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Abstract

This paper proposes a novel way of testing exogeneity of an explanatory
variable without any parametric assumptions in the presence of a "conditional"
instrumental variable. A testable implication is derived that if an explanatory
variable is endogenous, the conditional distribution of the outcome given the
endogenous variable is not independent of its instrumental variable(s). The test
rejects the null hypothesis with probability one if the explanatory variable is
endogenous and it detects alternatives converging to the null at a rate n−1/2.We
propose a consistent nonparametric bootstrap test to implement this testable
implication. We show that the proposed bootstrap test can be asymptotically
justified in the sense that it produces asymptotically correct size under the null
of exogeneity, and it has unit power asymptotically. Our nonparametric test
can be applied to the cases in which the outcome is generated by an additively
non-separable structural relation or in which the outcome is discrete, which has
not been studied in the literature.

1 Introduction

In many economic examples measuring causality between economic variables is of
major interest. Difficulties in measuring causal effects using data arise because of

∗This paper is an extention of one of the chapters of my Ph D thesis. I am grateful to Andrew
Chesher for his advice and discussion. Special thanks go to Adam Rosen for valuable comments
and suggestions. I also thank Russell Davidson, Joel Horowitz, Sokbae Simon Lee, Arthur Lewbel,
Werner Ploberger, and Yoon Jae Whang and other participants in 2009 Netherlands Econometric
Study Group (NESG), 2009 Econometric Study Group(ESG) annual conference in Bristol, and
the 2010 Econometric Society World Congress in Shanghai, China, 2011 RES conference in Royal
Holloway in London, and SIRE Econometric Workshop in St Andrews. The support from SIRE for
2011 RES conference presentation is gratefully appreciated. All errors are my own.
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the possible presence of endogeneity or selection problem. Endogenous variables in
economic models are defined as variables that are determined by the model. On the
other hand, the distinction between endogenous and exogenous variables in econo-
metrics follows the tradition of the classical simultaneous equations models.1 Such
distinction would be required if data anaysis is structural, in other words, if individu-
als’ socio-economic variables (decisions) are analyzed based on a theoretical economic
model.

In this paper I refer to this attempt of analyzing data based on an economic
model as a "structural analysis". This paper adopts Hurwicz’s (1950) framework
called "structure". Suppose we are interested in the impact of a variable (Y ) chosen
by individuals on their outcome (W ) of interest, and suppose the economic process
of W can be described by the following relation2

W = h(Y,X, U), (SR)

where X is a vector of characteristics that are exogenously given to individuals such
as age, gender, and race, and U is unobserved individual characteristics. Even among
the individuals with the same observed characterisics we observe a distribution of the
outcome due to the unobserved elements, U. Causal effects of a variable indicate the
effects of the variable only, separated from other possible influences.

The conditional distribution of the outcome, FW |Y X , is determined by the inter-
action, indicated by the following Hurwicz Relation (HR), between the distribution
of the unobserved elements, FU |Y X and the structural relation, h(·, ·, ·)

FW |Y X(w|y, x) = Pr[W ≤ w|Y = y,X = x]

= Pr[h(Y,X, U) ≤ w|Y = y,X = x] (HR)

︸ ︷︷ ︸
”Data”

=

∫

{u:h(y,x,u)≤w}
dFU |Y X(u|y, x)

︸ ︷︷ ︸
Hurwicz Structure

1Endogenous variables are defined in the classical analysis of simultaneous equations system as
those that are determined by the system and are not independent of the unobserved elements in
the system. Following Koopmans (1949, p133), endogenous variables are "observed variables which
are not known, or assumed to be statistically not independent of the latent variables, and whose
occurrence in one or more equations of the set of equations is necessary on grounds of "theory"".

2The structural relation may be derived from some optimization processes such as demand/supply
functions. We are agnostic about this. If there is not a well-defined economic theory behind them,
then the structural relations can be simply understood as how the outcome and the choice are
determined by other relevant (both observable and unobservable) variables. The structural relation
delivers the information on "contingent" plans of choice or outcome when different values of X and
U are given.
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The two components, h(·, ·, ·) and FU |Y X , are called the Hurwicz (1950) structure.
The particular structural feature of interest in this paper is the distribution of the
unobserved variables which contains the information of endogeneity of any explana-
tory variables in the economic system.3 To deal with this hidden information we
derive a "refutable" expression of FU |Y X . It is shown that if an explanatory variable,
Y , is exogenous, then the distribution function of the outcome is independent of an
IV,Z, conditional on the explanatory variable, that is W ⊥ Z|Y . Notably, only three
variables (W,Y, Z) are used in constructing the nonparametric test statistic although
there can exist other variables, X, appear in the structural relation, h.

In many economic examples, irrespective of whether it is structural or not, measur-
ing causality between economic variables is of major interest. Difficulties in measuring
causal effects using data arise because of the possible presence of endogeneity or se-
lection problem. Following the tradition this paper defines endogeneity of an observed
explanatory variable as that which is not independent of the unobserved elements in
an equation to be estimated using data. Whether an explanatory variable is endoge-
nous or not matters if the causal effect of that variable is the focus of data anaysis.
Depending on whether there exists endogeneity or not identification and estimation
strategies are determined. So far the nonparametric structural literature has more
focused on how to identify and make inferences allowing for endogeneity. However,
not only do identification and inference procedures under endogeneity involve more
steps, but also allowing for endogeneity when the variable is actually exogenous may
result in efficiency loss.4 Therefore, evidence regarding the presence of endogeneity
would be informative in directing identification and inference methods. If one can
"statistically" be sure of exogeneity of an explanatory variable, it could guarantee
simpler and more precise inference procedures.

Based on this testable implication we propose a nonparametric bootstrap test of
exogeneity. The test statistic is shown to be asymptotically Gaussian under the null
hypothesis of exogeneity. The test rejects the null hypothesis with probability one if
the explanatory variable is endogenous and it detects alternatives converging to the
null at a rate n−1/2. However, the asymptotic distribution depends on the unknown
features of the underlying distribution, therefore, we propose to use the bootstrap to
find out the critical values. It is shown that this bootstrap test can be asymptotically
justified in the sense that it produces asymptotically correct size under the null of
exogeneity, and it has unit power asymptotically.

3The same information on the joint distribution of the unobservable and explanatory variables
is contained in the conditional distribution of the unobservable variable given the explanatory vari-
able when the marginal distribution of the explanatory variable is known. Thus, we focus on the
conditional distribution.

4This fact is well known in the OLS and 2SLS context. This is also true in the quantile-based
control function approach (QCFA) in Chesher (2003).
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1.1 Related Studies and Contributions

The Durbin (1954)-Wu (1973)-Hausman (1978) type tests have been widely used to
test endogeneity which are based on the difference between two estimators, one of
which is more efficient under the null. There have been several tests for endogeneity
when the outcome is censored or discrete. Grogger (1990) considered Durbin-Wu-
Hausman type tests for endogeneity for binary and count data by comparing the
nonlinear least squares estimator with a maximum likelihood estimator. Under a nor-
mality assumption and triangular structure Chesher (1985) considers testing whether
the covariance between the unobserved variables is zero using the score test. Blundell
and Smith (1986) considers a test of exogeneity under the simultaneous equations
model for censored outcome. Rivers and Vuong (1988), and Vella (1993) considered
tests of endogeneity in models with binary or censored outcomes. However, these
tests are based on either linearity assumptions on functional form or Normality as-
sumptions on the error terms. Thus the results are open to specification errors.

The first nonparametric approach is by Blundell and Horowitz (2007). They
developed a test of exogeneity under the nonparametric functional form that is iden-
tified by mean independence of instrumental variables. However, this test would not
be applicable to discrete or censored outcomes which are generated by additively
nonseparable structural relations. The importance of using nonseparable structural
functions have been emphasized recently. For example, in order to allow for hetero-
geneity in causal effects among observationally identical individuals, the structural
function needs to be nonseparable, or to allow for discrete outcomes, use of addi-
tively nonseparable structural function is required. (see Angrist (2001) and Hahn
and Ridder (2011)).

Our test should be distinguished from omitted variable/significance tests of a
variable. The tests for omitted variables proposed in the nonparametric5 setup so far
(see Gozalo (1993), Fan and Li (1996), Lavergne and Vuong (2000), Delgado and
Gonzalez-Manteiga (2001), and Ait-Sahalia, Bickel, and Stoker (2001)) have not con-
sidered the possibility of endogeneity. Our results imply that if an IV is detected
as an omitted variable we should conclude that this is because there exists an en-
dogeneity problem. Since it is assumed that the exclusion restriction of the IV is
satisfied (exogeneity of an IV is satisfied), the IV should not be considered as an
omitted variable although the omitted variable test concludes IV is significant. This
shows that blindly applying an omitted variable test would lead to a misleading con-
clusion. "Economic" arguments would guide econometricians about which variables
to include6. Therefore, our test would be appropriate to a case in which endogeneity

5See also other studies based on moment equality condition, Bierens (1982,1990), Lewbel (1995),
Chen and Fan (1999), and Ait-Sahalia, Bickel, and Stoker (2001), for example.

