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Abstract

Carbon emissions resulting from deforestation and forest degradation are poorly known at local, national and global scales.
In part, this lack of knowledge results from uncertain above-ground biomass estimates. It is generally assumed that using
more sophisticated methods of estimating above-ground biomass, which make use of remote sensing, will improve
accuracy. We examine this assumption by calculating, and then comparing, above-ground biomass area density (AGBD)
estimates from studies with differing levels of methodological sophistication. We consider estimates based on information
from nine different studies at the scale of Africa, Mozambique and a 1160 km2 study area within Mozambique. The true
AGBD is not known for these scales and so accuracy cannot be determined. Instead we consider the overall precision of
estimates by grouping different studies. Since an the accuracy of an estimate cannot exceed its precision, this approach
provides an upper limit on the overall accuracy of the group. This reveals poor precision at all scales, even between studies
that are based on conceptually similar approaches. Mean AGBD estimates for Africa vary from 19.9 to 44.3 Mg ha21, for
Mozambique from 12.7 to 68.3 Mg ha21, and for the 1160 km2 study area estimates range from 35.6 to 102.4 Mg ha21. The
original uncertainty estimates for each study, when available, are generally small in comparison with the differences
between mean biomass estimates of different studies. We find that increasing methodological sophistication does not
appear to result in improved precision of AGBD estimates, and moreover, inadequate estimates of uncertainty obscure any
improvements in accuracy. Therefore, despite the clear advantages of remote sensing, there is a need to improve remotely
sensed AGBD estimates if they are to provide accurate information on above-ground biomass. In particular, more robust
and comprehensive uncertainty estimates are needed.

Citation: Hill TC, Williams M, Bloom AA, Mitchard ETA, Ryan CM (2013) Are Inventory Based and Remotely Sensed Above-Ground Biomass Estimates
Consistent? PLoS ONE 8(9): e74170. doi:10.1371/journal.pone.0074170

Editor: Ben Bond-Lamberty, DOE Pacific Northwest National Laboratory, United States of America

Received March 21, 2013; Accepted July 30, 2013; Published September 19, 2013

Copyright: � 2013 Hill et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors have no support or funding to report.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: tch2@st-andrews.ac.uk

Introduction

There is international recognition that greenhouse gas emissions

from land-use change (LUC) are significant and need to be

reduced as part of a wider strategy to mitigate climate change.

Initiatives such as Reducing Emissions from Deforestation and

forest Degradation and enhancing carbon stocks through sustain-

able forest management (REDD+) are designed to provide the

financial incentives to reduce these emissions in developing

countries [1]. The net flux of carbon (C) from tropical land has

recently been estimated to be a source of 1.360.7 Pg C year21

[2]. Tropical emissions of 2.960.5 Pg C year–1 resulting from

deforestation are only partially offset by uptake from tropical forest

regrowth of 1.660.5 Pg C year21 [2]. Other estimates of the

emissions from tropical LUC differ both in their magnitude (0.89

to 1.52 Pg C year21) and uncertainty (60.20 to 60.31 Pg C

year21) [3]. A recent estimate [4] estimates gross carbon emissions

from tropical regions of 0.81 Pg C year–1 (with a 90% prediction

interval of between 0.57 and 1.22 Pg C year–1), values which are

only 25 to 50% of the gross emissions used by Pan, et al., (2011).

Estimates of C fluxes from LUC are therefore poorly constrained

at global [5] and regional scales [3]. Without accurate estimates of

LUC fluxes, policy in this area risks misdirecting resources,

crediting emission reductions that have already occurred, or failing

to incentivise reductions in countries with high (but currently

unquantified) LUC fluxes. To avoid these pitfalls, schemes such as

REDD+ require robust estimates of LUC and associated fluxes to

develop reference levels and provide sufficient confidence in

monitoring to enable investment [6].

