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Background: Serum albumin is the major protein component of blood plasma and is responsible for the circula-
tory transport of a range of small molecules that include fatty acids, hormones, metal ions and drugs. Studies
examining the ligand-binding properties of albumin make up a large proportion of the literature. However,
many of these studies do not address the fact that albumin carries multiple ligands (includingmetal ions) simul-
taneously in vivo. Thus the binding of a particular ligandmay influence both the affinity and dynamics of albumin
interactions with another.
Scope of review:Herewe review the Zn2+ and fatty acid transport properties of albumin and highlight an important
interplay that exists between them. Also the impact of this dynamic interaction upon the distribution of plasma
Zn2+, its effect upon cellular Zn2+uptake and its importance in the diagnosis ofmyocardial ischemia are considered.
Major conclusions:We previously identified the major binding site for Zn2+ on albumin. Furthermore, we revealed
that Zn2+-binding at this site and fatty acid-binding at the FA2 site are interdependent. This suggests that the bind-
ing of fatty acids to albuminmay serve as an allosteric switch tomodulate Zn2+-binding to albumin in blood plasma.

General significance: Fatty acid levels in the blood are dynamic and chronic elevation of plasma fatty acid levels is
associated with some metabolic disorders such as cardiovascular disease and diabetes. Since the binding of Zn2+

to albumin is important for the control of circulatory/cellular Zn2+ dynamics, this relationship is likely to have
important physiological and pathological implications. This article is part of a Special Issue entitled SerumAlbumin.
© 2013 The Authors. Published by Elsevier B.V. All rights reserved.
1. Introduction

Serum albumin is the most abundant protein in the circulatory sys-
tem (constituting around 60% of total plasma protein) and is one of the
most extensively studied. It is a single chain protein of ~66 kD and is
made up of three homologous domains (I–III) each composed of two
subdomains (A and B) [1]. Typically, albumin is present in the blood at
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a concentration of ~600 μM and contributes 80% to colloid osmotic
bloodpressure [2]. It is also thought to be responsible for themaintenance
of blood pH [3]. However, albumin's most notable feature is its ability to
bind reversibly and transport a vast array of small molecules, such as
fatty acids, metal ions, toxic metabolites, hormones and drugs [2,4].

Collectively, ligand-binding studies constitute a large part of the albu-
min literature. However, the vast majority of these studies focus only on
binary systems (i.e. between albumin and a particular small molecule).
Although such studies provide important information relating to the
chemistry of the apoprotein, albumin carries multiple ligands simulta-
neously in vivo. It is therefore essential that ternary systems are also
examined so that we may fully understand the relationships that link
the transport of different physiologically important small molecules by
serum albumin. In this article, we highlight recent work demonstrating
the interplay between the Zn2+ and fatty acid transport properties of
albumin. The physiological and medical relevance of this dynamic inter-
action are discussed.

2. Zinc in plasma and role of albumin in zinc transport

Zinc was first discovered to be an essential nutrient for animals in
the early 1930s in a study on the effect of dietary zinc intake on the
growth and survival of mice and rats [5]. However it was not until the
served.
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1960s that the importance of zinc for human health was fully realized
[6]. A number of studies aimed at defining the interactions betweenpro-
teins and Zn2+ in human blood plasma and serumhave been conducted
since [7–14], and there is now general agreement that serum albumin is
the major Zn2+ transporter in mammalian plasma [15].

A typical reference value for the concentration of total zinc in normal
adult human blood plasma is 16.6 ± 6.2 μM [16]. The plasma zinc pool
is influenced significantly by dietary intake, and a range of other factors;
for example, decreased plasma levels are encountered during infection
and inflammation, as part of the acute phase response, but also after
meals. The total turnover rate of plasma Zn2+ is considerable, with
the total amount of zinc in plasma being replaced ~150 times/day [17].

A common approach to assess zinc speciation in plasma involves
fractionation into high- and low-molecular weight fractions, e.g. by ul-
trafiltration [18]. More recently, zinc-responsive fluorescent dyes have
been used to quantify total and labile zinc in plasma [19]. Measure-
ments with the dye ZnAF-2 allowed a free Zn2+ concentration around
1–3 nM to be inferred and confirmed that most, but not all, of the
Zn2+ binding capacity in plasma resides in the high-molecular weight
fraction. Between 75 and 90% of total plasma zinc is bound to human
serum albumin (HSA), and this fraction makes up the bulk of the ex-
changeable plasma zinc pool [11,13]. Less than 1% of total plasma zinc
is reported to be associated with the low molecular weight fraction
[18], which is thought to contain mainly zinc complexed by the amino
acids histidine and cysteine [11,20]. The remainder of plasma zinc
(ca. 10–20%) is tightly bound to α2-macroglobulin [21], making up the
majority of non-exchangeable zinc in plasma, and retinol-binding pro-
tein (ca. 2%) [11].

