
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

U.S. Navy Research U.S. Department of Defense

9-30-2009

Model for Virtual Physical Layer Communication over Deployed Model for Virtual Physical Layer Communication over Deployed

Wireless Sensor Networks Wireless Sensor Networks

Thomas Childers
Naval Postgraduate School, Monterey, California, USA

Yow Thiam Poh
Naval Postgraduate School, Monterey, California, USA

John McEachen
Naval Postgraduate School, Monterey, California, USA

Murali Tummala
Naval Postgraduate School, Monterey, California, USA

Follow this and additional works at: https://digitalcommons.unl.edu/usnavyresearch

 Part of the Operations Research, Systems Engineering and Industrial Engineering Commons

Childers, Thomas; Thiam Poh, Yow; McEachen, John; and Tummala, Murali, "Model for Virtual Physical
Layer Communication over Deployed Wireless Sensor Networks" (2009). U.S. Navy Research. 3.
https://digitalcommons.unl.edu/usnavyresearch/3

This Article is brought to you for free and open access by the U.S. Department of Defense at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in U.S. Navy Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/usnavyresearch
https://digitalcommons.unl.edu/usdeptdefense
https://digitalcommons.unl.edu/usnavyresearch?utm_source=digitalcommons.unl.edu%2Fusnavyresearch%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=digitalcommons.unl.edu%2Fusnavyresearch%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/usnavyresearch/3?utm_source=digitalcommons.unl.edu%2Fusnavyresearch%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages

1

A Model for Virtual Physical Layer Communication
over Deployed Wireless Sensor Networks

Thomas Childers, Yow Thiam Poh, John McEachen and Murali Tummala
Department of Electrical and Computer Engineering

Naval Postgraduate School, Monterey, California, USA
{mceachen, mtummala}@nps.edu

Abstract—A method for file transfer utilizing forward error
correction (FEC) to pass traffic over deployed wireless sensor
networks is studied. The entire wireless sensor network is
modeled as an error-prone virtual physical link. Previous work in
the area of terminal communication across the sensor network is
expanded upon to include file transfer in order to provide a more
capable channel and a basis for testing the performance obtained
through erasure coding. The results of the FEC implementation
are examined using multiple sensor network configurations.
While the error correction method proved effective, larger
topologies presented congestion issues due to the sensors’ use of
CSMA. Recommendations for future improvements are
proposed.

Keywords-wireless sensor networks; forward error correction;
erasure codes; block codes.

I. INTRODUCTION

Sensor networks were designed to incorporate small, lost
cost, portable devices that could collect and report on physical
or environmental conditions. This type of information
reporting suits these devices well as it requires less power and
lower bit rates.

Among other things, military operational requirements
drive the development of new technologies or the modification
of current technologies to meet applicable mission objectives.
The latter is the more desirable of the two as it usually requires
lower developmental costs to come up with a working solution.
By looking at sensor networks in this light, it is be possible
they may provide capabilities outside of what they were
originally designed for.

By configuring the sensor nodes as repeaters, it may be
possible to use the devices, on a limited basis, as a means to
extend network communications into regions normally difficult
to access. Their small profile and portability would allow them
to be nearly invisible to the enemy, meanwhile serving as a
pipe for vital communications to forces in theater. While
limited in power and throughput, they may provide a temporary
solution where no others exist.

In order to utilize sensor networks as a bridge between
communications networks, it is necessary to look more closely
at how sensor networks work and decide what measures must
be taken to facilitate this implementation. For example,
TCP/IP traffic is based upon the principle of assuring that the

transmitted packets will be received at the desired location.
Sensor networks are normally passing information considered
non vital and thus handle the data accordingly. On top of that,
when working with a wireless medium, a large amount of loss
can be expected. In order to consider using a sensor network
to pass TCP/IP traffic, particular emphasis must be placed on
data reliability across the network.

Two means of providing better reliability were considered.
First, using Automated Repeat Request, or ARQ, was analyzed.
Considerable research has been already been done in this area.
While it would be an effective means of verifying whether or
not packets were received properly, the difficulties of
employing this method with multiple sensor nodes were
daunting. The work that this thesis was based on used a
simple broadcast of packets that each node repeated until
received by the destination. Changing this scheme would
present two major problems. By adding a feedback channel,
the throughput would be significantly decreased. If the end
goal was to be, for instance, passing Voice over IP (VOIP)
traffic over the network, throughput would be a major concern.
Something in the order of 90 kbps would be required for a
reliable channel depending on the codec chosen [1]. Second,
the use of an ARQ response would be fairly straightforward
when using a simple, one hop network, but would increase
exponentially in difficulty as more nodes were added to the
topology.

Because of the difficulties of using acknowledgements,
Forward Error Correction (FEC) was chosen to add reliability
to the communication path. Throughput was a concern but the
implementation was considerably easier. Based on the
available FEC schemes available, a form of block coding was
chosen for this effort. The implementation of the block coding
scheme and the results of its implementation are discussed
later.