6I suppose this is why in economics the structural approach should be preferred over "path
analysis". What econometricians are interested in is often the sensitivity of one specific variable to
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of an explanatory variable is likely to be present and when a well-defined IV exists
and exclusion restriction is not controversial as in regression discontinuity designs, or
natural experiments,.

There have been several studies on testing conditional independence : see Gozalo
and Linton (1997), Su and White (2007,2008) and Song (2009). These existing con-
ditional independence tests could also be used for testing exogeneity. We propose
an alternative computationally intensive, but easy to implement, bootstrap test. In
contrast with Gozalo and Linton (1997) which use the empirical distribution of the
conditional distribution, we use conditional moment conditions to construct the test
statistic, which is a multiple of indicator functions and bounded functions. Su and
White (2007, 2008) can be applied to testing exogeneity with discrete outcomes.
Song (2009) also proposed a conditional Kolmogorov-Smirnov type test, Song (2009)
used a Rosenblatt transformation to yield an asymptotically pivotal test statistic.

The major contribution of this study is to provide a way to test exogeneity without
parametric assumptions that can be applied to discrete variables. In contrast with
Blundell and Horowitz (2007)’s nonparametric test, the proposed test can be used to
test when the outcome is generated by a nonseparable structural function. As Hahn
and Ridder (2009) discuss, when the structural relation is additively nonseparable,
conditional moment restrictions do not have any identifying power of the average
structural functions (ASF) defined by Blundell and Powell (2003). To the best of
our knowledge this paper is the first study that considers a test of endogeneity that
can be applied to nonseparable structural structural functions. Moreover, the test
involves only three variables in constructing the test statistic which allows us not to
concern about the typical curse of dimensionality problem in nonparametric analysis.

The proposed test is a new consistent nonparametric bootstrap test for conditional
independence. This test can also be used as significance/omitted variable tests if
exogeneity of all the variables is confirmed in some sense when the outcome of interest
is discrete or censored. Delgado and Gonzalez-Manteiga’s (2001) siginificance test
can be modified to test conditional independence as is mentioned in their paper.
The statistic I derive is simpler than Delgado and Gonzalez-Manteiga (2001) or Song
(2009) due to use of the symmetry of the "kernel" function of a U-statistic. The
proposed bootstrap strategy is distinct from Delgado and Gonzalez-Manteiga (2001).
In contrast with Delgado and Gonzalez-Manteiga (2001) the results hold under weaker
assumptions and do not require differentiability, thus, our test can be applied to a
wider range of examples including non-differentiabl functions.

another specific variable, rather than what "factors" affect the outcome of interest. We do consider
other factors that affect the outcome to measure the partial effect of the variable of interest better,
not to find out what other factors are relevant.
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1.2 Organization of the paper

Section 2 derives a testable implication of exogeneity of a regressor under the general
nonparametric Hurwicz’s (1950) structure. Section 3 discusses the construction of the
test statistic based on the testable implication derived in Section2. Section 4 reports
the asymptotic results of the test, and Section 5 proposes a bootstrap procedure to
obtain critical values. The bootstrap procedure is justified in Section 5. Section 6
illustrate the proposed idea by simulation and by using Vietnam-era veteran data.
Section 7 concludes.

2 Endogeneity and "Testability" of Exogeneity us-

ing Conditional Independence

This section provides a framework of discussion and derives a testable implication of
"exogeneity" of a regressor based on the framework. Since exogeneity/endogeneity of
a explanatory variable is defined by independence/dependence between the explana-
tory variable and other unobserved elements which are supposed to determinants of
the outcome of interest. Which variables need to be considered to be determinants
of the outcome may be guided by economic arguments. Economic models usually
generate relations between variable by certain optimization processes. A relation-
ship between variables generated by an economic model is called structural relation
and following Hurwicz (1950) a structure is formally defined as a tuple of structural
relations and the distribution of the unobserved elements as follows.

2.1 Local Identification of the Endogeneity Bias under Dif-

ferentiability

The variables W and Y are discrete, continuous, or mixed discrete continuous
random variable. The variable X = {Xk}Kk=1 is a vector of exogeneous covariates. A
vector of latent variates, U is jointly continuously distributed. We assume that the
observed outcome,W, is determined by a structural relation, (SR), introduced in Sec-
tion 1.Y is endogenous if it is not exogenous. An additively nonseparable structural
function requires full independence for identification of the structural function, thus,
we define exogeneity using full independence7.

7The definition of endogeneity is related with the identification strategy. Whether the structural
relation is assumed to be additively separable or not influences what type of restrictions are required
to identify the causal effects. For example, with nonparametric structural function with additively
separable error, existence of IVs that are mean independent of the regressors will be enough for
identification (Newey and Powell (2003), and Newey, Powell, and Vella (1999)), whereas, when
we allow for additively nonseparable errors, full independence of IV is required (Matzkin(2003),
Chesher (2003), Imbens and Newey (2009), Chernozhukov and Hansen (2005), Chesher (2010) etc.)
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Definition 1 Exogeneity of Y : Y is called an exogenous variable if Y ⊥ U.

Suppose that the structural function, h, is differentiable and that we are interested
in the causal effects of a continuous endogenous variable, Y, defined by the partial
derivative of h, ∇yh. Suppose also that U and Y are related by U = g(Y ). Specifying
a structural relation reveals different routes of change caused by Y. This can be seen
by differentiating (SR) :

∆yW︸ ︷︷ ︸
Observed change in W due to Y

= ∇yh+ ∇uh · ∇yg︸ ︷︷ ︸ .
Indirect effect through U

When Y is not independent of the unobservable variable, the observed change in W
due to the change in Y, indicated by ∇yW, could be caused by two sources - the
direct effect of Y on h(·, ·, ·) and the indirect effect of Y on h(·, ·, ·) through the effect
of U on h. If one could identify the indirect effect, then ∇yh can be identified by
subtracting the indirect effect from the observed change in W. Note that since the
indirect effect would be zero if there is no endogeneity, the indirect effect is called
endogeneity bias.

Chesher (2003) derived an identifying relation for the causal effect, measured by
the partial derivative, ∇yh, under a triangular structure, with Y = t(Z, V ),

∇uh · ∇yg︸ ︷︷ ︸
Endogeneity Bias

= −∇zQW |Y XZ(τU |y, x, z)
∇zQY |XZ(τV |x, z)

, (Bias)

if ∇zQY |XZ(τV |x, z) 6= 0,

by imposing restrictions that h is monotonic in scalar U and there exists an IV, Z,
which is excluded in the structural relation, h, but is a determinant of the endogenous
variable Y. Under the triangular structure, U = g(Y ) = g(t(Z, V )). Note that if Y
were exogeneous, that is, ∇yg = 0, the endogeneity bias would be zero. Thus, if
∇zQW |Y XZ(τU |y, x, z) = 0, exogeneity of Y locally at Y = y and X = x, would
be confirmed. If ∇zQW |Y XZ(τU |y, x, z) = 0, for all y, x, z in the support and for
all τU ∈ (0, 1), then exogeneity of Y, could be confirmed globally. However, this
argument requires differentiability of QW |Y XZ(τU |y, x, z), which does not hold with
discrete variables, for example.

This testable implication is derived under differentiability of h(·, ·, ·). In the next
subsection, a more general refutable implication of exogeneity is derived without
relying on differentiability nor on other restrictions.
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2.2 Exogeneity and Conditional Independence

We assume that there exist at least one "conditional instrumental variable".

Restriction C-IV (Existence of "conditional" IV) : There exists a variable
Z such that (i) U ⊥ Z | Y, and (ii) Y = θ(Z,∆), where ∆ is a vector of relevant
variables including both observable and unobservable variables.

Discussion on Restriction C-IV

• Condition (i) implies that once the value of Y is known, the distribution of U
needs to be independent of Z. For example, in Angrist (1990), if the distribution
of the unobserved earnings potential (U) were independent of the draft lottery
number, for each group of veterans and non-veterans, then the condition would
hold.

• Note that the usual IV assumption is U ⊥ Z. As is well known (see Dawid
(1979), for example) there is no relation between conditional independence and
independence. The same is true for the relation between control function as-
sumption and the single-equation IV assumption : neither implies the other.
Moreover, the fact that an IV is used under the single-equation IV model does
not mean that the same IV cannot be used in the control function approach since
whether the IV satisfies conditional independence or marginal independence is
not directly testable as U is not observable.

• This condition involves an unobserved element, thus, whether this condition is
satisfied or not is not directly testable, while economically arguable.

• The second condition (ii) is the usual exclusion restriction for an IV.

We adopt the definition of conditional independence by Dawid (1979).

Definition 2 Conditional independence (Dawid (1979)) : X and Z are indepen-
dent conditional on Y if FX|Y Z(x|y, z) = H(x, y), for all x, y, z, for some function
H.

We first report a "refutable" implication when Y is exogenous.