The interaction between albumin and Zn2+ is therefore of particular
importance within the blood. Studies on perfused rat intestine reveal
that albumin is responsible for the transport of newly-absorbed Zn2+

to the liver [22]. Also albumin has been shown to facilitate the uptake
of Zn2+ into endothelial cells [23] and erythrocytes [24].

Zinc binding to albumin has previously been probed by 111Cd2+ and
113Cd2+ NMR spectroscopy where two broad peaks with equal integrals
were observed: one at 110–150 ppm (site A) and the second at 25–
30 ppm (site B) [25–27]. The addition of 1 equivalent of Zn2+ suppressed
the peak corresponding to site A, but left site B unaffected, which led to
the conclusion that site A had a strong preference for zinc [25–27]. Re-
cently, this high affinity zinc binding site has been located, modeled and
characterized using site-directed mutagenesis, multinuclear NMR, and
Zn k-edge EXAFS spectroscopy [28,29] (Fig. 1a–c). The site is essentially
a 5-coordinate interdomain site involving residues His67 and Asn99
from domain I and His247 and Asp249 from domain II, plus one non-
protein ligand (thought to be water). A sixth weaker coordination site is
occupied by the backbone carbonyl oxygen of His247 (Fig. 1d).

Interestingly, Asp248 in domain II of BSA (corresponding to Asp249
in HSA) has been identified as also forming part of a Ca2+ binding site,
suggesting that there may be some interplay between these two metal
ions [30]. The binding of Zn2+ to albumin has recently been shown to
affect Mn2+ binding [31]. In this study it was concluded that the high-
affinity Zn2+ site corresponds to a secondary Mn2+ site. The anticancer
drug cisplatin can also prevent Zn2+-binding at this site through forma-
tion of a crosslink between the two histidine side-chains (His67 and
His247) [32].

Besides helping with the identification of the major zinc binding site
and the contributing residues,mutant recombinant human albumins can
modulate the affinity of HSA for Zn2+, as established by equilibriumdial-
ysis experiments [29]. Replacement of the weakly-binding side-chain of
Asn99 with a stronger-binding Asp or His ligand increases the Zn2+

affinity by at least an order of magnitude, whereas mutation of His67
to the non-coordinating Ala residue decreases the affinity. The corre-
sponding EXAFS studies confirmed that both Asn99 mutants bind zinc
in a similar 5(+1)-ligand site, whereas the data for the His67Alamutant
yielded an EXAFS fit with one ligand less (Fig. 1b). Analysis of 2D 1H
TOCSY NMR spectra for the mutants allowed the identification of the
cross-peaks corresponding to His67 and His247 for wild-type HSA,
which enabled monitoring of the effects of different binding partners
(metals, fatty acids) on this site (see below).

3. Fatty acids in plasma and role of albumin in their transport

The so-called free (to indicate that they are non-esterified) short-
and medium-chain fatty acids are absorbed into the blood following
dietary intake [33]. However, plasma free fatty acids are dominated by
long-chain (mainly C16 and C18) fatty acids, and these are primarily
mobilized from triglyceride stores in adipose tissues via enzyme hydro-
lysis (lipolysis), which is tightly controlled [34]. They are then released
into the circulationwhere they are transported by albumin (Fig. 2) [35].
Transport of fatty acids is characterized by rapid turnover, with a circu-
latory half-life of 2–4 min [36]. The precise mechanism by which albu-
min facilitates the uptake of fatty acids to cells/tissues is not known.
However, the existence of specific albumin receptors that may aid in
this process has been proposed [37,38]. The early work by Dole and
Gordon explored the function and importance of fatty acids in the gen-
eral metabolic process [39–41]. Work, particularly by Gordon, showed
the origin of plasma fatty acids from adipose tissue and their utilization
by the myocardium and liver. Fatty acids are the primary source of en-
ergy for many body tissues such as resting skeletal muscle, renal cortex,
liver andmyocardium [42]. The basal plasma concentration of fatty acid
is approximately 250–500 μM [43], most of which comes from abdom-
inal subcutaneous fat reserve and only a small fraction originates from
intra-abdominal fat tissues [44,45]. When there is an increase for fuel
demand by various body tissues, there is also an increase in adipose tis-
sue lipolysis. This in turn, increases the systemic bioavailability of fatty
acids [42].