LUC fluxes can be estimated through a range of different

approaches, including mapping changes in the spatial extent of

land-cover classes, each with an estimated mean AGB, and ideally

uncertainty [3]. In order to attain accurate LUC flux estimates

with this method, the mean above-ground biomass (AGB) must be

accurately known, as must changes in AGB through time. At the

sub-national scales, on which REDD+ type policies are currently

being implemented [7,8], a range of approaches for estimating

AGB are available. The most generic approaches rely on ‘‘default’’

values of above-ground biomass area density (AGBD) for

individual land-cover classes which are often specific to continents,

countries or biomes (note that we distinguish the area-integrated

AGB of a region, country or continent from the mean per hectare

above-ground biomass area density which we refer to as AGBD).

These generic approaches then rely on simple extrapolation

between time points to estimate change in AGB. A potential

alternative to these approaches comes from the spatially explicit

estimates of AGBD using readily available moderate-resolution
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remotely sensed observations of canopy height and reflectance [9].

These moderate-resolution remote sensing approaches enable

maps of the natural variability of AGBD across a landscape to be

estimated with the potential for large scale remotely sensed change

estimates.

The United Nations Framework Convention on Climate

Change (UNFCCC) define a hierarchy of ‘‘Tiers’’ to differentiate

between the various methods of C accounting that rely on different

levels of sophistication in estimating AGBD and the areal extent

and emissions from land use and land use change activities [9,10].

Tier 1 is based on regional or global estimates of AGBD (i.e. the

IPCC default values) and an assumption that changes in stocks

equate to emissions; Tier 2 builds on Tier 1 with the inclusion of

country specific data on AGBD for dominant land uses and

emission estimates from other activities; and Tier 3 provides high

resolution information at sub-national scales and may include

modelling of emissions based on observed changes in stocks. For

example, new satellite-based approaches have been described as

being appropriate for the UNFCCC’s Tier 3 reporting require-

ments [11], although it should be noted that the actual Tier level

of a given approach to estimating AGBD inherently depends on

the specifics of any subsequent analysis. Implicitly there is an

expectation that transitioning up the Tiers will provide increased

accuracy [9,10,12]. In this study we assess this expectation by

comparing estimates of AGBD that are suitable for Tier 1, 2 and 3

at the scale of: (i) Africa, (ii) Mozambique, and (iii) a small study

area of 1160 km2 within Mozambique. The small study area is

chosen due to the availability of high resolution (i.e. 25 m by 25 m)

remote sensing estimates of AGBD which have been created by

fusing radar data with a network of forest plots.

The concepts of uncertainty and error, precision and accuracy

are important to this study. Definitions of both uncertainty and

error vary, and in some cases are they are treated as being

synonymous [13]. Here we use the terms to express different

concepts [14]. An error is the difference between a measurement

and the true value, such that subtracting the error from the

measurement would theoretically result in the true value. Errors

can be random or systematic. Uncertainty represents the

distribution of differences between the true value and a range of

estimates and is normally given at a particular confidence level.

The precision, or repeatability, of a measurement is the

closeness of agreement between measured values and therefore

depends only on the distribution of random errors. Precision does

not consider systematic errors or, indeed, the true value. Accuracy

is the agreement between the measurement and the true value,

and, depends on both the random and systematic errors. The

accuracy of a measurement has to be lower than its precision,

except in the special case with no systematic error, when they are

equal.

In this study we apply these concepts to biomass estimation,

estimating the overall precision of an ensemble of estimates from

nine different sources (Table 1). It is important to note that any

individual estimate could be of higher accuracy and/or precision

than the ensemble precision. Despite the true AGBD being highly

uncertain (i.e. unknown) at continental scales, we are able to test

the expectation that an ensemble of accurate, and therefore

precise, estimates have to be in close agreement with one another.

Furthermore a robust estimate should be associated with an

uncertainty estimate that adequately describes the overall uncer-

tainty. In the case of multiple robust estimates, the individual

uncertainty estimates should explain the distribution of AGBD

estimates.

In this study we convert existing estimates of AGB into

comparable AGBD estimates and then calculate the overall

ensemble precision to provide insights into the overall uncertainty

of current AGBD estimates and their robustness.