Theorem 1We assume (SR) and (HR) introduced in Section 1. Under Definition
1 and Restriction C-IV, if Y is exogenous, then the distribution of W is independent
of Z conditional on Y.
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Proof. For some functions H, and H∆ where ∆ is defined previously in Restriction
C-IV,

FW |Y XZ(w|y, z) = Pr[W ≤ w|Y = y, Z = z]

= Pr[h(Y,X, U) ≤ w|Y = y, Z = z]

(*) =

∫

{u:h(y,x,u)≤w}
dFU |Y Z(u|y, z)

=

∫

{u:h(y,x,u)≤w}
dFU |Y (u|y)

=

{ ∫
{u:h(y,x,u)≤w} dFU(u) if U ⊥ Y∫
{u:h(y,x,u)≤w} dFU |Y Z(u|θ(z,∆), z) o.w

}

(**) =

{
H(w, y) if U ⊥ Y

H∆(w, y, z; ∆) o.w

}
,

where the second equality follows from Restriction (SR) and the fourth equality is
due to Restriction C-IV. Thus, we conclude that if U ⊥ Y (Y is exogeneous), then
FW |Y XZ(w|y, x, z) = H(w, y, x) (that is, W is conditionally independent of Z given
Y ).

Notice that X, a vector of exogenous variables, does not appear in the final form.
This fact facilitates the use of nonparametric methods significantly. More discussion
regarding this testable implications follows in the next subsection.

2.2.1 Discussion

1. Although it is clear this holds under a triangular system, it also holds without
assuming triangularity.

(a) Single equation - IV models use FW |Z , while control function approaches
use the information from FW |Y Z . As is noted the fact that an IV is used
under the single-equation IV model does not mean that the same IV can
not be used in the control function approach. The same IV often is used
in the two distinct identification and estimation strategy.

(b) Simultaneity : We allow for bi-directional simultaneity in the sense that
∆ can include W . Although we specify the structural relations as (SR)
the test does not involve the estimation of the structural relation.

2. Vector unobservables : Note that the unobserved variable can be a vector.
However, with multi-dimensional unobserved heterogeneity identification of the
distribution of the unobserved variables is not achievable. (*) shows that it is
impossible to identify {h, FU |Y } separately without further restrictions, but the
refutable implication can still be derived.

9



3. This result holds as long as Restriction C-IV holds. Weak instruments would
have an impact on step (**). If the instrument is weak, there would not be
much difference in H(w, y) and H∆(w, y, z; ∆), resulting in failure to reject the
null when the alternative is true.

4. Identifiability vs. testability : When W is discretely observed, testing exo-
geneity via the above proposition is not confirmable because the variation in
U would not be fully observed in W in this case. That is, the fact that W is
independent of Z conditional on Y does not imply U and Y are independent.
However, ifW is not independent of Z conditional on Y , then we can reject the
hypothesis that U and Y are independent.

5. Identification of the shape of the distribution of the unobservables : when trian-
gularity and scalar unobserved variable assumptions are additionally imposed
one can establish identification of the shape of FUY |XZ . In this case, if the
outcome shows continuous variation, the null hypothesis of exogeneity of Y,
that is, the hypothesis that U and Y are independent, is refutable, as well as
confirmable.

3 The Test Statistic

The testable implication that if an explanatory variable is exogenous, the outcome
is independent of an IV for the explanatory variable conditional on the explanatory
variable can be implemented by using the Cramer-von Mises test or the Kolmogorov-
Smirnov test.

As other exogenous explanatory variables, X, can be added as additional con-
ditioning variables without changing the results from this on X is omitted. Let
(Ψ,S, P ) be the probability space of the random vector Ψ = (W,Y, Z), and let
Ψ ⊆ RdZ+2 be the support of Ψ, where dz is the dimension of Z. W and Y are scalar
random variables. For simplicity we assume that dz = 1. Let ψ = (w, y, z) be the
realization of Ψ. By Theorem 1 when there exists an IV, Z, satisfying Restriction
C-IV, if Y is not endogenous,

W ⊥ Z | Y for all ψ ∈ Ψ.

The null hypothesis to be tested is

H0 : P [FW |Y Z(w|Y, Z)− FW |Y (w|Y ) = 0] = 1,∀ψ ∈ Ψ (1)

and the alternative can be written by the negation of the null as

10



H1 : P [FW |Y Z(w|Y, Z)− FW |Y (w|Y ) = 0)] < 1, for some ψ ∈ Ψ. (2)

This then can be equivalently written, using indicator functions as the following
conditional moment

FW |Y Z(w|Y, Z)− FW |Y (w|Y ) = E[1(W ≤ w)|Y, Z]− E[1(W ≤ w)|Y ] (3)

= 0

By iterated expectation, we can rewrite it as

E{1(W ≤ w)− E[1(W ≤ w|Y ]|Y, Z} = 0. (4)

For some bounded nonnegative function g(Y ) (4) is equivalent to

g(Y )E{1(W ≤ w)− E[1(W ≤ w)|Y ]|Y, Z} = 0.

As g(Y ) is nonstochastic conditinal on Y and Z, we rewrite this as

E[g(Y ){1(W ≤ w)− E[1(W ≤ w)|Y ]|Y, Z}] = 0. (4-1)

This conditional moment condition can be equivalently re-expressed as an uncondi-
tional moment condition by using the indicator functions of the conditioning vari-
ables, Y and Z8

E[g(Y )1(Y ≤ y)1(Z ≤ z){1(W ≤ w)− E(1(W ≤ w|Y )}]. (5)

Thus, the null hypothesis now is stated in terms of unconditional moments using
the fact that E[1(W ≤ w)|Y ] = F (w|Y )

H0 : P [E[g(Y )1(Y ≤ y)1(Z ≤ z){1(W ≤ w)− F (w|Y )} = 0], (6)

∀ψ ≡ (w, y, z) ∈ Ψ.
8We use an unconditional moment condition of the form E(gh) = 0 to conclude E(g|X) = 0,

where g is an integrable function of a vector of random variables and h is an integrable function of
a random variable, X. (X can be a vector). Bierens (1990) considered exponential function for this
purpose and Bierens and Ploberger (1997) showed a general class of real valued weight functions, h.
The function h(·) is called a "test function" in Stinchcombe and White (1998) and they showed that
a class of non-polynomial functions, called totally revealing, can be used for this purpose. Indicator
functions for the possibly vector, X, are comprehensively revealing which is always totally revealing,
can be used as a test function.
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The following arguments apply to a continuous W. The test we consider is based
on the sample analog of (6) using a kernel estimator for F (w|Y ). Let the sample
analog, Tn(w, y, z), be

Tn(w, y, z) =
1

n

n∑

i=1

[ĝ(Yi)1(Yi ≤ y)1(Zi ≤ z){1(Wi ≤ w)− F̂ (w|Yi)} (7)

=
1

n2h

∑

i

∑

j

Kh
ij[1(Wi ≤ w)− 1(Wj ≤ w)]1(Yi ≤ y)1(Zi ≤ z)

where F̂ (w|Yi) =
n∑
j=1

1(Wj ≤ w)Kh
ij

n∑
j=1

Kh
ij

=
1

ĝ(Yi) · nh
n∑
j=1

1(Wj ≤ w)Kh
ij,

and ĝ(Yi) =
1

nh

n∑
j=1

Kh
ij,

where Kh
ij ≡ K(

Yi − Yj
h

), and h is bandwidth.

We consider the Kolmogorov-Smirnov statistic of the form9

KSn = sup
ψ∈Ψ

|
√
nTn(ψ)|. (KS)

The test statistic is a functional of the random element,
√
nTn. We now spec-

ify assumptions required in section 4 to establish asymptotic properties of the test
statistic, KSn.

1. Assumption A1 (INDEPENDENTDATA) : The observed sample consists
of the n random variables {Ψi : i ≤ n}, where Ψ is defined previously. We
assume that the data are generated by a distribution function P .

2. Assumption A2 (REGULARITY for kernels, K(s)) (i) K(s) is a bounded

nonnegative function such that

∫
K(s)ds = 1 and

∫
sK(s)ds = 0. K(s) = 0

9One can also use the Cramer-von Mises’ statistic of the form

CMn =
1

n

∑
(
√
nTn(ψi))

2.
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for all boundary points of the support of S, (ii) K(s) is a symmetric function

K (s) = K (−s), for all s, (iii) sups|K(s)|+
∫
|K(s)|ds <∞, and (iv)

∫
K(

Yi − s2
h

)P (ds2) =

Op(1), and
∫ ∫

K(u−v
h
)P (du)P (dv) = Op(1) and (v) nh → ∞ as n → ∞ for

some finite nonnegative bandwidth h.

Comments on the assumptions

1. A2 (i) and (ii) are used to find out the symmetric "kernel" of the U-statistic,
which simplifies the asymptiotic results.

2. A2 (iii) and boundedness of the kernel function, K(·) are used in showing that
the class of the functions that characterize the empirical process is Euclidean.