Chronic elevated plasma fatty acid levels are associatedwith various
disorders such as cancer, diabetes and obesity [46] and are a symptom
of analbuminemia, a deficiency of plasma HSA [47]. Data published by
others show that the level of plasma fatty acids increases in obesity
largely due to enlargement of adipose tissue as well as a delay in their
clearance [48]. Furthermore, elevated levels of plasma fatty acids inhibit
the effects of insulin on lipolysis to cause further increase in the plasma
fatty acids [49]. Pregnancy has been cited as a causative reason for ele-
vated plasma fatty acid level. It has been reported that early in pregnan-
cy,maternal fat is depositedwhile later in pregnancy lipolytic hormones
cause fat break-downwhich subsequently leads to a higher level of fatty
acids in plasma. This leads to a peripheral insulin resistance and a switch
to fat oxidation from carbohydrate, hencemaximizing the access of glu-
cose to the fetus for development [50]. It has also been reported that the
level of plasma fatty acids is age/sex-dependent. For boys the level of
fatty acids in plasma decreases prior to puberty, whereas in girls, plasma
fatty acid levels do not decrease with age [51].

Fatty acid-binding to albumin has been extensively studied by a
range of biophysical techniques including dialysis [52], 13C NMR
[53,54] and X-ray crystallography [55–57]. Under physiological condi-
tions it is thought that 0.1–6.0 molar equivalents (mol. eq.) of fatty
acid can be bound to albumin (Kd values for binding of various long-
chain fatty acids to HSA range between 1.5 and 90 nM [2]), >2 mol.
eq. will bind only under conditions where plasma fatty acid levels are
elevated [58]. Crystallographic studies have identified at least seven
specific fatty acid binding sites on human albumin (FA1–7), which are
asymmetrically distributed across the three domains [55,56,59]. Three
of these sites are thought to be of high affinity (FA2, 4 and 5) [54,60],
with two further sites of medium affinity (FA1 and 3). These sites
(Fig. 2a) all entail defined salt bridges between the negatively charged
fatty acid head-groups and positively charged protein side-chains as
well as other hydrogen bonding interactions which stabilize the inter-
action between the protein and the fatty acid ligand [55,56]. Two fur-
ther, still weaker sites (FA6 and 7) were also observed in X-ray crystal
structures, but these are located at the protein surface, with relatively
poorly defined interactions.
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Fig. 1. Zn k-edge EXAFS data [29] for wild-type and mutant Zn-albumin complexes. (a) Comparison of three different preparations of wild-type rHA. Purple: rHA + 1 mol. eq. Zn2+. Red:
rHA + 1 mol. eq. Zn2+ + 1 mol. eq. Cd2+. Cyan: rHA + 1 mol. eq. Zn2+ + 1 mol. eq. Cd2+ + 1 mol. eq. Cu2+. In the latter two preparations, Cd2+ is thought to occupy preferentially site
B, andCu2+ theN-terminal ATCUN site. Theexcellent agreement in the first shell (intense peak at ca. 2 Å) suggests that in eachpreparation, Zn2+was bound to the same site. (b) Comparison
of EXAFS spectra for wild-type (purple) and H67A mutant (green) HSA. The H67A mutation clearly perturbs zinc binding to albumin. (c) Overlay of experimental (purple) and fitted (red)
data. Thefit corresponds to themodel shown in (d). (d) Overlay of residues forming the zinc site on albumin in publishedX-ray structure of unliganded albumin (black; PDB ID: 1AO6 [124]),
and in EXAFS-refined model (Zn ion shown in purple, oxygen in red, nitrogen in blue).
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4. Albumin mediates crosstalk between zinc and fatty acids

Following identification of the Zn2+-binding site on albumin it was
noted from available structural data that this site is essentially pre-
formed, but only in X-ray structures of fatty acid-free albumin. The key
fatty acid binding site responsible for these structural differences is FA2
(Fig. 2b). It is one of the highest affinity sites and becomes significantly
occupied at fatty acid:albumin ratios as low as 1:1 [54]. It is also one of
the most enclosed sites with its almost linear binding pocket formed
by two half pockets from subdomains IA, and IIA and IIB [59]. In fatty
acid-free albumin, these two half-sites are however 10 Å apart, and
hence fatty acid binding to this site requires a considerable conforma-
tional change that involves the rotation of domain I with respect to
domain II [55,56]. It is the same conformational change that also pro-
foundly changes the distance between the two pairs of zinc-binding res-
idues in domains I and II, allosterically influencing the binding of Zn2+;
essentially, there is no longer a pre-formed zinc binding site in this
region once FA2 is occupied (Fig. 2b). This is the case for all reported
X-ray crystal structures of fatty acid-bound albumin, in which chain
lengths of bound fatty acids range fromC10 to C22 [53,56,61,62]. The lat-
ter observation led to the hypothesis that zinc binding to site A and fatty
acid binding to FA2 might be mutually exclusive, but it was unclear
whether zinc would preclude fatty acid binding or vice versa.