Methods

3.1 Overview of Methods
Based on a search of peer reviewed literature and the United

Nations Food and Agriculture Organization’s (FAO) Forest

Resource Assessment (FRA) we calculated estimates of AGBD

for Africa, Mozambique and a smaller 1160 km2 region in central

Mozambique (Table 1 and File S1). Estimates of total AGB were

converted into mean AGBD to facilitate comparisons between the

three scales. The 1160 km2 study area is within Gorongosa and

Nhamatanda Districts [15,16]. The area is dominated by Miombo

woodland and has a seasonal wet-dry climate. Since the end of the

Mozambican civil war in 1992, the area has undergone rapid land

use change catalysed by the resettlement of rural areas and the

rebuilding of road infrastructure. Losses of forest carbon within the

area are mainly driven by small holder agriculture and charcoal

production.

3.2 Choice of Data Sources
We aimed to include as many independent estimates as possible

(Table 1 and File S1). Data sources that simply restate earlier data

(normally from the FAO FRA reports) were not included in the

comparison. However, multiple FRA report estimates were

included to capture the variability in FRA estimates [17]. The

key features of each estimate are summarised in Table 1 and

described in detail in the supplementary material.

3.3 Definitions of Above-ground Biomass, Forest and
Deforestation

We use the FAO definition of forest: non-agricultural ecosys-

tems with a minimum of 10% crown cover of trees [18]. Where

data from remote sensing estimates was defined by crown cover,

we pick the same 10% definition [19]. However some remote

sensing estimates consider all sources of above-ground biomass

[16], and so are expected to exhibit slightly higher AGBD than

estimates using the FRA definition. FRA reports consider

deforestation to be land-use changes that reduce the crown cover

of trees to less than the 10% threshold. Reductions in crown cover

that do not cross this threshold (i.e. from closed canopy to open

canopy forest) are defined as degradation [18]. Degradation is not

considered in mono-temporal FRA reports, but is implicitly

included in multi-temporal remote sensing estimates of AGBD.

3.4 Adjusting African Estimates to the same Selection of
Countries

Many of the studies include a different selection of countries in

their definition of Africa based on latitude, low proportion of

forests or small size [11,18,19]. If uncorrected for, this would lead

to the country selection impacting estimates of AGBD for Africa.

These differing African areas needed to be normalised before

comparisons can be made. The FRA 2010 estimate spans the most

complete selection of countries and was used as the reference [20].

To rescale the other AGBD estimates, we calculated adjustment

factors to scale AGBD estimates as if they covered the same

countries as the FRA 2010 report. These factors adjust for the

AGB excluded from each estimate. Factors were calculated

separately for each estimate. The adjustment factor, F was

calculated as

Are Above-Ground Biomass Estimates Consistent?
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Table 1. Dataset summary.

Source
Scales
(Appropriate Tier) Overview of base data. Uncertainties Considered

FRA 1990 [18] Africa (Tier 1) Based on country scale values. Natural forest cover 568,000,000 ha in 1980 and
527,600,000 ha in 1990. AGBD for forested areas of 133 Mg ha21. Plantation
coverage is 0.5%, but plantation AGBD not available. Therefore plantations were
not included. F = 5.3%.

None.

FRA 1990 [18] Mozambique (Tier 1) Based on country scale values. Natural forest cover 17,329,000 ha in 1990 with an
annual deforestation rate of 0.7%. AGBD for forested areas of 80 Mg ha21.
Plantation coverage is 0.2%, but plantation AGBD not available. Therefore
plantations were not included.

None.

Brown and
Gaston 1995 [43]

Mozambique (Tier 2) AGBD for woody formations from a Geographic Information System (GIS) model
with a 5 km by 5 km resolution, driven by the FAO data describing climate, soils,
population and vegetation distribution. AGBD estimate for woody formations in
Mozambique was 57 Mg ha21 in ,1980. Converted to AGBD for Mozambique using
the FAO’s 1980 Mozambique’s total forest cover area estimate of 17,505,400 ha.

None.

FRA 2000 [21] Africa (Tier 1) Based on country scale values. Forest cover including plantations was
649,866,000 ha in 2000 with an annual deforestation rate of 0.8%. AGBD for
forested areas of 109 Mg ha21. No adjustment factor applied, F = 0%.

None.