Previous work [2] successfully set up a Java based
implementation of a text messaging service across a sensor
network. Messages that were typed in to the sending terminal
were packaged into packets and sent over the network to the
destination terminal which assembled the packets and
displayed the message. To improve the capabilities of the
channel, the next step was to add the ability for transporting
files across the network. Specifically, the ability to send Joint
Photographic Expert Group (JPEG) encoded images was
desired. Adding this capability would improve the usefulness

978-1-4244-4474-8/09/$25.00 ©2009 IEEE

3rd International Conference on Signal Processing and Communication Systems
Omaha, Nebraska, 28-30 September 2009

2

of the channel and make it possible to evaluate the
effectiveness of an FEC algorithm.

Adding FEC to the channel would improve the reliability
but also decrease the throughput. It was necessary to look at
the effectiveness of the chosen algorithm and the throughput
that resulted from its implementation. During experiments, the
FEC implementation would be compared against two different
transmission schemes. One would be transmitting the data
from a representative JPEG image without any redundancy.
The second would be transmitting a copy of the packets along
with the original packets. This second scheme would send
roughly the same number of packets as the FEC scheme and
provide a better basis for comparison.

Several useful studies of error correction in sensor networks
have been conducted. Researchers in [3] conducted tests of
single and double error correcting codes in outdoor and indoor
tests. Another interesting research topic involved using an
adaptive FEC code control algorithm for sensor networks [4].
In the study, they identified the need for something other than
fixed correction codes for channels with constantly varying bit
error rates. Finally, Terry Norbraten’s work with erasure
codes and detailed explanation of the Java FEC Library from
Onion Networks were extremely helpful during this research
[5].

One of the realizations after examining the results from this
research was that simply using error correction alone to
improve the reliability of a channel is not sufficient. With
increasing network topology complexity, additional measures
should be considered. One such measure deals with modifying
medium access control (MAC). A few different protocols
were examined. Z-MAC is an exciting MAC protocol that
achieves high efficiency by acting as hybrid between TDMA
and CSMA [6]. Z-MAC behaves like CSMA during periods
of low contention and like TDMA during periods of high
contention. By using this approach, it aims to maximize
efficiency during all phases of network activity. Two other
protocols, T-MAC [7] and S-MAC [8], represent hybrids
between TDMA and CSMA, although these protocols put more
emphasis on energy efficiency while Z-MAC aims to maximize
network throughput.

II. WIRELESS SENSOR NETWORKS AS A NETWORK
BRIDGE

An exciting application worth considering is the temporary
use of sensor networks as a bridge between communications
networks. Although throughput and power limitations prevent
these devices from performing more intensive data transfers,
temporary use to aid the military units in difficult environments
may be worthwhile.

A. Benefits of Implementation
Wireless network communications are becoming more

prevalent for military operations. Intelligence reports, imagery,
and general communication are reaching further into the
battlefield than ever before. Typically, the infrastructure found
in these environments is limited or non-existent.

Wireless sensor networks were originally designed for the
purpose of reporting on the environmental and physical
conditions of the battlefield. Using these networks to
temporarily extend vital TCP/IP network communications
might be possible despite the limitations of the sensor nodes. A
few specific applications of interest are Voice-Over-IP (VOIP)
and the transmission of time sensitive data and imagery. In
order to consider this as a possibility, the difficulties involved
must first be considered

B. Barriers for Implementation
Sensor networks were designed to transmit small amounts

of data with limited frequency. As a result, the sensor nodes
typically have limited onboard memory. The MICAz motes
used in this research have 128 kbytes of flash program
memory, 512 kbytes of flash log memory, and only 4 kbytes of
RAM. Since the data they transmit is considered non time-
sensitive and non vital, the networks do not have to incorporate
many of the assurances necessary in TCP/IP networks.
Tunneling over the sensor network may involve increasing the
onboard memory to support an enhanced network stack or
finding ways to more efficiently use the smaller amount of
memory.

Power is another limitation that must be addressed. As
sensor motes were designed for low power, autonomous
operation, batteries or solar power are typically employed.
Increasing the data amounts and rates would increase the power
demand and threaten the longevity of the device.

In order for this application of sensor networks to be
successful, the throughput of the network would have to
provide a certain level of performance to meet the needs of the
user. To use the network to pass VOIP traffic, for example, a
minimum data rate of about 90 kbps would have to be
supported to provide adequate communications. For
transmission of time sensitive data or imagery, throughput
would have to meet specific mission requirements.

By testing the transmission of image files across a sensor
network during the course of this research, it was desired that a
general idea of the throughput capabilities would be found.
Although the forward error correction implemented would
reduce the channel's throughput, it was considered necessary
for the channel's reliability.