Early experimental evidence for fatty acids perturbingmetal binding
came from 113Cd NMR spectroscopy, where peak A was significantly
broadened and of reduced intensity in non-defatted albumin samples
isolated from plasma [27]. Subsequently it was demonstrated for
recombinant Cd2HSA that the presence of an 8-fold excess of octanoate
(C8) also had a large perturbing effect on the 111Cd peak corresponding
to site A while site B was unaffected (Fig. 3a) [28]. Titrating octanoate
into HSA also affected the Hε1 1H NMR resonances for His67 and
His247, suggesting that octanoate binds in the vicinity of these residues
(Fig. 3b) [63]. However, from these data it was also concluded that
octanoate binding to FA2 did not abolish zinc binding to site A, since
the resulting 1H spectra of Zn–HSA in the presence and absence of
octanoate were identical. Thus it was not clear whether HSA bound
Zn2+more strongly to site A than octanoate to FA2, leading to octanoate
displacement, orwhether simultaneous bindingwas possible. The latter
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Fig. 2. (a) Location of the five major fatty acid binding sites of HSA (pink spheres; carboxyl oxygens in red), in relation to the residues forming the major zinc binding site
(interacting atoms of N99 and H67 shown as yellow spheres, and those of H247 and D248 as cyan spheres). The backbone of the three domains is shown in yellow, blue and
grey as labelled. (b) Fatty acid binding site FA2 and zinc site A residues. The fatty acid binding pocket formed by residues from both domain I (yellow/orange) and domain II
(blue) is illustrated as a colored surface, with the carbons of the fatty acid molecule shown as pink space-filling spheres. Metal-binding nitrogen and oxygen atoms are picked
out as spheres. To appreciate the effect of the fatty acid-induced conformational switch, compare the distance between the two His residues in Fig. 1d (ca. 4.3 Å) and here
(>8 Å). Images 2a and b were generated using PDB ID:1BJ5 [55].
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conclusion was reached by employing isothermal titration calorimetry
(ITC) to study the interactive binding of Zn2+ and octanoate to bovine
serum albumin (BSA); the binding curves for both ligands were identi-
cal irrespective of the presence or absence of the other ligand. Signifi-
cantly, it had been previously reported that HSA in the presence of
octanoate could not be crystallized in a form that was isomorphous to
all other fatty acid-bound structures [56]; hence it is conceivable that
octanoate does not elicit the same conformational change observed
upon binding of longer chain fatty acids, as the C8 chain is too short to
pin the two half-sites together. A structural model confirmed the plau-
sibility of simultaneous binding of octanoate and Zn2+ [63]. Regarding
the octanoate-induced disappearance of peak A in 111Cd NMR spectra,
it is possible that the binding of octanoate to one half pocket merely
affects the dynamics of Cd2+ in site A, without necessarily displacing
the metal.

In contrast, ITC experiments to study competition between Zn2+

and the C14 fatty acid myristate clearly demonstrated that these
influenced the binding of each other to BSA (Fig. 4a and b). An increas-
ing myristate concentration led to a significant decrease in the Zn2+:
BSA stoichiometry and overall affinity, whereas Zn2+ did not affect
the binding stoichiometry of myristate, but rendered the binding reac-
tion less exothermic. These observations indicated that the affinity for
myristate (including that of site FA2) was higher than that for Zn2+