FRA 2000
Remote sensing
[21]

Africa (Tier 3) Based on Landsat products. Forest area including plantations was 519,000,000
(637,000,000) ha (standard error of the mean). The annual deforestation rate was
0.34% (60.06%) year21 (standard error of the mean). Uses the ‘f3’ definition of
forests which ‘‘is the broadest and includes the classes of long fallow and a higher
fraction (one-third) of the fragmented forest class than the f2 definition’’ [21]. The
average AGBD of forests was 109 Mg ha21. F = 4.5%.

Incomplete remote sensing
coverage: Random sampling only
includes 10% of area considered.

FRA 2000 [21] Mozambique (Tier 2) Based on country scale values. Forest cover including plantations was
30,601,000 ha in 2000, with an annual deforestation rate of 0.2%. AGBD for
forested areas of 55 Mg ha21.

None.

FRA 2005 [22] Africa (Tier 1) Based on country scale values. Africa’s forest cover area, including plantations,
was 699,361,000 ha in 1990, 655,613,000 ha in 2000, and 635,412,000 ha in 2005.
Between 1990 and 2000, the annual deforestation rate was 0.64%, and between
2000 and 2005 the deforestation rate was 0.62%. No AGBD for forests was
presented in the 2005 FRA report and so a value of 109 Mg ha21 was used
from the earlier FRA 2000 report. F = 0%.

None.

Drigo et al.,
2008 [44]

Mozambique (Tier 3) Based on sub-country values and MODIS products and with a 2.5 by 2.5 km
resolution. Mozambique’s total AGB for woody stock was 1,615,091,000 Mg in 2004.

None.

FRA 2010 [20] Africa (Tier 1) Based on country scale values. Africa’s forest cover area, including plantations, was
749,238,000 ha in 1990, 708,564,000 ha in 2000, and 691,468,000 ha in 2005, and
674,419,000 ha in 2010. Combined above-ground and below-ground area density
was 172.7 Mg ha21 in 1990, 174.87 Mg ha21 in 2000, 175.4 Mg ha21 in 2005, and
176.0 Mg ha21 in 2010. The root-shoot ratio for all years was 0.24. No Adjustment
factor needed as this is the reference estimate.

None.

FRA 2010 [20] Mozambique (Tier 2) Based on country scale values. Mozambique’s forest cover area, including
plantations, was 43,378,000 ha in 1990, 41,188,000 ha in 2000, 40,079,000 ha in
2005, and 39,022,000 ha in 2010. The carbon density of forests in Mozambique
was 43 MgC ha21. The carbon fraction was 0.47.

None.

Saatchi et al.,
2011 [19]

Africa (Tier 3) Based on GLAS, MODIS, QSCAT, and SRTM products. Estimates have a 1 by 1 km
resolution. The mean total above-ground carbon in biomass for forests with 10%
tree cover was 47,902,000,000 MgC. The carbon fraction was 0.5. F = 1.2%.

At 95% confidence, a low estimate
of total above-ground carbon in
biomass 44,584,000,000 MgC and
high estimate of
51,616,000,000 MgC were generated
using bootstrapping cross-
validation. Uncertainty estimate
includes observation, sampling and
prediction errors. Uncertainty is
scaled assuming pixels to be
spatially uncorrelated.

Saatchi et al.,
2011 [19]

Mozambique (Tier 3) Based on GLAS, MODIS, QSCAT, and SRTM products. Estimates have a 1 by 1 km
resolution. The mean total above-ground carbon in biomass for forests with 10%
tree cover was 1,714,000,000 MgC. The carbon fraction was 0.5.

At 95% confidence, a low estimate
of total above-ground carbon in
biomass 1,655,000,000 MgC and
high estimate of 1,714,000,000 MgC
were generated using bootstrapping
cross-validation. Uncertainty
estimate includes observation,
sampling and prediction errors.
Uncertainty is scaled assuming pixels
to be spatially uncorrelated.

Are Above-Ground Biomass Estimates Consistent?
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F~
100 � AAGB{CAGBð Þ

CAGB

where AAGB is the total FRA 2010 AGB of all countries in the FRA

2010 Africa estimate, and CAGB is the total FRA 2010 AGB of the

countries considered by a particular estimate. The original AGB

estimates for Africa were then increased by the following

adjustment factors: 5.3% (FRA 1990), 0.0% (FRA 2000), 0.0%

(FRA 2005), 1.2% (Saatchi, et al., 2011) and 2.0% (Baccini, et al.,

2012). The use of these adjustment factor means that all AGBD

estimates for Africa are comparable to the FRA 2010 selection of

countries.