In the next section we first establish the asymptotic distribution of the random
element

√
nTn, then we discuss the asymptotic null distribution of the statistic, KSn,

by adopting the continuous mapping theorem to
√
nTn.To derive the asymptotic

distribution of
√
nTn, which is a U -statistic, we transform this to obtain an empirical

process using the Hoeffding (1948) decomposition (also described in Serfling (1980)).

Symmetry of K(·) and
∫
sK(s)ds = 0 imply that K(0) = 0. Rearranging (7) by

using the symmetry of K(·) and K(0) = 0, we have

Tn(ψ) =
2

n(n− 1)

n∑

i=1

n−1∑

j=i+1

qhψ(Ψi,Ψj), (8)

where qhψ(Ψi,Ψj) = Kh
ij[1

w
Wi
− 1wWj

][1yYi1
z
Zi
− 1yYj1

z
Zj
],

with Kh
ij ≡ K(

Yi − Yj
h

),1bB ≡ 1(B ≤ b),

Ψ = (W,Y, Z), ψ = (w, y, z).

Although the random element Tn(ψ) is a sum of functions of i.i.d data {Ψi},
the summands are not independent due to the double summation structure, thus a
direct application of CLT or LLN is not possible. We use the theory from U-statistic
of order 2 to approximate this into a sum of independent elements. Delgado and
Gonzalez-Manteiga (2001) consider similar idea in their significance test, but in their
proofs they do not use the same symmetric "kernel10" as we do. The symmetric
form found here simplifies the proof significantly. Also the bootstrap method that
depends on (8) also would lead to different asymptotic properties from Delgado and
Gonzalez-Manteiga (2001).

10The symmetric function q is called "kernel" following Serfling (1980).
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Let Ψ1,Ψ2, .. be independent observations taken from a distribution P on a set
Ψ, and Hh

K be a class of real-valued symmetric functions on Ψ⊗Ψ. We consider the
U-process of order 2 for the U-statistic Tn(ψ) of the following

{Tn(ψ) : q ∈ Hh
K}, (9)

where Hh
K = {q : qhψ(Ψi,Ψj) = Kh

ij[1
w
Wi
− 1wWj

][1yYi1
z
Zi
− 1yYj1

z
Zj
]},

where Kh
ij ≡ K(

Yi − Yj
h

),1bB ≡ 1(B ≤ b), ψ ≡ (w, y, z) ∈ Ψ, h ∈ R.

The test statistic is constructed by fixing h and K(·) and how to choose the
optimal h and K(·) is not considered in this paper. For given h and K(·), Hh

K is
indexed by ψ ∈ Ψ.

As is discussed in Serfling (1980), the asymptotic distribution of this U-statistic,
Tn(ψ) for given ψ ∈ Ψ , can be found by the usual CLT once we approximate this
into a form of sum of independent observation. That is, the asymptotic results are
for each point ψ ∈ Ψ, nevertheless, for our purposes this is not enough because as the
observation varies, qhψ(Ψi,Ψj) will vary, thus, we need to consider the whole process

of the U-statistic, Tn(ψ) indexed by Hh
K .We view now Tn(ψ) as a U-process indexed

by a class of functions, q ∈ Hh
K .

With the form of U-process in (8) in hand, we apply the U-process theory (see
Nolan and Pollard (1987,1988), Sherman (1994), Stute(1986), for example). We start
from the decomposition of the U-statistic into an empirical process and a P-degenerate
U-process.11

Pn is the empirical measure of a sample of random elements Ψ1,Ψ2, ...,Ψn, putting

mass
1

n
at each observation ans we denote Pn =

1

n

n∑

i=1

δΨi ,where δΨi is the Dirac

measures at the observation. Using the Hoeffding decomposition of a U-statistic, we
have

Tn(ψ) = T̂n(ψ) +Rn(ψ), ψ ∈ Ψ (10)

where

T̂n(ψ) = EΨiEΨj [q
h
ψ(Ψi,Ψj)] + 2Pn

{
EΨj [q

h
ψ(Ψi,Ψj)|Ψi]− EΨiEΨj [q

h
ψ(Ψi,Ψj)]

}

Rn(ψ) = Tn(ψ)− T̂n(ψ).

That is, Tn(ψ) can be decomposed into T̂n(ψ), the projection, and the remainder,
Rn(ψ). It turns out that only the projection part affects the asymptotic distribution

11A conditional mean zero U-process is called a P-degenerate U-process.
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of
√
nTn under the null hypothesis. Note that if the null is true, E[Tn(ψ)] = 0, which

implies E[qhψ(Ψi,Ψj)] = 0. Thus, the null distribution of
√
nTn is determined by√

nT̂n(ψ) = 2PnE[q
h
ψ(Ψi,Ψj)|Ψi], if the remainder term, Rn(ψ) is asymptotically uni-

formly negligible, as will be shown later. Therefore,
√
nT̂n(ψ) = 2PnE[q

h
ψ(Ψi,Ψj)|Ψi]

is the form of the empirial process that we will work on.

To apply the empirical theory results, we need to find the form of Pn
{
EΨj [q

h
ψ(Ψi,Ψj)|Ψi]

}
.

We integrate out Ψj conditional on Ψi resulting in the following :

Pn(E[q
h
ψ(Ψi,Ψj)|Ψi]) (11)

=
1

n

n∑

i=1

∫
K(

s2 − Yi
h

)[1wWi
− 1wWj

][1yYi1
z
Zi
− 1yYj1

z
Zj
]P (ds),

= Pnr1 + Pnr2 + Pnr3 + Pnr4, where

Pnr1(ψ) =
1

n

n∑

i=1

1(Wi ≤ w)1(Yi ≤ y)1(Zi ≤ z)

∫
K(

Yi − s2
h

)P (ds)

Pnr2(ψ) = − 1
n

n∑

i=1

1(Wi ≤ w)1(Zi ≤ z)

∫
K(

Yi − s2
h

)1(s2 ≤ y)P (ds)

Pnr3(ψ) = − 1
n

n∑

i=1

1(Wi ≤ w)

∫
K(

Yi − s2
h

)1(s2 ≤ y)1(s3 ≤ z)P (ds) (12)

Pnr4(ψ) =
1

n

n∑

i=1

∫
K(

Yi − s2
h

)1(s1 ≤ w)1(s2 ≤ y)1(s3 ≤ z)P (ds),

where s = (s1, s2, s3) and ψ = (w, y, z) ∈ Ψ.

As under the null, EΨj [E[r1(ψ) + r2(ψ) + r3(ψ) + r4(ψ)|Ψi]] = 0, the empirical

process of concern is
√
nT̂n(ψ) =

√
n(Pn − P )(r), where r(ψ) = r1(ψ) + r2(ψ) +

r3(ψ) + r4(ψ) and Pr is defined as Pr ≡
∫
rdP for measure P . Define F = {r :

r(ψ) = r1(ψ)+r2(ψ)+r3(ψ)+r4(ψ), ψ ∈ Ψ}. The asymptotic properties are therefore,
characterized by the properties of F . In the next section we report results on the
asymptotic properties of the proposed test-statistic.

4 Asymptotic properties

4.1 Asymptotic null distribution of KSn

Using the U-process and empirical process theory we show the asymptotic null distrib-
ution of the test statistics proposed in Section 3. Rn(ψ) is a P-degenerate U-process.
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We first show that the remainder term is uniformly asymptotically negligible. All
proofs appear in Appendix.

Define R = {Rn : Rn(ψ) = Tn(ψ) − T̂n(ψ), ψ ∈ Ψ}, where Tn(ψ), T̂n(ψ) are
defined in Section 3. We can show that Rn is P-degenerate U-statistic and that R is
Euclidean by Lemma 6 in Sherman (1994), which allows us to apply their results to
Rn to characterize the behavior of Rn. The results in Sherman (1994) is used to show
that the remainder term is uniformly asymptotically negligible.

Theorem 2 Under Assumption A1 and A2,

sup
ψ∈Ψ

|Rn(ψ)| = Op(
1

n
).

Proof. See Appendix.

Theorem 2 shows that
√
nRn(ψ) = op(1). Note that under Assumption A1 and

A2, Hh
K is a class with the envelope, H ≡ sup

q∈Hh
K

|qhψ(Ψi,Ψj)| = |K(·)| < ∞, and

sup
q∈Hh

K

|Pq| < ∞ and sup
q1,q2∈HhK

|Pq1q2| < ∞, where Pq is defined previously. Likewise,

under Assumptions A1 and A2, F is the class with the envelope, F ≡ sup
r∈F

|r| =

4|
∫
K(

Yi − s2
h

)P (ds2)| < ∞ and sup
r∈F
|Pr| < ∞ and sup

r1,r2∈F
|Pr1r2| < ∞. Let l∞(F)

denote the Banach space of real bounded functions on F with the supremum norm,
||Qq||F = sup

f∈F
|Qf |.

Since the remainder term is uniformly asymptotically negligible, the asymptotic
distribution of

√
nTn is determined by the projection part, (

√
nT̂n(ψ)),by the decom-

position in (10) as E[qhψ(Ψi,Ψj)] = 0. The projection under the null then is,

T̂n(ψ) = 2PnE[q
h
ψ(Ψi,Ψj)|Ψi] = 2Pn[f1(Ψi) + f2(Ψi) + f3(Ψi) + f4(Ψi)],

with Pr = 0 for r ∈ F .