[63], consistent with literature data. The ITC experiments captured the
occupation of two Zn2+ sites, and both of them were affected by the
myristate concentration; at a 5:1 myristate:BSA ratio, virtually no
Zn2+ binding could be detected under the experimental conditions
used. An effect on a second metal site was also reflected in 111Cd NMR
spectra: like octanoate, a 5-fold molar excess of myristate also
suppressed peak A in 111Cd NMR spectra, but the peak for site B also
disappeared [63]. This suggests that myristate binding could have an
additional impact on site B, which is a likely candidate as a secondary
site for Zn2+. Structural characterization of site B is currently lacking,
but the effect of fatty acid binding suggests that it may also be an
interdomain site. Importantly, the ITC data revealed that the zinc bind-
ing capacity and affinity of BSA are affected by the addition of as little as
1 mol. eq. of myristate. Hence, fatty acids modulate the affinity of albu-
min toward Zn2+ at all physiological levels, not just in extreme condi-
tions. Notably, an effect of the first equivalent is also consistent with
the finding that FA2 is one of the three highest affinity sites [54].
The ITC competition experiments conclusively demonstrated that
binding of zinc and long-chain fatty acids to albumin is interactive, as
suggested by inspection of X-ray structures. Ultimately, this fatty acid
“switch” mechanism could mean that albumin is a molecular link
between the levels and distribution of fatty acid (which is reflective of
energy status) and zinc in plasma and adjacent tissues. The potential
biological consequences of such a shift in zinc distribution will be
discussed in the next section.

5. Implications for fatty acid-induced modulation of metal ion
binding and transport

Interestingly, numerous links between Zn2+ homeostasis/signaling
and energy metabolism exist [64,65]. Zinc affects concentration and ac-
tivities of the hormones insulin [66], glucagon [67], and leptin [68,69].
Notably, insulin is required for adequate HSA synthesis; diabetics have
a decreased rate of albumin synthesis, which in-turn may influence
molecular transport of fatty acids by albumin [4]. Leptin is produced
in adipocytes and regulates energy intake and expenditure, and it is
thought that through this link, Zn2+ status exerts a direct impact on eat-
ing behavior and appetite [70]. In obesity, hyperleptinemia is coupled
with hypozincemia (measured as plasma zinc) [71]. Zinc also impacts
on the activity of the hormone adiponectin, which is also secreted by
adipocytes, is involved in regulating fatty acid oxidation, and also
plays a role in insulin resistance [72]. Both insulin and adiponectin
directly interact with Zn2+ ions. Their oligomerization and hence activ-
ity is dependent on the presence of Zn2+. Lipogenesis (i.e. fatty acid syn-
thesis and esterification) in adipocytes is enhanced by Zn2+ in vitro
[71], and during the formation of fat tissue, Zn2+ is actively transported
into adipocytes [73]. An elevation in intracellular Zn2+ may directly
impact on leptin signaling via inhibiting protein tyrosine phosphatase
1B, which in turn inhibits phosphoinositide 3-kinase, a key enzyme in
the leptin (and insulin) signaling pathways [74].

Although only ~2% of circulating albumin molecules carry a zinc ion,
the modulation of their mutual affinity may have significant conse-
quences. Broadly two possibilities need to be considered: (i) the reduced
affinity for fatty acid-loaded albumin may lead to an altered plasma zinc
speciation, which may include binding to alternative proteins, and (ii) a
shift in plasma zinc speciation may result in different zinc uptake by
endothelial cells, with further downstream effects. In addition, the
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reduction in metal affinity may also be the molecular basis of a current
clinical assay, the ACB test for myocardial ischemia. In the following,
wewill discuss these hypotheses (summarized in Table 1) in the context
of clinical or physiological observations.

5.1. Re-distribution of zinc within plasma: Activation of histidine-rich
glycoprotein

Histidine-rich glycoprotein (HRG) is a 75 kDaprotein present in plas-
ma at micromolar concentrations (~1.5 μM). Structurally, HRG consists
of two cystatin derived N-terminal domains (named N1 and N2), a cen-
tral histidine rich region (HRR) flanked at either end by a proline rich
0 2

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

1.0

[My

kc
al

/m
o

le
 o

f 
in

je
ct

an
t

0 1 2 3

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

[Zn]/[BSA]

kc
al

/m
o

le
 o

f 
in

je
ct

an
t

5 Myr

1 Myr

0 Myr

+ Zn

+ Co

a) b)

Fig. 4. Studying crosstalk between metal and fatty acid binding to albumin by ITC. (a) Titrati
presence and absence of myristate. Under the given conditions, zinc binding to two sites is c
influence of pH and the weak Zn2+ ligand Tris gave a stoichiometric log K = 7.0 for the stro
the point that no binding can be detected in the presence of 5 mol. eq. of myristate under th
presence and absence of Zn2+ or Co2+. While fatty acid binding stoichiometry was not aff
requires the removal of metal ions in site A and/or B. (c) Co2+ binding to BSA was studied un
Note that the scales in A and C are also identical. Clearly, Co2+ binding is significantly weaker
still evident. In contrast to the effect on Zn2+ binding, 5 mol. eq. of myristate did not comple
and/or that Co2+ can compensate for the loss of site A (and B) by binding to the N-termina
region and a C-terminal domain [75]. The distinct domains, held together
by an arrangement of six disulfide bonds, enable HRG to bind to a multi-
tude of molecules including, plasminogen, fibrinogen, thrombospondin,
IgG, heparin/heparan sulfate, heme, Fcγ receptors and phospholipids
[76–84]. The diversity of ligands recognized by HRG is related to its
role as a regulator of numerous physiological processes. One such pro-
cess is the coagulation of blood.