The FRA 2000 remote sensing dataset [21] represented an

incomplete, sub-sampled survey area, however it was not clear

which countries were included and which were not. Therefore an

alternative approach to calculating the adjustment factor was

taken. The estimate of forest area, based on country data,

corresponding to the region surveyed by the remote sensing was

95.7% of the total FRA 2010 Africa forest area [21]. Therefore,

under the assumption that missing locations were random, an

adjustment factor of 4.5% was applied to the remote sensing

estimate.

3.5 Calculation of AGBD
AGBD estimates are presented as a mean above-ground

biomass area density, in units of Mg of dry mass per hectare

(Mg ha21). The basic calculation for this area density is: the total

AGB (Mg) for the region (including any adjustment factor) divided

by the total land area of the region (ha). Where sources provide

estimates in terms of carbon we use a carbon fraction between

0.47 and 0.5 (depending on the study) to convert to the dry mass

(Table 1).

3.6 Conversion of Uncertainties
Individual uncertainty estimates have been included in our

comparison when available from the literature. Uncertainty

estimates are presented as 95% confidence intervals, assuming a

normal distribution. We note that the exact assumptions and scope

of each uncertainty estimate differ (Table 1).

3.7 Calculation of AGBD Ranges
Ensemble uncertainty estimates and precisions are not calcu-

lated due to the small number of estimates in each grouping.

Instead, ranges of AGBD are calculated as the difference between

maximum and minimum estimates for a particular grouping.

These ranges exceed the 95% confidence interval uncertainties.

The groupings considered were either scale specific (Africa,

Mozambique or the study area), Tier specific (Tier 1, 2 or 3), or

a combination of the two.

Results

The collected inventory and remote sensing estimates of AGBD

span three decades (Figure 1). The minimum estimate of AGBD

for Africa, excluding uncertainties, was 19.9 Mg ha21 and the

maximum was 44.3 Mg ha21 (Table 2). For Mozambique the

minimum estimate, excluding uncertainties, was 12.7 Mg ha21

and the maximum was 68.3 Mg ha21. Finally, the minimum

estimate for the study area, also excluding uncertainties, was

35.6 Mg ha21 and the maximum was 102.4 Mg ha21.

The range of AGBD estimates at the study area-scale exceeded

the range of estimates for larger areas (e.g. Africa and Mozam-

bique, Figure 1). AGBD estimates specifically for the study area –

which are all Tier 3 appropriate – have a range of 70.7 Mg ha21,

exceeding the range of Tier 1, 2 and 3 appropriate estimates of

AGBD derived at the scale of Africa (range of 32.9 Mg ha21) and

Mozambique (range of 55.8 Mg ha21). Considering just African

Table 1. Cont.

Source
Scales
(Appropriate Tier) Overview of base data. Uncertainties Considered

Saatchi et al.,
2011 [19]

Study Area (Tier 3) Based on GLAS, MODIS, QSCAT, and SRTM products. Estimates have a 1 by 1 km
resolution. The carbon fraction was 0.5.

We use the larger pixel (100 ha) 95%
confidence interval uncertainty of
653%. Under the assumption of
independent random errors [19], we
calculated the study area relative
uncertainty to be 61.56%.

Ryan et al. 2012
[16]

Study Area (Tier 3) Based on ALOS-PALSAR with a 25 by 25 m resolution. Total carbon stored in
AGB was 2,130,000 MgC in 2007 and 1,980,000 MgC in 2010. A carbon fraction
of 0.48 was used [15].

Regression uncertainty estimates
generated by using a boot strapping
approach.

Baccini et al.,
2012 [11]

Africa (Tier 3) Based on GLAS and MODIS products with a 500 by 500 m resolution. The total
above-ground carbon in biomass for vegetation in tropical Africa
64,500,000,000 MgC. The carbon fraction was 0.5. F = 2.0%.