We use Andrews (1994)’s proposition in establishing Theorem 3. The main diffi-
culty is to show stochastic equicontinuity of F . The sufficient conditions in Andrews
(1994) are used. We use the pseudometric

ρ(τ 1, τ 2) = sup
N≥1

{ 1
N

∑
E[T̂n(τ 1)− T̂n(τ 2)]

2}1/2.

The stochastic equicontinuity results hold for this pseudometric.
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Theorem 3 Under Assumption A1 and A2,

F = {r : r = r1(ψ) + r2(ψ) + r3(ψ) + r4(ψ), ψ ∈ Ψ} is P −Donsker,

where r1(ψ), r2(ψ), r3(ψ), r4(ψ) defined in (12).

Proof. See Appendix.

Theorem 3 states that
√
nTn(ψ) weakly converges to a tight Borel measurable

element in l∞(F). The nature of the tight limit process follows from consideration of
its marginal distributions. The marginal distributions Pnr converge if and only if r
is square integrable in which case the multivariate central limit theorem yields that
for any finite set r1, r2, ..., rn of functions

(Pnr1, ..., Pnrn) weakly converges to Nk(0,Σ)

where Σ is the k × k matrix with the (i, j)th element P (ri − Pri)(rj − Prj). Since
convergence in l∞(F) implies marginal convergence, it follows that the limit process
must be a zero-mean Gaussian process withcovariance function

P (r1 − Pr1)(r2 − Pr2), for r1, r2 ∈ F

Theorem 4 Under H0, if Assumption A1 and A2 hold,
√
nTn(ψ) weakly converges to Gp in l

∞(F),
where Gp is sample continuous Gaussian, and the underlying distribution P, with
zero mean and covariance given by

E(Gpr1Gpr2) = P (r1 − Pr1)(r2 − Pr2), for r1, r2 ∈ F .

Note that E(Gpr1Gpr2) is finite since sup
r∈F
|Pr| <∞ and sup

r1,r2∈F
|P r1r2| <∞. Since

KSn = sup |
ψ∈Ψ

√
nTn(ψ)| is equal to the norm in l∞(F), KSn is continuous. Then we

have the following results by applying the continuous mapping theorem to
√
nTn(ψ).

Corollary 1 Under H0, if Assumption A1 and A2 hold,

KSn weakly converges to ||Gpr||F .

Notice that the asymptotic null distribution of the test statistic depends on the
underlying features of the true distribution of the data, P , which are unknown. Thus,
we propose to use the bootstrap to find out the critical values. This will be discussed
in the next section. We first show in the next subsection that the test statistic
is consistent, that is, when the null is false, the proposed test can detect it with
probability one when the sample size is large.
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4.2 Consistency and Local Power

4.2.1 Consistency

We show the asymptotic unit power of the test. We specify the alternative hypothesis
in assumption A3.

Assumption A3 (ALTERNATIVE HYPOTHESIS) The alternative hy-
pothesis is

H1 : P [FW |Y Z(w|Y, Z)− FW |Y (w|Y ) = 0)] < 1, for some ψ ∈ Ψ.

Theorem 5 Under Assumption A1-A3, for all sequences of random variables
{cn : n ≥ 1}, with cn = Op(1), we have lim

n→∞
P (KSn > cn) = 1.

Under the alternative, we have one more term to consider when we derive the
asymptotic distribution of

√
nTn(ψ). Under the null, E[Tn(ψ)] = 0 in the decompo-

sition (4), thus, the asymptotic null distribution can be derived without considering
this term. Under the alternative, E[Tn(ψ)] needs to be added. Note that

E[qhψ(Ψi,Ψj)] = EΨiEΨj [q
h
ψ(Ψi,Ψj)|Ψi]

= EΨi [r1(Ψi) + r2(Ψi) + r3(Ψi) + r4(Ψi)]

where ri, i = 1, 2, 3, 4, is defined in (6). Then we have

Er1(Ψ) =

∫
1(t1 ≤ w)1(t2 ≤ y)1(t3 ≤ z)

∫
K(

t2 − s2
h

)P (ds)P (dt)

Er2(Ψ) = −
∫
1(t1 ≤ w)1(t3 ≤ z)

∫
K(

t2 − s2
h

)1(s2 ≤ y)P (ds)P (dt)

Er3(Ψ) = −
∫
1(t1 ≤ w)

∫
K(

t2 − s2
h

)1(s2 ≤ y)1(s3 ≤ z)P (ds)P (dt)

Er4(Ψ) =

∫ ∫
K(

t2 − s2
h

)1(s1 ≤ w)1(s2 ≤ y)1(s3 ≤ z)P (ds)P (dt),

where s = (s1, s2,s3) and t = (t1, t2,t3).

From (5), under the alternative, we need consider the random element
√
nT̂n(ψ) =

√
nE[qhψ(Ψi,Ψj)] + 2

√
nPn

{
EΨj [q

h
ψ(Ψi,Ψj)|Ψi]− E[qhψ(Ψi,Ψj)]

}
. (13)

As under Assumption A2 (v) E[qhψ(Ψi,Ψj)] = O(1), when the null is false
√
nT̂n(ψ)

tends to ∞ as n → ∞ because the second term will converge to a Gaussian, with
E[qhψ(Ψi,Ψj)] and E(Bpq1Bpq2) bounded. This guarantees the consistency of the test
since the critical values are fixed, whereas the test-statistic, KSn, tends to infinity as
n increases. Thus, the null hypothesis is rejected with probability one.
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4.2.2 Local Power

To examine the local power of the test we propose to consider E[qhψ(Ψi,Ψj)] =
d(ψ)√
n
, d(ψ) 6= 0 and d(ψ) < ∞. That is, the alternatives converge to the null at a

rate, 1√
n
. Then (13) becomes

√
nT̂n(ψ) =

√
n
d(ψ)√
n
+ 2
√
nPn{EΨj [qhψ(Ψi,Ψj)|Ψi]−

d(ψ)√
n
} (14)

Since the first term is bounded (because E[qhψ(Ψi,Ψj)] = O(1)) and the second term
is square integrable empirical process which weakly converges to a Gaussian process,
GP . Therefore,

√
nT̂n(ψ) weakly converges to O(1) +BP .

Assumption A4 E[q(ψ)] =
d(ψ)√
n
, with d(ψ) 6= 0 and d(ψ) <∞ .

Theorem 6 Under Assumption A1, A2, and A4, for cα = inf{q : F||Gpf ||F (q) ≥
1− α},

FKSn(cα) ≤ 1− α + o(1).

Theorem 6 states that as the alternative approaches to the null at a rate of n−1/2,
and the test can still detect the alternative.

5 Bootstrap Critical Values

5.1 Nonparametric Bootstrap Critical Values

Corollary 1 provides the asymptotic null distribution of the proposed Kolmogorov-
Smirnov statistic, KSn. However, since the asymptotic null distribution depends on
the unknown underlying distribution, P, the asymptotic distribution is not pivotal.
A bootstrap resampling procedure is proposed to obtain critical values.

Consider the sample of (Ψ1,Ψ2, ...,Ψn). Let (Ψ
∗
1,Ψ

∗
2, ...,Ψ

∗
n), whereΨ

∗
i = (W

∗
i , Y

∗
i , Z

∗
i )

be the bootstrapped sample from (Ψ1,Ψ2, ...,Ψn). The procedure is described by the
following five steps :

1. Step 1 : Compute the realized value of the test statistic, KSn, using the sample
(Ψ1,Ψ2, ...,Ψn).

2. Step 2 : Resample n observations, (Ψ∗1,Ψ
∗
2, ...,Ψ

∗
n), whereΨ

∗
i = (W

∗
i , Y

∗
i , Z

∗
i ), i =

1, 2, ..., n, from the original data with replacement.
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3. Step 3 : Repeat Step 2Bn times to obtainBn− batch of bootstrapped samples.
Let {Ψ∗ki }Bni=1 = {(W ∗k

i , Y ∗k
i , Z∗ki )}Bni=1 denote the kth−bootstrapped sample. De-

fine T
(∗k)
n (ψ) from the kth−bootstrapped sample as follows :

T (∗k)n (ψ) =
2

n(n− 1)

n∑

i=1

n−1∑

j=i+1

qhψ(Ψ
∗k
i ,Ψ

∗k
j ), where

qhψ(Ψ
∗k
i ,Ψ

∗k
j ) = Kh

ij[1
w
W ∗k
i
− 1wW ∗k

j
][1y

Y ∗ki
1
z
Z∗ki
− 1y

Y ∗kj
1
z
Z∗kj
],

with 1bB = 1(B ≤ b), Kh
ij ≡ K(

Y ∗k
i − Y ∗k

j

h
),

ψ = (w, y, z),

for k = 1, 2, ..., Bn.