III. THE SENSOR NETWORK ADAPTATION
INTERFACE LAYER (SNAIL)

As mentioned before, the work in [2] involved the
development of a sensor network channel that allowed a form
of text messaging. Three Java applications that would work in
coordination with the sensor mote hardware from Crossbow to
achieve this task were developed. The suite of applications
was referred to as the Sensor Network Adaptation Interface
Layer (SNAIL). SNAIL consisted of separate Client and
Server modules that were used on a transmitting laptop, and a
Listen module that was used on the receiving laptop. These
SNAIL modules were modified extensively to achieve the
goals of this research.

3

In order to incorporate a more robust channel by adding
error correction, the first step was in modifying the SNAIL
software to incorporate file transfer. The larger amounts of
data associated with file transfer would allow the
improvements provided by error correction to be observed.
The file types that were chosen for implementation and testing
were JPEG images, test files, and MS Office documents.
These were chosen due to their popularity and everyday use.
How each of the SNAIL modules was modified is explained
below.

A. SNAIL Client Module
The SNAIL Client module now presents the user with three

options upon running the application. Choices are now for text
message transfer, standard file transfer, or JPEG image
transfer. Before passing off the data to the SNAIL server
module, a few modifications were necessary.

Previously, the Client module allowed the user to input a
text message from the terminal to be transferred over the sensor
network. Using a blocking reader module, upon receiving a
message from the user, the message was read in as a string and
then converted to a character array. The use of a character
array was chosen to allow some flexibility with the data stream.
Essentially, this allowed adding the user’s selection to the data
stream before passing it on to the Server module. Prior to the
IO operation, the character array had been converted back to a
string.

To accommodate the transfer of files, the first modification
was changing the module to work with byte arrays. Should the
user choose to send a text message, the message is still read in
as a string, but is converted to a byte array. The option selected
is added to the byte array by using concatenation of arrays. By
using byte arrays, the data is now compatible with the file
transfer options. Strings could have been used for both, but
ultimately that would have limited the file length to roughly 64
kbytes.

Upon the choice of either standard file transfer or JPEG
image transfer, the user is presented with a file selection box.
Upon selecting the desired directory and file, the file data is
read in to a byte array. The two file transfer options are
executed differently. For standard file transfer, a
fileinputstream is opened to pull in the data to a byte array. To
pull in a JPEG image correctly, the Java ImageIO tools were
used to read in the file as a bufferedimage. After the file is read
in, it is converted to a byte array.

By utilizing byte arrays for each of the three options, all
three are assured to be compatible and the same flexibility to
modify the data stream that character arrays afforded is
maintained. Finally, the data residing in the byte array is
transmitted to the SNAIL Server module via an
ObjectOutputStream. Figure 1 presents the process decisions
of the SNAIL Client module as a flow diagram.

B. SNAIL Server Module
The SNAIL Server module required more extensive

modifications to allow file transfer and error correction. Error

correction will be covered later. For now, data handling and
packetizing for sensor network transport will be covered.

Waiting for
User Selection

Selection
Made ?

Add Options
To Data Array

Read Data
From Terminal

Read Data
From File

Send Array
To Server

Text, File,
Or JPEG ?

Yes

Text

No

File /JPEG

Figure 1. SNAIL Client Flow Diagram

After reading the data sent from the SNAIL Client module,
the data is stored in a byte array. One of the main changes is
the handling of all data as byte arrays from start to finish.
From the data array, the option that was selected is obtained.
The option will ultimately be removed from the data and
transmitted as part of a handshake packet. The handshake
packet is the first packet that will be transmitted by the server
and contains much of the amplifying information needed by the
receiver.

The destination bitmap approach takes advantage of the
existing slot structure used to support the non-contention mode
of the protocol. The slot assignment process can be either
distributed or centralized and the results must be disseminated
to all nodes identified within the transmission frame.

Figure 2. Packet structure of TinyOS packets

Should encoding not be desired by the user, the number of
packets to be sent is calculated from the array size. The array
size is a key piece of information needed by the receiving
terminal and is included in the handshake packet. Of the 29
bytes of data available in the Active Messaging (AM) packet,
two of the bytes will be used for Terminal ID and packet
number for this non-encoding case. Figure 2 above shows the
standard AM packet structure used by TinyOS. The packet
number will help the SNAIL Listen module keep track of

Header(5) Payload(29) CRC(2)

4

which packets have been received and facilitate dropping
redundant packets.

The use of the header packet was changed only with
regards to content. Because of the new error correction option,
additional information was required at the receiver. One new
addition to the transmission process was the use of a
terminating packet. After all of the data packets are sent out,
the terminating packet is sent out which contains an identifying
byte sequence. This packet was added to correct the condition
where packets are dropped and the receiving end is stuck in a
loop waiting for packets. Once the terminating packet is read
in, the Listen module is free to move on to analyzing the data.

Figure 3 illustrates the flow diagram for the SNAIL Server
module.

Wait for data
from Client

Data from
Client ?

Encode ?