The uncertainty of
68,600,000,000 MgC represents the
95% confidence interval. GLAS
regression errors and modelling
errors. Uncertainty is scaled
assuming a complete correlation
below a scale of 500 km and no
correlation above this scale.

Baccini et al.,
2012 [11]

Mozambique (Tier 3) Based on GLAS and MODIS products with a 500 by 500 m resolution. The total
above-ground carbon in biomass for vegetation in tropical Africa
2,687,000,000 MgC. The area of Mozambique was clipped to the ‘‘tropical region’’.
As the extent of the clipped area was not provided we use a land area of
78,638,000 ha [20]. The carbon fraction was 0.5.

The uncertainty range minimum was
2,676,000,000 MgC,with a maximum
of 2,695,000,000 MgC.

Baccini et al.,
2012 [11]

Study Area (Tier 3) Based on GLAS and MODIS products with a 500 by 500 m resolution. AGBD was
determined from the 463 m by 463 m pixel dat. The carbon fraction was 0.5.

Uncertainty estimates were not
available at this scale.

A summary of the datasets used in this study, further details are included in the supporting information.
doi:10.1371/journal.pone.0074170.t001
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Figure 1. Estimated above-ground biomass area density (AGBD) at the scale of Africa, Mozambique and the study area. Colours are
used to denote the primary source of information. Depending on temporal extent, the style of line or marker is used indicate if an estimate is Tier 1, 2
or 3 appropriate. Where available, uncertainties have been scaled to 95% confidence levels and are indicated with error bars or shading (in the case of
the FRA 2000 report). To the right of the plots, bars are used to indicate the ranges of three groupings (i.e. different scales, different Tiers, or Tiers 1
and 2 versus Tier 3 for Africa).
doi:10.1371/journal.pone.0074170.g001

Table 2. Above-ground biomass area density.

Source
Africa, Mg ha21

(±95% CI)
Mozambique, Mg ha21

(±95% CI)
Study Area, Mg ha21

(±95% CI) Tier(s)

FRA 1990 [18] 24.9 R 26.6 17.7 R 19.0 1 & 2

Brown and Gaston 1995 [43] 12.7 2

FRA 2000 [21] 23.8 R 25.8 21.5 R 21.9 1 & 2

FRA 2000 Remote sensing [21] 19.9 (62.8)R 20.6 (62.8) 3

FRA 2005 [22] 23.3 R25.6 1

Drigo et al., 2008 [44] 20.5 3

FRA 2010 [20] 32.2 R35.1 45.4 R50.5 1 & 2

Saatchi et al., 2011 [19] 32.6 (22.3, +2.5) 42.4 (20.5, +1.0) 65.4 (21.0, +0.0) 3

Ryan et al. 2012 [16] 35.6 (63.9)R 38.3 (64.2) 3

Baccini et al., 2012 [11] 44.3 (65.8) 68.3 (20.3, +0.2) 102.4 3

The main source of the estimate is indicated in the first column. Where estimates from multiple time points exist an arrow is used to indicate lower and upper values.
Where available, uncertainties corresponding to the 95% confidence intervals are shown in brackets. The highest of UNFCCC’s Tiers for which the estimate is
appropriate, is indicated in the final column.
doi:10.1371/journal.pone.0074170.t002
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scale AGBD estimates, Tier 3 appropriate approaches have a

greater range than the Tiers 1 and 2 appropriate methods (a range

of 32.9 Mg ha21 versus a range of 11.8 Mg ha21). The range of

estimates is indicative of the overall level of precision of the

different approaches.

Discussion

Our study reveals that as a result of low overall ensemble

precision, there is a lack of consistency between estimates at all

spatial scales and methodological sophistication (Figure 1). Our

analysis does not indicate if all the estimates are inaccurate, but it

appears at least that the majority of estimates need improvement in

their estimates of magnitude and/or uncertainty of AGBD. Tier 3

appropriate estimates of AGBD tend to rely more heavily on

satellite products than estimates appropriate to the lower Tiers

(Table 1). The lower precision of Tier 3 AGBD estimates compared

to Tiers 1 and 2 should not be interpreted as evidence that satellite

methods are less accurate. This lowering of precision with increasing

methodological sophistication could actually hide an increase in

accuracy, if the Tier 1 and 2 appropriate methods were sufficiently

inaccurate. That is to say the Tier 1 and 2 appropriate methods

could have high precision (i.e. good agreement), but low accuracy

(i.e. poor agreement with the truth). Indeed the majority of Tier 1

and 2 appropriate estimates all depend on similar inventory data

[20,21,22] and allometrics (Figure 2) and so errors are likely to have

significant systematic components.