From the Bn− value obtained from the above, define the mean of the values of

the bootstrapped statistic, T
(∗)
Bn(ψ),

T
(∗)
Bn(ψ) =

1

Bn

Bn∑

k=1

T (∗k)n (ψ).

4. Step 4 : To impose the null hypothesis, define the centered object, T ∗kn (h)

T ∗kn (ψ) = T (∗k)n (ψ)− T
(∗)
Bn(ψ).

Define the test statistic for the kth−bootstrapped sample as

KS∗kn = sup |
ψ∈Ψ

√
nT ∗kn (ψ)|

to find the bootstrapped null distribution of KSn.

5. Step 5 : The bootstrap test rejects the null hypothesis at significance level α
if KSn exceeds the empirical α− th quantile of {KS∗kn }Bnk=1.

Recall that P is the underlying true probability measure, and Pn is the empir-
ical measure. Let P ∗n be the bootstrap empirical measure. Two distinct empirical
processes,

√
n(P ∗n − Pn) and the

√
n(Pn − P ) indexed by Hh

k need to be considered.

Note that the asymptotic behavior of the bootstrapped object, T ∗kn (ψ), is deter-
mined by the projected part since the bootstrapped remainder term is asymptotically
uniformly negligible. Thus, the behaviour of the bootstrapped empirical process,√
n(P ∗n−Pn) indexed by Hh

k needs to be considered. We apply the same procedure of
decomposition of U-statistic and show that the set of projection terms is P−Donsker.
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The centering procedure in Step 4 is necessary to impose the null hypothesis to the
bootstrapped object. Without this procedure, if the data are generated under the
alternative, then the distribution simulated from the bootstrapped data will not pro-
vide information regarding the null distribution. We prove that the centered object
obtained in Step 4,T ∗kn (ψ), is of the same form regardless of whether the null hypoth-
esis is true or not. Then it will be shown that the asymptotic behaviour of T ∗kn (ψ) is
determined by the projection term only which is in the same class of functions. As we
have shown that the class of function in Theorem 3 is P-Donsker, the two empirical
processes,

√
n(P ∗n − Pn) and

√
n(Pn − P ) converge to the same Gaussian process by

applying the extended version of the Gine and Zinn (1990)’s bootstrap central limit
theorem that allow for nonmeasurability. (See ven der Vaart and Wellner (1996), for
example)

Theorem 7 Suppose Bn = O(n). Under Assumption A1-A2, the procedure de-
scribed in Step1 - Step 5 (i) provides correct asymptotic size, α, under the null, (ii)
is consistent against any fixed alternatives.
Proof. See Appendix.

If the null hypothesis were true, the bootstrap procedure would result in (asymp-
totically) correct size of the test, because the bootstrap test statistic, KS∗n, converges
to the same limiting distribution of KSn under the null. When the alternative were
true, because KSn goes to infinity, whereas, the bootstrap critical value is still finite,
the bootstrap procedure would result in a consistent test.

6 Illustration

6.1 Illustration - Endogeneity, Conditional Independence, and

the Impact of Weak IV

I illustrate that the idea can be informally used to test exogeneity by plotting the
conditional distribution functions. I also illustrate the possible loss of power due to
the use of weak instruments. In each part we generate W,Y, and Z by the following
data generating processes :

Z ∼ Poisson (λ), λ = 0.5

Y = 1(a0 + a1Z + V ≥ 0)
W = b0 + b1Y + U(

U

V

)
|Z ∼ N

((
0
0

)
,

(
1 σV U
σV U σ2U

))

By varying a1, we can control the "strength" of IV and by varying σV U , we control
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the degree of endogeneity. The distributions of W given Y and Z shown below are
drawn using the data generated by the above processes. We draw the cumulative
distribution functions, FW |Y Z , for Y ∈ {0, 1}, and Z ∈ {0, 1} to examine the link
between conditional independence and endogeneity, and how the link is affected by
the strength of IV.

When σV U = 0, that is, when there is no endogeneity, the two conditional distri-
butions for different values of Z are the same, while when σV U 6= 0, that is, when
there is endogeneity, the two conditional distributions differ when the instrument is
strong, but they do not show much difference when the instrument is weak.

1. Exogenous Y and conditional independence

I set σV U = 0. The two graphs show the distribution functions of W given Y and
Z. The first panel shows whether FW |Y Z is independent of Z once we condition on
Y = 1. It shows that FW |Y=1,Z=1 = FW |Y=1,Z=0

12. The second panel is the distribution
functions of W given Y and Z for Y = 0 for different values of Z ∈ {0, 1}.
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2. Weak IV, endogenous Y

2.1 σUV = 0.7, and a1 = 0.3

I consider endogenous Y(σUV = 0.7) and "relatively " weak IV (a1 = 0.3). As
long as Z is "relevant" the distribution of outcome seems to be affected by the values
of Z.

12Z is distributed by Poisson, but with mean λ = 0.5, there are a few observations for the values
Z = 2, 3, ...
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2.2 σUV = 0.7 and a1 = 0

When Z is not "relevant", as we expected, the distribution of the outcome is
not affected by the irrelevant IV conditioning on Y. Even though Y is endogenous,
plotting FW |Y=1Z=1 and FW |Y=1Z=0 implies that FW |Y Z is independent of Z. This
shows the case in which testing exogeneity via testing conditional independence fails
to detect the presence of endogeneity.
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3. Strong IV, endogenous Y

σUV = 0.7, and a1 = 1.3

Now consider a strong IV and endogenous Y. The conditional distribution is af-
fected by both Y and Z even though Z is excluded from the outcome equation.
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6.2 Test of Exogeneity of Veteran Status

I illustrate how the results can be used by examining the effects of the Vietnam-era
veteran status on the civilian earnings using the data used in Abadie (2002)13. I use
a sample of 11,637 white men, born in 1950-1953, from March Current Population
Surveys of 1979 and 1981-1985. Annual earnings are used as an outcome, and the
veteran status is the binary endogenous variable of concern.

Let W be annual labour earnings, Y be the veteran status, and Z be the binary
variable determined by draft lottery. Age, race, and gender are controlled so that
the subgroup considered is observationally homogenous. The unobserved variables
U and V indicate scalar indices for "earnings potential" and "participation prefer-
ence"/"aptitude for the army" each. There can be many factors that determine these
indices, but we assume that these multi-dimensional elements affect the outcome only
through a "scalar" index.

6.2.1 Selection on Unobservables - Endogeneity

Enrollment in military service during the Vietnam-era may have been determined by
the factors which are associated with the unobserved earnings potential. This concern
about selection on unobservables is caused by several aspects of decision processes
both of the military and of those cohorts to be drafted. On the one hand, the
military enlistment process selects soldiers on the basis of factors related to earnings
potential. For example, the military prefer high school graduates and screens out
those with low test scores, or poor health. As a consequence, men with very low
earnings potential are unlikely to end up in the army. On the other hand, for some
volunteers military service could be a better option because they expected that their
careers in the civilian labour market would not be successful, while others with high

13The data are obtainable in Angrist Data Archive :
http://econ-www.mit.edu/faculty/angrist/data1/data
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earnings potential probably found it worthwhile to escape the draft. This shows that
the direction of selection could vary with where each individual is located in the
distribution of the unobservable earnings potential.

6.2.2 Draft Lottery as an Instrument

As in Angrist (1990) the Vietnam era draft lottery is used as an instrument to identify
the effects of veteran status on earnings. The lottery was conducted every year
between 1970 and 1974. The lottery assigned numbers from 1 to 365 to dates of birth
in the cohorts being drafted. Men with the lowest numbers were called to serve up to
a ceiling14 which was unknown in advance. We construct a binary IV based on the
lottery number. It is assumed that this IV is not a determinant of earnings, and the
unobserved scalar indices are independent of draft eligibility15.

6.2.3 Illustration of the Testable Implication

The tesable implication can be used to investigate whether data show endogeneity
both formally and informally. Informal testing involves plotting the conditional distri-
bution of outcome given both endogenous variable and IV, Z. If there is no difference,
then y is exogenous. However, the converse is not true unless Z is strongly correlated
with Y . We show this in the investigation of the impact of the veteran status on the
earnings using the draft-eligibility based on the lottery number as an IV.

The distributions of annual earnings conditional on the values of Y and Z are
drawn. <Figure 1> shows the conditional distribution of veterans for different el-
igibility criteria, and <Figure 2> shows that of non-veterans. As we can see the
conditional distributions of the veterans seem to differ by different eligibility criteria.
However, the conditional distributions of non-veterans do not seem to be different.