Encode Data

Devide JPEG
Into Blocks

Send Terminating
Packet

Determine Number
Of Packets Per

Block

Construct Header
Packet

Data Packet
Sent Out

Send out
Header Packet

End of Data ?

Determine Number
Of Packets

Text, File,
Or JPEG ?

No

Yes

Yes

No

JPEG

Text / File

No Yes

Figure 3. SNAIL Server Flow Diagram

C. SNAIL Listen Module
Upon receiving the handshake packet, the SNAIL Listen

module knows whether or not the data will be encoded, what
option was selected, and the length of the data array involved.
Using the array length, the number of packets to be expected is
calculated.

A loop is entered in which each of the packets is read in.
Both the handshake and terminating packets contain flags to
help identify them from normal packets. Also, as the packets
are read in, the packet number is obtained which is used to
identify the packet. If the packet is redundant, it is dropped.
A change was made to help keep track of which packets are
read in. Previously a packet counter expired when the expected
number of packets was reached. This was changed due to the
encoding option. This will be covered further in the next
chapter.

Once all of the data has been read in and decoding has been
completed, if necessary, the option selected determines how the
data is handled. If a text message was selected, the message is
displayed on the terminal. If a standard file was transferred,
the file is saved to the location chosen by the user using a
fileoutputstream. For a JPEG image, the byte array is
converted back into a bufferedimage and then the image is
stored using the ImageIO utilities.

Figure 4 below presents the flow diagram for the SNAIL
Listen module.

Wait for
Handshake

Packet

Packet
Arrived ?

Duplicate
Packet ?

Write to File

Decode Data

Waiting For
Data Packet

Calculate Number
Of Packets

Display Text
Message to

Terminal

Drop Packet

Packet
Received ?

Find out Options
Selected and

Array Size

Text, File,
Or JPEG ?

No

Yes

Yes

No

Text File / JPEG

No

Yes

Terminating
Packet ?

Data
Encoded ?

Yes

No

Yes

No

Figure 4. Flow diagram for SNAIL Listen Module

IV. FORWARD ERROR CORRECTION IN WIRELESS
SENSOR NETWORKS

In wireless networks, packet loss is inevitable. In order to
combat this packet loss, either Forward Error Correction (FEC)
or Automatic Repeat Request (ARQ) or a combination of the
two techniques are used. ARQ is an attractive option since it
is relatively inexpensive in that it requires no manipulation of
the data being transferred. Under conditions of increasing
losses, ARQ does suffer significant reductions in overall
throughput. Tradeoffs exist between complexity of
implementation and data throughput. ARQ also rapidly
becomes more complicated as the number of clients grows.

FEC, on the other hand, detects and corrects losses incurred
by a noisy channel by including redundant information with the
data it passes. This has the advantages of allowing the
correction of errors more quickly than with ARQ and by
simplifying the network traffic scheme. Some kind of
feedback channel could be included but may not be necessary.

5

A. Overview of FEC Correction Methods
The available types of FEC are broken down into two

categories. These are block codes and convolutional codes.
Block codes work on fixed-size blocks of bits or symbols of a
fixed size. Convolutional codes work on bit or symbol streams
of various sizes.

1. Block Coding

Many different forms of blocks codes exist. A few
examples are the Hamming code, BCH code, and Reed
Solomon code. The latter is the most widely used due to its
near optimal coding qualities.

A Reed Solomon code encodes a data message block as
points in a polynomial function plotted over a finite field [9].
The polynomial coefficients are the data symbols of the block.
These codes can work to correct errors at either the bit-level or
the packet level. Lost data packets are corrected from encoded
packets, otherwise known as repair packets. These repair
packets represent a set of linearly independent equations. By
solving this set of equations, the lost packets are recovered.
One drawback to the Reed Solomon coding scheme is encoding
and decoding time which is O(n2) and O(n3) respectively.
Another is the memory requirement resulting from the
polynomial operations.

2. Convolutional Coding

Convolutional coding involves taking an m-bit message that
will be encoded and converting it to a n-bit symbol. The code
rate for the encoding process is m / n where n m. The
constraint length of the code, k, determines the error correction
capability and the complexity. As k increases, the correction
capability increases but the complexity also increases
exponentially. For decoding convolutional codes, the Viterbi
algorithm is commonly used. The Viterbi algorithm uses
maximum likelihood estimation to make decisions regarding
the underlying probability distribution of the bits received [10].
For effective correction, a constraint length of at least 7 and
typically below 9 is used while a code rate m / n of at least 1 / 2
is required. A convolution code has reduced complexity over
a Reed Solomon code but suffers higher coding redundancies.
For this reason, convolutional codes are more ideal for
communication channels with a lower signal-to-noise rate
(SNR). A convolution code is also not typically used for the
recovery of lost packets as is Reed Solomon.

