that MSRO characteristic for the
nearest-neighbor Heisenberg model has an almost negligible
effect on SDR in Fe, and a more notable but still relatively
small SDR reduction in Ni. While MSRO in the nearest-
neighbor Heisenberg model for the close-packed lattices con-
sidered here is not strong, it is seen that its effect on SDR is
much smaller even compared with the values of the nearest-
neighbor spin-spin correlators. This insensitivity is likely due
to the averaging over all the electronic states on the Fermi
surface,10 which should be very effective in destroying the
interference from scattering at different sites in transition
metals with complicated Fermi surfaces. In fact, this averag-
ing is also responsible for the small standard deviation of the
local DOS from its mean �Fig. 4� and justifies the DLM
approach for transition metals.

The spin-spin correlation function in real materials may
be more complicated than in the nearest-neighbor Heisen-
berg model. However, if the interaction has a longer range
while remaining mainly ferromagnetic, the MSRO must be
weaker compared to the nearest-neighbor model.41 First-
principles calculations for both ferromagnetic and paramag-
netic nickel show that the exchange parameters beyond near-
est neighbors while being much smaller than the dominant
nearest-neighbor exchange, stay mainly ferromagnetic.20,42

Interaction of this kind cannot support stronger MSRO com-
pared to the nearest-neighbor Heisenberg model.

Nevertheless it is of interest to study whether MSRO that
is stronger than in nearest-neighbor Heisenberg model can
have more pronounced effect on SDR. For this purpose we
used the reverse Monte Carlo �RMC� method43 to produce a
set of spin configurations with zero magnetization and delib-
erately targeting strong MSRO for the nearest neighbors.
Due to geometrical constraints, the spin-spin correlators in

different neighbor shells are not independent. We found it
quite difficult to produce strongly correlated nearest neigh-
bors and at the same time avoid unphysical artifacts in the
long-range behavior of the correlation function. The spin-
spin correlators for the first three shells of neighbors in our
RMC model are listed in Table II. The corresponding values
of SDR calculated for Fe and Ni with this set of spin con-
figurations are also listed in Table II and shown by full and
empty diamonds in Fig. 6. Here we used 4�4 supercells for
both Fe and Ni and checked for finite-size effects using
6�6 supercells for Fe �essentially no difference was ob-
served compared to 4�4 cells�. As seen in Table II, the
MSRO in this model is significantly stronger compared to
the nearest-neighbor Heisenberg model. The effect of this
strong MSRO leads to larger decrease in SDR as compared
with MC results but it is still relatively small; the SDR is
reduced compared to its MFA values by 12% for Fe and 22%
for Ni.

V. EFFECT OF THE LOCAL MOMENT REDUCTION

Reduction in the local moment is a universal feature of
itinerant magnets as revealed by spin-fluctuation theories.17

As discussed in Sec. III, the local moment in Fe is very
stable and changes only slightly in the paramagnetic state
compared to zero temperature. Therefore, our calculations
based on the ground-state value of the local moment agree
well with experiment for Fe. Still, the SDR is sensitive to the
local moment, and a small reduction in it noticeably im-
proved the agreement with experiment at higher tempera-
tures. Since the SDR was found to be insensitive to MSRO,
it is reasonable to attribute the large overestimation of the
high-temperature SDR in Ni to the neglect of the local-
moment reduction. Here we study this issue in detail.

In the paramagnetic DLM state the local moment in Ni
vanishes31 but it is partially restored by longitudinal spin
fluctuations.17,20 Following the idea of separation of low- and
high-energy fluctuations, we assume that the current-carrying
quasiparticles near the Fermi level experience the averaged
exchange-correlation field generated by fast longitudinal spin
fluctuations, and that this “mean field” is adequately repre-
sented by noncollinear DFT with disordered local moments
constrained to their square-averaged values. The atomic po-
tentials are therefore obtained using the fixed spin method44

with the value of the constrained local moment treated as an
adjustable parameter, which has a physical meaning and can
be measured experimentally. Other approximations are, in
principle, possible; for example, the longitudinal spin fluc-
tuations can be explicitly included in the same noncollinear
DFT approach, i.e., they can be considered to be “slow”
rather than “fast.” Since the separation in slow and fast de-
grees of freedom is not well defined, we did not attempt to
study the role of these additional fluctuations.

The calculated paramagnetic SDR of Ni as a function of
the local moment is shown in Table III. As seen, SDR is very
sensitive to the value of the local moment. Comparison with
experimental SDR shows that our predicted value of the
square-averaged local moment in paramagnetic state of Ni is
equal to 0.35�B �using the more accurate basis set with
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lmax=3�. Unfortunately, we are not aware of experimental
measurements suitable for comparison with this prediction.