14See Angrist (1990) for more details.
15There has been some discussion on whether individuals’ draft lottery numbers caused their

behavior, e.g. some men could have volunteered in the hope of serving under better terms and
gaining some control over the timing of their service once the lottery numberw were known. If those
who change their behavior according to their draft lottery number show certain patterns in their
unobserved factors, then the quantile invariance restriction may be violated.
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7 Discussion and Conclusion

This paper proposes a nonparametric test of exogeneity. Since the asymptotic null
distribution is not pivotal, we propose to use the bootstrap to find out the critical
values by approximating the null distribution of the test statistic. We also show that
the bootstrap test provides asymptotically correct size, and that the test is consistent.
Our test would be used for test of exogeneity in the context that there is no
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controversy on the exclusion of Z in the structural relation, for example, when natural
experiments, randomized trials with noncompliance, or exogenous policy changes are
used as instruments16.
This test crucially relies on the existence of instrumental variables and the quality

of instrumental variables. How the power is affected by the strength of IVs should
be investigated.
Our test should be distinguished from omitted variables test. If some of the

explanatory variables are endogenous, the omitted variable tests would misleadingly
conclude that an IV is significant.
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Let the pdf/pmf of a random variable Z be f(z) and K(·) be the kernel function used for
smoothing. SQ indicates the support of a eandom variable Q and C1 and C2 indicate arbitrary
finite real values.

Lemma A1 Robinson (1988, lemma 2) Let sup
z
f(z) <∞, sup

u
|K(u)|+

∫
|K(u)|du <

∞. Then

sup
z
E
∣∣K(Z−z

h
)
∣∣ = O(hq),

where z ∈ Rq.

Lemma A2 Robinson (1988, lemma 3) Let sup
z
f(z) <∞, sup

u
|K(u)|+

∫
|K(u)|du <

∞, E|g(Z)| <∞. Then

EZ1Z2
∣∣g(Z1)K(Z1−Z2h

)
∣∣ = O(hq),

where z ∈ Rq.

Lemma A3 A1 = {l(x) : l(x) =
∫
K(

s2 − x

h
)P (ds2) = EX [K(

X − x

h
)], x ∈

SY2} is stochastic equicontinuous .
Proof. By Lemma A1, there exists a constant C s.t. l(x) =

∫
K(

s2 − x

h
)P (ds2) =

EX [K(
X − x

h
)] ≤ C1h uniformly in x. Let the finite square integrable envelop function of

the class A1 be the constant C1h. Then A1 is type II class as in Andrews (1994) since l(x) is
Lipschitz17 in x ∈ SY2 .This is because there exists a constant C2 s.t.

|l(x1)− l(x2)| =
∣∣∣∣
∫
[K(

s2 − x1
h

)−K(
s2 − x2
h

)]P (ds2)

∣∣∣∣ ≤ C2
∣∣x1 − x2

∣∣ ,

for C2 =
C1h

|x1 − x2|
.

Then by Theorem 2 in Andrews(1994) the result follows.

Lemma A4 A2 = {l(x) : l(x) =
∫
K(

s2 − x

h
)1(s2 ≤ y2)P (ds2) = E|1(s2 ≤

y2)K(
Z1−Z2
h
)|} is stochastic equicontinuous .

17A function f(a) is Lipschitz in a if

|f(a1)− f(a2)| ≤ B|a1 − a2|, for some real valued function B(·) (1)
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Proof. By Lemma A2 there exists a constant C s.t. f(x) =

∫
K(

s2 − x

h
)P (ds2) =

EX [K(
X − x

h
)] ≤ C1h uniformly in x. Let the finite square integrable envelop function of

the class A2 be the constant C1h. Then A2 is type II class as in Andrews (1994) since l(x) is
Lipschitz in x ∈ SY2 .This is because there exists a constant C2 s.t.

|l(x1)− l(x2)| =
∣∣∣∣
∫
1(s2 ≤ y2)[K(

s2 − x1
h

)−K(
s2 − x2
h

)]P (ds2)

∣∣∣∣ ≤ C2
∣∣x1 − x2

∣∣ ,

for C2 =
C1h

|x1 − x2|
.

Then by Theorem 2 in Andrews (1994) the result follows.

The following is from Sherman (1994). Let Z1, ..., Zn be independent observations from a

distribution P on a set S. Let k be a positive integer and F a class of real-valued functions on

Sk = S ⊗ ...⊗ S, k ≥ 1. For each f ∈ F, define

Uk
nf = (n)

−1
k

∑

ik

f(Z1, ..., Zik)

where (n)k = n(n− 1) · · · (n− k + 1), and ik = (i1, ..., ik) ranges over the (n)k ordered
k-tuples of distinct integers from the set {1, 2, ..., n}. The collection of {Uk

nf ; f ∈ F} is called
a U-process of order k and is said to be indexed by F .

Now we consider the decomposition of Uk
nf into a sum of degenerate U -statistics. Let P denote

the distribution on a set S. Fix f ∈ F . Suppose P k < ∞, where P k is the product measure

P ⊗ ... ⊗ P. Then there exist functions f1,..., fk such that, for each i, fi is P -degenerate on S
i

and

Uk
nf = P kf + Pnf1 +

k∑

i=1

U i
nfi

Definition A1 (Euclidean (A,V) (Sherman (1994)). Let F be a class of real-valued functions on

a set S and D(ε, dQ, F ) be the packing number. Call F Euclidean for the envelop F if there exist

positive constants A and V with the following property : if Q is a measure for which QF 2 < ∞,
then

D(ε, dQ, F ) ≤ Aε−V , 0 < ε ≤ 1,
where, for f, g ∈ F ,

dQ(f, g) = [Q|f − g|2/QF 2]1/2.
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Proposition A1 (Sherman(1994), Lemma 6) If F is Euclidean for an envelope F satisfying

P kF 2 <∞, then Fi is Euclidean for an envelope Fi satisfying P
kF 2i <∞.

Proof of Theorem 2

Proof. Hh
K = {q : qhψ(Ψi,Ψj) = Kh

ij[1
w
Wi
−1wWj

][1yYi1
z
Zi
−1yYj1zZj ], for ψ ∈ Ψ} is Euclidean

with an envelope, constant 1. This is the case becauseKh
ij is Euclidean

18 with the constant envelope

1, a constant function and the other part of q(Ψi,Ψj) is a function of indicators. By applying the
permanence property of Euclidean, we conclude thatHh

K is Euclidean. Then by Proposition A1R is

Euclidean, thus the results in Sherman (1994) can be applied to R.Then Sherman (1994) Corollary

4(ii) with k = 2 is adopted to conclude sup
ψ∈Ψ

|Rn(ψ)| = Op(
1

n
).

Proposition A2 Under Assumptions A1,A2,

F1 = {r1 : r1(Ψi) = 1(Wi ≤ w)1(Yi ≤ y)1(Zi ≤ z)

∫
K(

Yi − s2
h

)P (ds), ψ ∈ Ψ}

is stochastic equicontinuous

Proof. F1 is stochastic equicontinuous by the mix and match Theorem 3 in Andrews (1994) (or

by the permanency property discussed in van der Vaart and Wellner (1996)), due to the fact that

indicator functions are VC classes and by Lemma A3

Proposition A3 Under Assumptions A1,A2,

F2 = {r2 : r2(Ψi) = 1(Wi ≤ w)1(Zi ≤ z)

∫
K(

Yi − s2
h

)1(s2 ≤ y)P (ds), ψ ∈ Ψ}

is stochastic equicontinuous

Proof. F2 is stochastic equicontinuous by the mix and match Theorem 3 in Andrews (1994), due

to the fact that indicator functions are VC classes and by Lemma A4.

Proposition A4 Under Assumptions A1,A2,

F3 = {r3 : r3(Ψi) = 1(Wi ≤ w)

∫
K(

Yi − s2
h

)1(s2 ≤ y)1(s3 ≤ z)P (ds), ψ ∈ Ψ}

is stochastic equicontinuous .

Proof. F3 is stochastic equicontinuous by the mix and match Theorem 3 in Andrews (1994), due

to the fact that indicator functions are VC classes and by Lemma A3 and A4.

18Refer to Gine(1996).

32



Proposition A5 Under Assumptions A1,A2,

F4 = {r4 : r4(Ψi) =
∫
K(

Yi − s2
h

)1(s1 ≤ w)1(s2 ≤ y)1(s3 ≤ z)P (ds), ψ ∈ Ψ}

is stochastic equicontinuous

Proof. F4 is stochastic equicontinuous the mix and match Theorem 3 in Andrews (1994), by

Lemma A3 and A4

Proof of Theorem 3

Proof. This folllos because the permanency property and by Proposition A2 to A5. Note that
the other two conditions in Andrew’s propostion are satisfied.

Proof of Theorem 4

Proof. This follows from the decomposition of Tn(ψ), Theorem 2 and Theorem 3. By Theorem

2 the remainder term is asymptotically uniformly negligible and the projection term is an empirical

process that is P-Donsker, thus,
√
nTn(ψ) weakly converges to a Brownian Bridge with the mean

and the covariance defined as stated in Theorem 4.

Proof of Corollary 1

Proof. This is by Theorem 4 and by the continuous mapping theorem.

Proof of Theorem 5

Proof. Under the alternative, an additional term in the projection needs to be considered.