B. Erasure Coding
For this research, an implementation of erasure coding was

chosen. Erasure coding is basically a form of block coding that
takes a number of data packets, or blocks, and encodes them
into a larger number of encoded data packets. The larger the
number of encoded data packets, the more redundancy allowed.
As long as a minimum number of the transmitted packets reach
the destination, the source data can be reconstructed. The key
to erasure coding is that the destination knows exactly which
packets have been dropped. Without that knowledge, this
coding scheme would not work.

Erasure coding was chosen due to the inclusion of CRC in
the wireless sensor network packets. Since the lower layers of

the protocol stack would check arriving packets for errors, only
allowing error free packets to reach the application layer, this
method of FEC coding seemed appropriate. Packets lost in
transmission or dropped due to errors would not prevent the
successful transmission of the source data. An open source
JAVA implementation of erasure coding created by Onion
Networks was implemented during the experiment [11].

1. Erasure Coding Fundamentals

The basis behind erasure coding is that k blocks of source
data are encoded producing n blocks of encoded data [11]. If
any subset of the n encoded blocks is received at the
destination, the receiver is able to reconstruct the source data.
This code is referred to as an (n, k) code. In this scheme, up to
n – k losses are acceptable.

A subset of the erasure codes, called linear codes, can be
analyzed using the properties of linear algebra. If x = x0 … x k-1
represents the source data and G is an n � k generator matrix,
then y = Gx is the (n, k) linear code resulting from the matrix
multiplication. As long as k components of y are received, x
can be recovered.

If the encoded data contains an exact copy of the source
data, this is referred to as a systematic code. With a systematic
code, a portion of the generator matrix, G, will contain the
identity matrix. Systematic codes can be very advantageous if
very few losses are expected in the link. Reconstruction of the
source code would be greatly simplified.

The generator matrix G is a n × k matrix of rank k. Because
of this, only k of the n encoded packets are necessary. Each
column of G can be composed of a maximum of (k – 1)
nonzero elements. For the systematic code example, since the
columns already have (k – 1) zero elements due to the identity
matrix, all of the remaining elements are required to be
nonzero.

For the reconstruction process, along with the encoded
packets of data, the identification of those packets must also be
known. This will add overhead to the process as the
transmitting end will have to include this information with the
transmission. This is a negligible amount of overhead though
and the packet identification will also aid in with identifying
redundant packets so they may be ignored. The recovery is
performed by solving the linear system:

� � 1' ' ' 'y G x x G y�� � � (1)

For the above equation, x represents the original source data
and 'y is a subset of k encoded packets. G’ is the
corresponding subset of columns from the generator matrix.
To reconstruct the original data, the inverse of 'G is taken and
then multiplied by the subset of encoded packets, 'y . The
cost of inversion is somewhere in O(kl2), where

min(,)l k n k� � . The value of l represents the minimum
number of packets that must be received.

2. Erasure Code Based on Vandermonde Matrices

6

An example process for the creation of a generator matrix
can be shown with the use of a Vandermonde matrix. This
matrix has coefficients of the form

1
,

j
i j ig x �� (2)

where the ix ’s are elements of extension fields, or (')GF p .

Extension fields are a subset of finite fields that allow basic
arithmetic to be performed on data much like it is done with
integers. They help resolve problems associated with handling
the number of bits needed to represent the result of
computations. Mapping data elements into field elements
prior to arithmetic operations and then applying the reverse
mapping to get the desired results avoids this trouble. If finite
fields are not used and the results of the coding arithmetic
operations are rounded prior to transmission, exact
reproduction of the data would not be possible.

 Seen in matrix form, the n × k Vandermonde matrix is

2 1
1 1 1

2 1
2 2 2

2 1
3 3 3

2 1

.
1
1
1

1

k

k

k

k
n n n

G
x x x
x x x
x x x

x x x

�

�

�

�

� 	

� �
� �
� �
� �
� �
� �
� �

 �

�
�
�

� � � � �
�

 (3)

The determinant of a square Vandermonde matrix is
defined as

, 1... ,

()j i
i j k i j

x x
� �

�� . (4)

The matrix will have a non-null determinant and thus be
invertible if all of the ix ’s are different. As long as q > k and

all ix ’s are not equal to zero, q – 1 rows at a maximum can be
created, where q is the number of finite field elements. If the
identity matrix is added, a suitable generator can be created for
a systematic code.

 Considering a few special cases for the code, a (n, 1)
code would simply create copies of the single packet. This is
essentially the same thing as making multiple copies of the
same packet to be sent out. The work that this thesis built upon
utilized this simple method of improving the link performance
by sending multiple packet copies. Unfortunately, this type of
code is inefficient compared to codes with higher values of k.
A (k+1, k) code is another simple case. This would include the
k packets plus one packet that would represent the sum of the
others. Once again, this case is not very useful except for
channels with small amounts of loss.