HRG binds to the anticoagulant, heparin, with a strong affinity to in-
hibit the formation of a heparin–antithrombin III complex. The heparin–
antithrombin III complex regulates activated coagulants such as throm-
bin in a negative manner [85]. The HRG–heparin interaction therefore
has a pro-coagulatory effect, and the formation of this complex is
0 1 2 3

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

[Co]/[BSA]

kc
al

/m
o

le
 o

f 
in

je
ct

an
t

4 6 8

r]/[BSA]

0

1 
5 

No metal

c)

on of BSA (25 μM; 50 mM Tris, 50 mM NaCl, pH 7.2, 298 K) with Zn2+ (333 μM) in the
aptured, with apparent binding constants of log K′ = 5.67 and 4.15. Correction for the
ngest site. Myristate at both high and low concentrations affects zinc-binding to BSA, to
e given conditions. (b) Titration of BSA (12.5 μM, in H2O, 298 K) with myristate in the
ected, there was a reduction in exothermicity, as it is thought that the binding of FA2
der conditions identical to those used for Zn2+ binding to facilitate direct comparisons.
than Zn2 + binding, in agreement with literature [125,126], but an effect of myristate is
tely abolish Co2+ binding. This may indicate that either site B is less affected than site A,
l ATCUN motif. Figure reprinted from [127] with permission from Elsevier.
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enhanced in the presence of Zn2+ [83]. An interesting feature of HRG is
the high prevalence of histidine and proline residues, each accounting
for approximately 13% of the amino acid sequence. The HRR bears an
extraordinary repeating amino acid sequence of Gly-His-His-Pro-His,
developing a chain of histidine residues which can be implicated in
metal binding.

Early work by Morgan showed that HRG is able to bind Cu2+, Zn2+,
Hg2+, Cd2+, Ni2+ and Co2+ [86,87]. Unsurprisingly, Zn2+ binding was
found to be pH dependent; because of proton competition for the imid-
azole nitrogens, less binding is observed at acidic pH. Also, it was ob-
served that rabbit HRG is able to compete with albumin with respect to
Zn2+ binding. This is intriguing since most dissociation constants
reported for zinc complexes of albumin are lower than those for HRG
(e.g.Kd(HSA) = 30–100 nM cf.Kd(HRG) = 1–4 μM). As previously pointed
out, under normal conditions, the majority of exchangeable Zn2+ is
bound to albumin, not least because of its much higher concentration
[88]. Nevertheless, despite the well-known uncertainties in measure-
ments of metal affinity data which are also greatly affected by pH and
ionic strength, it is clear that the Zn2+ affinities of the two proteins are
relatively close together.

It has been reported that human HRG is capable of binding up to
10 mol. eq. of Zn2+, effectivelymultiplying the HRG binding site concen-
tration [89]. Hence, it is possible that relatively small perturbations may
lead to non-negligible shifts in Zn2+distribution between these twopro-
teins. In addition, it has been proposed that the plasma concentration of
“free” Zn2+ may reach the levels required for Zn2+-dependent HRG
complex formation during thrombosis following release of Zn2+ from
platelet-derivedα-granules at the site of the thrombus [83]. It is thought
that this process may aid in the spatial and temporal regulation of blood
clotting [90].Whether albumin plays a role in subsequent removal of this
HRG-bound Zn2+ is not known.

In some individuals where plasma fatty acid levels are elevated, it is
possible that release of exchangeable Zn2+ (by fatty acid-binding to
albumin) may enhance the formation of HRG–heparin complexes.
There is some indirect evidence that this may occur. For example
blood analbuminemia is associated with hypercoagulability [91]. Also
dietary studies have shown that some fatty acids can increase platelet
aggregation and fibrinolysis [92,93]. Thus it is feasible that this mecha-
nism may contribute to the pro-thrombotic pathologies associated
with disorders such as cancer, diabetes and obesity [46]. It is therefore
interesting to examine the relationship between fatty acid-binding to
albumin, the subsequent release of Zn2+ and possible increased com-
plexation of zinc by HRG.