Previous studies have documented the lack of robustness of

inventory estimates [3,17]. Indeed, Tier 1 appropriate AGB

estimates have been revised by successive FRA reports. However,

without uncertainties, the significance of the revisions to FRA

estimates is difficult to ascertain, i.e. are the updates large with

respect to a claimed uncertainty? The lack of independent Tier 1

and 2 appropriate estimates limits our ability to identify

inconsistent estimates, and consequently our ability to test for

improvements with Tier 3 appropriate methods. Until indepen-

dent validation can be carried out, the lack of agreement between

Tier 3 appropriate methods and the limited number of indepen-

dent Tier 1 and Tier 2 appropriate estimates has potential to bias

policies relying on a single source of AGB data.

Uncertainty estimates are not available for many of the current

AGBD estimates, and when available, the majority of these

Figure 2. Flow of errors in inventory and satellite based AGB estimates. Boxes are used to highlight particular steps that contribute to the
overall uncertainty. The groups of users that typically carry out each step, and specific sources of error are indicated in the text within each box.
Where an error is likely to be systematic, the descriptive text is shown in bold. Arrows indicate the flow of information and therefore errors. This
diagram is for illustrative purposes and should not be seen as an attempt to set out a comprehensive list of all errors, for all estimates of AGB. The
references included are: [17,19,23,28,32,33,34,35,36,37,38,39,40,41,42].
doi:10.1371/journal.pone.0074170.g002
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uncertainty estimates are likely to be too small. At the scales of

Africa, Mozambique, or the study area, only two independent

pairs of the AGBD uncertainty estimates overlap at 95%

confidence levels (e.g. the ‘‘FRA 2010: Africa’’ with ‘‘Saatchi: Africa’’,

and the ‘‘FRA 2000: Africa remote sensing’’ with ‘‘FRA 2005: Africa’’,

Figure 1). The number of errors contributing to uncertainty in

ABGD estimates from both inventory and satellite based

approaches is numerous (Figure 2). Sources of uncertainty in

inventory based estimates of AGBD include measurement and

reporting errors, errors resulting from too few and/or poorly

placed plots, and poorly known allometry [23]. By providing

spatially continuous observations, remote sensing can be used to

extrapolate information from field observations. Implicitly, how-

ever, estimates based on remote sensing rely on field observations

for parameterisation and corroboration, and are therefore also

subject to the same uncertainties that impact plot estimates of

AGB. Additional uncertainty in remotely sensed estimates comes

from errors on the satellite digital numbers, the generation of

satellite products, spatio-temporal mismatches between data

sources, and other statistical and structural errors in the modelled

relationship between satellite observations and actual AGB. Many

of these errors result in systematic errors that will not cancel with

spatio-temporal averaging. Because of these factors the precise

scope of AGBD uncertainty estimates is often unclear with only a

subset of errors actually being explicitly included (Figure 2).

As there are no currently agreed upon ‘true’ values for AGBD

[24], the actual accuracy of an AGBD estimate cannot be

calculated. Precision does not relate to the true value and is easier

to estimate. However, because many of the errors involved in

estimating AGBD from satellite observations are systematic

(Figure 2), the precision of an estimate might be expected to be

significantly better than the accuracy. Despite this, there is notably

low precision and poor consistency between Tier 3 estimates based

on the same core data source (e.g. the satellite-borne LiDAR

measurements [11,19]). Furthermore the nature of the sources of

error, some of which are spatially and temporally correlated,

means that it is important, though extremely difficult, to robustly

estimate uncertainty over a range of spatiotemporal scales. For

example, Saatchi, et al. (2011) estimate uncertainties at the finest

spatial (i.e. pixel) scale to be between 66% and 653%. When

scaling these uncertainties to national or regional scales, however,

error correlation between neighbouring locations is not accounted

for, leading to unrealistically small relative uncertainty at regional

and national scales [19] (Figure 1).