3. Erasure Codes for Wireless Sensor Networks

 Once again, erasure codes were chosen to combat the
relatively high amount of packet loss that can be expected with
wireless sensor networks. While the software implementation
of erasure codes is somewhat computationally expensive, low

to medium speed applications, up to the 100 KB/s range, could
be supported with fairly low amounts of overhead. Given the
limitations of power and throughput with these networks,
erasure codes may be a very useful tool. Combining this
technique with a simple form of ARQ might be the best course
of action.

V. EXPERIMENT DETAILS

The performance of the link was the primary concern while
conducting the experiments. Since a more robust link was
desired, the performance of the sensor network link was tested
with forward error correction implemented. In order to provide
a comparison for the results, experiments without the FEC
coding were also conducted. These results will hopefully
provide a good foundation for what performance enhancements
can be achieved using the FEC scheme selected.

Three different scenarios were chosen for experimentation.
These include a direct terminal to terminal test, a terminal to
terminal test via one sensor mote hop, and a terminal to
terminal test via two sensor mote hops. For each of these
scenarios, three different data transmission schemes were
tested. First, the erasure coding scheme was tested. The
second scheme involved testing the link by sending only the
image data across. No redundancy was used during this test.
For the last scheme, redundancy was incorporated by sending a
copy of each packet along with the original packets. This last
scheme was chosen since it more closely approximates the total
number of packets being sent out during the FEC test.

To test the three transmission schemes, a small 8 kbyte
image was chosen to be transferred. The small file was chosen
to allow for large number of tests to provide an adequate
amount of results for a comparison. For a successful
transmission, the entire image had to be transferred without
error.

A. Experiment setup
The experiment was originally conducted in an academic

building hallway to allow enough space to separate the base
stations and motes in order to drive the link to the edge of its
performance capabilities. By adjusting the power on the motes
and investigating the resulting transmission range, the motes
were placed to force a considerable amount of packet loss.
This was necessary to prove that the FEC method would handle
more challenging conditions better than the schemes lacking
error correction.

After initial trials that were conducted, it was determined
that multipath effects encountered in the hallway environment
would negatively influence the results. Due to this realization,
the experiment was relocated to an anechoic chamber which
would help by eliminating a majority of the undesired signals.

1. Hardware

Each of the base stations incorporated a laptop and a
Crossbow MICAz sensor mote connected through the USB
port using a MIB520 sensor board. Individual MICAz motes
were used for the repeater stations simulating the sensor
network.

7

The mote can be used with or without an optional sensor
board providing capabilities as a wireless sensor platform or as
a wireless node. A variety of sensor and data acquisition
boards can be connected to the MICAz by means of a 51-pin
expansion connector. The RF transmit power for the MICAz is
user selectable from -24 dBm to 0 dBm. This feature was
particularly helpful in allowing tests to be conducted in a small
laboratory sized environment. The CC2240 Transmitter
datasheet power levels are shown in Table 1. Experimental
tests found that the power levels lower than those shown were
also possible.

These MICAz motes implement a CSMA based protocol.
This was determined by the CC2420 radio installed on the
board and the version of TinyOS installed. A more advanced
CSMA protocol, B-MAC, became available in the 1.1.3
version of TinyOS, but was not available for this experiment.
Among the changes in this protocol was a variable noise floor
over the fixed floor originally used. This noise floor is used in
the determination process of when the mote can transmit. B-
MAC's improvements on performance might be a valuable
topic for further work.

B. Terminal to terminal experiment
The first scenario for the experiment involved setting up a

simple terminal to terminal link as pictured in Figure 5.

Figure 5. Scenario 1 – Terminal to Terminal Communication

This, the most simple of the arrangements to be tested, was
used for the initial testing of the FEC code and would provide a
good basis of comparison for the one hop and two hop tests to
be conducted later. The Tx laptop shown in Figure 11 uses the
SNAILServerTest_fec and SNAILClient_fec applications.
Simultaneously running is the SerialForwarder application that
is also used on the Rx laptop. In addition to SerialForwarder,
the Rx laptop runs the SerialListenTest_fec application. Both
MICAz motes were programmed with the TOSBase software.
The TOSBase software was modified to set an RF power level
of -24 dBm.

The transmitting and receiving motes were placed at a
distance of 110 inches from each other. This distance was
chosen to promote some loss of packets at the receiving end in
order to test the effectiveness of the FEC algorithm. The FEC
encoded transmissions were the best performing of the three
tested methods. Of the twenty-five runs performed, the non-
encoded scheme was unable to successfully transfer an image.
Without any redundancy, losing a single packet constitutes a
failure to transfer an image. Averaging 282 packets received
out of the original 299 packets sent, this method of transfer did
not provide for a robust link at the chosen distance.

The second transmission scheme sent a copy of each data
packet or a total of 598 packets. This provides for the ability
to lose random packets but consecutive lost packets could be a
problem. This method proved successful for 60% of the
transmissions, averaging 288 of the necessary 299 data packets.
A counter was created to keep track of the extra or redundant
packets that were received. An average of 260 redundant
packets was received.