5.2. Re-distribution of zinc between plasma and other compartments

Various pieces of evidence point towards albumin exerting an influ-
ence on Zn2+ uptake into cells: (i) For fibroblasts, albumin has been
shown to affect uptake, essentially by acting as an extracellular zinc-
binding ligand that buffers the free Zn2+ concentration [94]. (ii) In con-
trast, for endothelial cells, itwas shown that albumin-bound Zn2+ can be
taken up by endocytosis, and that albumin carrying Zn2+ has a higher
affinity for the cells than the apoprotein [24]. (iii) For red blood cells, a
supportive role of albumin has been suggested [25]. Hence, irrespective
of whether albumin participates directly or indirectly in Zn2+ uptake
by cells, it can be anticipated that a modulation of its Zn2+ affinity will
Table 1
Risk factors, mechanism and potential medical implications associated with fatty acid-indu

Risk factors Mechanism

Elevated fatty acid levels are associated with
disorders such as diabetes, obesity,
cardiovascular disease, fatty liver
disease and cancer.

Increased fatty acid binding to al
leads to allosteric disruption of z
binding site.
impact on cellular Zn2+ uptake, although of course other mechanisms
for regulating cellular uptake, including the upregulation of expression
of membrane-bound zinc transporters, are also clearly important [95].

As previously mentioned, although plasma zinc levels are relatively
constant, there are a number of conditions in which these levels are
decreased [17]. Due to the multiple links between zinc and lipid (and
energy) metabolism, it is difficult to dissect causes and consequences,
but in order to gauge the plausibility of a contribution of the albumin
fatty acid switch in Zn2+ redistribution, it is of interest to explore
whether there are any physiological or clinical conditions in which
both elevated free fatty acid levels and depressed plasma zinc levels
may be encountered. Conditions relating broadly to energymetabolism
and for which depressions in plasma zinc levels have been reported
include strenuous aerobic exercise [74], obesity [96], diabetes [97,98],
and cardiovascular disease. In all of these conditions, plasma fatty acid
levels are also elevated [99].

Regarding cardiovascular disease, a finer distinction is necessary. All
conditions that lead to a lower energy consumption by the heart could
(in theory) lead to at least temporary elevations of free fatty acids, as
these provide a large proportion of the energy consumed by the heart,
in particular themyocardium. Therefore, it is possible that the lower plas-
ma zinc levels observed in acute myocardial infarction [100–103], and
chronic heart failure [104], have a direct correlation to high levels of
free fatty acids. Serum zinc levels are known to fall sharply within few
hours after the onset of myocardial infarction, with lowest values ob-
served around 2–3 days, after which they return slowly to normal values
[100]. Strikingly, a reduced metal-binding capacity of plasmas was found
in patients with myocardial ischemia (MI), and this observation was de-
veloped into a clinical test — the albumin-cobalt-binding (ACB) assay
[105], discussed in the next section.

5.3. Is ischemia-modified albumin normal albumin in the presence of
elevated fatty acids?

MI describes the lack of oxygen supply to the heart muscle and is a
precursor for acute myocardial infarction. Based on the hypothesis that
MI might elicit modifications to circulating albumin that affect its metal
binding capability, Bar-Or and colleagues developed the albumin-
cobalt-binding (ACB) assay [105]. It was demonstrated that serum
(or plasma) from patients with ischemia displays a significantly lower
capacity for the binding of Co2+, which can be rapidly measured color-
imetrically through the formation of an unidentified brown adduct
formed by reacting excess Co2+ with dithiothreitol. The ACB assay is
the only available clinical test for the early and rapid assessment of MI
[106], and has a good negative prognostic value: a normal reading al-
lows MI and hence imminent hearts attack to be excluded [107–109].
However, the specificity of the test is low [110]; abnormal readings
indicating low cobalt binding capacity have not only been found in
the case of ischemia, but a plethora of other conditions, including obesi-
ty, diabetes [111], metabolic syndrome, fatty liver [112], cancer, infec-
tions, renal disease, pre-eclampsia, stroke, and even sustained exercise
[113,114]. The utility of the test has therefore been questioned.

The biomarker that is thought to be detected by the ACB assay
has been termed “ischemia-modified albumin” (IMA), with the under-
lying hypothesis that ischemia causes modifications to the ATCUN
(amino-terminal copper and nickel binding) motif, such as N-terminal
ced disruption of the primary zinc-binding site on albumin.