Given that uncertainty comprises spatially uncorrelated errors,

which cancel with spatial averaging, and correlated errors, which

do not cancel, it is perhaps surprising that the agreement between

Tier 3 AGBD estimates is only slightly better at national and

continental scales than at the small scale of the study area

(Figure 1). Miombo woodland is also one of the more challenging

land-cover types to map and monitor for biomass change [25] and

(relative to the larger spatial scales) an even greater disagreement

at these fine scales might be expected.

Different definitions of which land cover to include in general

classification of forests and how to do so (e.g. inclusion/exclusion

of plantations, different classifications of forest types) will introduce

systematic biases in AGB estimates (Figure 2). These biases are

evident in all Tier levels and complicate inter-comparisons. In

some cases the direction of the bias, if not the magnitude, can be

deduced, excluding regions with less than 10% canopy cover will

clearly reduce the total AGB [19]. However, in others cases

decisions made about the classes to use are tied to a particular

method and will result in a bias that is largely unknown.

A recent FAO forestry paper published a new approach to

estimating forest cover loss [26]. This estimate only considers

forest cover and was not included in this study. However

comparisons to the earlier FAO remote sensing estimate for the

period 1990 to 2000 reveal a close agreement for forest area, but

much lower agreement for change in forest area [26]. For Africa,

the earlier report predicts a rate of forest area loss approximately

twice that of the more recent report. This highlights the additional

uncertainties that might be expected when these AGBD estimates

are used to detect deforestation.

Despite the current poor precision and unknown accuracy of

Tier 3 appropriate AGBD estimates, there are clear advantages of

recent remote sensing approaches over national inventories, with

significant potential for further improvement. Currently, only the

most recent FRA reports provide a Tier 1 appropriate estimate

accounting for the change in AGBD [20]. Earlier FRA reports

used a fixed carbon density per land cover class and were only

capable of detecting changes in biomass resulting from land-cover

change [18,21,22]. High resolution AGBD estimates from recent

remote sensing approaches are not limited in this regard, as they

do not rely on land-cover classifications (Figure 2). Furthermore,

Tier 3 appropriate AGBD have the potential to be repeatable

(though not all are currently multi-temporal), methodologically

consistent, spatially continuous and applicable over a range of

scales [11,19,27]. It is also important to note that, theoretically,

remote sensing AGBD estimates could be independently verified

with plot inventories; though such comparisons are only truly valid

if the plots are excluded from the development of the remote

sensing estimate, cover all landcover types and the full biomass

range, and are spatially independent from any plot data used for

calibration [28]. This approach would require significant resourc-

es, but would provide a means of estimating the actual

uncertainties on Tier 3 appropriate AGBD estimates.

Conclusions

There are many calls to improve the accuracy of AGB,

deforestation and forest degradation estimates [23,29,30]. This

study shows that there is no clear improvement in precision when

using more sophisticated approaches based on satellite data.

However, precision is much easier to characterise than accuracy,

and whilst it can provide an idea of the best-case accuracy, it does

not account for systematic errors which are a potentially large

source of uncertainty. We would therefore add to the call for

improved accuracy the need to improve the reporting of

uncertainty on these estimates. The basis of current AGB

uncertainty is often poorly described and can be of unknown

origin or elicited from expert opinion, e.g. [12,31]. The scope of

uncertainties can be unknown, or limited to a subset of the possible

error sources, (e.g. [20,21,22]). Moreover, these uncertainty

estimates are rarely independently tested. Our analysis shows the

majority of (and potentially all) current AGBD estimates are overly

confident in their level of uncertainty. We recommend that

wherever possible all high resolution estimates of AGBD should be

accompanied by independently corroborated uncertainties over

the full range of aggregate scales that AGBD estimates are

provided on, from the finest spatial resolution to global scales. In

order to provide the independent corroboration of AGB uncer-

tainty estimates, we recommend collating a network of ground

comparison sites with a common measurement protocol that are of

sufficient spatial extent to be comparable with moderate-resolution

satellite estimates. These sites should be explicitly excluded from

the development, parameterisation and testing of individual

estimates.
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