√
nT̂n(ψ)

=
√
nE[qhψ(Ψi,Ψj)] + 2

√
nPn

{
EΨj [q

h
ψ(Ψi,Ψj)|Ψi]− E[qhψ(Ψi,Ψj)]

}

The critical values of the null distribution are not known since the variance is not known, but we

know that the variance is finite. Suppose the alternative is true. Then the statistic
√
nT̂n(ψ) goes

to infinity, while the unknown critical values are finite, the test rejects the null with probability 1.
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Proof of Theorem 6
Proof. This is direct from the fact that in (14)

√
nT̂n(ψ) weakly converges to O(1) +GP .

Proof of Theorem 7

Proof. The proof is composed of several steps. In the first step it is shown that the remainder term
for the bootstrapped object, T

(∗k)
n (ψ), is asymptotically negligible. In the second step, the limit

processes of the centered bootstrapped empirical processes, T̂ ∗kn (ψ), is the same as that of T̂n(ψ),
for ψ ∈ Ψ. In the final step, the continuous mapping theorem is used to discuss the asymptotic

distributions of KS∗kn and KSn. Consider the sample of (Ψ1,Ψ2, ...,Ψn). Let (Ψ
∗
1,Ψ

∗
2, ...,Ψ

∗
n),

where Ψ∗i = (W ∗
i , Y

∗
i , Z

∗
i ) be the bootstrapped sample. Now T

(∗k)
n (ψ) is found by using the

bootstrapped sample (Ψ∗1,Ψ
∗
2, ...,Ψ

∗
n), by (8)

From the Bn− value found from the above, define the mean of the values of the bootstrapped

statistic, T
(∗k)
n (ψ),

T (∗k)n (ψ) =
2

n(n− 1)

n∑

i=1

n−1∑

j=i+1

qhψ(Ψ
∗k
i ,Ψ

∗k
j ),

where qhψ(Ψ
∗k
i ,Ψ

∗k
j ) = Kh

ij[1
w
W ∗k
i
− 1wW ∗k

j
][1y

Y ∗ki
1
z
Z∗ki
− 1y

Y ∗kj
1
z
Z∗kj
],

with 1bB = 1(B ≤ b), Kh
ij ≡ K(

Y ∗k
i − Y ∗k

j

h
),

ψ = (w, y, z), for k = 1, 2, ..., Bn.

Define the empirical measure of the bootstrapped observation, P ∗n . Note that T
(∗k)
n (ψ) can be

decomposed into the projection and the remainder term of the following :

T (∗k)n (ψ) =
̂
T
(∗k)
n (ψ) +R(∗k)n (ψ), where

̂
T
(∗k)
n (ψ) = E[qhψ(Ψ

∗k
i ,Ψ

∗k
j )] + 2P

∗
n{E[qhψ(Ψ∗ki ,Ψ∗kj )|Ψ∗i ]− E[qhψ(Ψ

∗k
i ,Ψ

∗k
j )]}

R(∗k)n (ψ) = T (∗k)n (ψ)−̂T (∗k)n (ψ),

where P ∗n is the bootstrap empirical measure

for q ∈ Hh
K .

Recall that T
(∗)
Bn(ψ), T

∗k
n (ψ), and KS

∗k
n are defined as follows :

T
(∗)
Bn(ψ) =

1

Bn

Bn∑

k=1

T (∗k)n (ψ)

T ∗kn (ψ) = T (∗k)n (ψ)− T
(∗)
Bn(ψ)
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KS∗kn = sup |
ψ

√
nT ∗kn (ψ)|.

The form obtained in Step 4 is

√
nT ∗kn (ψ) =

√
nT (∗k)n (ψ)−

√
nT

(∗)
Bn(ψ)

=
√
nT (∗k)n (ψ)− 1

Bn

Bn∑

k=1

√
nT (∗k)n (ψ)

︸ ︷︷ ︸
(A)

(Boot-1)

Then consider (A).

(A) :

√
n

Bn

Bn∑

k=1

T (∗k)n (ψ)

=

√
n

Bn

Bn∑

k=1

[
̂
T
(∗k)
n (ψ) +R(∗k)n (ψ)]

=
1

Bn

Bn∑

k=1

√
n
̂
T
(∗k)
n (ψ)

︸ ︷︷ ︸
(B)

+

√
n

Bn

Bn∑

k=1

R(∗k)n (ψ)

︸ ︷︷ ︸
(C)

To examine the asymptotic behaviour of (A), the two components, (B) and (C) will be separately

considered. Once it is shown that supR
(∗k)
n (ψ) = Op(

1
n
), (C) is asymptotically negligible.

By Theorem 2, the remainder term is uniformly asymptotically negligible. Thus, the asymptotic

behavior of T
(∗k)
n (ψ) will depend on (B).

Firstly, consider (B). Under the null, since E[qhψ(Ψ
∗k
i ,Ψ

∗k
j )] = 0,(B) becomes

1

Bn

Bn∑

k=1

√
n
̂
T
(∗k)
n (ψ) =

√
n

Bn

Bn∑

k=1

2P ∗n{E[qhψ(Ψ∗ki ,Ψ∗kj )|Ψ∗ki ],

on the other hand, if the alternative is true, we have

1

Bn

Bn∑

k=1

√
n
̂
T
(∗k)
n (ψ)

=
√
nE[q(Ψ∗ki ,Ψ

∗k
j ;ψ, h)] +

√
n

Bn

Bn∑

k=1

2P ∗n{E[q(Ψ∗ki ,Ψ∗kj ;ψ, h)|Ψ∗ki ]− E[q(Ψ∗ki ,Ψ
∗k
j ;ψ, h)]}].
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Therefore, (Boot-1) can be reexpressed as follows

√
nT ∗kn (ψ) =

√
nT (∗k)n (ψ)−

√
nT

(∗)
Bn(ψ)

=
√
n
̂
T
(∗k)
n (ψ) +R(∗k)n (ψ)−

√
n

Bn

Bn∑

k=1

[
̂
T
(∗k)
n (ψ) +R(∗k)n (ψ)]

=
√
n
̂
T
(∗k)
n (ψ)−

√
n

Bn

Bn∑

k=1

̂
T
(∗k)
n (ψ) + op(1)

since the remainder term is asymptotically uniformly negligible.

We now consider the projection terms of the bootstrapped object to show that they have the

same form irrespective of whether the null is true or not.

√
n
̂
T
(∗k)
n (ψ)−

√
n

Bn

Bn∑

k=1

̂
T
(∗k)
n (ψ) (Boot-2)

=





2
√
nP ∗nE[q

h
ψ(Ψ

∗k
i ,Ψ

∗k
j )|Ψ∗ki ]

−
√
n

Bn

Bn∑

k=1

2P ∗nE[q
h
ψ(Ψ

∗k
i ,Ψ

∗k
j )|Ψ∗ki ]

under H0

2
√
nP ∗nE[q

h
ψ(Ψ

∗k
i ,Ψ

∗k
j )|Ψ∗ki ]− P ∗nE[q

h
ψ(Ψ

∗k
i ,Ψ

∗k
j )]

−
√
n

Bn

Bn∑

k=1

[2P ∗nE[q
h
ψ(Ψ

∗k
i ,Ψ

∗k
j )|Ψ∗ki ]− P ∗nE[q

h
ψ(Ψ

∗k
i ,Ψ

∗k
j )]]

under H1





=





2
√
nP ∗n{E[qhψ(Ψ∗ki ,Ψ∗kj )|Ψ∗ki ]

−
√
n

Bn

Bn∑

k=1

2P ∗nE[q
h
ψ(Ψ

∗k
i ,Ψ

∗k
j )|Ψ∗ki ]

under H0

2
√
nP ∗nE[q

h
ψ(Ψ

∗k
i ,Ψ

∗k
j )|Ψ∗ki ]

−
√
n

Bn

Bn∑

k=1

2P ∗nE[q
h
ψ(Ψ

∗k
i ,Ψ

∗k
j )|Ψ∗ki ]

under H1





The first equality is because of the decomposition and the definition of T
(∗)
Bn(ψ),and the second

equality is due to the fact that if H1 were true, the additional term, E[q
h
ψ(Ψ

∗k
i ,Ψ

∗k
j )], needs to be

subtracted to impose the null distribution. By recentering the proposed bootstrapped object could

be used to approximate the null distribution even if the alternative were true.

Then note that from (Boot-2) the second term converges to zero by Glivenko-Cantelli Theorem,

so the asymptotic behavior is determined by the first term.

Secondly, we show consistency of T ∗kn (ψ)
Since F is Donsker and the envelop of F is finite, by the extended version that allow for

nonmeasurability of Gine and Zinn’s (1990) bootstrap central limit theorem, the two processes√
nT̂ ∗n(ψ) and

√
nT̂n(ψ) converge to the same Gaussian process.
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Thirdly, since sup is a continuous operator, by the continuous mapping theorem we can conclude

that the limiting distributions of KS∗n and KSn are the same, thus the quantiles should be the
same. This guarantees that c∗n → cp(α).

To show (ii) when the null is not true,
√
nT̂n(ψ) tends to infinity as n goes to infinity, whereas

c∗n is bounded, thus, the test rejects the null with probability one when the sample size is large.
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