Medical implications

bumin
inc

Displaced zinc binds to HRG, enhancing HRG–heparin complex
formation leading to increased blood clotting (thrombosis).
Altered cellular zinc uptake leading to hypozincemia.
Cobalt also binds to albumin at the primary zinc site. Elevated
plasma fatty acids levels (as associated with myocardial ischemia)
lead to a positive ACB test.
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truncation, a well-known albuminmodification that occurs with storage
over long time [115], or oxidation. Hence, Co2+-binding to peptides as
models for the N-terminus has been studied [116], but crucially, modifi-
cations to the N-terminus in albumin from ischemic patients (and with
reduced cobalt-binding affinity) could not be demonstrated [117,118].
The molecular mechanism of reduced Co2+-binding has therefore
remained elusive. Several studies suggested that the N-terminus was
not themajor site for Co2+-binding and that sites A and Bweremore rel-
evant [119,120]. It should be emphasized that the N-terminus can in
principle bind Co2+ and Zn2+ [121], but while the square planar envi-
ronment generated by the ATCUN motif is well suited to the low-spin
d8 and d9 metal ions Ni2+ and Cu2+, respectively, this site is not as pref-
erable for the d7 ion Co2+ (and even less attractive to the d10 ion Zn2+).

Faller had highlighted the possibility that if site A played a significant
role in Co2+ binding, then fatty acids may influence Co2+ binding, too
[119]. Meanwhile, the direct effect of elevated fatty acids in plasma on
the cobalt-binding capacity has been demonstrated [112], and a “plausi-
ble but not causative” correlation between plasma fatty acids and IMA
was reported [122], but still themolecular mechanism had not been re-
vealed. Our previous Zn-related studies indicated an effect of fatty acids
also on site B [63], which had been identified as the major site for Co2+

binding [120]. Based on these in vitro studies, our own work and pub-
lished clinical observations, we hypothesized that the elusive biomarker
“IMA”may simply correspond to normal albumin in the presence of el-
evated fatty acids.We tested this idea by studying the competitive bind-
ing of Co2+ andmyristate by ITC, in analogy to the ITC studies described
above for Zn/myristate competition, and demonstrated that Co2+ bind-
ing was indeed affected by the presence of myristate (Fig. 4b and c)
[123]. Binding of Co2+ was less affected than binding of Zn2+ in the
presence of 5 mol. eq. of myristate, such that 1.3 mol. eq. of Co2+ was
still able to bind. This smaller effectwas ascribed to differences between
the affinities of the three sites for Zn2+ and Co2+, and the different ef-
fects of fatty acids on these three sites. Site A is most impaired, followed
by site B (based on 111CdNMR and ITCdata),withnomajor negative im-
pact anticipated on the N-terminus, based on structural considerations.
Hence, since site A is the primary site for Zn2+, but only a secondary site
for Co2+, complete elimination of site A has a massive impact on Zn2+

binding, but a lesser one for Co2+, and this can also be compensated
by alternative binding of Co2+ to the N-terminus. A mock ACB test
using physiologically relevant concentrations of BSA and 0–5 mol. eq.
of myristate also demonstrated a correlation between the absorbance
readings of the test and fatty acid concentration [123].

This demonstrated, albeit in vitro, that elevated plasma fatty acids can
directly influence the ACB assay. Furthermore, since this “modification”
is non-covalent, it explains the rapid (within hours) return to normal
IMA levels once the ischemic event is over. Given the long half-live of al-
bumin, any covalent modifications are unlikely to be cleared as quickly,
whereas clearance of plasma fatty acid occurs on a comparable time
scale [36]. However, it is important to note that the suggested molecular
mechanism does not exclude other mechanisms that influence albumin
cobalt-binding such as reduced pH as a consequence of acidosis.

6. Conclusions

Although albumin chemistry is of undoubted importance and has
beenwidely studied, many features of its behavior and its physiological
consequences are not yet fully understood. We have attempted to illus-
trate this for Zn2+ and fatty acid binding. X-ray crystal structures are
tremendously helpful but do not provide the full picture. For example,
there is as yet no X-ray structure of albumin with Zn2+ bound. Solution
structuresmay differ from solid-state X-ray crystal structures and in so-
lution there can be dynamic exchange reactions depending on the rela-
tive affinity constants (which themselves are likely to be dependent on
the solution conditions (pH, ionic strength etc.). Also both Zn2+ and
fatty acid binding are difficult to study and in solution it is necessary
to make indirect inferences as to the structural changes they induce. It
seems clear though that the interactive binding of Zn2+ and longer
chain fatty acids has potential physiological and clinical consequences.
Further work is necessary to fully understand its importance. It is
hoped that the work highlighted here will motivate others to examine
interactive binding of multiple ligands to albumin so that we may
fully understand the relationships that govern their transport in plasma.
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