The performance enhancement of the FEC coding was
obvious. On average 88% of the runs were successful; 589 of
640 sent packets were received on average. Looking at run
number twenty, the image was saved successfully even though
only 466 of the 640 packets were received. The key of the
erasure code algorithm is that for each block of image data
being transferred, as long as k packets out of n transferred are
received, the file can be reconstructed.

C. One hop experiment
The general arrangement for the one hop scenario is shown

in Figure 6.

Figure 6. Scenario 2 - Terminal to Terminal via One Hop

To facilitate adding a hop between the two terminals, the
power of the transmitting mote was reduced to a reference level
two, which is believed to be equivalent to roughly -35 dBm.
This equated to a transmission range of 1 ft. Due to the size
limitation of the anechoic chamber, this short first hop would
be necessary later for the two hop experiment. The power
level for the mote used for the hop was set to -24 dBm.

Once again the layout of the motes was selected to force
dropped packets to occur. Both of the non-encoded tests
yielded no successful transmissions while the FEC encoded test
was successful 100% of the time. Without redundancy, an
average of 224 of the 299 necessary packets was received.
Doubling the number of packets increased the average to 267
with an average of 141 redundant packets, although no
successful transmissions were obtained. The FEC approach
yielded an average of 459 of the 640 encoded packets received.

D. Two hop experiment
The last of the scenarios, the two hop arrangement, is

pictured in Figure 7.

Figure 7. Scenario 3 - Terminal to Terminal via Two Hops

8

The arrangement of the terminal mote and first hop mote
remain unchanged from the previous one hop test. The second
hop mote, like the first, was set to -24 dBm for transmit power
and located roughly 100 inches from the first mote.

Once again the FEC encoded data tests outperformed the
non-encoded data tests. Adding redundancy to the non-
encoded tests raised the success rate from 0% to 4%, or an
average number of packets received from 166 to 270. The
average redundant packets increased from 154 to 415. By
using the FEC encoding, the success rate was increased to
52%. An average of 403 packets out of the 640 sent was
received with an average of 200 redundant packets.

The two hop arrangement added a large number of
redundant packets to the link and caused a considerable

reduction of link performance as a result. The increase of
repeated packets seemed to cause a large number of necessary
packets to be dropped during transmission and even the
encoded tests showed difficulty in transferring complete JPEG
images.

E. FEC Performance Over Varying Distances
The previous scenarios that were run were setup to

purposefully cause a considerable amount of packet loss in
order to test the FEC effectiveness. Each of the transceivers
were positioned at a certain location and set to a power level
that would force this condition. While the tests did show that
the FEC scheme provided improved performance over the
other tests run, another series of tests was needed in order to
give a more qualitative comparison of the three schemes.

Table 1. Effect of Varying Distances Upon Transmission Success

In order to get a better idea of how the performance was
falling off for each of the transmission methods as the distance
increased, the final test was performed. The configuration of
hardware used for this test was that of the original terminal to
terminal test. The transmitting terminal, set to a power level of
-24 dBm, remained fixed while the receiving terminal was
varied to record the packet transmission effects. Each of the
non-

encoded and encoded methods were tested fifteen times at
varied distances to find the transition from 100% image
transfer success to the distance that resulted in a failure to
transfer a single image.

Table 1 displays the results from the test. The non-
encoded scheme showed a gradual decrease in link
performance starting at a distance of 43 inches until it totally
failed at 97 inches. At that distance, the non-encoded scheme
that included redundant packets was still showing a 93%
success rate. At 115 inches, the redundant packet scheme
completely failed. At this distance the FEC encoded scheme
still performs at a 53% success rate. Not till 133 inches did it
fail to transfer a single image. There was an unexpected spike
in performance for the FEC scheme at the next to last distance
that was unexplained.

Figure 8. Quadratic Fit Curves for Experimental Results

Distance No of Avg Packets Avg Red % Avg Packets Avg Red % Avg Packets Avg Red %
(in) Trials Received Packets Success Received Packets Success Received Packets Success
43 15 299 0 100
49 15 298.8 0 80
55 15 298.3 0 67
61 15 298.6 0 73
67 15 298.4 0 73
73 15 298.1 0 67 299 299 100 640 0 100
79 15 298.5 0 80 298.9 297.5 100 638.7 0 100
85 15 298.2 0 67 299 297 100 638.4 0 100
91 15 297 0 33 298.9 296.8 87 635.5 0 100
97 15 295.6 0 0 298.9 296 93 635.2 0 100
103 15 288.1 0 0 298.9 292.6 87 615.5 0 100
109 15 220 0 0 298.1 275.7 27 473.9 0 87
115 15 292.1 228.9 0 398.3 0 53
121 15 272.2 173.4 0 282.6 0 7
127 15 287.7 211.5 0 370.7 0 60
133 15 75 12 0 78 0 0
139 15

Non-Encoded (Redundant) FEC EncodedNon-Encoded

9

In order to get a better picture of the performance falloff,
the plot shown in Figure 8 was created from the recorded data.
To achieve the smooth curves shown, quadratic fit curves were
created from the data. To compare the three transmission
schemes, a reference for acceptable loss of 25% was chosen.
This translated to receiving 11.25 out of the 15 files sent. By
that standard the non-redundant scheme that included
redundancy represented a 42% increase in transmitting range
from the non-redundant scheme. The FEC encoded scheme
represented a 66% increase in transmitting range.