VI. DISCUSSION AND CONCLUSIONS

Numerous previous studies6–10 based on the s-d model
concluded that SDR in the paramagnetic state is essentially
proportional to Jsd

2 S�S+1�, where S is the spin of the partially
filled 3d shell. This dependence is easy to understand based
on the Fermi golden rule with averaging over the initial and
final states of the 3d spin but it assumes with no justification
that the local 3d spin is a good quantum number. In our
treatment based on noncollinear DFT, the exchange-
correlation field with randomized directions on different sites
plays the role of the s-d Hamiltonian. However, contrary to
the s-d model, the 3d spin is treated classically, i.e., S is just
a classical vector and not an operator. The Fermi golden rule
in our case would give a paramagnetic SDR proportional to
Jsd

2 S2. Thus, if the S�S+1� factor were correct, noncollinear
DFT calculations would underestimate the paramagnetic
SDR by a factor �S+1� /S. This factor is close to 2 for Fe and
more than 3 for Ni. In reality, the calculated SDR agrees well
with experiment for Fe and is overestimated for Ni �if the
local moment reduction is not included�. We believe that
these results provide clear evidence against the S�S+1� fac-
tor which appears if the local moments are treated as local-
ized atomic spins. Instead, the classical description of the
local magnetic fluctuations in the spirit of the DLM approach
is supported by our results. We suggest that the itinerancy of
the 3d electrons is crucial for this behavior. Qualitatively,
one can argue that the low-energy fluctuations in Fe or Ni on
the scale of kT �which the resistivity is most sensitive to� are
similar to classical rotations of the local moments rather than
quantum fluctuations of localized spins. It would be interest-
ing to investigate this issue for magnets with a varying de-
gree of localization, including rare-earth systems.

Some poorly controlled assumptions are involved in the
extraction of �mag from the experimental data.4 First, it is
assumed that �mag is constant in the wide temperature range
above Tc, where the total resistivity is linear in T. This as-
sumption implies that the local moments �or at least their
mean-squared average� are constant in this range. Spin-
fluctuation theories for itinerant metals show that the local
moments may change with temperature above Tc.

17,20,21 Such
change will contribute to the slope of � above Tc, and hence

the separation of �mag from the phonon contribution would
be inaccurate.

On the other hand, it has been argued that the phonon
contribution to the resistivity may be sensitive to spin disor-
der because the latter may change the character of states at
the Fermi level.1,2 In particular, in Ni the filled majority-spin
d states may be lifted up to the Fermi level by spin disorder,
thereby facilitating interband s-d scattering by phonons. This
effect may therefore introduce an unusual temperature de-
pendence of the phonon contribution, which makes spin dis-
order and phonon effects nonadditive, even if the scattering
rates themselves obey Matthiessen’s rule. Since we have not
studied this effect here, our comparison of SDR with experi-
ment for Ni is incomplete. However, the phonon contribution
can be expected to follow the Bloch-Grüneisen form above
Tc with the electron-phonon scattering renormalized by spin
disorder; therefore, the influence of spin disorder on the pho-
non contribution should not invalidate the procedure used for
subtracting this contribution above Tc.

In conclusion, we have calculated the spin-disorder resis-
tivity of Fe and Ni in the whole temperature range up to Tc.
The role of MSRO was explored by comparing the resistivity
for uncorrelated spin ensembles �mean-field approximation�
with correlated spin configurations corresponding to the
nearest-neighbor Heisenberg model. We found that the pres-
ence of MSRO leads to a reduction in SDR in both Fe and Ni
while almost negligible in Fe, this effect is quite noticeable
in Ni. The SDR in Fe depends linearly on M2�T� which
implies that the main effect of spin disorder is to introduce
scattering, which is proportional to the variance of the ran-
dom potential. For Ni the calculated temperature dependence
is more complicated; at elevated temperatures close to Tc the
SDR grows faster than expected. This faster increase in SDR
may be explained by the reduction in the exchange splitting
which lifts the heavy bands up to the Fermi level, thereby
increasing the scattering rate. The results for Fe are in very
good agreement with experiment if the atomic potentials are
taken from zero temperature and frozen but for Ni the SDR
calculated in this way is strongly overestimated. This dis-
agreement is attributed to the reduction in the local magnetic
moment in Ni. Comparison with experimental SDR leads to
a value of 0.35�B above Tc, which may be compared with
experiment.
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TABLE III. Spin-disorder resistivity in �� cm for paramagnetic
Ni as a function of the fixed local moment. 2�2 supercells and
basis sets with lmax=2 and lmax=3 were used. Standard deviations
of SDR due to limited disorder sampling are included. The experi-
mental value is 15 �� cm �Ref. 4�.

Local moment ��B� 0.66 0.5 0.4 0.3

lmax=2 34�0.6 27�0.5 21�0.4

lmax=3 29�0.6 a 23�0.5 18�0.4 12�0.3

aThis value corresponds to unconstrained local moment of 0.63�B.
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