VI. CONCLUSIONS

For each of the experiment configurations used, the erasure
code outperformed the non-FEC schemes. The larger the
amount of data to be sent, the more effective erasure code
would be for the transmission process. While the TinyOS AM
packet structure is very limiting, the positive effects of the
coding scheme were still observed.

While the error correction method did improve the
performance of the channel, the two hop experiment pointed
out flaws with the underlying architecture that must be
addressed. During the two hop experiment, a large amount of
packet loss was observed that can be attributed to unnecessary
congestion in the network. The CSMA scheme used by the
motes may be the reason for the packet loss observed.

Maybe the most limiting factor observed was the channel
throughput. During the terminal to terminal tests an average
transfer time of 7 sec was recorded for the non-redundant file
transfer. This equated to a transfer rate of 12.3 kbps for the
299 packets. Considering that the CC2420 radio on the MICAz
mote was rated for 250 kbps and the serial forwarder program
was set for a transfer rate of 57.6 kbps, the cause of the slow
transmission speed was unknown. Researching the TinyOS
documentation led to the discovery that the MAC protocol was
actually the limiting factor. The CSMA protocol limited the
number of packets sent to the radio each second to 43.
Implementing a TCP/IP bridge to pass multimedia or VOIP
traffic would require a much higher transmission rate. While
the equipment and software used in this experiment might not
be able to achieve the desired results, other MAC schemes may
be available that could provide a transmission rate closer to the
radio's capabilities.

REFERENCES

[1] "Implementing VOIP over Wireless Networks", Retrieved from the
Alvarion site: http://www.alvarion.com/upload/contents/291/VoIP over
wireless networks 060706.pdf Last accessed 01 Nov 2008

[2] Yow Thiam Poh, “Tunneled Data Transmission Over Wireless Sensor
Networks,” Master’s Thesis, Naval Postgraduate School, Monterey,
California, December 2007

[3] J. Jong and C. T. Ee, “Forward Error Correction in Sensor Networks,”
UCB Technical report, May 2003.
http://nest.cs.berkeley.edu/papers/FEC_report.pdf, Last accessed 01 Nov
2008

[4] J. S. Ahn, S. W. Hong, and J. Heidermann, “An Adaptive FEC Code
Control Algorithm for Mobile Wireless Sensor Networks,” Journal of
Communications and Networks, 7 (4), pp. 489-499, 2005.
http://www.isi.edu/~johnh/PAPERS/Ahn05a.pdf, Last accessed 01 Nov
2008

[5] T. D. Norbraten, “Utilization of Forward Error Correction (FEC)
Techniques with Extensible Markup Language (XML) Schema-Based
Binary Compression (XSBC) Technology,” Master’s Thesis, Naval
Postgraduate School, Monterey, California, December 2004

[6] I. Rhee, A. Warrier, M. Aia, and J. Min, “Z-MAC: A Hybrid MAC for
Wireless Sensor Networks,” IEEE Communications Magazine, Volume
16, Issue 3, pp. 511-524, June 2008.

[7] T. Van Dam and K. Langendoen. An Adaptive Energy Efficient MAC
Protocol for Wireless Sensor Networks. In Proceedings of the First
ACM Conference on Embedded Networked Sensor Systems (SenSys),
Los Angeles, CA, November 2003.

[8] W. Ye, J. Heidemann, and D. Estrin. Medium access control with
coordinated adaptive sleeping for wireless sensor networks. IEEE/ACM
Trans. Netw., 12(3):493{506, 2004.

[9] Y. Xu, J. Xu, and W. C. Lee, “Analysis of a Loss-Resilient Proactive
Data Transmission Protocol in Wireless Sensor Networks." Proc. the
26th IEEE INFOCOM '07, Anchorage, Alaska, USA, May 2007.
http://www.comp.hkbu.edu.hk/~xujl/Papers/infocom2007.pdf, Last
accessed 01 Nov 2008.

[10] A. J. Viterbi. Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm. IEEE Transactions on
Information Theory, IT(13):260–269, 1967.

[11] L. Rizzo. Effective erasure codes for reliable computer communication
protocols. SIGCOMM Comput. Commun. Rev., 27(2):24–36, 1997.

	Model for Virtual Physical Layer Communication over Deployed Wireless Sensor Networks
	

	Microsoft Word - ICSPCS Virtual Physical Layer.doc

